

DECEMBER 2020

ASX:LEG | 21 JANUARY 2021

LEGEND MINING LIMITED

ASX Symbol: **LEG** ABN 22 060 966 145

Level 1, 8 Kings Park Road West Perth Western Australia 6005

PO Box 626

West Perth

Western Australia 6872

Phone: +61 8 9212 0600

Facsimile: +61 8 9212 0611 Email:

legend@legendmining.com.au

Website:

www.legendmining.com.au

CONTACT

Mr Mark Wilson Managing Director

Mr Oliver Kiddie Executive Director

PROJECTS

Rockford - Fraser Range: Nickel-Copper (Ni-Cu) Copper-Zinc-Silver (Cu-Zn-Ag) Gold (Au)

HIGHLIGHTS – Rockford Project, Fraser Range

- Best hole to date drilled at Mawson with RKDD034 returning 31.1m @ 2.80% Ni, 2.04% Cu, 0.15% Co from 200.7m.
- Phase 1 metallurgical test work underway.
- DD and RC assays extend the Mawson mineralisation intrusive system south, west and east of the Mawson massive Ni-Cu discovery.
- EM and Geochemistry confirm Hurley as a High Priority Target.
- Regional Aircore program defines multiple new Ni-Cu targets.

OVERVIEW

Following the 'busiest ever Quarter' in September 2020, activity has continued at a record pace with circa \$4M of exploration expenditure during the December 2020 Quarter. This culminated in the spectacularly successful diamond hole RKDD034 at Mawson with 43.1m of massive nickel copper sulphide mineralisation including a 31.1m intercept grading 2.8% Nickel, 2.04% Copper and 0.15% Cobalt. This material is currently undergoing phase 1 sighter met testing and the results of this test work are scheduled for Q1 2021 completion. A successful outcome is seen as significantly de risking the project.

Legend's regional programmes continue to upgrade the prospectivity of the Rockford project, particularly the Crean and Hurley prospects with favourable geochemistry, geology and geophysics all pointing to highly ranked targets for diamond drilling.

The technical team are currently busy integrating results from the final diamond, RC and aircore programmes from 2020 and planning field activities for the restart early in March. 2021 is shaping up as a company defining year.

1. ROCKFORD PROJECT (Fraser Range District) Nickel-Copper, Copper-Zinc-Silver, Gold

Legend's Rockford Project is located in the highly prospective Fraser Range district of Western Australia and considered prospective for mineralisation styles including magmatic nickel-copper, VMS zinc-copper-silver and structurally controlled gold.

The Rockford Project comprises 14 contiguous granted exploration licences covering a total area of 3,088km² (see Figure 1). A detailed breakdown of ownership, area and manager is given below:

- Legend (100%) 238km²
- Legend (70%)/Creasy Group (30%) two JVs covering 2,192 km² with Legend manager
- IGO (60%)/Creasy Group (30%)/Legend (10% free carry) JV covering 634km² with IGO manager
- IGO (70%)/Legend (30% free carry) JV covering 24km² with IGO manager

Exploration activities completed during the December 2020 Quarter at the Rockford project included continued exploration focus at the Mawson prospect, including diamond drilling, RC drilling, downhole electromagnetic (DHTEM) surveying, structural, petrographic, and lithogeochemical studies, and geophysical modelling. Regionally, aircore drilling was undertaken at the Hurley, Crean, and multiple new target areas of the Rockford project (see Figure 1).

Figure 1: Rockford Project with Current Prospect Locations over Regional Gravity

Mawson 3D Modelling

During the September 2020 Quarter datasets including detailed aeromagnetics and detailed gravity were combined to create the first constrained and unconstrained 3D inversion models over the Mawson Ni-Cu discovery (see Figure 2). The resultant 3D models gave the first depiction of the scale of the Mawson Intrusion and the associated prospectivity for discovery of further Ni-Cu sulphide mineralisation not only at the Mawson Intrusion, but the greater 16km x 6km Mawson Intrusive Complex. These models have continued to evolve with additional geological, structural, geophysical, and geochemical data generated though the December Quarter 2020. This ever-evolving 3D model remains the foundation of the exploration model at Mawson and will drive the design of drill programs for 2021.

Figure 2: Orthographic projection of the 3D Gravity Inversion Model of the Mawson Intrusion

Mawson Diamond Drilling

Diamond drilling continued at Mawson during the December 2020 Quarter, with the completion of seven holes (RKDD028-RKDD034) for 2,743.4m (Figure 3 & Table 1). The diamond drillholes were following up massive sulphide Ni-Cu mineralisation intersected in previous drillholes, targeting DHTEM conductors generated from diamond and RC drilling, and a metallurgical drillhole. Assay results were received for RKDD021 through RKDD034 (see Table 2).

Figure 3: Mawson Diamond Drillhole Locations over Aeromagnetics

Table 1: Mawson Diamond Drillhole Details									
Hole	MGA94-East	MGA94-North	RL	Azimuth	Dip	Total Depth			
*RKDD021	638,605	6,598,630	202	090	-60 ⁰	483.2			
*RKDD022	638,620	6,598,520	202	268	-63.5 ⁰	333.9			
*RKDD023	638,580	6,598,655	202	088	-58.5 ⁰	399.8			
*RKDD024	638,555	6,598,480	200	90	-60º	367.2			
*RKDD025	638,583	6,598,655	200	88	-50°	297.0			
*RKDD026	638,405	6,598,680	200	90	-50°	449.9			
*RKDD027	638,617	6,598,540	200	268	-60 ⁰	291.4			
RKDD028	638,620	6,598,540	200	268	-75 ⁰	290.1			
RKDD029	638,605	6,598,538	200	268	-55 ⁰	276.8			
RKDD030	638,555	6,598,480	201	270	-60 ⁰	537.9			
RKDD031	638,370	6,598,760	200	88	-75 ⁰	456.3			
RKDD032	638,575	6,598,655	200	88	-66 ⁰	376.3			
RKDD033	638,640	6,598,680	200	88	-720	522.8			
RKDD034	638,460	6,598,560	200	88	-70 ⁰	283.2			
Total						5,365.8			

*Drillhole reported September Quarter 2020, assays not received until December Quarter 2020 GDA94 MGA Zone 51

Significant massive sulphide intervals were intersected in drillholes RKDD023, RKDD027, RKDD029, RKDD032, and RKDD034, while broad intervals containing disseminated to semi-massive sulphides were intersected in RKDD021, RKDD023, RKDD024, RKDD025, RKDD027, RKDD028, RKDD030, RKDD032, RKDD033, and RKDD034. Drill sections displaying geology and mineralised intervals are presented in Figures 4, 5, and 6. (Further drillhole detail is provided in ASX announcements: *1 October 2020, 5 October 2020, 21 October 2020, 9 November 2020, 20 November 2020, 1 December 2020, 12 January 2021*)

Assay results from the massive sulphide intersected in RKDD034 have resulted in the thickest and highest-grade massive Ni-Cu sulphide intercept at Mawson to date. This speaks to the potential for more mineralisation to be discovered at Mawson as the drilling footprint expands. The focus of the 2021 drilling program at Mawson will be to chase the mineralised intrusive package across the greater Mawson intrusion, driven by targeting generated from the compilation of datasets including geology, structure, geochemistry, and geophysics.

Table 2: Mawson Diamond Drillhole Significant Assay Results								
Hole	From	То	Int	Ni%	Cu%	Co%	Sulphide Type	
RKDD021	132.2	141.5	9.3	0.34	0.21	0.03	Heavy disseminated, net-textured	
Incl.	140.0	141.5	1.5	0.79	0.48	0.07	Net-textured	
RKDD021	219.1	234.45	15.35	0.51	0.28	0.05	Heavy disseminated, Net-textured, semi- massive	
Incl.	219.1	221.0	1.9	0.99	0.43	0.08	Semi-massive, heavy disseminated, Net- textured	
RKDD023	175.1	195.0	19.9	0.17	0.09	0.02	Disseminated, blebby	
RKDD023	219.2	243.9	24.7	1.35	0.77	0.11	Massive, semi-massive, heavy disseminated, disseminated	
Incl.	228.7	236.9	8.2	1.83	0.86	0.15	Massive Sulphide	
RKDD023	251.85	311.0	59.15	0.32	0.19	0.03	Disseminated, heavy disseminated, net- textured, matrix, semi-massive	
RKDD027	162.05	176.50	14.45	2.63	2.09	0.14	Massive, matrix sulphide	
RKDD027	187.4	199.0	11.6	0.75	0.67	0.04	Semi-massive, massive, disseminated sulphide	
Incl.	188.85	190.45	1.60	2.48	1.50	0.12	Massive sulphide	
RKDD027	214.0	220.0	6.0	1.70	1.44	0.09	Semi-massive sulphide	
Incl.	215.80	219.55	3.75	2.60	2.23	0.13	Semi-massive sulphide	
RKDD027	229.0	235.0	6.0	1.07	0.82	0.05	Massive, disseminated sulphide	
Incl.	231.80	233.55	1.75	2.75	1.90	0.13	Massive sulphide	
RKDD029	171.2	173.2	2.0	2.75	1.63	0.15	Massive Sulphide	
RKDD034	114.0	138.7	24.7	1.06	0.72	0.06	Heavy disseminated, net-textured, massive sulphide	
Incl.	133.15	138.7	5.55	2.32	1.53	0.11	Massive sulphide	
RKDD034	149.00	172.55	23.55	1.20	0.85	0.06	Heavy disseminated, breccia, semi- massive, massive sulphide	
Incl.	167.00	172.55	5.55	2.51	1.71	0.12	Massive sulphide	
RKDD034	200.7	231.8	31.1	2.80	2.04	0.15	Massive sulphide	
Incl.	204.0	216.0	12.0	3.00	1.96	0.16	Massive sulphide	
RKDD034	236.60	240.85	4.25	1.37	0.96	0.07	Heavy disseminated, breccia, semi- massive, massive sulphide	

See Appendix 1 for Summary of Sulphide Mode, Type and Percentage

Figure 4: Drill Section 6,598,655N Showing Diamond Drillholes RKDD023, RKDD025, and RKDD032

Figure 5: Drill Section 6,598,540N Showing Diamond Drillholes RKDD027, RKDD028, and RKDD029

*Note – this section does not accurately depict the actual 3D hole separation.

Figure 6: Drill Section 6,598,560N Showing Diamond Drillhole RKDD034

Mawson RC Drilling

A total of 7 RC holes (RKRC035 – RKRC041) have been completed for 2,107m during the December 2020 Quarter. The programme has been focused on expanding the geological knowledge of the Mawson intrusion, with drillholes completed north, south, and east of the Mawson Ni-Cu discovery (see Figure 7, Table 3 and 4). RC drillholes RKRC038 and RKRC039 confirm that the prospective Mawson intrusive package extends south and east of the Mawson discovery zone, and also occur below areas with no aircore geochemical anomalism. In addition, a single RC drillhole RKRC041 was drilled targeting primary Ni-Cu sulphide mineralisation below anomalous aircore geochemistry, approximately 2km south of the Mawson intrusion (see Figure 7). Highly encouraging geochemistry received suggests the intrusion encountered is identical to the ultramafic at the Mawson discovery.

The RC drilling provides an excellent cost-effective and time-effective alternative to diamond drilling, whilst also providing broader coverage of geology as well as DHTEM platforms at Mawson. (Further drillhole detail is provided in ASX announcements: *5 October 2020, 21 October 2020, 9 November 2020, 18 January 2021).*

Significant results from the completed RC drilling with assays received are in Table 3.

Figure 7: RC Drilling Completed over Aeromagnetics

Table 3: Mawson RC - Assay Results									
Hole	From	То	Interval	Ni%	Cu%	Co%			
RKRC037	61	94	33	0.14	0.09	0.03			
Incl.	66	70	4	0.22	0.36	0.03			
RKRC037	205	208	3	0.10	0.13	0.03			
RKRC038	267	275	8	0.88	0.41	0.04			
Incl.	271	275	4	1.19	0.44	0.06			
RKRC039	100	112	12	0.10	0.08	0.02			
RKRC039	140	144	4	0.11	0.12	0.02			
	159	233	74	0.17	0.11	0.02			
Incl.	224	229	5	0.55	0.29	0.05			
RKRC041	58	95	37	0.17	0.10	0.01			
RKRC041	284	298 EOH	14	0.09	0.02	0.01			

Table 4: Mawson Diamond Drillhole Details										
Hole	MGA94-East	MGA94-North	RL	Azimuth	Dip	Total Depth				
RKRC028	638933	6598699	200.5	90	-80	370				
RKRC029	639031	6598696	200.1	90	-80	320				
RKRC030	638730	6598699	200.4	90	-80	319				
RKRC031	638627	6598701	199.8	90	-80	316				
RKRC032	638532	6598702	200.3	90	-80	313				
RKRC033	638428	6598799	200.3	90	-80	320				
RKRC034	638627	6598801	200.1	90	-80	290				
RKRC035	638829	6598805	197	095	-79 ⁰	320				
RKRC036	639033	6598798	197	096	-80 ⁰	310				
RKRC037	638614	6598396	198	093	-80 ⁰	316				
RKRC038	638415	6598392	197	088	-80 ⁰	298				
RKRC039	639014	6598504	197	097	-80 ⁰	319				
RKRC040	638815	6598499	197	089	-80 ⁰	246				
RKRC041	638958	6596801	200	089	-80 ⁰	298				
Total						4355				

Regional Rockford Aircore Drilling

A total of 178 aircore holes (RKAC1029 – RKAC1206) for 8,913m were drilled at selected target areas across the Rockford Project during the December 2020 Quarter (see Figure 8). The drilling has been designed to test the geochemistry, rock type and depth of cover in areas which have received minimal or no previous exploration. Assay and geological results have resulted in three new Ni-Cu target areas across the Rockford Project area (see Table 5).

Aircore drilling also focused on infill around previously high-ranked prospects Hurley and Crean (see Figure 9 and Table 5). Drill traverses at Hurley and Crean were designed to test the up-dip projection of the H1-H3 and C1 conductors (see Table 6). Four drillholes at Hurley (RKAC1029, 1032, 1100 and 1103) returned elevated nickel-copper associated with mafic intrusive and metasediment/granulite. Importantly these holes are located adjacent to the 4,000-7,000S H3 MLTEM conductor making this a priority target for deep drill testing (Further detail is provided in ASX announcements: *1 October 2020 and 15 December 2020*).

Figure 8: Regional Aircore Drilling Programme Anomalous Drillhole Locations

Table 5: Regional Aircore Assay Results										
Hole	From	То	Int	Ni%	Cu%	Co%	Description			
RKAC956	32	44	12	0.10	0.03	0.02	Saprock over Mafic Intrusive			
RKAC993	24	71 EOH	47	0.19	<0.01	0.01	Ultramafic Intrusive			
RKAC1022	34	42	8	0.06	0.01	0.01	Saprock over Mafic Intrusive			
RKAC1029	58	59 EOH	1	0.01	0.12	0.01	Metasediment / Granulite			
RKAC1032	32	44	12	0.19	0.02	0.02	Mafic Intrusive			
RKAC1083	20	32	12	0.01	0.17	0.01	Mafic Granulite			
RKAC1100	44	53 EOH	9	0.06	0.05	0.01	Mafic Intrusive			
RKAC1103	24	47	23	0.11	0.01	0.01	Mafic Intrusive			
incl	32	36	4	0.25	0.02	0.03	Mafic Intrusive			

Figure 9: Anomalous aircore results and MLTEM Survey over Worsley, Crean and Hurley Prospects

Table 6: Rockford South MLTEM - Modelled Plate Parameters									
Prospect	Conductor	Depth to Top	Orientation						
Hurley	H1	2,500-4,000S	250 x 1,250m	225-275m	15-25 ⁰ NNE				
Hurley	H2	200-300S	1,000 x 750m	100-150m	70-80 ⁰ SE				
Hurley	H3	4,000-7,000S	500 x 300m	100-150m	~90 ⁰ Strike NNE				
Worsley	W1	400-800S	>1,000 x 1,000m	200-250m	50-60° E/ESE				
Crean	C1	500-1,500S	>1,000 x 1,000m	500-600m	60-70 ⁰ E/ESE				

A geochemical review of the historic aircore and current drilling data across the Rockford Project, including Mawson, continues to generate highly ranked Ni-Cu target areas, resulting in a pipeline of prospect generation though the 2021 field season.

Rockford JV (IGO-LEG JV)

Independence Group (IGO) reported to Legend during the December Quarter 2020 that the following activities had been completed on the JV tenure, specifically E28/2190, E28/2191 and E28/2675 under the JV agreement (see Figure 1):

- MLTEM Surveying
- > Aircore drilling and associated assaying

A total of 124 aircore drillholes for 8,794 metres was completed at broad spacing across the tenure. A total of 484 stations of MLTEM were completed across target areas generated by aircore drilling. Results are pending at the time of writing.

Future Programmes

- Phase 1 sighter metallurgical test work on massive sulphide from diamond drillhole RKDD034
- Integration of diamond, RC, aircore geochemical and geophysical datasets to evolve 3D emplacement model of Mawson, with new constrained gravity and magnetic inversions underway.
- Diamond and RC drillhole planning/design for 2021 field season at Mawson
- RC/diamond and further aircore drill testing of Hurley and Crean.
- Regional target ranking and resultant innovative MLTEM and aircore drill planning.

2. CORPORATE

Jindal Receivable

Legend and Jindal agreed to a further revised repayment schedule of the outstanding debt of A\$2.25M during the September 2020 Quarter. On 23 December 2020 Legend received A\$294,372 from Jindal, being a principal repayment of \$250,000 and interest of \$44,372 for the September and December 2020 Quarters, in accordance with the agreed repayment schedule. This leaves a balance of A\$2M which continues to accrue interest at 4%pa.

ASX Additional Information

- 1. ASX Listing Rule 5.3.1: Exploration and Evaluation Expenditure during the December 2020 Quarter was \$4,018,000. Full details of exploration activity during the December 2020 Quarter are set out in this report.
- 2. ASX Listing Rule 5.3.2: There was no substantive mining production and development activities during the December 2020 Quarter.
- 3. ASX Listing Rule 5.3.5: Payments to related parties of the Company and their associates during the December 2020 Quarter: \$189,000 The Company advises that this relates to non-executive director's fees and executive directors' salaries and entitlements only. Please see Remuneration Report in the Annual Report for further details on Directors' remuneration.

Authorised by Mark Wilson, Managing Director.

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Oliver Kiddie, a Member of the Australasian Institute of Mining and Metallurgy and a full-time employee of Legend Mining Limited. Mr Kiddie has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Kiddie consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Legend's Exploration Results is a compilation of previously released to ASX by Legend Mining (1 October 2020, 5 October 2020, 21 October 2020, 9 November 2020, 20 November 2020, 1 December 2020, 15 December 2020, 12 January 2021, and 18 January 2021) and Mr Derek Waterfield and Mr Oliver Kiddie consent to the inclusion of these Results in this report. Mr Waterfield and Mr Kiddie have advised that this consent remains in place for subsequent releases by Legend of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent. Legend confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters in the market announcements continue to apply and have not materially changed. Legend confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Forward Looking Statements

This announcement contains "forward-looking statements" within the meaning of securities laws of applicable jurisdictions. Forward-looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "believe", "continue", "objectives", "outlook", "guidance" or other similar words, and include statements regarding certain plans, strategies and objectives of management and expected financial performance. Forward-looking statements are provided as a general guide only and should not be relied upon as an indication or guarantee of future performance. These forward-looking statements are based upon a number of estimates, assumptions and expectations that, while considered to be reasonable by Legend Mining Limited, are inherently subject to significant uncertainties and contingencies, involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Legend Mining Limited and any of its officers, employees, agents or associates.

Actual results, performance or achievements may vary materially from any projections and forwardlooking statements and the assumptions on which those statements are based. Exploration potential is conceptual in nature, to date there has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in the determination of a Mineral Resource. Readers are cautioned not to place undue reliance on forward-looking statements and Legend Mining Limited assumes no obligation to update such information made in this announcement, to reflect the circumstances or events after the date of this announcement.

Visit <u>www.legendmining.com.au</u> for further information and announcements.

For more information:

Mr Mark Wilson Managing Director Ph: (08) 9212 0600 Mr Oliver Kiddie Executive Director - Technical Ph: (08) 9212 0600

Appendix 1 – Summary of Sulphide Mode, Type and Percentage								
Hole	Interval	Sulphide Mode	Sulphide Type	Sulphide %				
RKDD021	132.2-140.0m	Heavy disseminated	Pyrrhotite-chalcopyrite- pentlandite	5-20%				
RKDD021	140.0-141.5m	Net-textured	Pyrrhotite-chalcopyrite- pentlandite	20-40%				
RKDD021	148.05-157.6m	Disseminated	Pyrrhotite-chalcopyrite- pentlandite	1-5%				
RKDD021	175.1-179.9m	Disseminated, Net-textured	Pyrrhotite-chalcopyrite- pentlandite	1-5%, 20-40%				
RKDD021	219.1-219.75m	Semi-massive	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%				
RKDD021	219.75-234.45m	Heavy disseminated, Net- textured	Pyrrhotite-chalcopyrite- pentlandite	5-20%, 20-40%				
RKDD023	216.45 – 219.2m	Heavy disseminated, Massive	Pyrrhotite-chalcopyrite- pentlandite	1-5%, >80%				
RKDD023	219.2 – 221.9m	Vein, Stringer, Semi- massive	Pyrrhotite-chalcopyrite- pentlandite	1-5%, >40% to <80%				
RKDD023	221.9 – 223.75m	Massive Sulphide	Pyrrhotite-chalcopyrite- pentlandite	>80%				
RKDD023	223.75 – 228.7m	Semi-massive, Matrix, Heavy Disseminated	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%, 20-40%, 5-20%				
RKDD023	228.7 – 236.9m	Massive Sulphide	Pyrrhotite-chalcopyrite- pentlandite	>80%				
RKDD023	236.9 – 237.8m	Heavy disseminated, Semi-massive	Pyrrhotite-chalcopyrite- pentlandite	5-20%, >40% to <80%				
RKDD023	237.8 – 240.7m	Massive Sulphide	Pyrrhotite-chalcopyrite- pentlandite	>80%				
RKDD023	240.7 – 243.95m	Heavy disseminated, Semi-massive, Disseminated	Pyrrhotite-chalcopyrite- pentlandite	5-20%, >40% to <80%, 1-5%				
RKDD023	243.95 – 247.3m	Heavy Disseminated, Net- textured	Pyrrhotite-chalcopyrite- pentlandite	5-20%, 20-40%				
RKDD023	251.8 – 257.05m	Heavy Disseminated, Net- textured, Massive	Pyrrhotite-chalcopyrite- pentlandite	5-20%, 20-40%, >80%				
RKDD023	257.05 – 263.1m	Disseminated, Blebby, Matrix	Pyrrhotite-chalcopyrite- pentlandite	1-5%, 20-40%				
RKDD023	263.1 – 267.2m	Semi-massive, Massive, Matrix, Heavy Disseminated	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%, >80%, 20-40% 5-20%				
RKDD023	271.2 – 275.1m	Disseminated, Net- textured	Pyrrhotite-chalcopyrite- pentlandite	1-5%, 20-40%				
RKDD023	281.4 – 284.0m	Semi-massive, Massive	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%, >80%				
RKDD023	284.0 – 305.7m	Disseminated, Blebby	Pyrrhotite-chalcopyrite- pentlandite	1-5%				
RKDD023	305.7 – 310.4m	Disseminated	Pyrrhotite-chalcopyrite- pentlandite	1-5%				
RKDD027	153.7 – 162.0m	Disseminated	Pyrrhotite-chalcopyrite- pentlandite	1-5%				
RKDD027	162.0 – 174.9m	Massive	Pyrrhotite-chalcopyrite- pentlandite	>80%				

RKDD027	174.9 – 175.6m	Matrix	Pyrrhotite-chalcopyrite- pentlandite	20-40%
RKDD027	175.6 – 176.45m	Massive	Pyrrhotite-chalcopyrite- pentlandite	>80%
RKDD027	188.85 – 190.45m	Semi-massive	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%
RKDD027	190.45 – 195.2m	Matrix	Pyrrhotite-chalcopyrite- pentlandite	20-40%
RKDD027	215.8 – 219.55m	Semi-massive	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%
RKDD027	231.8 – 233.5m	Massive	Pyrrhotite-chalcopyrite- pentlandite	>80%
RKDD032	249.81 – 251.02m	Breccia, semi-massive	Pyrrhotite-chalcopyrite- pentlandite	20-40%, >40% to <80%
RKDD032	251.02 - 251.73m	Massive	Pyrrhotite-chalcopyrite- pentlandite	>80%
RKDD032	251.73 – 256.58m	Disseminated, stringer veins	Pyrrhotite-chalcopyrite- pentlandite	1-5%
RKDD032	256.58 - 256.71m	Massive	Pyrrhotite-chalcopyrite- pentlandite	>80%
RKDD032	256.71 – 259.10m	Heavy disseminated	Pyrrhotite-chalcopyrite- pentlandite	5-20%
RKDD032	259.10 – 259.49m	Breccia, semi-massive	Pyrrhotite-chalcopyrite- pentlandite	20-40%, >40% to <80%
RKDD032	259.49 – 262.32m	Disseminated	Pyrrhotite-chalcopyrite- pentlandite	1-5%
RKDD032	262.32 – 274.10m	Heavy disseminated	Pyrrhotite-chalcopyrite- pentlandite	5-20%
RKDD032	274.10 – 275.60m	Massive	Pyrrhotite-chalcopyrite- pentlandite	>80%
RKDD032	275.60 – 277.22m	Disseminated	Pyrrhotite-chalcopyrite-	1-5%
RKDD032	277.22 – 277.64m	Semi-massive	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%
RKDD032	277.64 – 278.02m	Heavy disseminated	Pyrrhotite-chalcopyrite- pentlandite	5-20%
RKDD032	278.02 – 278.76m	Massive	Pyrrhotite-chalcopyrite-	>80%
RKDD032	278.76 – 279.66m	Stringer veins	Pyrrhotite-chalcopyrite- pentlandite	1-5%
RKDD032	279.66 – 280.67m	Massive	Pyrrhotite-chalcopyrite-	>80%
RKDD032	280.67 – 282.32m	Semi-massive, veins	Pyrrhotite-chalcopyrite-	>40% to <80%, 1-5%
RKDD032	282.32 – 284.37m	Veins	Pyrrhotite-chalcopyrite-	1-5%
RKDD032	309.40 – 310.56m	Massive	Pyrrhotite-chalcopyrite-	>80%
RKDD032	312.84 – 313.86m	Heavy Disseminated	Pyrrhotite-chalcopyrite-	5-20%
RKDD034	115.85 - 117.5	Heavy disseminated	Violarite-pyrite	5-20%
RKDD034	118.4 - 121	Heavy disseminated	Violarite-pyrite	5-20%
RKDD034	121 - 122.3	Net-textured	Violarite-pyrite	20-40%
RKDD034	122.3 - 127.3	Disseminated	Pyrrhotite-chalcopyrite- pentlandite	5-20%

RKDD034	127.3 - 128.3	Blebby - Heavy disseminated	Pyrrhotite-chalcopyrite-	5-20%
RKDD034	128.3 - 130.6	Heavy disseminated	Pyrrhotite-chalcopyrite-	5-20%
			pentlandite	
RKDD034	133.15 - 134.1	Massive	Pyrrhotite-chalcopyrite-	>80%
			pentlandite	
RKDD034	134 7 - 134 95	Net-textured	Pyrrhotite-chalcopyrite-	20-40%
			nentlandite	20 10 /0
	12/ 05 120 /5	Maaaiya		>90%
	134.95 - 130.45	IVIASSIVE	Fyrnoule-charcopyrile-	20070
			pentiandite	
RKDD034	138.45 - 138.7	Breccia - Heavy	Pyrrhotite-chalcopyrite-	20-40%
		disseminated	pentlandite	
RKDD034	138.7 - 148.85	Heavy disseminated	Pyrrhotite-chalcopyrite-	5-20%
			pentlandite	
RKDD034	148.85 - 155.55	Blebby - Heavy	Pvrrhotite-chalcopvrite-	5-20%
		disseminated	pentlandite	
	156.9 - 159.6	Heavy disseminated	Pyrrhotite-chalcopyrite-	5-20%
	100.0 - 100.0	neavy disseminated	nontlandita	0-2070
	150 6 150 05			> 100/ to <000/
RKDD034	159.0 - 159.95	Breccia - Semi-massive	Pyrmolile-chaicopyrile-	>40% 10 <80%
			pentlandite	
RKDD034	159.95 - 160.7	Heavy disseminated	Pyrrhotite-chalcopyrite-	5-20%
			pentlandite	
RKDD034	160.7 - 161.9	Breccia - Semi-massive	Pyrrhotite-chalcopyrite-	>40% to <80%
			pentlandite	
RKDD034	161.9 - 167.05	Heavily Disseminated	Pyrrhotite-chalcopyrite-	5-20%
			pentlandite	
RKDD034	167.05 - 172.55	Massive	Pvrrhotite-chalcopvrite-	>80%
			pentlandite	
	172 55 - 174 85	Disseminated	Pyrrhotite-chalcopyrite-	5-20%
	112.00 111.00	Diocommutod	nentlandite	0 20 / 0
	200 7 221 8	Massiva	Pyrrbatita chalcopyrita	<u>\</u> 80%
	200.7 - 231.0	IVIASSIVE	Fymolice-charcopyme-	-00 /0
	000 0 007 0		pentiandite	5.000/
RKDD034	230.0 - 237.3	Blebby - Heavy	Pyrrnotite-chaicopyrite-	5-20%
		disseminated	pentlandite	
RKDD034	237.3 - 237.8	Massive	Pyrrhotite-chalcopyrite-	>80%
			pentlandite	
RKDD034	237.8 - 238.8	Blebby - Heavy	Pyrrhotite-chalcopyrite-	5-20%
		disseminated	pentlandite	
RKDD034	239.6 - 240.85	Breccia - Semi-massive	Pvrrhotite-chalcopvrite-	>40% to <80%
			pentlandite	
	247 55 - 247 9	Blebby - Net textured	Pyrrhotite-chalcopyrite-	20-40%
	271.00 - 271.0		nentlandite	
		Plahby Hagyar		E 200/
	200.20 - 200.05		rymoule-chaicopynte-	0-20%
		aisseminated	pentiandite	0.004
RKDD034	253.75 - 254.45	Massive	Pyrrhotite-chalcopyrite-	>80%
			pentlandite	

Cautionary Statement: The sulphide percentage is a visual estimate of total sulphide.

Legend Field Logging Guidelines

Sulphide Mode	Percentage Range
Disseminated & blebby	1-5%
Heavy Disseminated	5-20%
Matrix	20-40%
Net-Textured	20-40%
Semi-Massive	>40% to <80%
Massive	>80%

Appendix 2 – Mawson Aircore Drillhole Details

Hole	MGA94-East	MGA94-North	RL	Azimuth	Dip	Total Depth
RKAC956	620205	6610404	231	0	-90	49
RKAC993	626397	6622589	229	0	-90	71
RKAC1022	630396	6627601	214	0	-90	46
RKAC1029	584794	6550201	224	0	-90	59
RKAC1032	585203	6550201	223	0	-90	50
RKAC1083	585798	6551608	225	0	-90	34
RKAC1100	585152	6550197	223	0	-90	53
RKAC1103	585199	6550253	223	0	-90	47

GDA94 MGA Zone 51

Appendix 3: Tenement Schedule as at 31 December 2020

Mining Tenements

Tenement Reference	Location	Interest at beginning of Quarter	Acquired / Withdrawn	Interest at end of Quarter	Comments
E28/1716	Fraser Range, Western Australia	70%	N/A	70%	70:30 JV
E28/1717	Fraser Range, Western Australia	70%	N/A	70%	70:30 JV
E28/1718	Fraser Range, Western Australia	70%	N/A	70%	70:30 JV
E28/1727	Fraser Range, Western Australia	70%	N/A	70%	70:30 JV
E28/2188	Fraser Range, Western Australia	70%	N/A	70%	70:30 JV
E28/2189	Fraser Range, Western Australia	70%	N/A	70%	70:30 JV
E28/2190	Fraser Range, Western Australia	10%	N/A	10%	10:60:30 JV
E28/2191	Fraser Range, Western Australia	10%	N/A	10%	10:60:30 JV
E28/2192	Fraser Range, Western Australia	70%	N/A	70%	70:30 JV
E28/2404	Fraser Range, Western Australia	100%	N/A	100%	100% Legend
E28/2405	Fraser Range, Western Australia	100%	N/A	100%	100% Legend
E28/2675	Fraser Range, Western Australia	30%	N/A	30%	30:70 JV
E28/2676	Fraser Range, Western Australia	30%	N/A	30%	30:70 JV
E28/2677	Fraser Range, Western Australia	30%	N/A	30%	30:70 JV

Farm-In or Farm-Out Arrangements

Tenement Reference	Location	Interest at beginning of Quarter	Acquired / Withdrawn	Interest at end of Quarter	Comments
None	N/A	N/A	N/A	N/A	N/A