18 November 2021

Mawson Diamond Drilling Update

- > Mawson intrusion extended to north east
- Comprehensive geology, geochemistry and EM datasets to assist interpretation of seismic survey
- Diamond rig demobilised to enable seismic survey, aircore rig on last programme for 2021

Legend Mining Limited (Legend) is pleased to report geology, DHTEM and assay results from the latest diamond drillholes at its flagship Mawson nickel-copper-cobalt prospect within the Rockford Project, Fraser Range, Western Australia (see Figure 6). Comprehensive details are contained in the body of this report.

Legend Managing Director Mr Mark Wilson said: "The data we have gathered at Mawson throughout this year has been comprehensive and greatly increased our knowledge of the intrusion. The intrusion has been extended from circa 400m strike this time last year to 1600m where it now stands.

"Our expectation is that this data will greatly assist the interpretation of the current seismic survey especially deeper than 500m below the surface. The current interpretation is there is a "keel" to the intrusion which extends below 500m and the seismic survey has been designed to see plus 1000m. We are looking forward to the results of the seismic with the anticipation that it will be a guide for diamond drilling next field season."

Photo: Diamond drilling at Mawson

TECHNICAL DISCUSSION

Below is a technical summary of the geology, DHTEM and assays received from the diamond drilling completed at the Mawson Ni-Cu-Co prospect since the ASX Announcement *26 August 2021*. A total of nine further diamond drillholes have been completed (RKDD061 and RKDD073-RKDD080) (see Figure 1).

Systematic step-out diamond drilling continues to grow the Mawson intrusion to the north-east, intersecting mineralised intrusion as well as defining the architecture of the Mawson intrusion in relation to the country rock. The evolving understanding of the Mawson structural architecture has resulted in the potential identification of trap sites for massive Ni-Cu sulphide accumulations in this north-east zone. The 3D model driving predictive exploration at Mawson continues to evolve with new data and continues to be very accurate as a predictive tool for targeting interpreted fertile intrusion. The updated 3D constrained gravity model at this stage appears to have a high correlation for mineralised intrusion. To date, the mineralised intrusive footprint at Mawson extends over 1.6km in strike length. The northern most drill section completed suggests intersection of a new intrusion adjacent to the Mawson intrusion. Future diamond drilling planning at Mawson will focus on continued definition of these mineralised intrusive bodies at depths below 500m based on the interpretation of the seismic data, which is currently under acquisition (see *ASX Announcement 8 November 2021*). Geological, structural, and geochemical datasets will be combined with seismic, gravity, magnetic, and DHTEM datasets to design our 2022 diamond drill programme to test targets for massive Ni-Cu sulphide accumulation.

Figure 1: Diamond drillhole locations, defined chonolith model, and constrained gravity model projected to surface over aeromagnetics

Page2

Section 6,599,400mN

Diamond drillholes RKDD074-RKDD076 have been completed on this section, continuing to follow the interpreted mineralised chonolith to the west of RKDD062 (see Figure 1 and Figure 2).

RKDD074 intersected thin meta-BIF, sulphidic pelite and semi-pelite package from 51.9m downhole before intersecting a 230m thick intrusion, dominantly olivine gabbronorite and olivine norite, before entering a norite and biotite norite assemblage top at 299.6m. Dominantly disseminated and blebby Ni-Cu sulphide mineralisation was encountered across two zones, an upper zone and a lower zone, above and below the ultramafic core of this thickened intrusive package (see Photo 1). The drillholes then intersected a meta-conglomerate with minor psammite and meta-BIF before finishing in a graphitic pelite, pelite and psammite package at 442.9m.

Photo 1: Ni-Cu sulphide mineralisation from RKDD074 from 276-279m

RKDD075 is the westernmost drillhole on section 6,599,400m, marking the westernmost mineralised chonolith intersection on this section. The section remains open to the west, east and north.

The drillhole intersected a disseminated and blebby Ni-Cu sulphide bearing biotite norite intrusive to 106.6m downhole before entering a carbonate-rich and meta-BIF dominated metasedimentary package to 134.1m. The drillhole intersected a second sulphide bearing biotite norite intrusive to 151.3m, including a narrow zone of semi-massive Ni-Cu sulphide at 141m (see Photo 2), before finishing in a thick meta-BIF package with minor granitoid dykes to 457.1m bottom of hole.

Photo 2: Semi-massive Ni-Cu sulphide mineralisation from RKDD075 from 141m

RKDD076 drilled 200m east of RKDD074 encountered an increased thickness of chonolith with disseminated and blebby Ni-Cu sulphide mineralisation encountered across multiple zones through this thickened intrusive package (see Photo 3). The intrusion varied from olivine norite through olivine gabbronorite, and lesser biotite norite and gabbronorite to 329.4m downhole. The drillhole finished in a sequence of psammite, meta-conglomerate, and semi-pelite with extensive granitic intrusives to bottom of hole 441.5m.

DHTEM was completed on all three drillholes (see Table 1). DHTEM targets will be ranked for testing post receival of assay and seismic data.

Photo 3: Ni-Cu sulphide mineralisation from RKDD076 from 310-312m

Section 6,600,000mN

Four diamond drillholes (RKDD077-080) have been completed on section 6,600,000mN, representing a 400m step out from the previous section to the south (see Figure 1 and Figure 4).

All four drillholes intersected thickened recrystallised and primary mafic intrusive assemblages, dominantly norite and biotite norite, with minor anorthosite zones, interleaved with metasedimentary and orthogneisses with a large amount of granitic intrusive. Minor disseminated Ni-Cu sulphide was encountered in RKDD078 in a gabbronorite host at 228m.

Early interpretation of the geology encountered in RKDD077-080 suggests we have encountered a new mafic intrusion, different to the Mawson intrusion. Geochemical and petrological analysis will be required to confirm this interpretation. Assay results and petrology reporting are pending at the time of writing.

DHTEM was completed on all four drillholes (see Table 1). DHTEM targets will be ranked for testing post receival of assay and seismic data.

DHTEM

Modelled DHTEM conductors from all completed diamond drillholes are shown below in Table 1.

Table 1: Modelled DHTEM Conductor Parameters					
Conductor	Conductance	Dimensions	Plate Orientation	Depth Downhole	Plate Dip
RKDD061 (offhole)	~2,000-4,000S	1000m x 1000m	SW	~1100m downhole	50 ⁰
RKDD073 (in hole/offhole)	~1,000-1,500S	150m x 150m	NW	~190m downhole	80 ⁰
RKDD073 (offhole)	~3,000-5,000S	125m x 200m	NW	~320m downhole	85 ⁰
RKDD073 (offhole)	~3,000-5,000S	125m x 200m	SW	~320m downhole	Subvertical
RKDD073 (offhole)	~10,000-20,000S+	800m x 800m	SE	~510m downhole	45 ⁰
RKDD074 (in hole/offhole)	~2,500-3,500S	15m x 15m	NW	~315m downhole	75 ⁰
RKDD074 (offhole)	~2,000-4,000S	1500m x 1500m	S	~500m downhole	75 ⁰
RKDD075 (offhole)	~1,000-1,500S	1000m x 1000m	SE	~455m downhole	60 ⁰
RKDD076 (offhole)	~1,500-3,500S	1000m x 1000m	SE	~260m downhole	50 ⁰
RKDD077 (offhole)	~5,000-7,000S	500m x 2000m	WSW	~520m downhole	30 ⁰
RKDD078 (offhole)	~4,000-8,000S	1000m x 2000m	WSW	~630m downhole	35 ⁰
RKDD079 (offhole)	~6,000-8,000S	1500m x 1500m	NW	~640m downhole	50º
RKDD080 (offhole)	~4,000-7,000S	1000m x 1000m	SE	~200m downhole	Subvertical
RKDD080 (offhole)	~2,500-3,500S	75m x 150m	SE	~145m downhole	80 ⁰
RKDD080 (offhole)	~6,000-7,000S	25m x 10m	SE	~190m downhole	80 ⁰

Assays

Assay results from diamond drillholes RKDD061-072 have now been received (see Figure 1, Figure 3, and Table 2). Elevated Ni-Cu values were also returned from a number of drillholes associated with disseminated sulphides in mafic and ultramafic intrusive, as expected.

The assay results from RKDD071 support the visual identification that where the mineralised Mawson chonolith thins and focuses, Ni-Cu sulphide accumulations become more prevalent (see Photo 4).

Table 2: Diamond Drillhole Assays >0.1% Ni						
Hole	From	То	Int	Ni%	Cu%	Co%
RKDD065	298	299	1	0.18	0.12	0.01
RKDD065	304	306	2	0.14	0.13	0.01
RKDD065	314	319	5	0.16	0.15	0.01
RKDD065	323	324	1	0.14	0.12	0.01
RKDD065	339	340	1	0.11	0.09	0.01
RKDD071	99	100	1	0.11	0.13	0.01
RKDD071	167	168	1	0.10	0.08	0.01
RKDD071	170	207.18	37.18	0.15	0.12	0.02
RKDD071	177	205	28	0.17	0.14	0.02
RKDD071	182	196	14	0.20	0.18	0.02

Photo 4: Ni-Cu sulphide mineralisation from RKDD71 from 201m

Page7

Registered Office: Level 1 / 8 Kings Park Road, West Perth WA 6005, Australia

Figure 2: Drill section 6,599,400mN looking north

Figure 3: Drill section 6,599,600mN looking north

Registered Office: Level 1 / 8 Kings Park Road, West Perth WA 6005, Australia

Figure 4: Drill section 6,600,000mN looking north

Aircore Programme

Aircore drilling contractor Drillpower Pty Ltd has completed 37 drillholes across the Mawson Intrusive Complex for 3,038m, primarily testing for fertile Ni-Cu intrusions. Results from this programme will be reported once received.

Figure 5: Mawson Intrusive Complex Proposed Aircore Drilling

Mawson Future Programmes

- Seismic survey across 3km x 1.5km area underway.
- Aircore drilling across interpreted mafic-ultramafic intrusions within the greater 16km x 6km Mawson Intrusive Complex.
- Integration of geological, structural, geochemical, gravity, magnetic, and seismic datasets to evolve 3D emplacement model of the Mawson chonolith and rank generated Ni-Cu sulphide targets.

Figure 6: Rockford Project – Mawson Location

Authorised by Mark Wilson, Managing Director.

Hole	MGA20-East	MGA20-North	RL	Azimuth	Dip	Total Depth (m)
RKDD035	638735	6598300	203	270	-60	382.6
RKDD036	638634	6598300	202	270	-60	362.9
RKDD037	639301	6599005	204	90	-60	513.2
RKDD038	639300	6598400	204	90	-60	454.1
RKDD039	639500	6599000	205	90	-60	445.4
RKDD040	639700	6599000	204	90	-60	372.1
RKDD041	639100	6598400	205	90	-60	486.4
RKDD042	639900	6599000	204	90	-60	333.1
RKDD043	638900	6598400	202	90	-60	393.3
RKDD044	639900	6599200	205	90	-60	519.3
RKDD045	639100	6598200	205	270	-60	189.1
RKDD046	639700	6599194	204	90	-60	576.9
RKDD047	638898	6598208	205	270	-60	297.3
RKDD048	638755	6598205	202	270	-60	141.3
RKDD049	639498	6599194	205	90	-60	510.3
RKDD050	638700	6598399	202	90	-60	426.25
RKDD051	639300	6599200	201	90	-60	597.5
RKDD052	638647	6598200	202	270	-60	351.4
RKDD053	638930	6598409	201	90	-60	260.4
RKDD054	638900	6599500	200	90	-60	375.1
RKDD055	639660	6596800	203	90	-60	516.2
RKDD056	639900	6599400	204	90	-60	334.6
RKDD057	639375	6596800	204	90	-60	616.4
RKDD058	640100	6599200	204	88	-60	596.7
RKDD059	639087	6596800	204	90	-60	641.7
RKDD060	639100	6599000	204	88	-60	653.4
RKDD061	638950	6598750	200	267	-60	858.4
RKDD063	640300	6599400	204	88	-60	528.4
RKDD064	640300	6599200	204	90	-60	624.5
RKDD065	640100	6599000	204	90	-60	554.2
RKDD066	640500	6599400	203	87	-60	447.4
RKDD067	639700	6598600	204	87	-60	676.9
RKDD068	640470	6599600	203	87	-60	411.2
RKDD069	640230	6599535	203	177	-60	345.1
RKDD070	640650	6599600	202	87	-60	469.1
RKDD071	640300	6599600	203	87	-60	363.2
RKDD072	640150	6599600	204	87	-60	477.7
RKDD073	638313	6598395	200	90	-60	519.4

Appendix 1 – Mawson Diamond Drillhole Details

lec

Registered Office: Level 1 / 8 Kings Park Road, West Perth WA 6005, Australia

RKDD074	639500	6599400	204	87	-60	442.9
RKDD075	639300	6599400	204	92	-60	457.1
RKDD076	639700	6599400	204	92	-60	441.5
RKDD077	641250	6600000	201	87	-60	384.3
RKDD078	641050	6600000	201	90	-60	474.5
RKDD079	640850	6600000	201	90	-60	462.4
RKDD080	640250	6600000	201	90	-60	378.4

Co-ordinates GDA2020 Zone 51

Appendix 2 - Legend Field Logging Guidelines

Legend Field Logging Guidelines

Sulphide Mode	Percentage Range
Disseminated & blebby	1-5%
Heavy Disseminated	5-20%
Matrix	20-40%
Net-Textured	20-40%
Semi-Massive	>40% to <80%
Massive	>80%

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Oliver Kiddie, a Member of the Australasian Institute of Mining and Metallurgy and a full-time employee of Legend Mining Limited. Mr Kiddie has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Kiddie consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Legend's Exploration Results is a compilation of previously released to ASX by Legend Mining (12 July 2021, 26 August 2021 and 8 November 2021) Mr Oliver Kiddie consents to the inclusion of these Results in this report. Mr Kiddie has advised that this consent remains in place for subsequent releases by Legend of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent. Legend confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters in the market announcements continue to apply and have not materially changed. Legend confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Forward Looking Statements

This announcement contains "forward-looking statements" within the meaning of securities laws of applicable jurisdictions. Forward-looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "believe", "continue", "objectives", "outlook", "guidance" or other similar words, and include statements regarding certain plans, strategies and objectives of management and expected financial performance. Forward-looking statements are provided as a general guide only and should not be relied upon as an indication or guarantee of future performance. These forward-looking statements are based upon a number of estimates, assumptions and expectations that, while considered to be reasonable by Legend Mining Limited, are inherently subject to significant uncertainties and contingencies, involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Legend Mining Limited and any of its officers, employees, agents or associates.

Actual results, performance or achievements may vary materially from any projections and forward-looking statements and the assumptions on which those statements are based. Exploration potential is conceptual in nature, to date there has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in the determination of a Mineral Resource. Readers are cautioned not to place undue reliance on forward-looking statements and Legend Mining Limited assumes no obligation to update such information made in this announcement, to reflect the circumstances or events after the date of this announcement.

Visit <u>www.legendmining.com.au</u> for further information and announcements.

For more information contact:

Mr Mark Wilson Managing Director Ph: +61 8 9212 0600 Mr Oliver Kiddie Executive Director Ph: +61 8 9212 0600

Appendix 3: Legend Mining Ltd – Diamond Drilling Programme Mawson Prospect - Rockford Project JORC Code Edition 2012: Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling was used to produce half NQ core samples (between 0.2m-1.2m) which were submitted to Intertek Genalysis Laboratory Services Perth for geochemical analysis. Sample intervals were based on geology and style of sulphide occurrence. QAQC standard samples were included. Samples were analysed for: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, TI, Tm, U, V, W, Y, Yb, Zn, Zr by methods 4A/MS48R and 4AH/OE (four acid digest with ICP-MS finish). Au, Pt, Pd by method FA50/MS (fire assay with an ICP-MS finish).
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 Diamond drillholes RKDD061-080 were pre-collared using the mud rotary technique. No samples were recovered from the mud rotary pre-collar. The remainder of the holes were diamond drilled with HQ then NQ coring to end of hole. Terra Drilling completed the drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 Drill core sample recoveries for the HQ-NQ core were measured and recorded in drill log sheets. Drill core orientation was recorded

P a g e 16

Criteria	JORC Code Explanation	Commentary
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 when possible at the end of each drill run (line on bottom of core). No relationship has been determined between sample recoveries and grade and there is insufficient data to determine if there is a sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging of drillholes RKDD061-080 included; lithology, grainsize, texture, structure, deformation, mineralisation, alteration, veining, colour, weathering. Drill core logging is qualitative and based on drill core retained in core trays. The drillholes were logged in their entirety.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Selected sawn half NQ core samples based on geology and sulphide occurrence were submitted for geochemical analysis. The size of the sample from the diamond drilling method is considered appropriate for the mineralisation style sought and for the analytical technique used. Sample preparation includes; drying, crushing and pulverising before analysis. QAQC standard samples were included.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 Core samples were analysed for: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S. Sb, Sc, Se, Sm.

edel

Criteria	JORC Code Explanation	Commentary
	 For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Sn, Sr, Ta, Tb, Te, Th, Ti, TI, Tm, U, V, W, Y, Yb, Zn, Zr by methods 4A/MS48R and 4AH/OE (four acid digest with ICP-MS finish). Au, Pt, Pd by method FA50/MS (fire assay with an ICP-MS finish). These assay methods are considered appropriate. QAQC standard samples were included. In addition, reliance is placed on laboratory procedures and internal laboratory batch standards and blanks. All samples were analysed by Intertek Genalysis Laboratory Services Perth.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections were verified by senior exploration personnel. Primary data was collected in the field using a set of standard logging templates and entered into a laptop computer. The data was forwarded to Legend's database manager for validation and loading into the company's drilling database. No adjustments of assay results have been undertaken.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drillhole collars were surveyed with a handheld GPS unit with an accuracy of ±5m which is considered sufficiently accurate for the purpose of the drillhole. All co-ordinates are expressed in GDA2020 datum, Zone 51. Regional topographic control has an accuracy of ±2m based on detailed DTM data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 No regular drill hole spacing has been set with individual holes design to intersect specific targets. Diamond drillholes RKDD061-080 were designed to test extensions of interpreted mineralised intrusive packages.

ede

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The relationship between drill orientation and mineralisation is unknown.
Sample security	The measures taken to ensure sample security.	 Individual calico sample bags from the diamond drilling were placed in polyweave bags and hand delivered directly to the assay laboratory in Kalgoorlie by company personnel. All diamond drill core will be removed from site and stored at an appropriate facility.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Internal audits/reviews of procedures are ongoing, however no external reviews have been undertaken.

_eae

Section 2: Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Rockford Project comprises nine granted exploration licences, covering 2,430km², (Legend manager). Rockford JV tenements: E28/2188, 2189, 2192 (70% Legend, 30% Rockford Minerals Pty Ltd) E28/1716, 1717, 1718, 1727 (70% Legend, 30% Ponton Minerals Pty Ltd). Legend 100%: E28/2404, 2405. The Project is located 280km east of Kalgoorlie mostly on vacant crown land with the eastern portion on Kanandah Pastoral Station. Tenements E28/1716, 1717, 2192, 2405 are covered by the Upurli Upurli Nguratja Native Title Claim. Tenements E28/2188, and E28/2189 are covered 20% and 85% respectively by the Untiri Pulka Native Title Claim. Tenements E28/2404 are covered 90%, 20% and 100% respectively by the Ngadju Native Title Claim. The tenements are in good standing and there are no known impediments.
other parties	of exploration by other parties.	

Page19

Criteria	JORC Code Explanation	Commentary
Geology	 Deposit type, geological setting and style of mineralisation. 	 The primary target is Nova style nickel-copper mineralisation hosted in mafic/ultramafic intrusives within the Fraser Zone of the larger Albany- Fraser Orogen. Secondary targets include VMS style zinc-copper-lead-silver mineralisation and structurally controlled Tropicana style gold.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report the 	Drillhole details are provided in Appendix 1.
	Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any 	 Individual sample assays and weighted averages are presented.
	reporting of metal equivalent values should be clearly stated.	

Leger

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 The drill core has been oriented to enable structural logging and evaluation of true thicknesses of the mineralised intervals. Drillhole intercepts/intervals are measured downhole in metres.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Project and drillhole location maps, and drill sections have been included in the body of the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Assay results presented are balanced.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Detailed high quality aeromagnetic and gravity datasets, aircore drilling ground EM surveys and DHTEM surveys have been used to target drilling. GEM Geophysics completed downhole EM surveying of RKDD061, 073-080. DHTEM Details Loop Size: 300mx300m, double turn Station Spacing: 2-10m intervals Sensor: B-field DigiAtlantis Base/frequency: 0.125Hz Stacking: ~32-64 stacks, 2-3 repeatable readings
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Submit selection of RKDD073-080 for geochemical analysis. Assessment of geochemical results. Complete DHTEM surveying of all drillholes. Full integration of geological, geophysical and geochemical data. Plan further diamond drillholes.

POP