

ASX ANNOUNCEMENT ACN 123 567 073 29 January 2016

Prospective Ore Deposit Geology for Copper Sulphides at Vulcan West: Assay Results

Enterprise Metals Limited ("Enterprise" or "the Company") (ASX: ENT) advises that assay results have been received for 4 metre composite samples from reverse circulation (RC) drill hole VWRC001, drilled to test the Vulcan West Moving Loop Electromagnetic (MLEM) target at Doolgunna in Western Australia. Peak copper assays up to 4 metres at 1,510 ppm (0.15%) Cu are supportive of Volcanic Massive Sulphide (VMS) prospectivity.

The Vulcan West EM target is a discrete basement conductor located in the volcano-sedimentary stratigraphy of the Narracoota/Karalundi Formations, in a similar stratigraphic position to Sandfire Resources NL's DeGrussa and Monty massive sulphide copper deposits.

RC drill hole VWRC001 was collared at 725047E, 7159404N with a -60 dip on azimuth 150 degrees magnetic. After passing through 12 metres of alluvial cover, the hole penetrated a deep zone of oxidation to 81m downhole, then medium grained dolerite, with weak-medium pervasive chlorite-epidote alteration, along with weak-moderate silicification to ~192m.

The hole then intersected a 64m thick (downhole) zone of alteration consisting of interbedded green-grey shale and **fine-grained dolerite**, **with red jasper** occurring in or at the boundary with shale. Locally minor pyrite (~0.1-1%) and trace chalcopyrite (~0.1%) were associated with the red jasper. The dolerite showed weak-medium-strong chlorite-epidote alteration.

The hole then entered a 40m thick zone of finely laminated sulphide-rich (~5% - 20%) black shale and minor dolerite. The sulphides were dominantly pyrite and pyrrhotite. At the contact between the altered mafic zone and the sulphidic sediments, one 4m composite sample assayed **1,510ppm Cu** (from 252 metres). The average assays for these two zones are shown below Table 1 and the assays for all intervals are shown in Appendix 1.

Table 1. Average Assay Data for 4 Metre Composite Samples, Alteration & Sulphide Zones

From	Int	Ag	As	Ва	Bi	Cd	Cu	Pb	Zn	Fe	S	Mn	Comment
(m)	(m)	ppm	%	%	ppm	Zone							
192	64	0.7	2	524	5	4	230	17	109	9.8	0.15	4,304	Altered mafic volcanics
	NUNNINUNN										~~~~~~		
256	40	0.7	20	222	8	2	84	9	59	11.0	2.01	2322	Sulphidic sediments

Sulphide-bearing red jasperite indicates copper prospectivity

The interbedded sulphide-rich shale unit with minor dolerite from 256 to 296m is the likely source of the modelled Vulcan West MLEM anomaly. However, the zone from 192 to 256m which displayed red jasper alteration with associated sulphides (including trace chalcopyrite) is considered to be a potential ore horizon.

Enterprise considers that the mineralised altered mafic volcanic zone overlying the sulphidic sediments may represent the contact between the Narracoota Fm and the underlying Karalundi Fm .

PVC casing was inserted into hole VWRC001 to provide access for down hole electromagnetic (DHEM) surveying in early 2016. The DHEM survey will be used to confirm that the surface MLEM target with a modelled strike length of 380m has been intersected, and will also search for the most conductive zone which potentially contains economic massive sulphides.

Assays for one metre samples from 220m to 296m are still awaited.

Plate 1. RC Drilling Rig at Vulcan West Prospect, December 2015

Dermot Ryan Managing Director

Competent Persons statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Dermot Ryan, who is an employee of Xserv Pty Ltd and a Director and security holder of the Company. Mr Ryan is a Fellow of the Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Ryan consents to the inclusion in this report of the matters based on information in the form and context in which it appears. Mr Ryan and Enterprise Metals Limited confirm that other than the Geophysical Exploration Results presented in this Report, they are not aware of any new information or data that materially affects the information included in the relevant previous Enterprise Metals Limited market announcements relating to the Vulcan Prospect.

Appendix 1. Vulcan West, Assay Data for 4 Metre Composite RC Samples

From	То	Au	Ag	As	Ва	Bi	Cd	Cu	Pb	Zn	Fe	S	Mn
(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
	Detect	0.005	0.5	2	5	5	1	1	2	2	0.01	0.01	2
0	4	0.009	<0.5	5	379	<5	1	39	24	71	5.4	<0.01	1090
4	8	<0.005	<0.5	10	191	8	2	55	22	31	9.1	<0.01	454
8	12	<0.005	<0.5	15	383	11	3	76	33	50	14.6	0.01	626
12	16	0.011	<0.5	7	93	16	3	81	14	51	14.2	0.01	424
16	20	<0.005	<0.5	3	64	15	3	94	13	41	15.3	<0.01	499
20	24	<0.005	<0.5	7	27	13	3	103	11	52	13.8	<0.01	445
24	28	<0.005	<0.5	8	78	15	3	135	13	35	12.6	0.03	1,188
28	32	<0.005	<0.5	11	309	11	2	204	11	61	13.6	<0.01	3,331
32	36	<0.005	<0.5	11	192	13	2	254	10	81	14.1	<0.01	2,597
36	40	<0.005	<0.5	7	106	9	2	226	9	130	11.7	<0.01	1,439
40	44	<0.005	<0.5	2	85	10	3	36	11	99	11.3	<0.01	1,815
44	48	<0.005	<0.5	2	42	13	2	40	9	64	13.9	<0.01	1,632
48	52	0.011	<0.5	2	64	7	3	46	10	65	10.1	<0.01	2,020
52	56	<0.005	<0.5	3	69	<5	3	24	9	64	10.7	<0.01	2,121
56	60	<0.005	<0.5	<2	57	11	3	22	9	66	10.9	<0.01	1,941
60	64	<0.005	<0.5	4	61	5	3	50	8	72	10.8	0.06	1,773
64	68	<0.005	<0.5	<2	83	6	3	15	9	79	10.8	<0.01	2,031
68	72	<0.005	<0.5	9	53	<5	4	270	17	91	10.4	<0.01	2,070
72	76	<0.005	<0.5	6	76	8	3	48	10	87	11.6	<0.01	2,583
76	80	<0.005	<0.5	6	59	<5	3	31	8	89	11.3	<0.01	2,654
76	80	<0.005	<0.5	5	51	7	3	23	10	79	10.1	<0.01	2,308
80	84	<0.005	<0.5	7	49	<5	3	31	10	66	8.8	<0.01	1,720
84	88	<0.005	<0.5	<2	38	8	4	20	9	78	10.9	<0.01	2,192
88	92	<0.005	<0.5	5	33	7	4	10	10	71	10.7	<0.01	2,179
92	96	<0.005	<0.5	<2	44	9	4	19	12	89	12.2	<0.01	2,564
96	100	<0.005	<0.5	<2	87	<5	3	11	10	63	9.5	<0.01	2,395
100	104	<0.005	<0.5	<2	95	<5	3	12	9	80	8.8	<0.01	1,804
104	108	<0.005	<0.5	<2	152	<5	3	7	9	74	8.7	<0.01	1,898
108	112	<0.005	<0.5	<2	151	<5	3	6	9	76	9.1	<0.01	2,105
112	116	<0.005	<0.5	<2	211	6	3	8	9	74	8.5	<0.01	1,948
116	120	<0.005	<0.5	<2	234	<5	2	5	10	81	8.2	<0.01	2,027
120	124	<0.005	<0.5	2	165	10	3	8	9	81	8.3	0.02	2,062
124	128	<0.005	<0.5	<2	156	<5	2	5	9	64	7.3	<0.01	1,974
128	132	<0.005	0.7	<2	196	<5	2	3	7	62	7.3	<0.01	2,112
132	136	<0.005	<0.5	<2	206	<5	2	3	8	72	7.8	<0.01	2,143
136	140	<0.005	<0.5	<2	213	6	2	9	8	66	8.5	0.01	2,337
140	144	<0.005	<0.5	<2	339	7	3	7	8	74	8.8	0.04	2,392
144	148	<0.005	<0.5	<2	94	8	3	14	12	74	9.4	<0.01	2,003
148	152	<0.005	<0.5	<2	40	<5	4	13	10	67	10.5	<0.01	1,902
152	156	<0.005	<0.5	6	46	9	4	13	8	67	10.7	<0.01	1,883
152	156	<0.005	<0.5	6	39	8	4	16	10	69	10.9	<0.01	1,932

From	То	Au	Ag	As	Ва	Bi	Cd	Cu	Pb	Zn	Fe	s	Mn
(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
	Detect	0.005	0.5	2	5	5	1	1	2	2	0.01	0.01	2
156	160	<0.005	<0.5	8	48	10	4	41	9	71	10.7	0.07	1,781
160	164	0.005	0.8	7	88	<5	2	103	6	71	8.7	0.02	1,744
164	168	<0.005	0.8	7	80	<5	2	97	10	71	7.7	0.01	1,683
168	172	<0.005	1	11	87	<5	2	111	12	68	7.9	0.02	1,711
172	176	<0.005	0.9	10	127	5	2	98	5	75	7.7	0.02	1,606
176	180	<0.005	0.7	7	93	<5	2	88	6	78	8.1	0.04	1,603
180	184	<0.005	0.7	3	104	<5	3	96	8	84	8.6	0.05	1,849
184	188	<0.005	0.8	4	1,184	<5	2	18	11	52	6.5	0.01	3,593
188	192	<0.005	0.6	5	1,629	<5	2	36	15	78	6.8	0.02	5,417
192	196	<0.005	1.6	<2	729	11	3	201	48	128	8.7	0.08	11,932
196	200	<0.005	2.1	3	1,024	<5	3	71	29	107	9.5	0.17	16,928
200	204	<0.005	1	<2	699	<5	4	53	18	100	8.8	0.11	6,609
204	208	<0.005	<0.5	<2	725	<5	5	59	20	130	11.1	0.16	3,139
208	212	<0.005	<0.5	<2	917	<5	5	52	18	126	10.5	0.12	2,181
212	216	<0.005	<0.5	<2	852	<5	5	58	18	124	10.6	0.14	2,354
216	220	<0.005	1.1	<2	1,403	8	4	56	24	116	9.1	0.1	6,892
220	224	<0.005	0.8	4	734	<5	3	223	20	105	10.0	0.18	5,824
224	228	<0.005	<0.5	<2	263	13	4	232	12	104	11.7	0.23	2,297
228	232	<0.005	<0.5	<2	230	9	4	259	10	111	11.3	0.15	1,872
228	232	<0.005	<0.5	<2	277	6	4	219	9	116	12.0	0.16	1,947
232	236	0.034	<0.5	2	238	<5	4	167	12	104	10.6	0.23	2,020
236	240	<0.005	0.5	<2	374	6	3	132	4	84	9.0	0.03	1,826
240	244	<0.005	<0.5	<2	266	<5	2	167	10	73	8.2	0.03	1,605
244	248	<0.005	0.8	3	113	<5	2	172	16	78	8.0	0.05	1,691
248	252	<0.005	0.7	<2	40	5	3	280	8	95	8.9	0.19	2,000
252	256	0.007	0.6	15	30	<5	3	1,510	12	144	9.3	0.38	2,050
256	260	0.022	<0.5	4	109	13	2	95	4	57	13.7	1.49	2,234
260	264	0.014	<0.5	4	193	14	2	77	4	51	14.5	1.28	1,745
264	268	0.013	1.1	4	49	9	2	75	4	28	13.0	2.68	1,748
268	272	0.015	1.1	17	142	9	2	140	13	50	10.9	3.77	1,692
272	276	0.01	0.6	20	345	<5	3	110	15	89	9.9	2.23	1,923
276	280	<0.005	<0.5	61	374	<5	4	55	14	117	8.3	0.14	1,630
280	284	0.019	<0.5	8	161	7	1	35	2	47	11.1	1.1	2,605
284	288	0.089	1	6	75	7	2	81	4	34	13.8	3.76	1,918
288	292	0.007	1.1	39	474	7	2	126	10	55	10.0	3.42	3,462
292	296	<0.005	0.9	40	301	6	<1	42	15	59	4.9	0.18	4,258
296	300	<0.005	<0.5	57	707	<5	2	54	12	97	6.9	0.06	2,278
300	304	<0.005	0.7	5	287	<5	2	67	5	83	6.3	0.03	2,233
304	308	0.007	<0.5	3	476	<5	2	41	4	84	6.5	0.1	1,719
304	308	0.008	0.7	3	438	<5	2	42	5	83	6.4	0.11	1,759
308	312	0.014	1.1	<2	731	<5	2	57	5	72	5.8	0.05	2,167
312	316	<0.005	1.5	3	159	<5	<1	16	<2	40	2.5	0.03	2,855
316	321	<0.005	0.9	<2	40	<5	<1	22	<2	42	3.0	0.03	2,585

Note: Altered mafic zone in green, pyritic sediments in blue. Trace chalcopyrite recognised in chips at 253m.

JORC Code, 2012 Edition – Table 1 report for ASX Release 29 January 2016

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	to an sav			,	Commer	ntarv					
Sampling techniques	•	 Drilling at Vulcan West in 2015 was sampled at 1m intervals. A 1-2kg sample of each metre interval was obtained from cone splitter and collected in a calico bag, and remainder of each 1 metre sample (30-45Kg) was 									
		collected into a green polythene bag. Drilling was by Reverse Circulation (RC) technique with face sampling hammer of									
Drilling techniques	•	Drilling was by Reverse Circulation (RC) technique with face sampling hammer of nominal 140 mm hole diameter, with booster and auxilliary air (2400cfm at 850 psi) to maximize recovery and minimize wet samples.									
Drill sample recovery	•	Sample recoveries were not recorded, but recoveries were assessed visually by height of samples in green plastic polythene bags. Recoveries were deemed to be excellent.									
Logging	•	Geological logging is qualitative and quantitative.									
	•	Individual 1m samples were each logged for lithology, mineralisation, grains texture, oxidation, weathering, colour and by visual observation of a handfu washed drill cuttings (~2mm - 12mm in size) collected by sieve from individ 1m drill samples (~30kg -45kg) collected in green polythene bags from drill cyclone.							l of lual		
	•	plastic	chip tray.				very 1m inter		re retained i	n a	
Sub-sampling	•	1 metr	e samples w	ere coll	ected from o	one spli	tter into calid	co bags			
techniques and sample	•	84 x 4	metre com	posite s	amples we	re collec	ted from en and were dis	itire ho	le using a P		
preparation		for san	nple prepara	tion and	d assay.						
	•		metre same preparation			ollected	and dispatch	ned to	laboratory	tor	
Quality of	•						ction of 1 enterprise p			ere	
assay data and laboratory tests	•	Sample	e preparation	n by Me	thod SP 100	0 (<1kg	sort, dry and	pulveri			
ř	•	-	ng by Metho ats and Dete				-OES Package	e)			
		Ag	0.5ppm	Со	1ppm	Mo	1ppm	Sr	1ppm		
		Al	0.01%	Cr	1ppm	Na	0.01%	Те	2ppm		
		As	2ppm	Cu	1ppm	Ni	1ppm	Ti	0.01%		
		Ва	5ppm	Fe	0.01%	Р	20ppm	TI	10ppm		
		Ве	0.5ppm	К	0.01%	Pb	2ppm	v	2ppm		
		Bi	5ppm	La	20ppm	S	0.01%	w	1ppm		
		Са	0.01%	Li	1ppm	Sb	2ppm	Zn	2ppm		
		Cd	1ppm	Mg	0.01%	Sc	1ppm				
		Ce	20ppm	Mn	2ppm	Sn	5ppm				
	•	 Gold by Method FA50AAS. (50gm fire assay, AAS finish) det 0.005ppm. 								mit	
	•		out drilling on the design of		nature, the	Compan	y relies on I	laborat	ory blanks a	and	
Verification of	•	Primar	y sample an	d lithol	-		ected using a	set of	standard Ex	cel	
sampling and assaying	•		ites and re-e ernal laborat								
	•	No external laboratory checks have yet been carried out. Assaying of 1m samples will provide a check on 4m sample assays.									

ITERPRISE METALS LIMITED	ASX ANNOUNCEMENT	29 January 2016
Location of data points	 Drill site surveyed by a modern hand held GF is sufficient accuracy for the purpose of comscout RC drill hole. Topographic control is by NASA Shuttle Rad grid system is MGA GDA94 Zone 50. 	piling and interpreting the results of
Data spacing and distribution	 No additional sample compositing was u composite sampling. 	sed apart from the standard 4m
Orientation of data in relation to geological structure	 RC drill hole orientation was determined from planned to intersect EM feature orthogonally 	
Sample security	 Clear mark up and secure packaging to ensu at assay facility. Samples delivered to laborat 	•
Audits or reviews	Logging of chips at site was regularly reviewer	d by 2 nd geologist.

JORC Code, 2012 Edition – Table 1 report for ASX Release 29 January 2016

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 Vulcan West is wholly within Enterprise's 100% owned, granted Exploration Licence 52/2049. The tenement is on the Department of Parks & Wildlife (DPaW) owned Doolgunna Pastoral Lease. The tenement sits within the Yugunga-Nya Native Title Claim. E52/2049 expires on 26 October 2018. The tenement is in good standing and there are no existing impediments to exploration or renewal at expiry date.
Exploration done by other parties	No prior exploration by other parties at Vulcan West.
Geology	 E52/2049 covers an interval of the Goodin Fault, a major reactivated reverse fault that separates siliciclastic and mafic units of the Yerrida Group in the south, from mafic Narracoota Formation volcanics of the Bryah Group to the north. The principal exploration targets are Volcanic Hosted Massive Sulphides (VHMS) and sediment hosted massive sulphide base metal (copper/zinc) deposits.
Drill hole information	No prior drilling. Refer Table 1 of this Report for VWRC001 collar information.
Data aggregation methods	No data aggregation methods employed at this date.
Relationship between mineralisation widths and intercept lengths	Not material, as from visual observation, no economic mineralisation intersected to date.
Diagrams	Appropriate map and cross section will be prepared when all assays are available.
Balanced reporting	The accompanying document is considered to be a balanced report with a suitable cautionary Note.

NTERPRISE METALS LIMIT	TED ASX ANNOU	NCEMENT 29 Ja	anuary 2016
Other substantive exploration data	Details of Moving Loop Elect Loop size: Line spacing: Station Spacing: Frequency: Transmitter: Max Current/Voltage: Receiver: Sensor: Line Lengths:	romagnetic Survey which defined drill targ 200m x 200m 400m with selective 200m infill lir 100m (50% overlap most moves) 0.5 Hz minimum VTX-100 100 Amp/ 500 Volts EMIT SMARTem24 EMIT Smart Fluxgate or Fluxgate ~4.8km	
	Assaying of selected 1 meDown Hole Electromagne	tre samples. cic Surveying (DHEM) by contractors.	

Modelling and interpretation of DHEM data by consultants. Follow up RC and/or diamond core drilling if appropriate.

Further work

7	IР	9	O	ρ