

ASX:CXO Announcement

20 May 2021

Significant Lithium Exploration Target to Add More Tonnes at Finniss

Highlights

- A new lithium Exploration Target (ET) established at Finniss
- The new ET demonstrates the potential for material increases to Finniss life of mine
- Approval to drill new acquisition prospects has been received from the NT Government
- Core to commence resource expansion drilling at Finniss in coming weeks
- Core has clear pathway to resource and project expansion

Advanced Australian lithium developer, Core Lithium Ltd (ASX: CXO) ("Core" or "Company"), is pleased to announce that it has defined an additional Exploration Target (ET) of 9.8 to 16.2 million tonnes at a grade of between 0.8 to 1.4% Li₂O across seven different prospects within its Finniss Lithium Project ("Finniss") near Darwin in the Northern Territory.

This new ET is in addition to the Finniss Mineral Resource of 15Mt @ 1.3% Li₂O.

Finniss Project	Tonna	ge (Mt)	Li ₂ C) (%)
Exploration Target	Low	High	Low	High
Total	9.8	16.2	0.8	1.4

The ET is supported by historical drilling, trenching and exploration results. The potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Core is aiming to convert a high proportion of the ET at Finniss to Mineral Resources in 2021.

The Company recently received drilling approval from the NT Government for the new ETs defined within the recently executed option agreement to acquire Mineral Leases (Option Agreement) (refer ASX Announcement "Acquires Right to Multiple Pegmatite Mines Adjacent Finniss" on 4/3/21). Core is preparing to start resource expansion drilling before the end of May to kick-off the most extensive exploration and resource drilling campaign in the Company's history.

Core Managing Director Stephen Biggins said: "Core has a clear pathway to achieve our goal of more than doubling resources and mine life at Finniss.

"Our recent acquisition deal is already bearing fruit, with wide and shallow pegmatites defined by historic drilling likely to add significant lithium tonnes to the Project in the near term.

"Core's exploration and resource drilling should provide a regular flow of news as we build the expansion potential and financeability of Finniss, and move into construction of Australia's next lithium project later this year.

"It's pretty simple maths to add the ET to our existing Mineral Resources to see where Core is headed, and our other well-funded exploration work ramping up at Finniss should add more tonnes on top of that."

Finniss Lithium Project - Exploration Target

Core has defined an Exploration Target of 9.8 to 16.2 million tonnes at a grade of between 0.8 to 1.4% Li₂O across seven different prospects. Exploration Targets have been defined at the existing Core prospects of Ah Hoys and Far West Central (both on EL29698) and at several Leviathan and Annie group pegmatites, within MLN1148 and ML31654, that are part of the current option agreement for Core to acquire (Fig 1).

The new ET is in addition to the Mineral Resource estimate of 15Mt @ 1.3% Li_2O already defined by Core at Finniss.

Prospect	Tenement	Tonnage	(Mt)	Li ₂ O (%)	
		Low	High	Low	High
Ah Hoys	EL29698	0.8	1.4	1.0	1.4
Far West Central	EL29698	1.3	2.1	1.0	1.4
Annie	ML31654	1.4	2.2	0.6	1.4
Centurion	MLN1148	2.2	3.6	1.0	1.4
Northern Reward	MLN1148	1.8	3.0	0.8	1.4
Leviathan	MLN1148	1.4	2.4	0.8	1.4
Trojan/Pandanus	MLN1148	0.9	1.5	0.8	1.4
Total		9.8	16.2	0.8	1.4

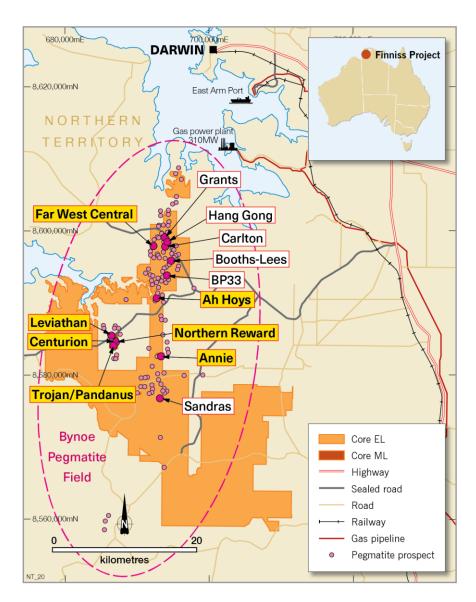


Figure 1. Location of prospects associated with the Exploration Target.

The Exploration Target has been determined after a review of existing exploration results, especially on the tenure associated with the Option Agreement. Based on these results the process was to use the interpreted geology and outline the extent of pegmatite along a series of sections at each prospect. These sectional interpretations were joined along strike, when they were considered to be continuous, and extended at depth to create a 150m vertical section of fresh pegmatite. A depth considered to be within the realms of open pit mining methods.

Three dimensional wireframed shapes representing a fresh volume of pegmatite was created and considered as part of the Exploration Target. The tonnage range at each prospect was determined by applying a specific gravity of 2.72 g/cm³ to the volume and then assuming a 25% variability above and below this result. The specific gravity used is typical of mineralisation at existing mineral resources within the region such as Grants and BP33.

Centurion

The Centurion prospect has been the subject of extensive previous exploration, including trenching and shallow RC drilling by Julia Corp in 2001 (Figure 2). This drilling was undertaken on 50m spaced sections. A total of 10 RC holes, with a maximum vertical depth of 60m, together with mapping from trenches, define a very continuous zone of weathered pegmatite over a strike length of 220m, dipping steeply to the east.

At the time the holes were assayed for tin and tantalum but not for lithium. Subsequent sampling of a limited number of pulps from this drilling (stored at the Northern Territory Geological Survey Core Library), returned assays up to 1.79% Li₂O, despite the slightly weathered nature of the material sampled. Therefore, It Is likely that the Centurion pegmatite is prospective for economic grades of spodumene and the grade range for this target reflects that.

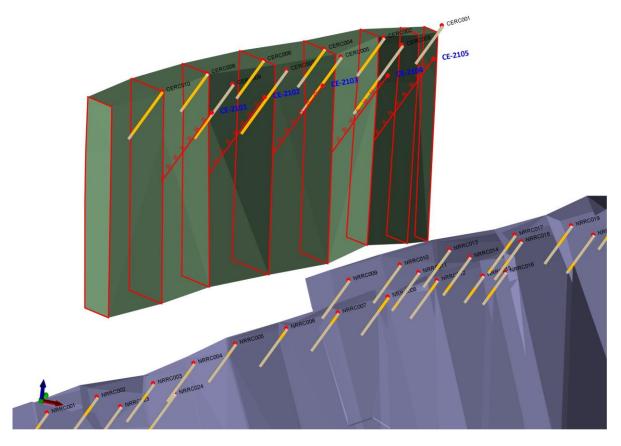


Figure 2. Centurion (background) and Northern Reward (Foreground) Exploration Target wireframes defined on historic drillholes (beige) and planned resource drillholes (red).

Northern Reward

The Northern Reward prospect includes the Welcome Surprise prospect to the north and the Mackas Reward prospect to the south. The prospects are situated approximately 300m to the south east of Centurion (Figure 3). As such, the area has

also been subject to extensive exploration activities. A total of 24 shallow RC holes have been drilled on 50m spaced lines over a combined strike length of over 600m.

The drilling defined two dominant pegmatite sheets that dip moderately to the east. No lithium assays are available for any of this drilling. Given the close proximity to the Centurion prospect, some level of fertility is expected within these pegmatites at depth.

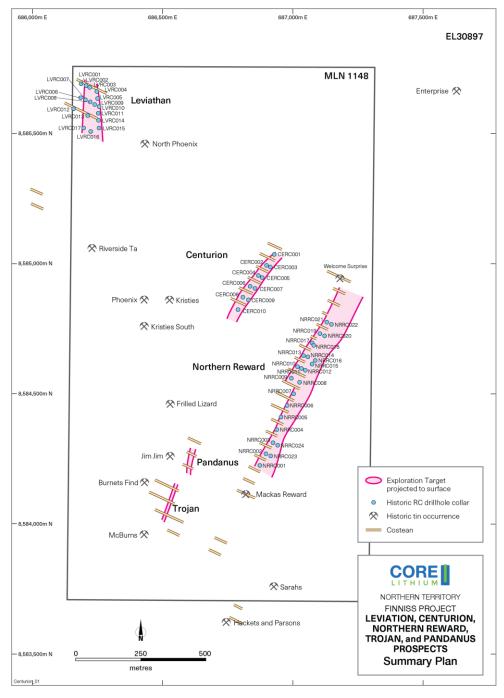


Figure 3. Leviathan Group of Lithium Exploration Target and Historic Drilling, ML 1148

Annie

The Annie prospect was mined for tin and tantalum between 1996 and 1998. Prior to this, in 1995, extensive shallow RC drilling was undertaken by Corporate Developments Pty Ltd. This drilling was undertaken on 20m spaced sections (Figure 4). A total of 32 RC holes, with a maximum vertical depth of 42m, define a very continuous zone of weathered pegmatite over a strike length of 320m, dipping moderately to the west. The holes were assayed for tin and tantalum but not for lithium. As the Annie prospect is located towards the south of the project area, it is expected that the Li₂O grade will be more variable and more like the Sandras deposit. A broad grade range has been defined for this target.

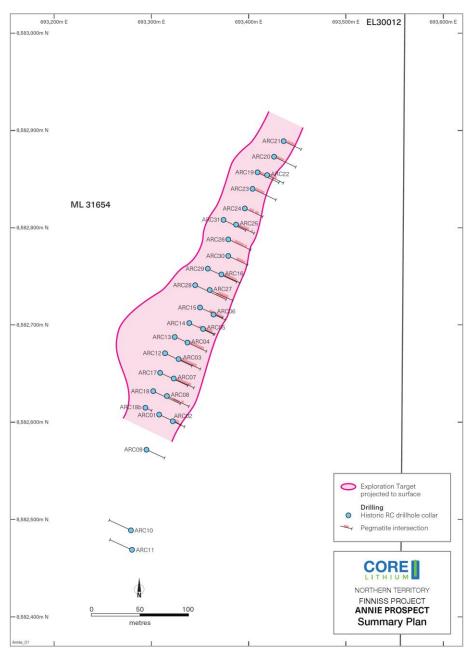


Figure 4. Annie Lithium Exploration Target and Historic Drilling

Leviathan

The Leviathan prospect is located approximately 850m north west of Centurion (Figure 3). It has been tested by a total of 17 shallow RC holes along 50m spaced lines over a strike length of approximately 200m. The geology is more complicated but is dominated by three closely spaced subvertical pegmatite sheets. The holes were assayed for tin and tantalum at the time of drilling, with the pulps from two holes subsequently sampled and assayed for lithium by Core. No significant assays were returned. However, the samples were highly weathered and it is expected that lithium fertility exists at depth within the pegmatites when fresh.

Far West Central

The Far West Central targets have been intersected by up to 17 RC holes drilled by Core over a strike length of approximately 300m (Figure 5). The majority of the holes were shallow and intersected weathered and unmineralized pegmatites. The prospect is currently interpreted to contain multiple pegmatite bodies that dip to the west and pinch and swell along strike. Deeper drilling intersections such as 14m@1.35% Li₂O and 8m@1.27% Li₂O (FRC143) and 12m@1.17% Li₂O (FRC139) indicate that the pegmatites are mineralised at depth and provide a guide as to the potential grade range for this target.

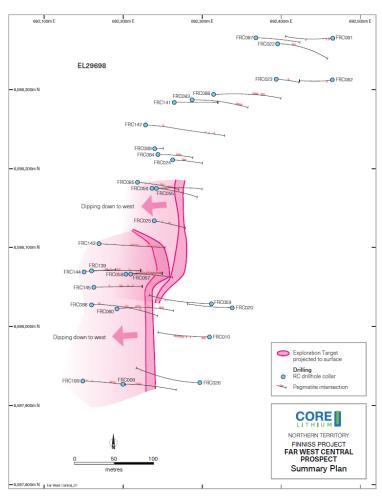


Figure 5. Far West Central Lithium Exploration Target and previous Core drilling

Trojan/Pandanus

The Trojan and Pandanus prospects are spatially related and have previously been tested by a series of 50m spaced trenches. The trenching revealed two apparently continuous pegmatite sheets that are interpreted to be subvertical with a combined strike length of 250m. There is no lithium assay data available for these pegmatites. However, the Centurion prospect, approximately 600m along strike to the north (Figure 3), does have assays that indicate that some level of fertility may also exist here at depth within the pegmatites when fresh.

Ah Hoys

The target at the Ah Hoys prospect is defined by 4 RC holes drilled by Core. The holes were drilled over a strike length of approximately 150m and indicate good continuity of a pegmatite body that dips to the west (Figure 6). Known intersections at the prospect range between 10m@1.57% Li₂O (FRC208) to 9m@0.64% Li₂O (FRC012) and therefore provide a guide as to the potential grade range for this target.

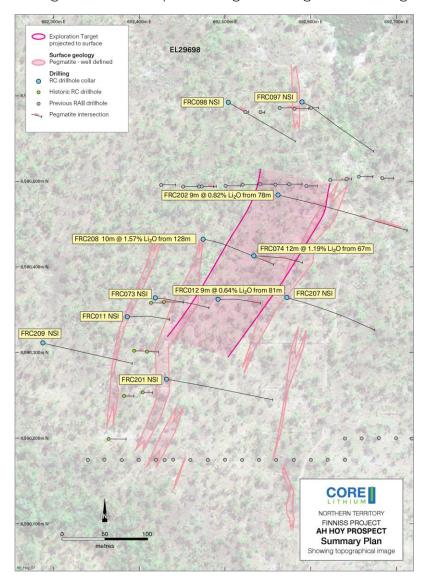


Figure 6. Ah Hoys Lithium Exploration Target and previous Core drilling.

This announcement has been approved for release by the Core Lithium Board.

For further information please contact: For Media and Broker queries:

Stephen Biggins
Managing Director
Core Lithium Ltd
+61 8 8317 1700
info@corelithium.com.au

Fraser Beattie Senior Consultant Cannings Purple +61 421 505 557

fbeattie@canningspurple.com.au

Competent Person Statement

The information in this report that relates to Exploration Results and Exploration Target is based on information compiled by Dr Graeme McDonald (BSc (Hons) Geol, PhD, MAusIMM). Dr McDonald acts as an independent consultant to Core Lithium Ltd in the role of Resource Manager. Dr McDonald is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activities undertaken as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (The JORC Code). Dr McDonald consents to the inclusion in this report of the contained technical information relating to the Exploration Results and Exploration Target in the form and context in which it appears.

The information included in this announcement has been obtained from the "Finniss Lithium Resource increased by over 50%" dated 15 June 2020 and Core confirms that all material assumptions and technical parameters underpinning the forecast financial information derived from the Ore Reserve and Mineral Resource continue to apply and have not materially changed.

Core confirms that it is not aware of any new information or data that materially affects the results included in this announcement as cross referenced in the body of this announcement and additionally as "New Exploration Intersections Add to Finniss Potential" on 16/08/18, "Finniss Project Exploration and Resource Drilling Update" on 10/09/19 and "Further High Grade Lithium Intersections at Finniss" on 18/10/16).

About the Finniss Lithium Project

The Finniss Lithium Project is Australia's most advanced new lithium projects on the ASX and places Core Lithium at the front of the line of new global lithium production.

Finniss has been awarded Australian Federal Government Major Project Status and is also one of the most capital efficient lithium projects and has arguably the best logistics chain to markets of any Australian lithium project.

The Project lies within 25km of port, power station, gas, rail and one hour by sealed road to workforce accommodated in Darwin and importantly to Darwin Port - Australia's nearest port to Asia.

Lithium is the core element in batteries used to power electric vehicles, and the Finniss Project boasts world-class, high-grade and high-quality lithium suitable for this use and other renewable energy sources.

Historic Drill hole collars

Hole ID	Prospect	East	North	RL (m)	Dip	Azi	Depth (m)	Drilled
ARRC001	Angers	687331	8582982	20	-60	205	67	2001
ARRC002	Angers	687337	8582991	20	-60	205	67	2001
ARRC003	Angers	687310	8582994	20	-60	205	24	2001
ARRC004	Angers	687297	8582967	20	-60	25	21	2001
ARRC005	Angers	687298	8582970	20	-60	25	38	2001
ARRC006	Angers	687292	8582958	20	-60	25	60	2001
ARRC007	Angers	687342	8582946	20	-60	25	40	2001
ARRC008	Angers	687331	8582923	20	-60	25	40	2001
ARRC009	Angers	687307	8582929	20	-60	25	40	2001
ARRC010	Angers	687280	8582931	20	-60	25	40	2001
ARRC011	Angers	687251	8582928	20	-60	25	40	2001
ARRC012	Angers	687264	8582955	20	-60	205	46	2001
ARRC013	Angers	687272	8582973	20	-60	25	40	2001
ARRC014	Angers	687356	8582917	20	-60	25	40	2001
ARRC015	Angers	687236	8582957	20	-60	205	50	2001
ARRC016	Angers	687303	8582909	20	-60	25	60	2001
ARRC017	Angers	687265	8582888	20	-60	295	40	2001
ARRC018	Angers	687189	8582797	20	-60	25	40	2001
ARRC019	Angers	687213	8582961	20	-60	205	50	2001
ARRC020	Angers	687242	8582910	20	-60	25	40	2001
ARRC021	Angers	687230	8582861	20	-60	115	40	2001
ARRC022	Angers	687216	8582856	20	-60	25	40	2001
ARRC023	Angers	687215	8582817	20	-60	115	40	2001
ARRC024	Angers	687214	8582791	20	-60	25	40	2001
ARRC025	Angers	687162	8582798	20	-60	25	40	2001
BTRC001	Beatas	686745	8582386	20	-60	295	50	2001
BTRC002	Beatas	686758	8582413	20	-60	295	50	2001
BTRC003	Beatas	686765	8582441	20	-60	295	40	2001
BTRC004	Beatas	+		20	-60	295	50	2001
BTRC004	Beatas	686793 686766	8582352 8582409	20	-60	295	30	2001
CERC001	Centurion	686929	8585036	20	-60	295	40	2001
CERCO01	Centurion	686899	8584995	20	-60	295	40	2001
CERCO02	Centurion	686914	8584988	20	-60	295	72	2001
CERC003		+	8584955	20	-60	295	40	2001
CERC004	Centurion Centurion	686868 686882	8584947	20	-60	295	60	2001
CERC005			8584914	20	-60	295	40	2001
CERCO07	Centurion	686836 686855			-60		67	
	Centurion		8584905	20		295		2001
CERCOOS	Centurion	686808	8584872	20	-60	295	40	2001
CERCO10	Centurion	686829	8584862	20	-60 60	295	57 50	2001
CERCO10	Centurion	686789	8584825	20	-60	295	50	2001
LVRC001	Leviathan	686187	8585692	20	-60	295	40	2001
LVRC002	Leviathan	686206	8585685	20	-60	295	60	2001
LVRC003	Leviathan	686220	8585678	20	-60	295	53	2001
LVRC004	Leviathan	686247	8585662	20	-60	295	60	2001
LVRC005	Leviathan	686251	8585636	20	-60	295	40	2001
LVRC006	Leviathan	686185	8585639	20	-60	295	39	2001
LVRC007	Leviathan	686203	8585631	20	-60	295	50	2001
LVRC008	Leviathan	686222	8585622	20	-60	295	60	2001
LVRC009	Leviathan	686240	8585613	20	-60	295	70	2001
LVRC010	Leviathan	686256	8585605	20	-60	295	40	2001
LVRC011	Leviathan	686253	8585579	20	-60	295	40	2001
LVRC012	Leviathan	686158	8585596	20	-60	295	40	2001
LVRC013	Leviathan	686213	8585570	20	-60	295	50	2001
LVRC014	Leviathan	686254	8585551	20	-60	295	40	2001
LVRC015	Leviathan	686256	8585522	20	-60	295	40	2001
LVRC016	Leviathan	686224	8585509	20	-60	295	60	2001

Hole ID	Prospect	East	North	RL (m)	Dip	Azi	Depth (m)	Drilled
LVRC017	Leviathan	686196	8585522	20	-60	295	40	2001
NRRC001	Northern Reward	686873	8584226	20	-60	295	40	2001
NRRC002	Northern Reward	686896	8584271	20	-60	295	40	2001
NRRC003	Northern Reward	686924	8584313	20	-60	295	40	2001
NRRC004	Northern Reward	686939	8584363	20	-60	295	40	2001
NRRC005	Northern Reward	686955	8584411	20	-60	295	40	2001
NRRC006	Northern Reward	686979	8584455	20	-60	295	40	2001
NRRC007	Northern Reward	687003	8584500	20	-60	295	40	2001
NRRC008	Northern Reward	687026	8584545	20	-60	295	40	2001
NRRC009	Northern Reward	686994	8584561	20	-60	295	40	2001
NRRC010	Northern Reward	687018	8584605	20	-60	295	40	2001
NRRC011	Northern Reward	687033	8584598	20	-60	295	40	2001
NRRC012	Northern Reward	687048	8584591	20	-60	295	40	2001
NRRC013	Northern Reward	687041	8584648	20	-60	295	39	2001
NRRC014	Northern Reward	687057	8584643	20	-60	295	40	2001
NRRC015	Northern Reward	687074	8584615	20	-60	295	28	2001
NRRC016	Northern Reward	687086	8584629	20	-60	295	34	2001
NRRC017	Northern Reward	687074	8584697	20	-60	295	40	2001
NRRC018	Northern Reward	687081	8584688	20	-60	295	40	2001
NRRC019	Northern Reward	687104	8584732	20	-60	295	40	2001
NRRC020	Northern Reward	687122	8584724	20	-60	295	40	2001
NRRC021	Northern Reward	687130	8584776	20	-60	295	40	2001
NRRC022	Northern Reward	687149	8584767	20	-60	295	49	2001
NRRC023	Northern Reward	686915	8584262	20	-60	295	36	2001
NRRC024	Northern Reward	686942	8584303	20	-60	295	43	2001
ARC01	Annie	693374	8582671	108	-50	115	39	1995
ARC02	Annie	693390	8582671	107	-50	115	21	1995
ARC03	Annie	693368	8582732	111	-50	115	39	1995
ARC04	Annie	693370	8582751	111	-50	115	34	1995
ARC05	Annie	693379	8582769	112	-50	115	21	1995
ARC06	Annie	693382	8582788	112	-50	115	21	1995
ARC07	Annie	693372	8582711	111	-50	115	36	1995
ARC08	Annie	693374	8582692	110	-50	115	39	1995
ARC09	Annie	693378	8582632	107	-50	115	32	1995
ARC10	Annie	693399	8582549	104	-50	295	39	1995
ARC11	Annie	693408	8582531	104	-50	295	39	1995
ARC12	Annie	693353	8582731	110	-50	115	48	1995
ARC13	Annie	693355	8582750	110	-50	115	46	1995
ARC14	Annie	693363	8582768	111	-50	115	43	1995
ARC15	Annie	693366	8582788	111	-50	115	40	1995
ARC16	Annie	693371	8582828	113	-50	115	33	1995
ARC17	Annie	693357	8582711	109	-50	115	49	1995
ARC18	Annie	693359	8582692	108	-50	115	48	1995
ARC18b	Annie	693359	8582672	108	-50	115	10	1995
ARC19	Annie	693362	8582942	113	-50	115	39	1995
ARC20	Annie	693370	8582962	112	-50	115	39	1995
ARC21	Annie	693372	8582981	111	-50	115	39	1995
ARC22								
	Annie	693372	8582942 8582924	113	-50 -50	115	30	1995
ARC23	Annie	693364	8582924 8582901	113		115	40	1995
ARC24	Annie	693365	8582901	114	-50	115	32	1995
ARC25	Annie	693363	8582881	114	-50	115	32	1995
ARC26	Annie	693363	8582864	114	-50	115	40	1995
ARC27	Annie	693367	8582808	113	-50	115	40	1995
ARC28	Annie	693352	8582807	111	-50	115	55	1995
ARC29	Annie	693357	8582827	112	-50	115	51	1995
ARC30	Annie	693370	8582848	114	-50	115	34	1995
ARC31	Annie	693349	8582881	113	-50	115	40	1995

Historic Costean Locations

		Costean	Start				
Costean ID	Prospect	East	North	RL	Length	Azi	Dip
CECO001	Centurion	686903	8585080	20	61	115	0
CECO002	Centurion	686872	8585039	20	66	115	0
CECO003	Centurion	686859	8584989	20	52	115	0
CECO004	Centurion	686828	8584947	20	57	115	0
CECO005	Centurion	686793	8584908	20	60	115	0
CECO006	Centurion	686762	8584867	20	65	115	0
LVCO001	Leviathan	686170	8585708	20	128	115	0
LVCO002	Leviathan	686122	8585619	20	139	115	0
LVCO003	Leviathan	685993	8585288	20	49	115	0
LVCO004	Leviathan	685994	8585231	20	50	115	0
NRCO001	Northern Reward	687155	8584904	20	50	115	0
NRCO002	Northern Reward	687134	8584859	20	50	115	0
NRCO003	Northern Reward	687112	8584813	20	25	115	0
NRCO004	Northern Reward	687090	8584767	20	50	115	0
NRCO005	Northern Reward	687069	8584721	20	25	115	0
NRCO006	Northern Reward	687024	8584686	20	50	115	0
NRCO007	Northern Reward	687007	8584639	20	45	115	0
NRCO008	Northern Reward	686981	8584595	20	75	115	0
NRCO009	Northern Reward	686959	8584549	20	75	115	0
NRCO010	Northern Reward	686937	8584503	20	75	115	0
NRCO011	Northern Reward	686916	8584458	20	75	115	0
NRCO012	Northern Reward	686917	8584401	20	50	115	0
NRCO013	Northern Reward	686895	8584355	20	50	115	0
NRCO014	Northern Reward	686873	8584310	20	50	115	0
NRCO015	Northern Reward	686852	8584264	20	50	115	0
NRCO016	Northern Reward	686830	8584218	20	50	115	0
NRCO017	Northern Reward	686808	8584172	20	50	115	0
NRCO018	Northern Reward	686786	8584127	20	75	115	0
NRCO019	Northern Reward	687131	8584972	20	100	115	0
PACO001	Pandanus	686597	8584329	20	55	115	0
PACO002	Pandanus	686593	8584274	20	40	115	0
PACO003	Pandanus	686576	8584227	20	45	115	0
TRCO001	Trojan	686469	8584165	20	100	115	0
TRCO002	Trojan	686447	8584120	20	108	115	0
TRCO003	Trojan	686471	8584052	20	118	115	0
TRCO004	Trojan	686518	8583974	20	50	115	0

Lithium assays of pulps stored at NTGS Core Library for historical drilling undertaken at various prospects. Sampled by Core.

Hole ID	Prospect	From (m)	To (m)	Li₂O (%)
ARRC001	Angers	19	22	0.26
ARRC001	Angers	22	25	-0.02
ARRC001	Angers	25	28	-0.02
ARRC001	Angers	28	31	-0.02
ARRC001	Angers	31	34	-0.02
ARRC001	Angers	34	37	-0.02
ARRC001	Angers	37	40	-0.02
ARRC001	Angers	40	42	-0.02
ARRC001	Angers	42	47	0.17

Hole ID	Prospect	From (m)	To (m)	Li₂O (%)
A D D C 0 0 1	Angore	47	50	-0.02
ARRC001 ARRC001	Angers	50	52	0.02
ARRC001	Angers	52	54	0.02
ARRC001	Angers	54	57	0.15
ARRC001	Angers	57	58	0.03
	Angers			
ARRC001	Angers	58	60	0.07
BARC029	Beatas	41	44	-0.02
BARC029	Beatas	44	47	-0.02
BARC029	Beatas	47	50 53	0.02
BARC029	Beatas	50 53	56	0.02
BARC029	Beatas			-0.02
BARC029	Beatas	56	59	-0.02
CERCO02	Centurion	7	10	0.11
CERC002	Centurion	10	13	0.19
CERCO02	Centurion	13	16	0.06
CERCO02	Centurion	16	19	0.26
CERC002	Centurion	19	22	0.06
CERC002	Centurion	22	25	0.06
CERC002	Centurion	25	28	0.09
CERC002	Centurion	28	31	0.77
CERC002	Centurion	31	34	1.03
CERC002	Centurion	34	37	0.13
CERC005	Centurion	5	8	0.04
CERC005	Centurion	8	11	0.26
CERC005	Centurion	11	14	0.26
CERC005	Centurion	14	17	0.65
CERC005	Centurion	17	20	0.13
CERC005	Centurion	20	23	0.43
CERC005	Centurion	23	26	1.03
CERC005	Centurion	26	29	1.79
CERC005	Centurion	29	32	1.72
CERC005	Centurion	32	35	0.28
CERC005	Centurion	35	38	0.3
CERC005	Centurion	38	41	0.5
CERC005	Centurion	41	44	0.15
CERC005	Centurion	44	47	0.26
CERC005	Centurion	47	49	0.09
CERC005	Centurion	49	51	0.02
CERC005	Centurion	51	54	0.22
LVRC003	Leviathan	14	16	0.13
LVRC003	Leviathan	16	19	-0.02
LVRC003	Leviathan	19	22	-0.02
LVRC003	Leviathan	22	25	-0.02
LVRC003	Leviathan	25	28	-0.02
LVRC003	Leviathan	28	31	-0.02
LVRC003	Leviathan	31	33	-0.02
LVRC003	Leviathan	33	35	-0.02
LVRC004	Leviathan	11	14	-0.02
LVRC004	Leviathan	14	17	-0.02
LVRC004	Leviathan	17	20	-0.02
LVRC004	Leviathan	37	38	0.06
LVRC004	Leviathan	38	41	-0.02
LVRC004	Leviathan	41	44	-0.02
LVRC004	Leviathan	44	46	0.02
LVRC004	Leviathan	46	47	0.02

JORC Code, 2012 Edition – Table 1 Report Template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) drillholes at various prospects. RC samples were collected on a 1m-basis directly from the drill rig's cyclone into green bags. Pegmatite drill cuttings were sampled by riffle splitting individual metres and combining a representative portion into 3m composites for assaying. A full list of the historic hole collars, including coordinates, azimuth, dip and depth can be found in the report. Core re-sampled pulps from the historic drilling that were stored at the Northern Territory Geological Survey Core Library.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	of drilling to depths of approximately 80m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	There is no evidence of any bias due to variations in sample recoveries.

Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Standard sample logging procedures were utilised during drilling, including logging codes for lithology. Geology of the RC drill chips and costeans were logged on a metre basis with attention to main rock forming minerals within the pegmatite intersections. Entire drilled interval of RC was logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC samples referred to in this report were collected on a 1m-basis directly from the drill rig's cyclone into green bags. Dry pegmatite drill cuttings were sampled by riffle splitting individual metres and combining a representative portion into 3m composites. Composite samples were usually 3-4kg in size. Duplicate samples were collected in the field at a rate of about 1 in 20. Sample prep occurred at a Laboratory in Pine Creek, NT. Samples were sorted and dried before being crushed via a Jaques 10 x 8 Roll Crusher. A one quarter sub-sample was then split and milled to a nominal 106 μm in a Vertical Spindle Pulveriser. A 100g split was then taken for assay. Samples were then air-freighted to Ultratrace Laboratories in Perth, WA, for routine analysis of Ta, Sn and Nb. Sampling by Core of the Julia Corp drilling pulps stored at the Northern Territory Geological Survey Core Library was via a teaspoon and sample sizes are therefore very small.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Assaying of pulp samples collected by Core was undertaken by ALS via method ME-ICP89 and ME-MS91 for a broad range of elements.
Verification of sampling and assaying		 Core's experienced Exploration Manager was responsible for sampling of the drillhole pulps and has verified the subsequent assays. Metallic Lithium percent was multiplied by a conversion factor of

	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	2.15283/10000 to report Li ppm as Li ₂ O%.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Minera Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	· ·
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	·
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	interpreted strike of mineralization (pegmatite body) as mapped. Because of the dip of the drill holes, drill intersections are apparent thicknesses and
Sample security	The measures taken to ensure sample security.	 For the historic drilling, any measures taken to ensure sample security are unknown. For the Core sampling, a company geologist supervises all sampling and subsequent storage in field and transport to point of dispatch to assay laboratories.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Audits or reviews of the sampling techniques were not undertaken

JORC Code, 2012 Edition – Table 1 Report Template

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code Explanation	Commentary
Mineral Tenement and Land Tenure Status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 ML31654 and MLN1148. These tenements are owned by Outback Metals Pty Ltd and Victory Polymetallic Pty Ltd. The tenements are part of a group that are the subject
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	 The history of mining in the Bynoe Harbour – Middle Arm area dates back to 1886 when tin was discovered by Mr. C Clark. By 1890 the Leviathan Mine and the Annie Mine were discovered and worked discontinuously until 1902. In 1903 the Hang Gong Wheel of Fortune was found and 109 tons of tin concentrates were produced in 1905. In 1906, the mine produced 80 tons of concentrates, but it was exhausted and closed down the following year after a total of 189 tons of concentrates had been won. By 1909 activity was limited to Leviathan and Bells Mona mines in the area with little activity in the period 1907 to 1909. Renewed activities in 1925 coincided with the granting of exclusive prospecting licences over an area of 26 square miles in the Bynoe Harbour – West Arm section but once again nothing eventuated. The records of production for many mines are not complete, and in numerous cases changes have been made to the names of the mines and prospects which tend to confuse the records still further. In many cases the published names of mines cannot be linked to field occurrences. In the early 1980s the Bynoe Pegmatite field was reactivated during a period of high tantalum prices by Greenbushes Tin which owned and operated the

being the Two Sisters Granite to the west of the belt, and which probably

• Lithium mineralisation has been identified as occurring at Bilato's (Picketts), Saffums 1 (amblygonite) and more recently at Grants, BP33 and Sandras.

underlies the entire area at depths of 5-10 km.

	 Greenbushes Tin and Tantalite (and later spodumene) Mine in WA Greenbushes Tin Ltd entered into a JV named the Bynoe Joint Venture with Barbara Mining Corporation, a subsidiary of Bayer AG of Germany. Greenex (the exploration arm of Greenbushes Tin Ltd) explored the Bynoe pegmatite field between 1980 and 1990 and produced tin and tantalite from its Observation Hill Treatment Plant between 1986 and 1988. An abandoned open cut to 10m depth remains at BP33. They then tributed the project out to a company named Fieldcorp Pty Ltd who operated it between 1991 and 1995. In 1996, Julia Corp drilled RC holes into representative pegmatites in the field but like all of their predecessors, did not assay for Li. In 2001, Julia Corp drilled RC holes into a number of pegmatites on severa tenements, but did not assay for Li. Since 2001, there has been little activity until recently when exploration begur on ascertaining the lithium prospectivity of the Bynoe pegmatites. The NT geological Survey undertook a regional appraisal of the field, which was published in 2004 (NTGS Report 16, Frater 2004).
• Deposit type, geological setting and style of mineralisation.	 The tenements cover the northern portion of a swarm of complex zoned rare element pegmatite field, which comprises the 55km long by 10km wide West Arm – Mt Finniss pegmatite belt (Bynoe Pegmatite Field; NTGS Report 16) The main pegmatites in this belt include Mt Finniss, Grants, BP33, Hang Gong and Sandras The Finniss pegmatites have intruded early Proterozoic shales, siltstones and schists of the Burrell Creek Formation which lies on the northwest margin of the Pine Creek Geosyncline. To the south and west are the granitoid plutons and pegmatitic granite stocks of the Litchfield Complex. The source of the

Drill Hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.
Data Aggregation Methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.
Relationship Between Mineralisation Widths and Intercept Lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). The oblique nature of drillholes with respect to geology is discussed above. Because of the dip of the hole, drill intersections are apparent thicknesses and overall geological context is needed to estimate true thicknesses. Refer to figures in report.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.
Balanced Reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be Historic exploration results used in the determination of the Exploration Targets are discussed in the report and shown in the tables and figures.

	practiced to avoid misleading reporting of Exploration Results.	
Other Substantive Exploration Data		ee release details. Il meaningful and material data has been reported.
Further Work	or depth extensions or large-scale step-out drilling). • Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. • RA	ore plans to commence assessment RC drilling of these lithium pegmatite exploration Targets as soon as is practicable throughout the 2021 field season. his will include an assessment of the grade, thickness, depth and strike extent feach target. Comparisons will be made with existing data and models. AB and auger drilling will also be utilized to map potential strike extensions of any of the targets.