

Cu-Zn & Ni-Cu-PGE DRILL TARGETS IDENTIFIED AT DARLOT IGO WITHDRAWS FROM JOINT VENTURE

- > Detailed review of data supplied by IGO on withdrawal shows:
 - Exploration focus was on Cu/Zn and Spring Well Complex,
 - Anomalous Cu/Zn aircore geochemistry & near co-incident MLEM conductors at Jarrah Well Prospect,
 - Highly anomalous Ni-Cu-PGE values encountered in aircore drill samples at Waroonga Well Prospect.
- > Jarrah Well & Waroonga Well Prospects require drill testing

> Gold potential of Darlot tenements not yet adequately tested

SUMMARY

Enterprise Metals Limited ("Enterprise" or "the Company") (ASX: ENT) advises that Independence Group NL (ASX: IGO) has formally withdrawn from the Darlot Joint Venture agreement, with no retained interest in the tenements save for a 2% Net Smelter Royalty (NSR) on Exploration Licence 37/1031. In relinquishing management, IGO has supplied Enterprise with all detailed exploration data.

In 2014, IGO completed aircore drilling programs over several Cu/Zn and Ni/Cu prospects within the Darlot JV area. Based on these results, a second program of aircore drilling was undertaken at the Jarrah Well and 20Ft prospects in 2015. (Refer Figure 1 overleaf) Moving loop electromagnetic (MLEM) surveys were also conducted at these prospects over broad areas of anomalous geochemistry with the aim of detecting massive sulphide mineralisation.

At the **Jarrah Well Prospect**, 94 aircore drill holes (for 3,355m) and MLEM surveys (6 lines at 200m line spacing, 9.35km total) were completed. This work successfully delineated a number of anomalous conductive responses coincident with aircore Cu/Zn geochemical anomalies, which require follow up RC drilling.

At the **Waroonga Well Prospect**, a single traverse of six aircore drill holes (for 565m) and a MLEM survey were completed. The prospect was first tested in the mid 1990's by Western Mining Corporation (WMC) when they completed a series of shallow RC holes targeting gold. WMC hole MVMC180 intersected 2m @ 0.5% Cu & 0.5% Ni in cumulate ultramafic.

IGO completed a MLEM survey across the prospect, and although no EM targets were defined, several of the IGO holes intersected highly anomalous Ni-Cu-PGE values, including:

 Hole 14DRAC001:
 8m @ 781ppm Ni, 972ppm Cu & 575ppm Cr from 84m.

 Hole 14DRAC002:
 56m @ 0.26% Ni & 28ppb Pt-Pd from 24m,

 Inc. 12m @ 0.46% Ni, 0.42% Cr, 30ppb Pt-Pd & 517ppm Zn from 28m.

Geological observations indicate that the Ni-Cu anomaly at Waroonga Well is hosted within a medium-grained, serpentinite-chlorite-epidote cumulate ultramafic with trace disseminated and blebby sulphides. The unit is clearly identified as a high-amplitude, NNE-trending, linear feature in aeromagnetic data, has not been fully tested by previous drilling, and requires further drill testing.

Commenting on these results and IGO's withdrawal from the JV, Enterprise's Managing Director Dermot Ryan said:

"The withdrawal from the JV by IGO should be seen in the light of IGO's January announcement that its 2016 exploration budget has been cut by \$20 million, and that its exploration focus will support its interests in the Fraser Range (Tropicana and Nova), the Bryah Basin and Lake Mackay. This is understandable given its 2015 acquisition of the former Sirius Resources' Fraser Range nickel assets which includes the Nova nickel deposit under development."

"IGO entered into the Darlot Farm In and JV Agreement at a time when commodity prices were better and exploration budgets were healthier. The Darlot project area offered IGO the opportunity to explore for additional copper-zinc resources within trucking distance of its mining operation at Jaguar-Bentley. Accordingly, IGO have undertaken a measured and fairly thorough and focussed approach to exploring the Spring Well Complex".

"The work completed by IGO at Jarrah Well and Waroonga Well is of good quality and the IGO legacy is a series of targets for Enterprise to test further with drilling".

"In addition, IGO did not fully consider the gold potential of Enterprise's Darlot Project tenements, and now that Enterprise is managing its own tenements, we intend to develop for drill testing a number of gold targets that were located by previous explorers in the 1990's, but which have had little work since that time".

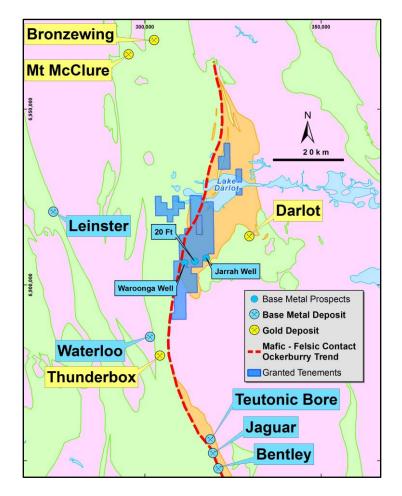


Figure 1: Darlot Project Regional Geology & Landholdings

Between 2014 and 2015, IGO also undertook detailed work at the 20Ft, Overland Well and Spring Well Prospects.

At the **20Ft Prospect**, IGO drilled 81 aircore holes for 3,276m and completed MLEM surveys (11 lines at 200m line spacing, 17.6 line km). Results from IGO's shallow aircore drilling program did not replicate the high-order historic Cu/Zn drilling results, but did intersect moderate to strongly anomalous Cu \pm Zn within hole 14DRAC017. (15m @ 680ppm Cu)

Moderate mid time EM responses where recoded on almost all lines of EM, though none persisted until the late delay times expected of a good conductive target. The conductors at the 20Ft Well prospect were assigned a rank of 3, based on their likely weak basement source. When modelling the responses the conductance's ranged from 23-90 Siemens, much lower than what would be expected from a sulphide orebody. IGO concluded that the likely source for the bulk of theses conductors was a weakly mineralized horizon or thin graphitic shale unit.

At the **Overland Well Prospect** IGO completed one aircore drill traverse (11 holes for a total of 662m). The 2014 drilling was designed to investigate the inferred western margin of the Spring Well Complex under cover, proximal to the terrain-bounding Ockerburry Shear Zone. Results from the aircore drilling program were generally of a low order and only hosted within upper saprolite. No further work was recommended for this prospect

At the **Spring Well Prospect** IGO completed two aircore drill traverses (17 holes for a total of 274m). The prospect area has undergone very limited exploration with less than 30 AC/RAB holes within a 5km x 5km area. As a result very little is known about the geology and mineralisation setting. No significant base metal anomalies were intersected in the IGO aircore drilling, with maximum values of 90ppm Cu, 38ppm Pb and 168ppm Zn returned.

However litho-chemical results from several base of hole (BOH) samples classify felsic units in 14DRAC090, 098, 101 & 102 as the (VMS-prospective) fertile type FIII rhyolite using binary classification diagrams of Zr/Y vs. Y.

BACKGROUND

In the mid 1990's, while exploring for gold mineralisation south of Lake Darlot, Great Central Mines Ltd (GCM) drilled several broad-spaced lines of aircore holes near Jarrah Well. This drilling intersected a discrete >1.3km long zone of anomalous Zn-Cu-Pb±Au associated with a parallel set of north-northeast trending black shale units bounded by andesite and rhyolite. The results at the time were not considered encouraging enough to warrant further exploration.

In the late 1990's, GCM's Dr Paul Messenger identified black shales, quench textures and abundant coherent lava domes within the Spring Well Complex, and concluded the volcanics to be subaqueous and not subaerial, and therefore prospective for Cu/Zn base metal mineralisation.

Independence Group NL entered into the Farm-In and Joint Venture agreement with Enterprise in late 2013 to explore the Darlot Project tenements principally for VMS-style base metal mineralization within the Spring Well Complex.

During 2013 – 2014, IGO generated a number of multi-element VMS and Ni sulphide-style geochemical anomalies from surface sampling and sparse historic drilling and sampling. The majority of these anomalies are located within a broad, 8.5km long, NNW-trending zone hosted within a mixed felsic-intermediate volcanic package. Regional structural interpretation suggests that this is located on the eastern-limb and fold-nose of a regional scale, north-plunging isoclinal syncline.

Between 2014 and 2015 IGO completed geological mapping, rock chip sampling, soil and augur sampling, aircore drilling, moving loop EM surveys and an aeromagnetic survey. The 2014 aircore drilling program was primarily aimed at identifying robust geological and geochemical VMS and Ni-sulphide targets for deeper RC & diamond drill testing.

At the same time, the drilling refined historical geochemical anomalies at the 20Ft and Jarrah Well prospects, identified "seafloor" black-shale horizons for follow-up, targeted moving loop EM surveys, and improved the understanding of the Spring Well Volcanic Complex.

The 2014 aircore drilling program tested five prospects (refer Table 1 below). Due to the relative lack of geological knowledge within the project area much of the drilling was considered reconnaissance.

Prospect	No. Holes	Hole IDs	Total Metres	Targets
Jarrah Well	21	14DRAC054 - 075	1,023m	Historic, >1,000ppm Cu-Zn aircore drill intercepts hosted within interpreted NW-trending shale horizons
Waroonga Well	6	14DRAC001 - 006	565m	Discrete, historic Ni anomaly in RC drill hole MVMC180 (0.5% Ni-Cu)
20Ft	48	14DRAC007 - 054	1,663m	IGO generated multi element soil anomalies including previously sampled gossans and historic, high-order (>0.3% Cu-Zn) RC drill intercepts
Overland Well	11	14DRAC075 - 086	662m	Blind western margin of the Spring Well Volcanic Complex and structures interpreted to be prospective to host Au-mineralization, including a discrete Au anomaly identified in auger sampling
Spring Well	17	14DRAC087 - 103	274m	IGO generated coincident Zn-Cu-Cd-Co-Mg-Ni-Sc-Sn-Tl- Y soil anomalies and geological / stratigraphic information regarding the likely VMS prospective horizon

Table 1: Summary of 2014 IGO Stage 1 Aircore Drilling at Darlot

In 2015, IGO carried out a second aircore drilling program (106 holes, 15DRAC001 – 15DRAC106 for 4,968m) at the Jarrah Well (E37/1031) and the 20Ft prospects (E36/859).

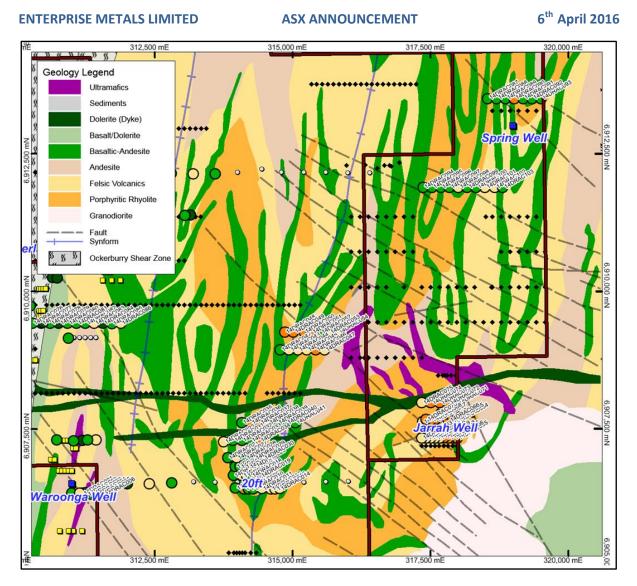

Dreamant	No.	Hole	Total	Toursets
Prospect	Holes	IDs	Metres	Targets
20Ft	23 15DRAC001 - 023 1,070m		1,070m	Previously sampled gossans and historic, high-order
2011	10	15DRAC029 - 038	543m	(>0.3% Cu-Zn) RC drill intercepts
	5	15DRAC024 – 029	5DRAC024 - 029 307m 307m	
Jarrah Well	68	15DRAC039 – 106	3,048m	>1,000ppm Cu-Zn AC drill intercepts

 Table 2: Summary of 2015 IGO Stage 2 Aircore Drilling at Darlot

RESULTS

The Spring Well Complex in the drilled area consists of a bimodal, calc-alkaline to transitional (basaltic) and site to high-silica rhyolite volcanic suite. Alteration is varied, but generally comprises a typical greenstone assemblage of (pervasive) silica \pm sericite-chlorite-epidote with sporadic blebby/spotted carbonate (siderite).

Felsic volcanic rocks within the drilled areas transition from rhyolite through to dacite, and immobile element ratios (Ti/Zr) classify most of these as rhyodacites in composition. They are generally coherent and fine-grained, although crystal-rich volcaniclastic sandstones/tuffs are also recorded. Figure 2 overleaf shows the interpreted geology and location of IGO's 2014 aircore drill holes.

Figure 2: Darlot Geology Interpretation with Aircore Drill Collars (coloured circles by lithology) and historic competitor drill collars (black diamonds).

The Spring Well rhyolites range from glassy through to strongly porphyritic and texturally comprise both coherent and incoherent morphologies, including numerous (subaqueous) breccias. Observations from the bottom of hole (BOH) litho-geochemical data also identified a number of potentially favourable contacts between calc-alkaline and transitional dominated lithological suites However, due to the structural complexity of the Spring Well Complex a single '*host-horizon*' was not defined.

The maximum values returned from 4m aircore composite samples at each of the prospects are detailed in Table 3 below.

Prospect	Tenement(s)	Max Cu (ppm)	Max Pb (ppm)	Max Zn (ppm)	Max Ni (ppm)	Max Au (ppb)	Max Ag (ppm)
Jarrah Well	E37/1031	911	533	935	835	19	6.7
Waroonga Well	E36/706, E37/859	1,189	92	634	5,806	49	1.1
20ft Prospect	E37/859	1,273	74	1,769	1,179	42	2.2
Overland Well	E37/859	278	22	769	594	172	0.5
Spring Well	E37/1031	90	38	206	61	2	0.4

Table 3: 2014 & 2015 Aircore Drillin	a Programe Mavimu	m Accov Poculte by Flomont
	y Frograms, Maximu	III Assay Nesulis by Liemeni

JARRAH WELL PROSPECT- E37/1031 ENT 100% (2% NSR to IGO)

At the Jarrah Well Prospect 3 aircore drill traverses (21 holes for a total of 1,023m) were completed. The prospect had good AC/RAB coverage with Great Central Mines Ltd (GCM) completing several 320m x 80m spaced AC fence lines in the mid 1990's. The 2014 IGO program infilled this drilling to a hole spacing of 160m x 80m.

The 2014 drilling program and historic results identify a zoned 1.3km x 1.0km linear horizon of highly anomalous Zn-Cu-Pb \pm pathfinder metals and minor Au. The peak values of the anomaly were hosted within a 900m x 200m central core, with intercepts of up to 1,020ppm Cu, 935ppm Zn, 238ppm Pb and 6.7ppm Ag, with additional pathfinder intercepts of 14.78ppm Bi, 0.62ppm Cd and 1.01ppm In. (Figure 3 overleaf) The best intercepts include:

			Interval	Cu	Zn	Ag	Au	
Company	Hole No.	From	(m)	(ppm)	(ppm %)	(ppm)	(ppm)	Comments
GCM	SPRC3	108	8		0.25%			inc. 4m @ 0.37% Zn
	and	200	32		0.10%			
GCM	SPRB96	36	8	360	714			
GCM	SPRB95	44	8		914			
GCM	SPRB105	48	3		503			
GCM	SPRB245	48	20		600			inc. 4m @ 970ppm Zn
GCM	SPRB244	40	12		470			
GCM	SPRB232	20	4	1,020				
GCM	SPRB226	8	4				0.44	
GCM	SPRB227	4	4				0.32	
IGO	14DRAC058	52	4	694				
IGO	14DRAC064	28	12	622		0.5		
IGO	14DRAC071	36	32	492	668	1.85		

Table 4: IGO Scout 2014 Aircore Drilling Program, plus GCM Data, Maximum Assay Intervals

Additional air core drilling was conducted in 2015 (73 holes for 3,355m) to follow up the 2014 air core drilling program which defined the Jarrah Well anomalies, and extended the multielement zone to north and west. The best 2015 intercepts include:

Hole No.	From (m)	Interval (m)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	Comments
15DRAC026	24	4	176	2	15	76	
15DRAC028	44	8	24	531	9	104	
15DRAC040	16	8	51	554	11	273	
15DRAC043	28	12	26	7	489	286	
15DRAC059	56	5	28	507	3	103	EOH
15DRAC072	52	12	51	688	5	90	EOH
15DRAC075	48	4	164	81	4	251	
15DRAC085	32	8	38	618	7	116	
15DRAC086	0	47	19	654	4	79	EOH
15DRAC095	24	4	42	522	13	101	EOH
15DRAC104	32	4	238	87	4	235	

Base metal anomalism at the prospect appeared to be associated with a parallel set of NNEtrending black shale units (intersected in historic drilling) bound by andesite and rhyolite/rhyodacite. (Figure 3 below)

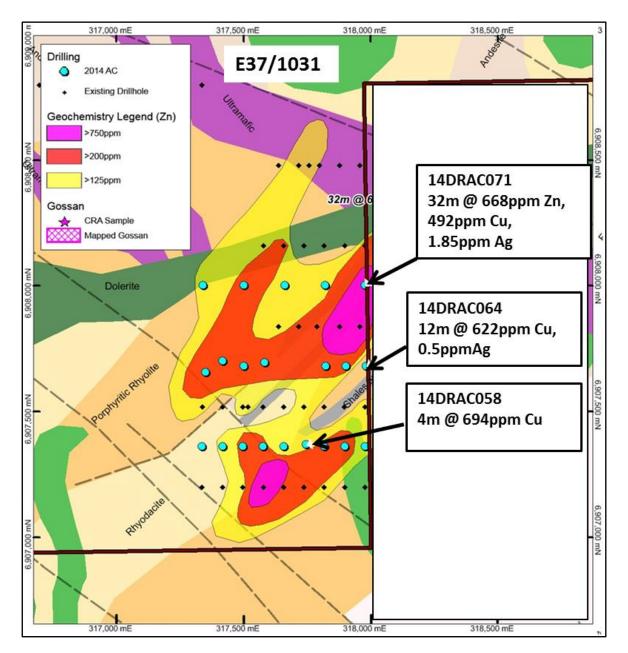


Figure 3: Location of 2014 AC Drilling (blue circles) at the Jarrah Well Prospect.

Jarrah Well MLEM Surveys

IGO carried out three programs of MLEM (6 lines, 193 stations, 9.35km total) over the Jarrah Well prospect, which successfully delineated a number of anomalous conductive responses. (Refer JORC 2012, Table 1 at back of this Report for survey specifications)

Data collected over the prospect was generally of good quality with noise levels of ~0.2pT/A achieved for the fluxgate magnetometer. A total of seven anomalous responses were recorded, consisting of four rated *"moderate to strong"* with the remaining three of lower priority, which may be caused by regolith effects. These responses are detailed in the Table 6 below, with those ranked "2" modelled and discussed.

Anomaly	Line	Station	Comment	Rank
316975_A	316,975E	6907800N	Good mid time response (ch 20-25)	2
317175_A	317,175E	6907850N	Good mid time response in ch 17-23, strange X response	2
			Best mid time response in this survey. Strong X and Z response ch	
317375_A	317,375E	6907650N	20-25	2
317375_B	317,375E	6907950N	Good to moderate mid time response in Z and X ch 17-23	2
			Appears to be the eastern extent of the same anomaly of the line	
317575_A	317575E	6907700N	to the west. Not as strong	3
317575_B	317575E	6908200N	Weak to moderate mid time response in Z ch 15-20	3
317775_A	317775E	6908500N	Moderate mid time response in ch 15-20	3

Table 6: Jarrah Well MLEM Responses

Figure 4 below shows the location of the MLEM lines.

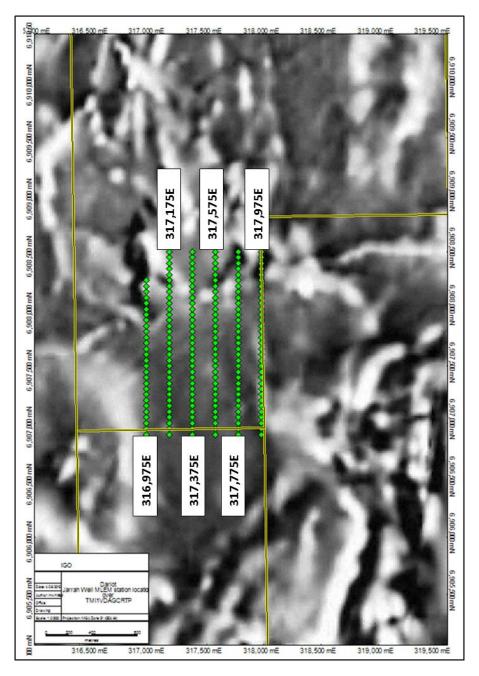


Figure 4: Jarrah Well MLEM Station Locations, E37/1031 Boundary shown in yellow over TMI 1VDAGCRTP Image

Jarrah Well - Moderate to Strong EM Responses

Anomaly **316,975_A** was modelled and noted that aircore drillhole 15DRAC026 immediately adjacent to the conductor showed anomalous results for Cu, Pb, and Zn. The second and most significant anomaly **317,375_A** was modelled and is also adjacent to a multi element geochemical anomaly.

Figure 5 below shows a plan view of these conductors, and Figures 6 to 8 overleaf show the mid time response (channels 18-23) of the field and model responses for lines 316,975E, 317,175E and 317,375E.

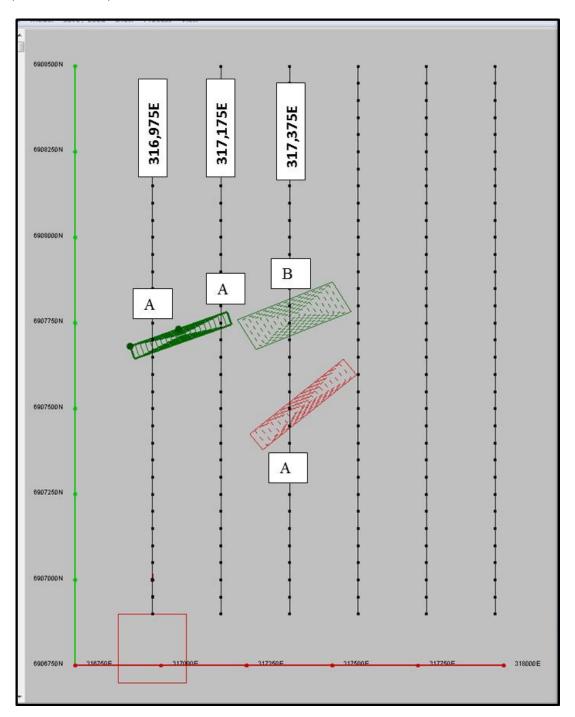


Figure 5: Plan view of the EM station locations and Rank 2 Modelled Conductors

<u>The 316,975_A Conductor</u> (Figure 6 below) occurs on the western-most line and appears to be continuous to the east, with two lines to the east showing anomalous responses in similar positions (**317,175_A** and **317,375_B**).

These three responses have been accounted for by using two plates 316975_A_v1_80S and 317375_B_v1_40S, with the strength of the anomaly appearing to lesson towards the east.

The plate model 316975_A_v1_80S has dimensions approximately 300m x 150m depth, dipping fairly steeply to the south east and having a moderate conductance of 80 Siemens. This conductor has been interpreted as relatively shallow with a depth to top of conductor at 35m, accounting for responses 316975_A and 317175_A.

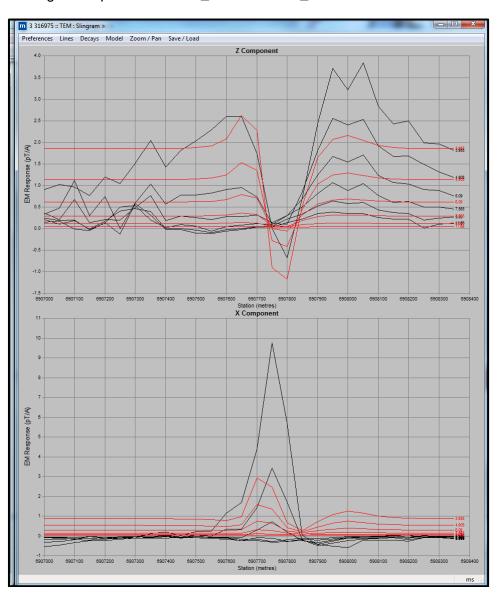


Figure 6: Line 316,975E. Conductor "A". Mid time channels 18-23 of field (black) andmodel (red) responses.

<u>The 317,375_B Conductor</u> along the northern linear trend has been modelled with the plate 317375_B_v1_40S. (Figure 7 overleaf) The conductor is interpreted to be dipping steeply to the south east and appears to be of slightly lower conductance. The lower modelled conductance is not thought to be of great significance as small variations in the plate parameters allow a higher conductance to adequately account for the responses seen. The plate size is similar to the previously discussed conductor, and is likely to represent a further extension to this response, and not an isolated conductor.

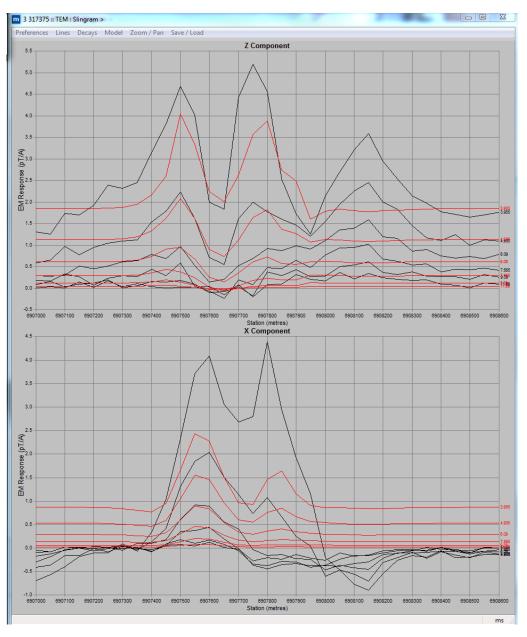


Figure 7: Line 317,375E. Conductor "B" Mid time channels 18-23 of field (black) and model (red) response

The 317,375_A Conductor (and 317575_A) accounts for responses with a single interpreted plate model, 317375_A_v1_175S.

The response seen in the data is by far the best response seen in the survey, with a clear anomaly persisting later in time than any other detected in the survey. The plate has been interpreted to be approximately 300m long, is seen across multiple lines, and with a depth extent of approximately 150m. A moderate conductance of 175S with a dip to the south east has also been interpreted.

Figure 8 overleaf shows the mid-time response channels 20-25 of the field and model response for line 317,375E.

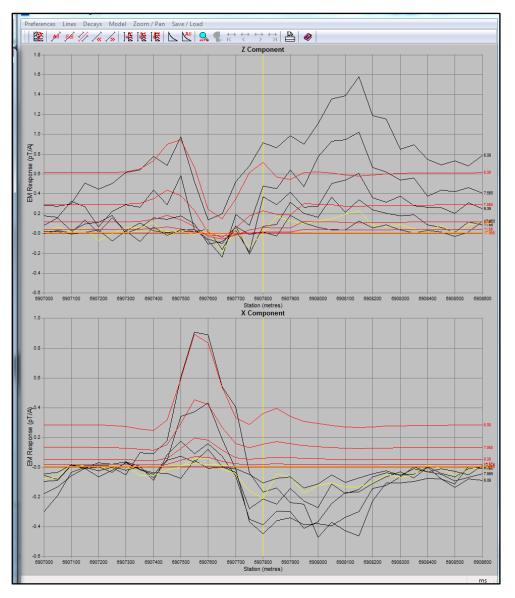


Figure 8: Line 317,375E. Conductor "A" Mid time channels 18-23 of field (black) and model (red) response.

The location of the interpreted model 317375_A_v1_175S plate is best described as flanking the multi element geochemical anomaly, with the 90th and 99th percentile values for Cu (pink), Pb (blue), and Zn (red) illustrated relative to the EM conductors in Figure 9 overleaf.

With the available data this conductor represents a good target for follow up RC drilling.

The parameters of the modelled plates at Jarrah Well are summarised below in Table 7, and Figure 9 overleaf shows the location of all the modelled plates with respect to the aircore drilling results.

Plate Name	x	Y	z	Dip	Dip Direction	Rotation	Length (m)	Depth Extent (m)	Conductivity- Thickness
317375_A_v1_175S	317395.7	6907535	-110.08	55	141.8	0.85	350	103.5	175
317375_B_v1_40S	317361.9	6907815	-52	60	161.8	7	300	200	40
316975_A_v1_80S	317051.4	6907732	-35	75	160.5	0.07	300	150	80

Table 7: Jarrał	n Well - Model	Plate Parameters
-----------------	----------------	------------------

6th April 2016

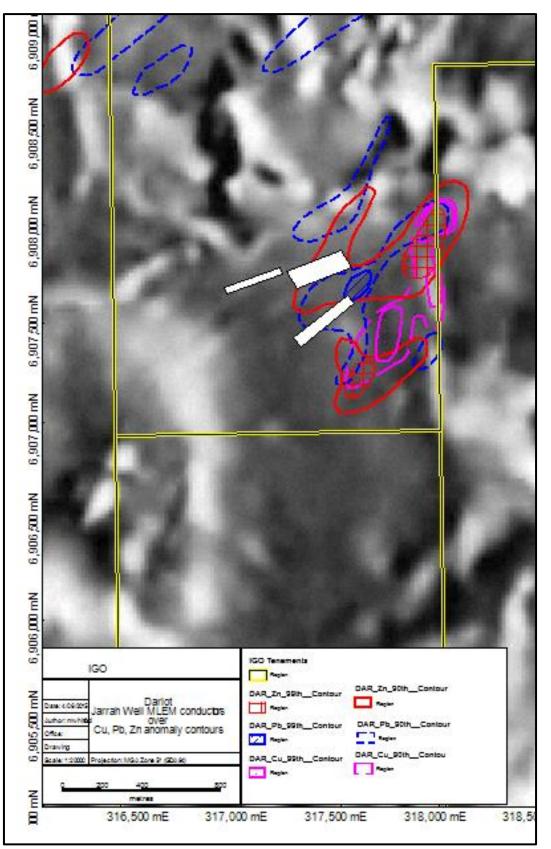


Figure 9: MLEM conductors relative 90th and 99th percentile values for Cu (pink), Pb (blue), and Zn (red) Aircore Results

WAROONGA WELL PROSPECT – E36/706 & E37/859 ENT 80%

At the Waroonga Well Prospect, a single traverse of six aircore drill holes (total 565m) spaced at 80m intervals was completed. (Figure 10) The prospect was first tested in the mid 1990's by Western Mining Corporation (WMC) when they completed a series of shallow RC holes targeting structural features identified from aeromagnetic data, principally for gold. One of these WMC holes (MVMC180) intersected cumulate ultramafic with highly elevated Ni/Cu.

Hole MVMC180: 94m @ 0.05% Cu & 0.15% Ni from 18m to 112m (End of hole 112m), Inc. 2m @ 0.5% Cu & 0.5% Ni from 102m.

IGO completed a MLEM survey across the prospect in 2014, but no conductors were defined. Two IGO air core holes intersected highly anomalous Ni-Cu-PGE values (see below). Geological observations indicate that the Ni-Cu anomaly at Waroonga Well is hosted within a medium-grained, serpentinite chlorite epidote cumulate ultramafic with trace disseminated and blebby sulphides. The unit is clearly identified as a high-amplitude, NNE-trending, linear feature in aeromagnetic data and has not been fully tested by previous drilling.

Hole 14DRAC001: 8m @ 781ppm Ni, 972ppm Cu & 575ppm Cr from 84m. Hole 14DRAC002: 56m @ 0.26% Ni & 28ppb Pt-Pd from 24m, Inc. 12m @ 0.46% Ni, 0.42% Cr, 30ppb Pt-Pd & 517ppm Zn from 28m.

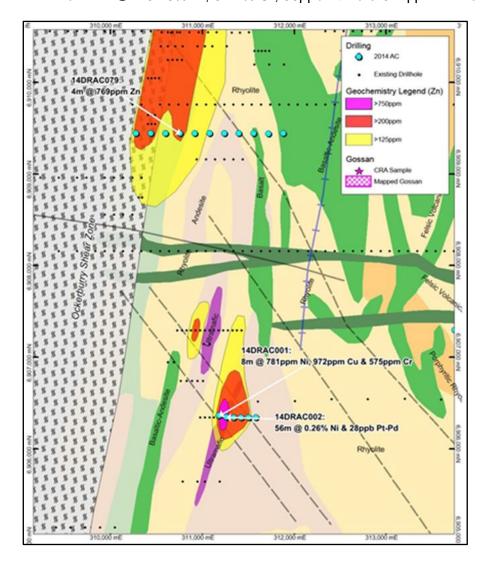


Figure 10: IGO AC Drill holes (blue circles) at the Waroonga & Overland Well Prospects

<u>20FT PROSPECT - E37/859</u> ENT 80%

At the 20Ft Prospect 8 aircore drill traverses (48 holes for a total of 1,663m) were completed. Traverses were spaced between 160m and 1,320m apart, with holes spaced at either 80m or 160m along these. (Figure 11 overleaf)

The prospect was initially identified in the mid 1970's following the discovery of Teutonic Bore when several companies including Hampton Areas Australia, CRA Exploration Pty Ltd and Asarco Australia documented numerous gossans during exploration mapping specifically targeting gossans.

A number of the gossans sampled during this 1970's phase of exploration (assays shown below) have comparable values to the Teutonic Bore gossan.

Gossan Names	Maximum Reported Values of Gossans					
First Pegged Gossan	645ppm Cu, 520ppm Zn, 140ppm Pb					
Blue Ribbon Gossan	3,000ppm Cu, 885ppm Zn , 170ppm Pb					
New Gossan	765ppm Cu, 845ppm Zn, 610ppm Pb					
JB4	1,050ppm Cu, 2,250ppm Zn 370ppm Pb					

 Table 8: 20Ft Prospect, Maximum Reported Historical Values of Gossans

Hampton Areas subsequently completed 13 shallow (<152m) RC holes in 1975 to test the depth extensions of a number of outcropping gossans that were associated with a series of coincident Cu-Pb-Zn-Ag soil geochemical and I.P. anomalies. This RC drilling successfully intersected a number of shallow, high-order, base metal anomalies hosted within oxidised saprolite within Enterprise's current E37/1031.

Hole PDH15:	6.0m	@	0.13%	Zn from	12.0m.
Hole PDH18:	16.0m	@	0.24%	Cu from	16.0m,
	Inc. 8m	@	0.3%	Cu from	18.0m.

IGO completed further soil sampling around these areas of historically sampled gossanous float, and coupled with assays from the historic RAB, AC and RC drill holes at the prospect defined a strike parallel NNE-trend multi element anomaly over plus 1.7km and intermittent for up to approximately 3.6km.

Geological and aeromagnetic interpretation suggests that the prospect is located within the fold-nose/axial-trace of a regional synform. The local geology comprises a complex, (subaqueous) volcanic package of rhyolite, dacite/rhyodacite, basaltic andesite and minor (historic) interbedded black shales.

Results from IGO's shallow 2014 aircore drilling program did not replicate the high-order historic drilling results, but did intersect moderate to strongly anomalous Cu \pm Zn within adjacent holes 14DRAC017 & 018.

 Hole 14DRAC017:
 15m @ 680ppm Cu from 20m to 35m (End of hole 35m).

 Hole 14DRAC018:
 2m @ 592ppm Cu & 299ppm Zn from 0m to 2m (End of hole 2m).

Adjacent holes drilled at the north of the prospect also intersected minor anomalism hosted at a contact between andesite and rhyolite, including 4m @ 604ppm Zn from 4m in 14DRAC053 and two separate 4m samples of 0.4ppm Ag within 14DRAC052.

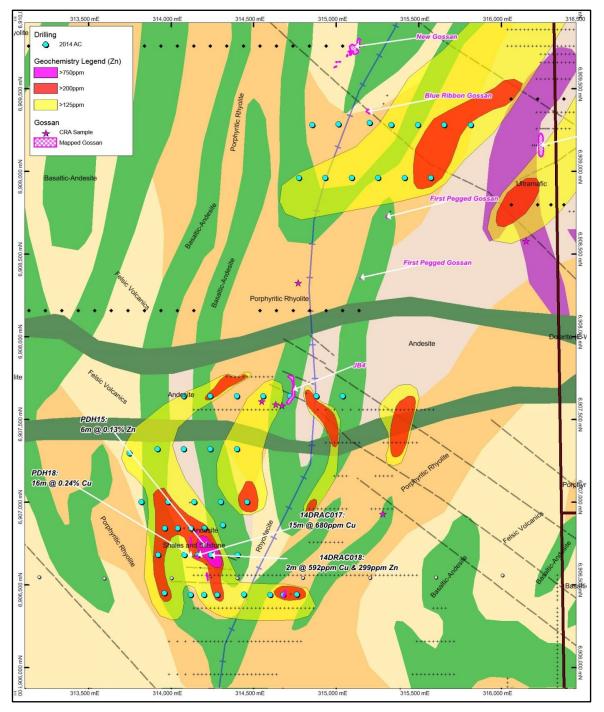


Figure 11: Location of 2014 IGO AC Drilling (blue circles) at the 20ft Prospect.

In late 2014, IGO completed a moving loop EM survey over a broad area of anomalous geochemistry at the 20Ft prospect with the aim of directly detecting conductive responses attributable to massive sulphide mineralisation. A secondary aim of the survey was to map conductive stratigraphy (potentially black shale) which may provide a host position for a replacement style VMS deposit.

The MLEM survey consisted of 11 lines at 200m line spacing and 50m station spacing oriented in an east-west direction. Parameters for the survey are shown in JORC (2012) Table 1 at the back of this Report. The data quality for this survey areas was generally of high quality with noise levels of 0.1pT/A or lower achieved for the fluxgate magnetometer, and levels generally less than 0.03 uV/A achieved for the coil.

Moderate mid time responses where noted on almost all lines of EM, though none persisted until the late delay times expected of a good conductive target.

All the data was reviewed with a MapInfo layer highlighting the approximate position of all the EM conductors. All conductive responses at the 20Ft prospect were assigned a rank of 3 by IGO, based on their likely weak basement source. When modelling the responses the conductance's ranged from 23-90 Siemens, much lower than what would be expected from a sulphide orebody. With this in mind, IGO concluded that the likely source for the majority of the conductors is a weakly mineralised horizon or thin graphitic shale unit.

OVERLAND WELL PROSPECT – E37/859 ENT 100%

At the Overland Well Prospect, a single traverse (11 holes for a total of 662m) was completed (Figure 10).

The 2014 aircore drilling program was designed to investigate the inferred (blind) western margin of the Spring Well Complex under cover proximal to the terrain-bounding Ockerburry Shear Zone. In addition, a number of structures interpreted to be prospective to host gold mineralisation, including a discrete gold anomaly identified in 2014 auger sampling, were targeted.

Several historic holes within the area record moderate to strong Cu-Zn anomalism, although much of this is interpreted to be associated with remobilisation along the Ockerburry Shear.

Results of the 2014 drilling program were generally low-order and only hosted within upper saprolite. The best of these was:

Hole 14DRAC079: 4m @ 769ppm Zn from 16m

The maximum gold value was 8m at 164ppb from 48m in 14DRAC078, hosted in indurated saprolite. No other anomaly is associated with this prospect.

SPRING WELL PROSPECT- E37/859 & E37/1031 ENT 80% & ENT 100% respectively

At the Spring Well Prospect, 2 aircore drill traverses (17 holes for a total of 274m) were drilled (Figure 14 overleaf). The traverses were 1,600m apart, with holes spaced at 160m along the traverses. Frequent, low relief, outcropping plateaus reduced the average hole depth to 16m, with alluvial cover constantly less than 1m.

The prospect area has undergone very limited exploration with less than 30 AC/RAB holes within an approximately 5 x 5km area. As a result very little is known about the geology of the area. Outcropping exposures consist predominantly of subaqueous (brecciated) dacite/rhyodacite and porphyritic rhyolite, with lesser basalt-andesite and minor dolerite.

An extension of a semi-contiguous, NNE-trending, multi-element soil anomaly (Zn-Cu-Cd-Co-Mg-Ni-Sc-Sn-TI-Y) extends through Spring Well from the 20Ft prospect, suggesting that this may represent one continuous horizon.

No significant base metal anomalies were intersected in IGO's 2014 aircore drilling at the Spring Well Prospect, with maximum values of 90ppm Cu, 38ppm Pb and 168ppm Zn returned, however a number of encouraging base of hole (BOH) geochemical features were identified.

Lithochemical results from several BOH sample classify felsic units in 14DRAC090, 098, 101 & 102 as the (VMS-prospective) fertile type FIII rhyolite using binary classification diagrams of Zr/Y vs. Y.

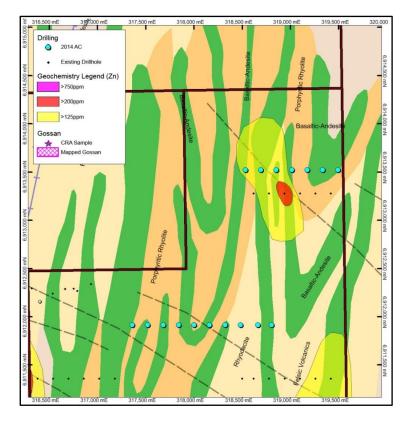


Figure 12: Location of 2014 AC Drilling (blue circles) at the Spring Well Prospect.

Dermot Ryan Managing Director

Competent Persons statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Dermot Ryan, who is an employee of Xserv Pty Ltd and a Director and security holder of the Company. Mr Ryan is a Fellow of the Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Ryan consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

Tenement	Area (Blocks)	Date Granted
E 36/706	23 BL	4-Feb-10
E 36/768	2 BL	21-Jul-11
E 36/778*	11 BL	19-Dec-11
E 37/859	31 BL	2-Oct-08
E 37/1031	6 BL	11-Jun-10
E 37/1105	3 BL	26-Oct-11
E 37/1112*	6 BL	20-Dec-11
E 37/1185	3 BL	28-Aug-14

Appendix 1: Dariot Project, renements at 6 March 2016	Appendix 1: Darlot Project	Tenements at 6 th	March 2016
---	----------------------------	------------------------------	------------

*Plaint for forfeiture lodged by third party.

Appendix 2: Darlot Project, IGO 2014 Air Core Drill Hole Collar Table

Hole Number	MGA Easting	MGA Northing	Elevation (m)	Depth (m)	Dip (Degrees)	Tenement	Prospect
14DRAC001	311185	6906360	469	95	-90	E36/706	Waroonga
14DRAC002	311266	6906343	469	76	-90	E36/706	Waroonga
14DRAC003	311346	6906339	468	93	-90	E36/706	Waroonga
14DRAC004	311426	6906339	470	106	-90	E36/706	Waroonga
14DRAC005	311506	6906338	471	92	-90	E37/859	Waroonga
14DRAC006	311586	6906338	471	103	-90	E37/859	Waroonga
14DRAC007	313961	6906449	472	58	-90	E37/859	20ftProspect
14DRAC008	314120	6906439	471	44	-90	E37/859	20ftProspect
14DRAC009	314200	6906439	471	28	-90	E37/859	20ftProspect
14DRAC010	314281	6906439	471	34	-90	E37/859	20ftProspect
14DRAC011	314441	6906441	474	45	-90	E37/859	20ftProspect
14DRAC012	314600	6906439	475	33	-90	E37/859	20ftProspect
14DRAC013	314680	6906439	475	41	-90	E37/859	20ftProspect
14DRAC014	314761	6906440	475	40	-90	E37/859	20ftProspect
14DRAC015	313922	6906680	471	47	-90	E37/859	20ftProspect
14DRAC016	314082	6906680	471	21	-90	E37/859	20ftProspect
14DRAC017	314162	6906680	471	35	-90	E37/859	20ftProspect
14DRAC018	314242	6906680	472	2	-90	E37/859	20ftProspect
14DRAC019	314403	6906680	474	2	-90	E37/859	20ftProspect
14DRAC020	313962	6906840	473	49	-90	E37/859	20ftProspect
14DRAC021	313820	6907000	471	43	-90	E37/859	20ftProspect
14DRAC022	313749	6907294	468	51	-90	E37/859	20ftProspect
14DRAC023	314042	6906840	473	35	-90	E37/859	20ftProspect
14DRAC024	314122	6906840	473	41	-90	E37/859	20ftProspect
14DRAC025	314202	6906840	473	39	-90	E37/859	20ftProspect
14DRAC026	314315	6906860	475	15	-90	E37/859	20ftProspect
14DRAC027	313981	6907000	470	40	-90	E37/859	20ftProspect
14DRAC028	314141	6907000	471	27	-90	E37/859	20ftProspect
14DRAC029	314301	6907000	473	7	-90	E37/859	20ftProspect
14DRAC030	314461	6907000	475	21	-90	E37/859	20ftProspect
14DRAC031	313918	6907320	469	37	-90	E37/859	20ftProspect
14DRAC032	314078	6907320	470	47	-90	E37/859	20ftProspect
14DRAC033	314239	6907320	471	12	-90	E37/859	20ftProspect
14DRAC034	314399	6907320	473	20	-90	E37/859	20ftProspect
14DRAC035	314078	6907640	469	60	-90	E37/859	20ftProspect
14DRAC036	314239	6907640	469	27	-90	E37/859	20ftProspect
14DRAC037	314399	6907640	470	51	-90	E37/859	20ftProspect
14DRAC038	314559	6907640	472	43	-90	E37/859	20ftProspect
14DRAC039	314720	6907640	472	28	-90	E37/859	20ftProspect
14DRAC040	314880	6907640	472	2	-90	E37/859	20ftProspect
14DRAC041	315040	6907640	473	31	-90	E37/859	20ftProspect
14DRAC042	314774	6908960	471	35	-90	E37/859	20ftProspect
14DRAC043	314934	6908960	471	46	-90	E37/859	20ftProspect

ASX ANNOUNCEMENT

6th April 2016

Hole Number	MGA Easting	MGA Northing	Elevation (m)	Depth (m)	Dip (Degrees)	Tenement	Prospect
14DRAC044	315094	6908960	468	30	-90	E37/859	20ftProspect
14DRAC045	315254	6908960	468	36	-90	E37/859	20ftProspect
14DRAC046	315414	6908960	468	56	-90	E37/859	20ftProspect
14DRAC047	315574	6908960	468	52	-90	E37/859	20ftProspect
14DRAC048	314854	6909280	468	24	-90	E37/859	20ftProspect
14DRAC049	315014	6909285	468	9	-90	E37/859	20ftProspect
14DRAC050	315203	6909292	468	30	-90	E37/859	20ftProspect
14DRAC051	315334	6909280	468	54	-90	E37/859	20ftProspect
14DRAC052	315494	6909280	468	60	-90	E37/859	20ftProspect
14DRAC053	315654	6909280	466	36	-90	E37/859	20ftProspect
14DRAC054	315814	6909280	466	39	-90	E37/859	20ftProspect
14DRAC055	317980	6907360	465	36	-90	E37/1031	JarrahWell
14DRAC056	317900	6907360	464	48	-90	E37/1031	JarrahWell
14DRAC057	317819	6907360	464	60	-90	E37/1031	JarrahWell
14DRAC058	317747	6907368	462	60	-90	E37/1031	JarrahWell
14DRAC059	317659	6907360	465	44	-90	E37/1031	JarrahWell
14DRAC060	317579	6907360	466	59	-90	E37/1031	JarrahWell
14DRAC061	317499	6907360	467	39	-90	E37/1031	JarrahWell
14DRAC062	317419	6907360	465	42	-90	E37/1031	JarrahWell
14DRAC063	317338	6907360	468	42	-90	E37/1031	JarrahWell
14DRAC064	317984	6907680	461	44	-90	E37/1031	JarrahWell
14DRAC065	317904	6907680	461	54	-90	E37/1031	JarrahWell
14DRAC066	317824	6907680	462	48	-90	E37/1031	JarrahWell
14DRAC067	317585	6907694	464	66	-90	E37/1031	JarrahWell
14DRAC068	317503	6907680	463	49	-90	E37/1031	JarrahWell
14DRAC069	317353	6907654	462	63	-90	E37/1031	JarrahWell
14DRAC070	317419	6907699	464	49	-90	E37/1031	JarrahWell
14DRAC071	317980	6908000	461	68	-90	E37/1031	JarrahWell
14DRAC072	317823	6908000	462	38	-90	E37/1031	JarrahWell
14DRAC073	317663	6908000	464	39	-90	E37/1031	JarrahWell
14DRAC074	317503	6908000	466	40	-90	E37/1031	JarrahWell
14DRAC075	317343	6908000	465	35	-90	E37/1031	JarrahWell
14DRAC076	310280	6909440	473	69	-90	E37/859	OverlandW
14DRAC077	310441	6909440	467	75	-90	E37/859	OverlandW
14DRAC078	310601	6909440	467	71	-90	E37/859	OverlandW
14DRAC079	310761	6909440	463	38	-90	E37/859	OverlandW
14DRAC080	310922	6909440	463	83	-90	E37/859	OverlandW
14DRAC081	311082	6909440	464	94	-90	E37/859	OverlandW
14DRAC082	311242	6909440	462	41	-90	E37/859	OverlandW
14DRAC083	311402	6909440	462	39	-90	E37/859	OverlandW
14DRAC084	311563	6909440	463	56	-90	E37/859	OverlandW
14DRAC085	311723	6909434	461	60	-90	E37/859	OverlandW
14DRAC086	311883	6909440	461	36	-90	E37/859	OverlandW
14DRAC087	318534	6913520	451	10	-90	E37/1031	SpringW
14DRAC088	318694	6913520	454	36	-90	E37/1031	SpringW

ASX ANNOUNCEMENT

6th April 2016

Hole Number	MGA Easting	MGA Northing	Elevation (m)	Depth (m)	Dip (Degrees)	Tenement	Prospect
14DRAC089	318855	6913520	459	22	-90	E37/1031	SpringW
14DRAC090	319015	6913520	468	15	-90	E37/1031	SpringW
14DRAC091	319175	6913520	463	13	-90	E37/1031	SpringW
14DRAC092	319335	6913520	457	3	-90	E37/1031	SpringW
14DRAC093	319496	6913520	455	3	-90	E37/1031	SpringW
14DRAC094	317362	6911910	460	29	-90	E37/1031	SpringW
14DRAC095	317522	6911910	464	21	-90	E37/1031	SpringW
14DRAC096	317683	6911910	466	9	-90	E37/1031	SpringW
14DRAC097	317843	6911910	461	20	-90	E37/1031	SpringW
14DRAC098	318003	6911910	460	12	-90	E37/1031	SpringW
14DRAC099	318163	6911910	464	15	-90	E37/1031	SpringW
14DRAC100	318324	6911910	458	12	-90	E37/1031	SpringW
14DRAC101	318484	6911910	463	24	-90	E37/1031	SpringW
14DRAC102	318664	6911910	454	27	-90	E37/1031	SpringW
14DRAC103	318805	6911910	456	3	-90	E37/1031	SpringW

Appendix 3: Darlot Project, IGO 2015 Air Core Drill Hole Collar Table

Hole Number	MGA Easting	MGA Northing	Elevation (m)	Depth (m)	Dip (Degrees)	Tenement	Prospect
15DRAC001	312957.1	6906684	466.924	70	-90	E37/859	20ftProspect
15DRAC002	313123.1	6906683	467.472	63	-90	E37/859	20ftProspect
15DRAC003	313282.8	6906683	468.145	50	-90	E37/859	20ftProspect
15DRAC004	313442.6	6906691	469.102	58	-90	E37/859	20ftProspect
15DRAC005	313602.2	6906696	468.809	38	-90	E37/859	20ftProspect
15DRAC006	313748.8	6906681	469.544	43	-90	E37/859	20ftProspect
15DRAC007	312953.2	6907000	465.356	40	-90	E37/859	20ftProspect
15DRAC008	313118.3	6906999	468.163	31	-90	E37/859	20ftProspect
15DRAC009	313278.4	6907003	468.325	36	-90	E37/859	20ftProspect
15DRAC010	313438.4	6906999	468.284	39	-90	E37/859	20ftProspect
15DRAC011	313596.6	6907001	466.161	37	-90	E37/859	20ftProspect
15DRAC012	314616.2	6906998	472.261	52	-90	E37/859	20ftProspect
15DRAC013	314782	6906997	469.202	60	-90	E37/859	20ftProspect
15DRAC014	314948.7	6907003	470.234	51	-90	E37/859	20ftProspect
15DRAC015	315084.4	6907002	471.776	74	-90	E37/859	20ftProspect
15DRAC016	315258.9	6906998	477.382	31	-90	E37/859	20ftProspect
15DRAC017	315420.8	6907005	480.373	46	-90	E37/859	20ftProspect
15DRAC018	315575.5	6907004	488.793	4	-90	E37/859	20ftProspect
15DRAC019	315999.5	6907324	468.952	34	-90	E37/859	20ftProspect
15DRAC020	315842.3	6907325	471.153	28	-90	E37/859	20ftProspect
15DRAC021	315684	6907324	473.248	37	-90	E37/859	20ftProspect
15DRAC022	315524.6	6907326	473.895	85	-90	E37/859	20ftProspect
15DRAC023	315376.4	6907299	474.552	63	-90	E37/859	20ftProspect
15DRAC024	316661.9	6907685	464.457	51	-90	E37/1031	JarrahWell
15DRAC025	316813.1	6907682	463.002	65	-90	E37/1031	JarrahWell
15DRAC026	316972.4	6907687	462.233	60	-90	E37/1031	JarrahWell

ASX ANNOUNCEMENT

6th April 2016

Hole Number	MGA Easting	MGA Northing	Elevation (m)	Depth (m)	Dip (Degrees)	Tenement	Prospect
15DRAC027	317131.7	6907682	461.207	67	-90	E37/1031	JarrahWell
15DRAC028	317279.9	6907679	460.31	64	-90	E37/1031	JarrahWell
15DRAC029	314564	6907321	469.931	34	-90	E37/859	20ftProspect
15DRAC030	314727.6	6907324	468.868	48	-90	E37/859	20ftProspect
15DRAC031	314884.1	6907322	469.859	64	-90	E37/859	20ftProspect
15DRAC032	315040.5	6907324	470.492	33	-90	E37/859	20ftProspect
15DRAC033	315205.4	6907326	472.08	64	-90	E37/859	20ftProspect
15DRAC034	315201.8	6907684	470.266	88	-90	E37/859	20ftProspect
15DRAC035	315362.2	6907682	473.006	55	-90	E37/859	20ftProspect
15DRAC036	315522.8	6907682	474.004	58	-90	E37/859	20ftProspect
15DRAC037	315687	6907684	476.73	44	-90	E37/859	20ftProspect
15DRAC038	315844.5	6907680	482.177	55	-90	E37/859	20ftProspect
15DRAC039	316964.5	6908006	469.696	18	-90	E37/1031	JarrahWell
15DRAC040	316791.1	6907997	467.274	27	-90	E37/1031	JarrahWell
15DRAC041	316651	6908004	466.496	39	-90	E37/1031	JarrahWell
15DRAC042	316487.1	6908002	467.201	39	-90	E37/1031	JarrahWell
15DRAC043	316478.8	6908321	475.02	56	-90	E37/1031	JarrahWell
15DRAC044	316626.8	6908330	468.371	40	-90	E37/1031	JarrahWell
15DRAC045	316792.6	6908319	465.419	37	-90	E37/1031	JarrahWell
15DRAC046	316959.1	6908322	465.774	15	-90	E37/1031	JarrahWell
15DRAC047	317037.9	6909113	462.6	51	-90	E37/1031	JarrahWell
15DRAC048	316878	6909120	463.023	64	-90	E37/1031	JarrahWell
15DRAC049	316716.2	6909120	463.313	58	-90	E37/1031	JarrahWell
15DRAC050	316546	6909125	463.892	39	-90	E37/1031	JarrahWell
15DRAC051	316404.5	6909128	466.368	12	-90	E37/1031	JarrahWell
15DRAC052	316390.5	6909756	459.774	34	-90	E37/1031	JarrahWell
15DRAC053	316555.6	6909757	460.599	28	-90	E37/1031	JarrahWell
15DRAC054	316707.2	6909757	462.123	46	-90	E37/1031	JarrahWell
15DRAC055	316867.2	6909757	460.369	34	-90	E37/1031	JarrahWell
15DRAC056	317030.2	6909758	459.917	19	-90	E37/1031	JarrahWell
15DRAC057	318299.4	6910399	447.494	39	-90	E37/1031	JarrahWell
15DRAC058	318466.5	6910397	442.545	45	-90	E37/1031	JarrahWell
15DRAC059	318619.5	6910394	443.146	61	-90	E37/1031	JarrahWell
15DRAC060	318781.6	6910401	443.804	52	-90	E37/1031	JarrahWell
15DRAC061	318943	6910397	444.079	61	-90	E37/1031	JarrahWell
15DRAC062	319105	6910398	444.101	49	-90	E37/1031	JarrahWell
15DRAC063	319260.5	6910394	443.637	53	-90	E37/1031	JarrahWell
15DRAC064	319421.2	6910398	443.464	61	-90	E37/1031	JarrahWell
15DRAC065	319582	6910400	443.888	63	-90	E37/1031	JarrahWell
15DRAC066	317190.8	6909762	453.231	61	-90	E37/1031	JarrahWell
15DRAC067	317343.8	6909780	452.301	61	-90	E37/1031	JarrahWell
15DRAC068	317507.8	6909763	452.969	37	-90	E37/1031	JarrahWell
15DRAC069	317664.8	6909769	456.965	25	-90	E37/1031	JarrahWell
15DRAC070	317830.9	6909757	452.809	27	-90	E37/1031	JarrahWell
15DRAC071	317990.1	6909759	451.408	36	-90	E37/1031	JarrahWell

ASX ANNOUNCEMENT

6th April 2016

Hole Number	MGA Easting	MGA Northing	Elevation	Depth (m)	Dip (Degrees)	Tenement	Drocpost
	318150.8	6909757	(m) 451.588	64	-90		Prospect JarrahWell
15DRAC072 15DRAC073	318311.4	6909757	451.388	34	-90	E37/1031 E37/1031	JarrahWell
15DRAC074	318469.7	6909758	451.067	55	-90	E37/1031	JarrahWell
15DRAC075	318632.9	6909756	449.381	67	-90	E37/1031	JarrahWell
15DRAC076	318788.2	6909757	450.477	59	-90	E37/1031	JarrahWell
15DRAC077	318948.3	6909761	451.956	58	-90	E37/1031	JarrahWell
15DRAC078	319113.5	6909754	451.053	44	-90	E37/1031	JarrahWell
15DRAC079	319273	6909757	448.311	54	-90	E37/1031	JarrahWell
15DRAC080	319434.4	6909762	444.047	52	-90	E37/1031	JarrahWell
15DRAC081	319589.1	6909760	443.364	77	-90	E37/1031	JarrahWell
15DRAC082	317109	6908312	466.983	5	-90	E37/1031	JarrahWell
15DRAC083	317284.7	6908320	467.555	52	-90	E37/1031	JarrahWell
15DRAC084	317441.6	6908323	463.352	28	-90	E37/1031	JarrahWell
15DRAC085	317603.8	6908325	460.689	55	-90	E37/1031	JarrahWell
15DRAC086	317766.1	6908321	456.935	47	-90	E37/1031	JarrahWell
15DRAC087	317926.6	6908322	455.416	67	-90	E37/1031	JarrahWell
15DRAC088	317197.7	6909120	457.837	34	-90	E37/1031	JarrahWell
15DRAC089	317359.9	6909120	458.465	31	-90	E37/1031	JarrahWell
15DRAC090	317515.8	6909115	458.203	40	-90	E37/1031	JarrahWell
15DRAC091	317842.7	6908790	459.472	36	-90	E37/1031	JarrahWell
15DRAC092	317680.9	6908800	462.775	36	-90	E37/1031	JarrahWell
15DRAC093	317517.5	6908802	462.664	26	-90	E37/1031	JarrahWell
15DRAC094	317669.2	6909125	462.368	8	-90	E37/1031	JarrahWell
15DRAC095	317840.2	6909123	459.714	28	-90	E37/1031	JarrahWell
15DRAC096	317996.4	6909124	460.415	44	-90	E37/1031	JarrahWell
15DRAC097	318158.2	6909129	455.003	58	-90	E37/1031	JarrahWell
15DRAC098	318317.3	6909118	453.596	57	-90	E37/1031	JarrahWell
15DRAC099	318478.5	6909118	455.208	22	-90	E37/1031	JarrahWell
15DRAC100	318633.3	6909121	451.903	52	-90	E37/1031	JarrahWell
15DRAC101	318785	6909124	450.18	44	-90	E37/1031	JarrahWell
15DRAC102	318959.7	6909120	449.942	86	-90	E37/1031	JarrahWell
15DRAC103	319118.7	6909118	450.512	61	-90	E37/1031	JarrahWell
15DRAC104	319279.6	6909120	450.415	64	-90	E37/1031	JarrahWell
15DRAC105	319435.5	6909116	449.692	55	-90	E37/1031	JarrahWell
15DRAC106	319592	6909121	447.908	61	-90	E37/1031	JarrahWell

JORC Code, 2012 Edition – Table 1 report

6th April 2016 – Darlot Project- Jarrah Well and 20Ft Prospects

Section 1 Sampling Techniques and Data

	(Criteria in this section apply to all succeeding sections.)
Criteria	Commentary
Sampling techniques	 Aircore drilling was completed in 2014 and 2015 at the Jarrah Well, 20Ft, Waroonga Well, Overland Well, and Spring Well Prospects. Representative 1 metre samples were produced by a cyclone and splitter system fitted to side of the drill rig. Representative 4m composite samples were collected using a constant volume PVC scoop.
Drilling techniques	 Aircore drilling by Challenge Drilling (2014) and Bostech (2015) was all vertical. Holes were preferentially drilled to fresh rock, and where this exceeded blade refusal an AC hammer or roller bit was used as necessary.
Drill sample recovery	 Sample recoveries were not measured, poor samples commented on in logs. AC samples were collected in polythene bags. Recovery was not measured. All wet samples were logged and recorded in the database as such.
Logging	 All holes were geologically logged in the field using an offline AcQuire data entry object loaded onto a Toughbook computer. Drilling operations were supervised at all time by an IGO geologist and field technician. All drillholes were logged for the full extent of each hole.
Sub-sampling techniques and sample preparation	 No drill core was collected. 4m composite AC samples were collected using a spear when dry and a PVC scoop if wet from bulk drill samples. The sample preparation of drill chip samples for analysis follows industry best practice involving oven drying, coarse crush, and pulverising to minus 75 Microns. Blanks and certified STDs were inserted at a rate of 2/100 samples for composite samples and every 20 samples for BOH samples. Chip samples from each metre interval (including a separate subset of BOH) were also collected and retained in plastic chip trays for future reference. QC procedures involve the review of laboratory supplied certified reference materials and field duplicates. These quality control results are reported along with sample values in the final analysis report. Selected intervals are assayed at other laboratories for comparison at times. Sample sizes are considered to be appropriate to correctly represent the sought after mineralisation style.
Quality of assay data and laboratory tests	 4m composite samples of approximately 2-3kg were taken through the entire hole and sent to Genalysis Perth for the same geochemical analysis used at the Jaguar Project. The samples were analysed for: Ag, As, Cd, Co, Cu, Fe, Ge, In, Mg, Mn, Mo, Ni, P, Pb, S, Sc, Sn, Sr, TI W, V, Zn by 4 acid digestion / ICP-OES and ICP-MS. [Genalysis Method 4A/OM]. A 25gm sample was also analysed for gold by fire assay, solvent extraction, AAS finish [Genalysis Method FA25/SAA]. A separate BOH (bottom-of-hole) sample of the freshest bedrock was also sent to Genalysis for comprehensive lithogeochemistry analysis. BOH samples were analysed for: SiO2, Al2O3, Fe2O3, MnO, MgO, K2O, P2O5,Ba, Cr, S, LOI, Ce, Eu, Gd, La, Lu, Nb, Rb, Sm, Sn, Sr, Th, W, V, Y, Zr [Genalysis Method F86/OM].

ENTERPRISE	METALS LIMITED AS	X ANNOUNCEMENT	6 th April 2016
Criteria	Commentary		
	 digestion / ICP-OES and A 25gm BOH sample was extraction, AAS finish [G 	Co, Ge, In, Mo, Ni, Pb, Sb, Se, Tl, Z I ICP-MS. [Genalysis Method 4A/OI as also analysed for gold by fire assa enalysis Method FA25/SAA]. ra-Red (SWIR) analysis is planned t	M]. ay, solvent
Verification of sampling and assaying	loaded into IGO's databa loading into a SQL datab	y IGO in AcQuire on a Toughbook c ase, and subsequently sent to Enter base server. rations were made to any data used	prise Metals for
Location of data points	few metres.Drill sites were positione areas to minimise vegetaAt completion all holes v	vere plugged and marked with a woo y NASA Shuttle Radar Topography	ely vegetated oden survey peg.
Data spacing and distribution	 geochemistry anomalies A series of scout explor resource estimation is place 	acing was chosen to test a number of . (Refer ASX Report 6 April 2016) ation drilling programs were conduct anned. mpositing was used apart from the s	ted and no
Orientation of data in relation to geological structure		ed orthogonal to strike of the volcan m aeromagnetic data and geologica	
Sample security	Samples were secured i reputable carrier.	n bulka bags and delivered to the La	aboratory by a
Audits or reviews	 Regular internal reviews undertaken. 	are occurring, but no external revie	ws have been

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 The Darlot Project consists of multiple contiguous exploration licences and is located approximately 700km northeast of Perth, 110km north of Leonora and 45km east of Leinster in Western Australia. The Jarrah Well Prospect lies within E37/1031 (100% ENT owned). The Waroonga Well Prospect lies within E36/706 and E37/859 (80% ENT owned, with 20% free carry to BFS of Messrs Rudd and Gianni). The 20Ft and Overland Well Prospects also lie within E37/859. The Prospects referred to are all on granted tenements and the tenements are all in good standing. The tenements and prospects occur on the Yandal, Weebo and Melrose pastoral leases. Independence Group NL (IGO), upon withdrawal from the JV, have retained a 2% NSR royalty on all minerals produced from E37/1031.
Exploration done by other parties	 A summary of previous exploration activities at Darlot by the Company and others was provided in the Company's 2014 Annual Report. During the 1970's Western Mining Corporation Ltd, Hampton Gold Mining Areas Ltd, Asarco Australia Ltd, Esso Exploration & Production Australia

		ASX ANNOONCEMENT	0 April 2010
Criteria	Commentary		
	 metal mineralisa Gossans at the Teutonic Bore g In 1975 Hampto holes to test th associated with induced polarizi intersected a r saprolite. 	e Spring Well Prospect reported value jossan. on Gold Mining Areas Ltd drilled 13 re he depth extension of a number of h coincident Cu-Zn-Ag-Pb soil geo zation (IP) geophysical anomalies. number of shallow, high-order anom	es comparable to the verse circulation (RC) outcropping gossans ochemical (soil) and Drilling successfully nalies within oxidised
	 base metal expl In the mid 1990 Prospect, Great core (AC) hole holes drilled by zone of anomal 	ase metal anomalies were identified loration, many of which were never foll of s, while exploring for gold mineralisat t Central Mines Ltd drilled several bro as approximately 3.5kms west of the y Hampton. Drilling intersected a dis ous Zn-Cu-Pb±Au associated with a p theast trending black shale units bour	owed up. ion at the Jarrah Well ad-spaced lines of air aforementioned RC crete, >1.3km, linear arallel / anastomosing
	 The identification lava domes, in Complex is acturent of the latter neglected for equivalent of the sector of the latter neglected for equivalent of the sector of the latter neglected for equivalent of the sector of the latter neglected for equivalent of the sector of the latter neglected for equivalent of the sector of the latter neglected for explored the sector of the latter of the sector of the latter of the sector of the sector of the latter of the sector of the sector of the latter of the sector of the latter of the sector of the latter of the sector of the sector	onal, broad spaced drilling was comple nt GCM and Normandy. ell Prospect has also been subject to mpling and drilling. Once again, while ergene gold in the regolith, it has faile	t of the Spring Well irrounds were largely exposure and poor e belt. itonic Operations Ltd wmont Australia Ltd Australia Ltd, Great Ltd, Western Mining ndy) have all actively apping, petrography, magnetic surveys and and rotary air blast eted by Dominion, and several campaigns of e drilling has identified ed to locate a bedrock or gold mineralisation Mt Doolette, Overland 34 Mile Well, Weebo
Geology	 The Darlot Pro Terranes. The ultramafic Kam felsic and volca interpreted as h The western K rocks and is int Kurnalpi Terra 	ject lies on the boundary of the Ka Kalgoorlie Terrane comprises the 2 balda Sequence, which is overlain b niclastic rocks of the Kalgoorlie Seque aving been deposited in an extensiona urnalpi Terrane contains 2,695-2,675 terpreted as a rifted, mature-arc syste ane is characterised by 2,715-2,	2,715-2,692Ma mafic- y the 2,682-2,666Ma ence. These rocks are a back-arc setting. 5Ma bimodal volcanic em; while the eastern 704Ma calc-alkaline
	The Ockerberry	Icanics and is interpreted as a series o 7 Fault system which separates the Ka arge scale, east dipping, listric structu st.	algoorlie and Kurnalpi

ENTERPRISE ME	TALS LIMITED	ASX ANNOUNCEMENT	6 th April 2016
Criteria	Commentary		
	 The Darlot Project is centered across exposures of the Achaean Spri Well Complex. The Spring Well Complex comprises calc-alkaline andes and basaltic-andesite to high-silica rhyolite lavas and sills, a volcaniclastic rocks derived from these. Unlike other intermediate ca alkaline volcanic complexes in the Eastern Goldfields, the Spring W Complex has a high portion of silicic lavas and volcaniclastic rocks. Remnants of a volcanic centre have been recognised near the locality Spring Well. 		
	basaltic-an	pring Well outcrop is dominated by ca desite lavas and sills, whereas to the ell, rhyolitic and dacitic lavas and rela	west and southwest of
	eruption contextures a	Well Complex was previously describe entre however, given the presence of and the abundance of coherent law nt is now considered to be subaqueous (of black shales, quench a domes, the eruption
	Fault Zone Permian s	sive palaeochannel system is associate. It comprises a thick sequence of sature ands with perched lenses of grit and preched lens	urated, semi-consolidated uggy clays and a coarse
		ake Darlot, saline and gypsiferous evap casionally forming small stabilised dune:	
Drill hole Information	Refer to Ta	able of drill collars, Appendices 2 & 3 of <i>i</i>	ASX Report 6 April 2016.
Data aggregation methods	 Assays not 	aggregated for 4m samples	
Relationship between mineralisation widths and intercept lengths	Only down hole lengths are reported as true widths of mineralised intervals are not known.		
Diagrams	 Plans show April 2016. 	wing geology and locations of AC drill	collars in ASX Report 6
	 Relevant M 	ILEM profiles also displayed in ASX Rep	oort 6 April 2016.
Balanced reporting	All significa	All significant results are reported.	
Other substantive exploration data		atives of IGO carried out moving loop El I Prospect (E37/1031), 20Ft Prospect (E	
	• The MLEM surveys were designed to delineate potential drill targets in a prospective corridor. The surveys consisted of 24 lines covering 31.45 line km.		
	 Stations were read at 50m intervals along 200m spaced lines. A to stations were read. 		paced lines. A total of 608
	Modelling b	Modelling by IGO's in house geophysics group.	
	MLEM specifications shown below		
	Configuration Loop Size Number of Turns	Slingram 200m×200m 1	
	Line Spacing	200m	

ASX ANNOUNCEMENT

Criteria	Commentary		
Further work		50m Smartem24 EMIT Smart Fluxgate - Bz (up), Bx (north,) By (west) Curtin Coil - dBz/dt (up) 200m west of centre of loop IGO Battery 30-60 Amps 2.0833 Hz 128-256 Standard Emprise staff to review drill spoils.	
	 Selected pyrite samples to be sent to the Centre for Excellence in Ore Deposits (CODES, University of Tasmania) for Laser Ablation and ICP-MS analysis for the content of base metal pathfinder elements. This work may help vector future exploration drilling towards massive zinc sulphides. RC drilling pending receipt of CODES results. 		