

ASX ANNOUNCEMENT 20 February 2019

MAIDEN DRILLHOLE HITS 166M OF LITHIUM BEARING BRINES

CANDELAS LITHIUM BRINE PROJECT, HOMBRE MUERTO, ARGENTINA

- Maiden drillhole at Candelas completed to a depth of 401 metres
- Brines encountered for 166m from ~235m to end of hole
- Assays received for two further intervals;
 - 310 330m: 771 mg/l Li; and
 - o 353 354m: 806 mg/l Li
- Further Packer test brine samples retrieved and sent for analysis. Samples show good conductivity and specific gravity (~1.21 g/cc)
- Low impurity levels with an Mg/Li ratio <3 comparable with high quality brines currently being mined at Salar del Hombre Muerto
- Rig to finalise hole casing, conduct geophysics and move to the second site

Galan Lithium Limited (ASX:GLN) (**Galan** or **the Company**) is pleased to announce its highly successful maiden drillhole (C-01-19) at the Candelas Lithium Brine Project, located immediately to the southeast of the Hombre Muerto salar in Argentina, has now been completed at a depth of 401 metres.

The drillhole successfully encountered a substantial intercept of brine from depths of approximately 235 metres to the end of the hole within coarse clastic sediments to 311 metres and then fractured basement lithologies to 401 metres.

Commenting on the maiden drillhole, Galan's Managing Director, Juan Pablo ("JP") Vargas de la Vega said;

"These initial results are exceptional, confirming the presence of high-grade lithium bearing brines within a geological setting unique to the Hombre Muerto salar. We have encountered exceptionally good grades with low impurities which are comparable to the rest of Hombre Muerto Basin where Livent, POSCO and Galaxy have their operations. We believe we have a potential world class lithium project on our hands which we are keen to further demonstrate in our ongoing drilling".

Flow rates were observed to be very good throughout the intercept, however these diminished near the end of the hole. Detailed flow rate testwork is planned for a later date and the drill rig will now be moved

to the second site located approximately 9.5km to the south on CSAMT resistivity section line 4 (figures 1 and 2).

Two further assays (GL104, 105) have also been received from brine samples using both the modified bailer method and a Packer test from intervals; 310-330m and 353-354m respectively. Further brine samples to the end of the hole have also been collected and sent to the laboratory for analysis.

Field conductivity measurements from brine samples to the end of the hole continued to show good continuity with field measurements of conductivity recording in excess of the 200 milli-siemens/cm limits of the equipment whilst recording of the specific gravity ('SG') of the brine was consistent at ~1.21 g/cc.

Commissio	F wawa	Ta		Ma	P	N N	Canal	66	N/~/1:
Sample ID	From	10	LI	IVIg	D	ĸ	Cond.	30	IVIG/LI
	m	m	mg/L	mg/L	mg/L	mg/L	mS/cm	g/cm³	
*GL 101	165	215	118	263	195	1576	73	1.025	2.2
*GL 102	235	267	515	1465	369	4729	>200	1.125	2.8
*GL 103	235	300	858	2355	596	8090	>200	1.21	2.7
*GL 103Dup.	235	300	867	2376	601	8067	>200	1.21	2.7
GL 104	310	330	771	2163	549	8197	>200	1.21	2.81
GL 105	353	354	806	2250	566	8513	>200	1.21	2.79

TABLE 1: Assay and field test results - Drillhole C-01-19, Candelas projectDiamond drillhole C-01-19 Location: 712,116E 7,180,414N (WGS84 Zone19)

NB; See Annexure 1 for details on sampling procedures * Result previously reported

The hole will now be cement cased to the top of the brine, cased further with PVC at depth and then downhole geophysical profiling will be conducted comprising a spontaneous potential short/long electrical resistivity survey.

Galan will aim to fast track the exploration work at Candelas with the goal of targeting a resource as soon as practicable. This maiden drill programme is planned to comprise five holes drilled along the ~15 km extent of the Candelas channel.

For further information contact:

Juan Pablo ("JP") Vargas de la Vega Managing Director, Galan Lithium Limited Email: <u>jp@galanlithium.com.au</u> Tel: +61 8 9322 6283

Media

David Tasker, Chapter One Advisors E: <u>dtasker@chapteroneadvisors.com.au</u> Tel: +61 433 112 936 Nathan McMahon Non-Executive Chairman, Galan Lithium Limited Email: <u>nathan@galanlithium.com.au</u> Tel: +61 8 9322 6283

Colin Jacoby, Chapter One Advisors E: <u>cjacoby@chapteroneadvisors.com.au</u> Tel: +61 439 980 359

Figure 1: Location of drillhole C-01-19, CSAMT Line 4 and Galan Lithium's tenure

Figure 2: CSAMT Profile 4 - Interpreted model showing lowly resistive brine saturated materials (in purple/blue) with possible dry materials (yellow)

About Galan

Galan is an ASX listed company exploring for lithium brines within South America's *Lithium Triangle* on the Hombre Muerto salar in Argentina and surroundings. Hombre Muerto is proven to host the highest grade and lowest impurity levels within Argentina and is home to Livent Corporation's El Fenix operation and Galaxy Resources and POSCO's Sal de Vida projects. Galan's primary target is the adjoining Candelas channel target, a ~15km long by 3-5km structurally controlled pull apart basin, infilled with sediments hosting the brines. Recent geophysics and now drilling indicate its potential to host a substantial volume of brine.

Competent Persons Statement

The information contained herein that relates to Exploration Results is based on information compiled or reviewed by Dr Luke Milan, who has consulted to the Company. Dr Milan is a Member of the Australasian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Milan consents to the inclusion of his name in the matters based on the information in the form and context in which it appears.

ANNEXURE 1 JORC CODE, 2012 EDITION – TABLE 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Drill core in the hole was recovered in 1.5 m length core runs in core split tubes to minimize sample disturbance. Core recovery was carefully measured by comparing the measured core to the core runs. Drill core was undertaken along the entire length of the hole to obtain representative samples of the stratigraphy and sediments that host brine. Water/brine samples from target intervals were collected by the Bailer test; purging isolated sections of the hole of all fluid a total of five times to minimize the possibility of contamination by drilling fluid (fresh water), although some contamination (5-15%) does occur. The hole was then allowed time to re-fill with ground water. On the fifth purge the sample for lab analysis is collected (~1.5L). The casing lining the hole ensures contamination with water from higher levels in the borehole is likely prevented. Samples were taken from the relevant section based upon geological logging and conductivity testing of water. Water/brine samples have been collected and assayed to date from the following intervals: 165-215m, 235-267m, 235-300m, 310 – 330m and 353 – 354m Additional brine samples were collected from intervals 374m - 401m and 338m – 401m. Samples were sent for analysis with results pending Repeat water/brine sampling have also been undertaken with the aim to minimise drilling fluid contamination. Results are pending. Conductivity tests are taken on site with a field portable Hanna Ph/EC/DO multiparameter.
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling with internal (triple) tube was used for drilling. The drilling produced core with variable core recovery, associated with unconsolidated material. Recovery of the more friable sediments was difficult, however core recovery by industry standards was very good. Fresh water is used as drilling fluid for lubrication during drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Diamond drill core was recovered in 1.5m length intervals in triple (split) tubes. Appropriate additives were used for hole stability to maximize core recovery. The core recoveries were measured from the core and compared to the length of each run to calculate

Criteria	JORC Code explanation	Commentary
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 the recovery. Brine samples were collected over relevant sections based upon the geology encountered and ground water representation. Brine quality is not directly related to core recovery and is largely independent of the quality of core samples. However, the porosity and permeability of the lithologies where samples are taken is related to the rate of brine inflow.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The core is logged by a senior geologist and contract geologists who are overseen by the senior geologist who also supervised the taking of samples for laboratory analysis. Logging is both qualitative and quantitative in nature. The relative proportions of different lithologies which have a direct bearing on the overall porosity, contained and potentially extractable brine are noted, as are more qualitative characteristics such as the sedimentary facies. Cores are split for sampling and are photographed. All core was logged by a geologist
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Water/brine samples were collected by purging isolated sections of the hole of all fluid in the hole, to minimize the possibility of contamination by drilling fluid, then allowing the hole to re-fill with ground waters. Samples were then taken form the relevant section. Duplicate samples were taken, with sub sample duplicates sent to a second laboratory for analysis. The sampling process has been repeated for intervals 165-215m, 235-267m and 235–300m with care to ensure minimal drilling fluid contamination.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The Alex Stewart laboratory located in Jujuy, Argentina, is used as the primary laboratory to conduct the assaying of the brine samples collected. The Alex Stewart laboratory is ISO 9001 and ISO 14001 certified and is specialised in the chemical analysis of brines and inorganic salts, with considerable experience in this field. Core samples will also be sent to a laboratory for porosity test work. Duplicate samples returned comparable values, well within acceptable limits (see Table 1).
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Field duplicates, standards and blanks are used to monitor potential contamination of samples and the repeatability of analyses. Sub-sample duplicates are also being transported to a second reputable industry standard laboratory in country for check analysis

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The survey locations were located using modern Garmin handheld GPS with an accuracy of +/-5m. The grid System used by Quantec: POSGAR 94, Argentina Zone 3 Topographic control was obtained by handheld GPS, and the topography is mostly flat with very little relief.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Water/brine samples were collected within isolated sections of the hole based upon the results of geological logging.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The brine concentrations being explored for generally occur as sub-horizontal layers and lenses hosted by conglomerate, gravel, sand, salt, silt and/or clay. Vertical diamond drilling is ideal for understanding this horizontal stratigraphy and the nature of the sub-surface brine bearing aquifers
Sample security	The measures taken to ensure sample security.	 Data was recorded and processed by trusted employees, consultants and contractors to the Company and overseen by senior management ensuring the data was not manipulated or altered. Samples are transported from the drill site to secure storage at the camp on a daily basis.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews have been conducted to date. The drilling is at a very early stage however the Company's independent consultant and CP have approved the procedures to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Hombre Muerto Lithium Project consists of numerous licences located in Catamarca Province, Argentina. The tenements are owned by Blue Sky Lithium Pty Ltd ('Blue Sky'). The Company and Blue Sky executed a Share Sale Agreement whereby Galan Lithium Limited purchased 100% of the issued share capital of Blue Sky.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 There has not been any historical exploration over the Candelas licence area Galaxy Resources, who owns the Sal de Vida lithium brine resource situated to the north of Candelas with the Hombre Muerto salar, is conducting drilling within the Candelas channel approximately 1km east-northeast of Galan

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The Candelas licence area is located within a structurally controlled basin (graben) and is part of the Hombre Muerto salar. The salar hosts a world-renowned lithium brine deposit. The lithium is sourced locally from weathered and altered felsic ignimbrites and is concentrated in brines hosted within basin fill alluvial sediments and evaporites.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole ID: C-01-19 Easting: 712,115,.5 E (WGS84 Zone 19) Northing: 7,180,414.0N (WGS84 Zone 19) Vertical hole Completed 401m total length 166m brine intercept Hole is currently being cement cased from surface to top of brines (~235m), with PVC to depth
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Assay averages have been provided where multiple sampling occurs in the same sampling interval.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 It is fairly assumed that the brine layers lie sub- horizontal and, given that the drillhole is vertical, that any intercepted thicknesses of brine layers would be of true thickness.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Provided, refer to maps, figures and tables in the document
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The results are from the initial stages of the first and only drillhole to be drilled at the project to date.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All meaningful and material information is reported Refer to previous ASX Company releases regarding the targeting of the drilling based largely upon the results from geophysics. Specifically see; ASX:GLN dated 4 October 2018
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The hole is currently being cement cased from surface to the top of the brine formation (~235m), and PVC cased to depth to facilitate proposed downhole geophysics. Down hole electrical resistivity survey and Repeat brine sampling is proposed for C-01-19 before commencement of the next drill hole It is planned to conduct further drilling along the 15km long Candelas to test the geographic extent of mineralisation. The Company has previously advised that they have approval to drill an initial 5 holes at the project.