

ASX ANNOUNCEMENT ACN 123 567 073 8 July 2014

BASE METAL SULPHIDES DETECTED IN SHALE & CARBONATE UNITS IN DEEPER DOOLGUNNA RC HOLES

- Final assay results from Doolgunna RC drilling show trace base metal sulphides in fresh rock, adjacent to 2.5km diameter Borg sediment hosted base metal target
- Relogging of Borg drill chips under microscope shows laminated base metal sulphides hosted by black shales and carbonates (limestone)
- Assays from infill Maglag¹ samples highlight discrete SEDEX² style base metal targets for follow-up by geophysics and drilling at Borg and Azan

Enterprise Metals Limited ("Enterprise"; "the Company", ASX: ENT) is pleased to announce that it has received final assays from 4m composite RC samples and 1m original RC samples from its recently completed drill program, which tested coincident airborne EM and ground EM/gravity targets in the Doolgunna basin. A total of 36 RC drill holes were completed for a total of 4,166 metres at the Borg, Azan, Chekov, Elim, Dax and Forge prospects. (Refer ENT: ASX release 17th April 2014)

The RC drill traverses over each target were designed to test anomalies from a 2012 CSIRO sponsored SPECTREM³ airborne EM survey. The SPECTREM survey was reconnaissance in nature, with north - south lines flown at a line spacing of 5,500 metres. This survey detected a number of conductors classified as "excellent" by the CSIRO. (Refer ENT: ASX release 24th April 2013)

Coincident with the drilling program, the Company also collected 2,356 regional and infill surface Magnetic lag (Maglag) samples. The Maglag samples were collected to provide better definition of broad regional Maglag anomalies that had been generated by previous Enterprise sampling on a 1km x 1km grid. Assays from the infill Maglag sampling program have highlighted discrete SEDEX style base metal targets at Borg and Azan for follow-up by geophysics and drilling.

Footnotes:

- **1. Maglag Sampling**: Historical studies by consultants to the Company have shown that using a four acid digest on magnetic lag samples effectively liberates the chalcophile (and other less soluble pathfinder elements) in the Doolgunna area, giving a superior signal to noise ratio than either fine or coarse soils. Anomalous base metal values in Maglag samples probably reflect the physical dispersion of gossanous material
- **2. SEDEX Style Deposits**: are fine-grained sediment—hosted Cu-Pb-Zn-Ag deposits of mid-Proterozoic age which may or may not be exhalative.
- **3. SPECTREM Survey**: The SPECTREM system was developed to provide superior depths of penetration in the search for buried, conductive ore bodies, particularly in surficial conductive exploration terrains. Due to the broadband nature of its transmitted waveform, the SPECTREM system has the ability to simultaneously map shallow as well as deeper features with a very high level of resolution.

The drilling has confirmed that anomalous base metals values obtained in surficial Maglag samples are reflecting base metal anomalism associated with sulphide mineralisation in fresh rocks at depth. The Company is pleased with the results of its recent exploration programs, which have provided key supporting evidence for the Company's sediment hosted base metal (SEDEX) search (see Table below).

Key SEDEX Targeting Criteria	Evidence	
Tectonic setting Rift, sag, deformation	Yerrida Basin Capricorn Orogen	V
Source rocks Copper rich	Volcanics Basalts at base of sediments	V
Heat flow Hydrothermal systems	Archaean Goodin Dome Radiogenic heat	V
Major Structures Basin bounding faults	Southern Boundary Fault Goodin Fault	•
Favourable Hosts Black shales & dolomitic rocks	Intersected in recent RC drilling	~

Commenting on these results, Enterprise's Chairman Dr Jinbing Wang, said:

"We are very pleased with the recent progress made at Doolgunna by our exploration team. We believe that the Company has a sound exploration model and we also believe that the Doolgunna project area satisfies most of our targeting criteria.

In particular, the recent work has highlighted the 2.5km diameter Borg prospect as an outstanding base metal target, which requires some further geophysics prior to drill testing. Given the large size and strategic nature of our 1,000km² landholding at Doolgunna, we are confident that world class base metals deposits will be found in the coming months and years. The Company is also very appreciative of the co-funding for drilling provided by the West Australian State Government's "Royalties for Regions Program, Exploration Incentive Scheme."

FINAL RC DRILLING RESULTS

During the March Quarter 2014, the Company drilled two SPECTREM airborne EM - ground - gravity targets at the Borg and Azan prospects. Four metre composite sample results for 33 of the 36 holes were reported to the ASX on 17th and 30th April 2014. Sample results from one metre original samples (selected from anomalous 4m composite samples) and four metre composite sample results from AZRC007 (112-169m) and AZRC008 and AZRC009 have now been received.

This RC drill program represents the first concerted drill test of unoxidised sediments within the Doolgunna basin, and the results received to date provide evidence for widespread mineralising events with large alteration zones which have the potential to contain ore grade base metal concentrations. The analyses and recovered drill chips suggest that the combined gravity/EM features represent mineralised shale and carbonate (dolomite) sequences containing base metal mineralisation and associated silica flooding, pyrite and hematite alteration.

Tel: (+61 8) 9436 9200

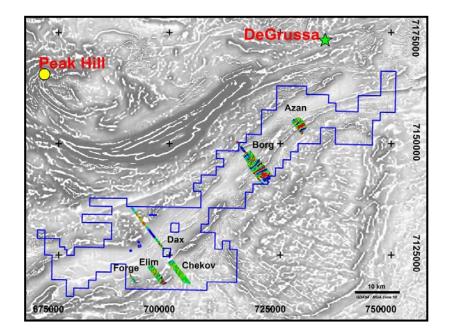


Figure 1. Doolgunna SEDEX Prospect Locations on 1VD Magnetic Image with 1VD Bouguer Anomaly Gravity Data

BORG PROSPECT

At the **Borg** prospect, holes BGRC001 - 006 tested the B1, B2 & B3 targets, and demonstrated that the two gravity highs are part of a broad NE-SW trending gravity ridge which is composed of silicified and mineralised sulphidic shales and dolomitic limestone in fresh rock. The mineralised zone (gravity ridge) is open to the NE and SW.

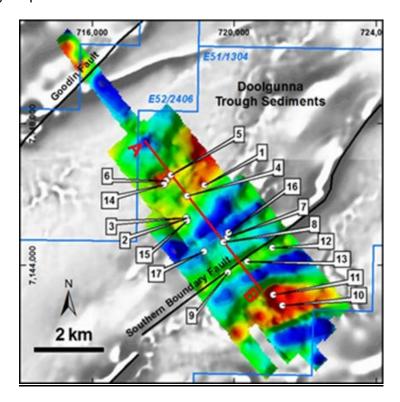


Figure 2. Borg Prospect. Bouguer Anomaly Gravity Image & RC Drill Collars (BGR)

A summary of anomalous intercepts at Borg, based on +100ppm Cu, or +100ppm Pb or +100ppm Zn or +100ppm As cut off grades is shown in Table 1 below.

Table 1. Borg RC: Anomalous Base Metal Results

Hole ID	From m	Int m	Sample Type	Au ppb	As ppm	Bi ppm	Cd ppm	Mo ppm	S %	Sb ppm	W ppm	Cu ppm	Pb ppm	Zn ppm
BGRC001	13	14	1m	5	107	2	2	10	0.05	14	5	314	83	72
BGRC001	27	24	1m	BD	47	3	BD	4	BD	6	4	239	50	46
BGRC001	51	17	1m	4	72	5	3	6	0.02	9	7	204	61	234
BGRC002	68	12	1m	BD	49	2	2	3	0.00	4	5	73	22	517
BGRC004	12	8	1m	BD	143	3	4	3	0.00	3	7	161	42	1,008
BGRC004	20	95	1m	2	27	2	2	1	0.05	2	3	52	43	583
BGRC004	115	5	1m	26	179	5	4	3	2.56	15	5	89	166	943
BGRC005	56	10	1m	8	417	2	1	4	1.74	9	9	45	300	19
BGRC006	40	14	1m	8	70	BD	1	4	0.14	3	5	60	561	48
BGRC006	54	10	1m	25	2,331	BD	40	1	3.17	42	7	28	469	29
BGRC006	64	20	1m	11	316	BD	5	2	0.98	7	69	20	193	15
BGRC008	60	61	1m	5	72	BD	2	BD	0.03	BD	3	997	52	227
BGRC014	0	64	4m	2	51	BD	1	3	NA	1	1	44	23	124
BGRC014	80	23	1m	6	516	BD	16	BD	1.65	14	4	12	116	37
BGRC014	113	7	1m	4	108	BD	3	0	0.52	3	1	11	173	77
BGRC015	0	40	4m	BD	71	BD	1	2	NA	1	BD	42	18	263
BGRC015	40	28	1m	9	25	BD	BD	1	NA	2	3	95	31	304
BGRC015	68	60	4m	BD	16	BD	BD	BD	NA	BD	BD	61	10	132
BGRC015	128	6m	1m	BD	18	BD	BD	BD	0.29	3	4	90	16	136
BGRC015	134	26	1m	8	32	BD	BD	2	1.43	5	4	101	31	407
BGRC016	108	24	1m	BD	8	BD	BD	BD	NA	2	4	562	47	45
BGRC016	132	35	1m	5	22	BD	BD	BD	NA	BD	6	87	28	121
BGRC017	76	62	4m	BD	16	BD	BD	BD	NA	BD	BD	77	16	165

BD: Below detection N/A: Not analysed

Note: Some narrow higher grade intervals included:

BGRC004: 3m @ 1,590ppm Zn from 14m

BGRC004: 1m @ 3,437ppm Zn from 91m

BGRC004: 2m @ 2,119ppm Zn from 115m (See Plate 1 overleaf)

BGRC006: 1m @ 1,792ppm Pb from 63m

Re-logging of washed RC drill chips under laboratory conditions and with the aid of a microscope has identified a number of 1 metre intervals with visible sulphides.

Examples from holes BGRC004 and BGRC 014 are shown overleaf in Plates 1 and 2.

Plate 1. Hole BGRC004 RC Chip Samples: 113m - 116m. Laminated sulphides in carbonates & black shales

Plate 2. BGRC014 RC Chip Samples: 84m - 88m. Matrix sulphides in siliceous breccia (quartzite?)

The anomalous base metal analyses and observed sulphides in RC drill chips explain the anomalous values of Bi, Cd, Mo, As, Te, W and Sb encountered in the Company's previously reported 1km by 1km spaced maglag sampling program.

The Company considers that the base metal sulphides detected to date provide strong support for the Company's SEDEX targeting model, and for further exploration.

Coincident with the RC drilling program, the Company also collected 2,356 regional and infill surface magnetic lag ("Maglag") samples. These Maglag samples were collected to provide better definition of broad regional maglag anomalies that had been generated by previous 1km by 1km Enterprise Maglag samples.

Historical studies by the Company have shown that using a four acid digest on Maglag samples effectively liberates the chalcophile (and other less soluble pathfinder elements) in the Doolgunna area, giving a superior signal to noise ratio than either fine soils (-75 microns) or coarse soil samples. (-4mm+2mm)

Tel: (+61 8) 9436 9200

Anomalous base metal values in Maglag samples probably reflect the physical dispersion of gossanous material, whereas the presence of anomalies in fine fraction soil samples probably reflects hydromorphic dispersion alone. The other advantage of Maglag is that it samples a common medium (maghemite and associated Fe hydroxides) across a variable regolith terrain and the resulting geochemical data does not need to be normalised for iron.

At the Borg prospect, the previous 1km x 1km Maglag sampling was infilled to 250m x 250m, with one line of 100m sample spacing through the centre of the Borg geochemical anomaly.

Refer Figure 3 for sample locations.

The Maglag assay results, which were not received until well after the drilling was completed, show a distinct multi-element base metal anomaly, just to the east of Enterprise's line of RC holes.

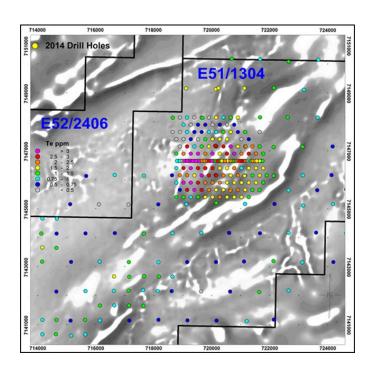


Figure 3. Te Maglag Sample Locations on 1st VD Magnetics

Refer Figure 4, for ENT RC drill hole locations over the Tellurium assay results.

Three historical RC holes drilled by CRA Exploration Pty Ltd (CRAE) in 1992 are also shown in Figure 4. (MLA034, MLA035, MLA036)

These holes were drilled by CRAE while following up base metal anomalism recorded in heavy mineral concentrates from a loam sampling program, directed at diamond exploration.

It appears that both the Enterprise Metals and CRAE drill holes flank the 2.5km wide Borg Maglag target.

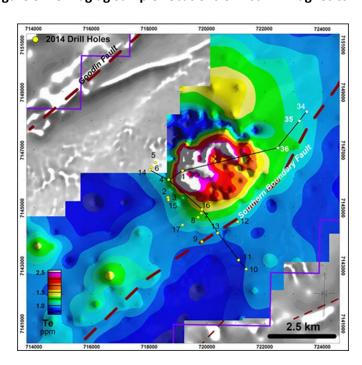


Figure 4. Te Maglag Geochem Image over 1st VD Magnetics

A **schematic west-east cross section** showing the interpreted Borg target with drill holes is shown below in Figure 5.

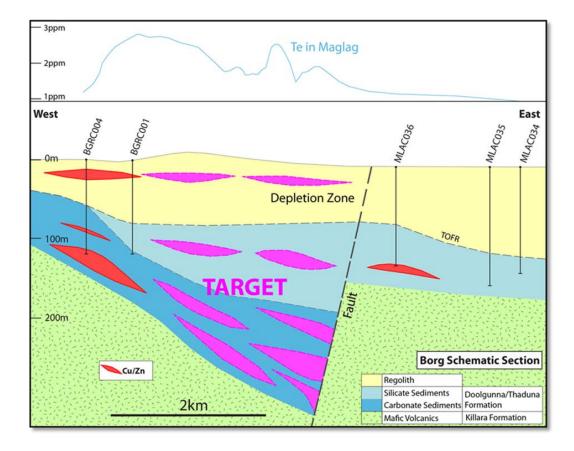
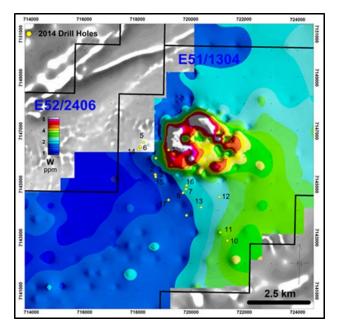



Figure 5. Schematic West to East Cross Section over Borg Maglag Geochemical Target

Maglag images of other pathfinder elements are shown in Figures 6 to 1.

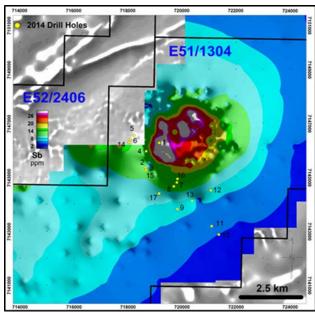


Figure 7. Antimony Maglag Geochemical Image

716000 716000 7200000 720000 720000 720000 720000 720000 720000 720000 720000 7200000 7200000 720000 720000 720000 720000 720000 720000 720000 7200000 720000 720000 720000 720000 720000 720000 720000 720000 720000 720000 720000 720000 720000 720000 720000 720000 720000 72000

Figure 7. Molybdenum Maglag Geochemical Image

Figure 8. Arsenic Maglag Geochemical Image

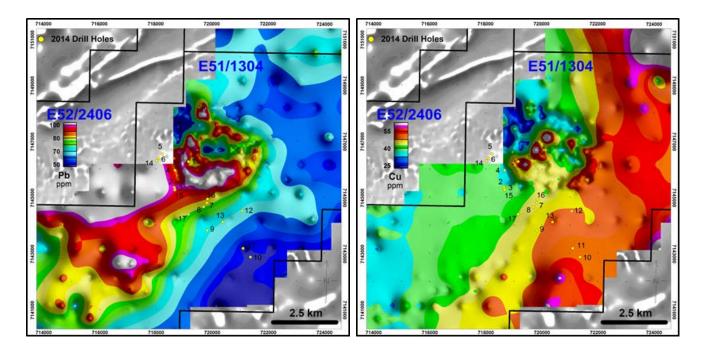


Figure 9. Lead Maglag Geochemical Image

Figure 10. Copper Maglag Geochemical Image

It is apparent from these and other maglag assay results that the **less soluble base metal**s are being retained in the "magnetic lag" fraction of surface samples, whilst the **more soluble elements** (such as copper and zinc) are likely being dissolved and depleted by the action of "acid leaching" created by the combination of ground water and sulphides.

Refer Figure 11 overleaf for an image of maglag sulphur geochemistry, showing a distinct "Sulphur geochemical low". Note: the higher sulphur values to the east of Borg are located over a calcrete rich palaeochannel containing gypsum, ie. calcium sulphate ($CaSO_4 \cdot 2H_2O$).

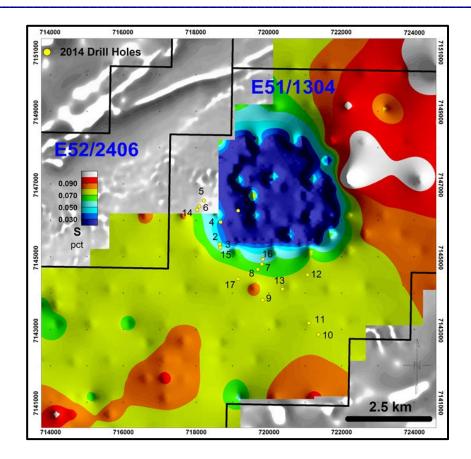


Figure 11. Sulphur Maglag Geochemistry Image over 1st VD Magnetic Image

AZAN PROSPECT

At the **Azan** prospect, 6 shallow vertical RC holes (AZRC001 - 006) and 3 deeper angled RC holes (AZRC007 - 009) were drilled to test two GEM/gravity features which also had anomalous surface geochemistry. All holes encountered sediments with anomalous values of As, Cu, Zn and Sb in the transition zone. The best results were from AZRC004 (14m @ 386ppm Cu from 30m depth) which tested the western edge of the A2 gravity feature, and from the bottom of hole AZRC009 (12m @ 373ppm Cu from 148m depth)

Table 2. Azan RC: Anomalous Base Metal Results using +100ppm Cu or 100ppm Zn Cut off

Hole	From	Interval	Sample	Ag	As	Мо	Sb	Cu	Zn
ID	(m)	(m)	Type	ppm	ppm	ppm	ppm	ppm	ppm
AZRC001	68	8	1m	0.7	10	3	BD	260	152
AZRC003	64	12	1m	0.6	22	BD	BD	178	93
AZRC004	30	14	1m	6.8	21	BD	BD	165	386
AZRC007	113	13	1m	BD	37	1	6	284	290
AZRC007	137	11	1m	BD	170	1	7	206	108
AZRC007	157	8	1m	BD	36	3	4	169	107
AZRC008	0	24	4m	BD	65	3	3	194	162
AZRC009	20	64	4m	BD	42	1	BD	178	53
AZRC009	84	13	1m	BD	77	2	6	216	99
AZRC009	97	19	1m	BD	35	1	1	87	283
AZRC009	116	32	4m	BD	9	BD	BD	93	133
AZRC009	148	12	1m	BD	18	BD	BD	67	373

Level 1, 640 Murray Street, West Perth, WA 6005 PO Box 992, West Perth, WA 6872 www.enterprisemetals.com.au Tel: (+61 8) 9436 9200 Fax: (+61 8) 9436 9220

Email: admin@enterprisemetals.com.au

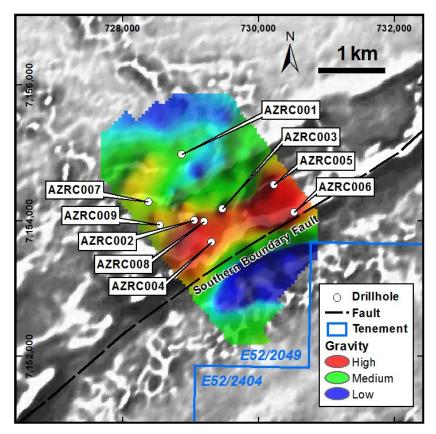


Figure 12. Azan Prospect. Bouguer Anomaly Gravity Image & RC Drill Hole Collars

CHEKOV PROSPECT

At the **Checkov** prospect, 2 deep RC holes (CKRC001 -002) were drilled to test a combined gravity and GEM target. Both holes intersected zones of anomalous zinc mineralization, with narrow higher grade lead and zinc zones in CKRC002.

Table xxx. Chekov RC: Anomalous Base Metals using +100ppm Cu or 100ppm Zn Cut off

Hole	From	Interval	Sample	Au	As	Sb	W	Pb	Cu	Zn
ID	m	m	Type	ppb	ppm	ppm	ppm	ppm	ppm	ppm
CKRC001	40	20	1m	5	20	12	4	28	101	266
CKRC002	44	14	1m	12	35	17	2	30	213	163
CKRC002	67	29	1m	6	24	70	4	231	275	456
inc	69	2	1m	3	131	10	7	18	1,337	1,276
inc	85	2	1m	3	21		5	1,915	161	641

ELIM PROSPECT

At the **Elim** prospect, 3 deep RC holes (EMRC001 – 003) were drilled to test three gravity/GEM targets. No significant results were obtained from EMRC001 and 002, but a broad zone of copper and zinc mineralization was intersected in EMRC003. See Figure 13 overleaf for location of drillholes.

EMRC003: 32m @ 330ppm Cu, 210 ppm Zn from 64m depth.

FORGE PROSPECT

At the **Forge** prospect, 3 deep RC holes (FGRC001 -003) were drilled to test a combined gravity and GEM target. No significant results were obtained from FGRC001 – 003, although FGRC003 intersected Proterozoic dolerite. See Figure 13 below for location of drillholes.

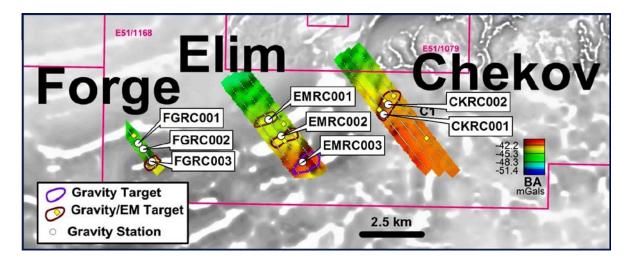


Figure 13. Chekov, Elim & Forge. Bouguer Anomaly Gravity Image & Targets

DAX PROSPECT

At the **Dax** prospect, 2 deep RC holes (DXRC001 - 002) were drilled to test a combined gravity and GEM target. Hole DXRC001 intersected goethitic alteration associated with silicified shales in the interval 150 - 159m.

DXRC001: 10m @ 250ppm Cu, 5ppm Sb, 12ppb Au from 150m depth.

Figure 14. Dax Prospect. Bouguer Anomaly Gravity Image & Targets & RC Holes

OTHER REGIONAL AND INFILL MAGLAG SAMPLING ASSAYS

Illustrated in Figures 15 to 18 are images of maglag assay results from selected other elements. Enterprise believes that integration of the 61 element maglag assay dataset with the Company's regolith interpretation will produce further base metals targets for geophysics and drill testing.

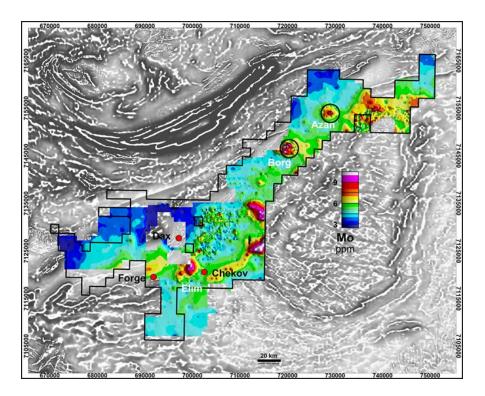


Figure 15. Molybdenum - Regional and Infill Maglag Geochemical Image

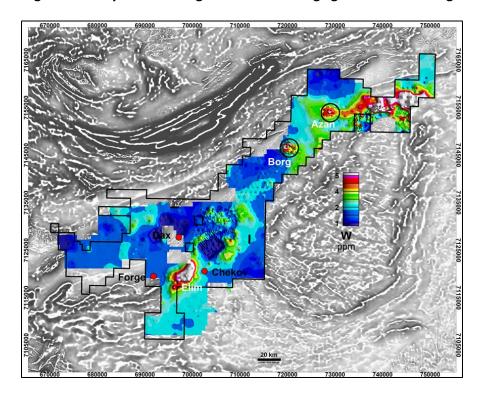


Figure 16. Tungsten - Regional and Infill Maglag Geochemical Image

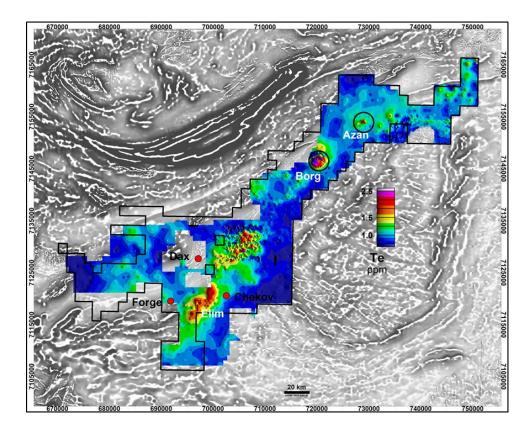


Figure 17. Tellurium - Regional and Infill Maglag Geochemical Image

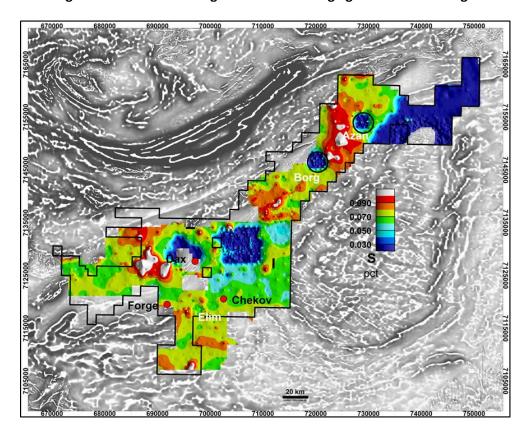


Figure 18. Sulphur - Regional and Infill Maglag Geochemical Image Note: "Sulphur lows" over Azan, Borg and Dax.

Dermot Ryan
Managing Director

Competent Persons statement

The information in this report that relates to Exploration Results and Mineral Resources is based on information compiled by Mr Dermot Ryan, who is an employee of the Company. Mr Ryan is a Fellow of the Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Ryan consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

Exploration results are based on standard industry practices, including sampling, assay methods, and appropriate quality assurance quality control (QAQC) measures. Reverse circulation (RC) drilling samples were collected as 1 metre original samples and as composite samples of 4 metres using a constant volume PVC scoop or spear. Mineralised intersections identified from 4m composite samples were subsequently reassayed using the 1 metre original samples to better define grade distribution. The 4m composite samples (~3kg) were pulverised to give a 10g sample for aqua regia digest and ICP-MS and OES analysis of 32 elements: Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Sr, Te, Ti, Tl, V, W, Zn, and by 25g samples analysed by MS for gold (after aqua regia digest). Original 1m samples were then collected from the field after geochemically anomalous 4m intervals were identified. Original 1m samples were submitted for 4 acid digest and assayed by ICP – OES for; Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W, Zn. Gold was assayed by Fire Assay, using a 50g AAS technique. All RC analyses were undertaken by Minanalytical Laboratory Services Australia. Maglag samples were pulverised and subjected to a 4 acid digest and analysis by a low level detection method ICP-MS & ICP-OES Package for 61 elements at Minanalytical Laboratory Services Australia.

Tel: (+61 8) 9436 9200

Fax: (+61 8) 9436 9220

Email: admin@enterprisemetals.com.au

Appendix 1. Doolgunna Project, 2014 Drill Collar Locations

Hole	East	North	Dip (deg)	Azimuth (deg)	Depth (m)	Tenement
AZRC001	728,872	7,154,979	-90	0	119	E52/2049
AZRC002	729,054	7,154,003	-90	0	72	E52/2049
AZRC003	729,470	7,154,176	-90	0	85	E52/2049
AZRC004	729,305	7,153,686	-90	0	82	E52/2049
AZRC005	730,231	7,154,528	-90	0	89	E52/2049
AZRC006	730,521	7,154,128	-90	0	69	E52/2049
BGRC001	719,156	7,146,267	-90	0	120	E51/1304
BGRC002	718,664	7,145,324	-90	0	92	E51/1304
BGRC003	718,649	7,145,346	-90	0	115	E51/1304
BGRC004	718,674	7,145,956	-90	0	120	E51/1304
BGRC005	718,219	7,146,543	-90	0	80	E51/1304
BGRC006	718,088	7,146,387	-90	0	88	E51/1304
BGRC007	719,809	7,144,798	-90	0	91	E51/1304
BGRC008	719,698	7,144,654	-90	0	61	E51/1304
BGRC009	719,827	7,143,811	-90	0	73	E51/1304
BGRC010	721,363	7,142,865	-90	0	48	E51/1304
BGRC011	721,100	7,143,177	-90	0	43	E51/1304
BGRC012	721,066	7,144,502	-90	0	59	E51/1304
BGRC013	720,376	7,144,113	-90	0	55	E51/1304
CKRC001	701,685	7,120,992	-60	180	150	E51/1168
CKRC002	701,876	7,121,408	-60	135	174	E51/1168
DXRC001	697,438	7,127,914	-60	138	180	E51/1079
DXRC002	697,804	7,127,482	-60	136	150	E51/1079
EMRC001	696,952	7,120,779	-60	138	150	E51/1168
EMRC002	697,472	7,120,104	-60	135	180	E51/1168
EMRC003	698,343	7,119,028	-60	135	160	E51/1168
FGRC001	691,593	7,119,804	-60	135	132	E51/1168
FGRC002	691,789	7,119,569	-60	135	120	E51/1168
FGRC003	692,156	7,119,057	-60	135	84	E51/1168
AZRC007	728,380	7,154,280	-60	180	169	E52/2049
AZRC008	729,201	7,153,994	-60	180	160	E52/2049
AZRC009	728,551	7,153,941	-60	180	160	E52/2049
BGRC014	718,026	7,146,295	-60	137	168	E51/1304
BGRC015	718,669	7,145,255	-60	130	160	E51/1304
BGRC016	719,833	7,144,930	-60	138	170	E51/1304
BGRC017	719,155	7,144,390	-60	135	138	E51/1304

Total 4166

All holes: Grid: MGA94_Zone 50

JORC Code, 2012 Edition – Table 1 report 8 July 2014 – Doolgunna Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Sampling & assay

techniques

Criteria

Commentary

- Drilling at Doolgunna between February April 2014 consisted of 17 angled and 19 vertical Reverse Circulation (RC) drill holes.
- Representative 3kg 1 metre RC samples were produced by a cyclone and splitter system fitted to side of the drill rig.
- Representative 4m composite RC samples were collected using a constant volume PVC scoop. These 4m composite samples (~3kg) were pulverised to give a 10g sample for aqua regia digest and ICP-MS and OES analysis of 32 elements: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Sr, Te, Ti, Tl, V, W, Zn, And by 25g samples analysed by MS for gold (after aqua regia digest.
- Original 1m RC samples were then collected from the field after geochemically anomalous 4m intervals were identified. Original 1m samples to be submitted for 4 acid digest and assayed by ICP OES for; Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W, Zn. Gold to be assayed by Fire Assay, using a 50g AAS technique.
- For "maglag" sampling, lag was swept up with a plastic dust pan and brush over about a 5 m diameter area. (for ~ 2 kg sample). Coarse pebbles, sticks, etc (greater than 1 or 2 cm) were swept out on to a plastic sheet and any organic material was removed. A MAGSAM 300 "rare earth" magnetic sampler from Pathfinder Exploration was used to collect the magnetic fraction (between 50-100gms).
- Maglag samples were pulverised and subjected to a 4 acid digest and analysis by a low level detection method of 61 elements ICP-MS & ICP-OES Package (4A-ICPMS-MA40MS MA40-OES) at Minanalytical Laboratory Services Australia.

Ag	0.01-100	Ga	0.05-1000	Pb	0.2-1%	Те	0.01-500
As	0.5-1%	Gd	0.02-500	Pr	0.01-500	Th	0.1-1%
За	2-1000	Ge	0.05-1000	Rb	0.05-1%	ΤI	0.02-1000
Ве	0.05-1000	Hf	0.01-500	Re	0.001-100	Tm	0.01-500
Bi	0.01-1%	Но	0.01-500	Sb	0.05-1%	U	0.02-1%
Cd	0.01-1000	ln	0.005-500	Sc	0.1-1%	w	0.05-1%
Се	0.02-500	La	0.1-1000	Se	0.5-1000	Υ	0.05-1000
Со	0.1-1%	Li	0.1-1000	Sm	0.01-500	Υb	0.01-500
Cs	0.05-1000	Lu	0.01-500	Sn	0.2-500	Zr	0.5-500
Dy	0.01-500	Мо	0.05-1%	Sr	0.1-1%		
Er	0.01-500	Nb	0.05-1000	Та	0.01-100		
Eu	0.01-500	Nd	0.01-500	Tb	0.01-500		

ICP-MA40 - OES Elements and Ranges (ppm)

Criteria	Com	mentary							
	Ag	0.5-100	Со	1-1%	Мо	1-1%	Sr	1-1%	
	AI	0.01%-10%	Cr	1-1%	Na	0.01%-10%	Те	2-500	
	As	2-1%	Cu	1-1%	Ni	1-1%	Ti	0.01%-10%	
	Ва	5-1%	Fe	0.01%-50%	Р	20-1%	TI	10-1000	
	Ве	0.5-1000	K	0.01%-10%	Pb	2-1%	٧	2-1%	
	Bi	5-1%	La	20-1000	s	0.01%-5%	W	1-1%	
	Са	0.01%-25%	Li	1-1000	Sb	2-1%	Zn	2-1%	
	Cd	1-1000	Mg	0.01%-20%	Sc	1-1%			
	Се	20-500	Mn	2-1%	Sn	5-1%			
Drill sample recovery	 Sample recoveries not measured, poor samples commented on in logs. RC samples are collected in polythene bags. Recovery was not measured. All wet samples have been logged and recorded in the database accordingly. 								
Logging	• L	Geological logging of drill chip samples has been recorded for each drillhole including lithology, mineralisation, grainsize, texture, oxidation, weathering, colour and wetness. Logging is qualitative. For RC drilling every 1m interval was collected, sieved and a sample retained in a plastic chip tray. All drillholes were logged for the full extent of each hole.							
Sub-sampling techniques and sample preparation	 No core drilling undertaken. 4m composite RC samples were collected using a spear when dry and a PVC scoop if wet from bulk drill samples. The sample preparation of drill chip samples follows industry best practice involving oven drying, coarse crush, sieve -80# sufficient for a 50g aqua regia digestion. QC procedures involve the review of laboratory supplied certified reference materials and field duplicates. These quality control results are reported along with sample values in the final analysis report. Selected intervals are assayed at other laboratories for comparison at times. Sample sizes are considered to be appropriate to correctly represent the style of mineralisation style. 								
Quality of assay data and laboratory tests	 The analytical techniques for 4m composite samples used aqua regia digest multi element suite with ICP-MS finish suitable for reconnaissance as a first pass. Re-split or original 1m samples were dissolved with a four acid digest for the same elements and gold was assayed by fire assay in these samples this method is a full digest. No geophysical tools were used to determine any element concentrations at this stage. Laboratory QC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in house process. 								
Verification of sampling and					-			cel templates and re- interprise's in-house	

Level 1, 640 Murray Street, West Perth, WA 6005 PO Box 992, West Perth, WA 6872 www.enterprisemetals.com.au Tel: (+61 8) 9436 9200

Criteria	Commentary
assaying	 database manager for validation and loading into a SQL database server. No adjustments or calibrations were made to any assay data used in this report.
Location of data points	 Drill hole collar locations were surveyed by a modern hand held GPS unit with an accuracy of 5m which is sufficient accuracy for the purpose of compiling and interpreting the results. Topographic control is by NASA Shuttle Radar Topography Mission (SRTM). The grid system is MGA GDA94 Zone 50.
Data spacing and distribution	 RC drill hole spacing was chosen to test a number of Ground EM and Gravity anomalies. Spacing between holes was not fixed. Drill hole spacing is not sufficient to determine degree of grade or geological continuity. No additional sample compositing was used apart from the standard 4m composite sampling.
Orientation of data in relation to geological structure	 The drilling was conducted orthogonal to strike of the sedimentary sequence interpreted from aeromagnetic data and geological mapping. Maglag samples were collected on a rectangular/square east-west grid.
Sample security	 Samples were secured in bulka bags and delivered to the Laboratory by a reputable carrier.
Audits or reviews	Regular internal reviews are occurring, but no external reviews have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria Commentary

Mineral tenement and land tenure status

- The Doolgunna Project consists of multiple contiguous exploration licences and covers approximately 1,036km² and is located 110km northeast of Meekatharra and some 10km southwest of Sandfire Resources NL's (Sandfire) 2009 DeGrussa copper-gold discovery.
- The GEM and gravity prospects referred to are all on granted tenements held 100% by either Enterprise Metals Limited or one its wholly owned subsidiaries. The tenements are all in good standing.
- The drilled prospects are either on former Doolgunna or Mooloogool pastoral leases, now administered by the WA Government Department of Parks and Wildlife (DPaW), Mt Padbury or Killara pastoral leases, or Vacant Crown Land. (see table below).

Prospect	Teneme	Grant Date	Expiry	Land
	nt		Date	
Borg	E51/1304	28/06/2010	27/06/2015	Former Doolgunna &
				Mooloogool Pastoral Leases
Azan	E52/2049	27/10/2008	26/10/2018	Former Doolgunna Pastoral
				Lease
Dax	E51/1079	25/07/2006	24/07/2015	Mt Padbury Pastoral Lease
Chekov	E51/1168	11/11/2008	10/11/2018	Vacant Crown Land
Forge	E51/1168	11/11/2008	10/11/2018	Killara Pastoral Lease
Elim	E51/1168	11/11/2008	10/11/2018	Killara Pastoral Lease

- There are no royalties attached to any of these tenements.
- The prospects are covered by the Yugunga-Nya [WAD6132/98] Native Title Claim Group. Native Title Agreements, administered by the Yamatji Marlpa Aboriginal Corporation are in place for the relevant tenements.

Level 1, 640 Murray Street, West Perth, WA 6005 PO Box 992, West Perth, WA 6872 www.enterprisemetals.com.au

Criteria Commentary

Exploration done by other parties

- A summary of previous exploration activities was provided in the Company's 2013 Annual Report.
- There has been little exploration conducted by other parties in the areas of the Company's AEM, GEM and gravity targets other than "metal detecting" for alluvial gold by prospectors. The Company's GEM and gravity targets have not been previously tested by drilling.
- During the period 2001 2003, Murchison Exploration Pty Ltd carried out regional 1km x 1km spaced "mag-lag sampling" over the project area. Limited infill sampling was subsequently undertaken in selected areas.
- Sample sites were planned on a square 1km x 1km grid, and then located with GPS receiver.
- The regolith landform setting was recorded. The proportions of the main lag types, Eg.
 highly ferruginous (including magnetic and non-magnetic); ferruginised lithic; lithic;
 quartz; calcrete; other, and grain size were recorded.
- Lag was swept up with a plastic dust pan and brush over about a 5 m diameter area. (for ~ 2 kg sample). Coarse pebbles, sticks, etc (greater than 1 or 2 cm) were swept out on to a plastic sheet and any organic material was removed. Two magnetic susceptibility readings were recorded. A hand held magnet inside a plastic bag was used to collect the magnetic fraction (between 50-100gms).
- Samples were submitted to Ultra Trace Pty Ltd of Canning Vale, W.A. and after sorting and drying, samples were pulverized and then exposed to concentrated hydrochloric acid to extract moderately bound elements (partial extraction methodology) and analysed for a limited range of elements by ICPMS and ICPOES methods. (Au, Ag, As, Pt, Ta, Ba, Cr, Cu, Fe, Zn, Hg).
- In 2007, Murchison Exploration Pty Ltd was acquired by Revere Mining Ltd, now called Enterprise Metals Ltd ("Enterprise").
- Revere (Enterprise) flew a detailed low level 100m line spaced airborne magnetic and radiometric survey over the majority of the project area.
- In 2008, Enterprise retrieved the available maglag sample pulps from storage and submitted them to Actlabs Pacific Pty Ltd, Redcliffe W.A. for analysis of an expanded suite of 61 elements. Samples were pulverized prior to a total digest (four-acid) and determination of the elements listed below using ICP-MS and ICP-OES methods. Analysed elements were: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pd, Pr, Pt, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr.
- Between 2009 and 2012, the Company's exploration focus was for VMS style massive sulphide deposits in the Narracoota Fm volcanic sequence.
- During 2012, the Company commenced a program to test the potential of the Yerrida Basin sediments for sediment hosted (SEDEX style) copper deposits.
- In late 2012, the CSIRO flew a SPECTREM airborne EM survey at 5km line spacing in a south-south direction over the Doolgunna area, and generated a series of anomalies rated on a four part scale from A to D with A being 'excellent' and D being 'poor'. From this data, Enterprise selected six "A" rated EM anomalies along the SBF for follow up and ground EM surveying.
- The strongly conducting nature of the AEM anomalies suggested that they were either massive sulphide or highly graphitic bodies. Considering the anomalies are hosted in a sedimentary package, and the proximity to Sipa's Enigma copper deposit and Ventnor's Thaduna and Green Dragon Copper deposits, Enterprise considered that this area and these AEM targets had the potential for SEDEX style copper deposits.

Level 1, 640 Murray Street, West Perth, WA 6005 PO Box 992, West Perth, WA 6872 www.enterprisemetals.com.au Criteria Commentary

Criteria	Commentary
	 In mid-2013, the Company conducted ground EM (GEM) surveys to follow up the SPECTREM EM anomalies. Two high priority bedrock conductors (A & B) were seen to be adjacent to maglag samples considered to be anomalous in W, Sn, Mo, Bi, Sb & Te.
Geology	 The Company considers the Yerrida Basin sediments to be prospective for sediment hosted (SEDEX style) copper deposits similar to those in the Central African Copperbelt. The Southern Boundary Fault (SBF) and associated cross structures are potential conduits for mineralising fluids into the sediments of the "Doolgunna Graben". The Yerrida Basin sediments are also host to the Thaduna massive sulphide copper deposit and Sipa Resources' Enigma Deposit to the northeast along strike of the SBF. Enterprise believes the "aeromagnetic redox feature" along the Southern Boundary Fault is a fluid outflow zone, so any ore would be (stratigraphically) below this zone, and probably in a trap site away from the immediate outflow zone. The target stratigraphy is more or less conformable reduced facies strata, and could be shales, carbonates and/or conglomerates. Along the Southern Boundary Fault, within the Moolgoolool Group sediments, there are areas of intense magnetism (probably magnetite but possibly pyrrhotite) broken by areas of magnetic lows which may represent total magnetite destruction. The magnetite destruction is potentially the result of outflow of reducing fluids, including copper. Although the area is covered by regolith, it is expected that the potentially mineralised zones would manifest themselves as electromagnetic conductors and/or gravity anomalies.
Drill hole Information	Refer to attached Table of all RC drill collars.
Data aggregation methods	 All reported composite intervals of assay results are weighted by length. Reported intervals selected on + 100ppm Pb, or +100ppm Zn or +100ppm Cu or +4ppm Te. No cutting of grades was required as grades were determined to be generally uniform. Not applicable, as no metal equivalents used.
Relationship between mineralisation widths and intercept lengths	 Nature of mineralization with respect to drill hole angle is not known. Only down hole lengths are reported as true width of mineralized intervals is not known.
Diagrams	 Plans of drill collar location in ENT:ASX release 17 April 2014. Schematic cross section produced for Borg Prospect 7 July 2014.
Balanced reporting	 Anomalous intervals +100ppm Pb, or +100ppm Zn or +100ppm Cu or +4ppm Te reported. No ore grades were intersected.
Other substantive exploration data	No other substantive exploration data acquired from RC drill program.
Further work	Ground geophysics and RC drilling

Tel: (+61 8) 9436 9200

Fax: (+61 8) 9436 9220