7 October 2024

CASTILLO COPPER LIMITED ("Castillo" or the "Company")

Surface Assays Increase Priority Copper Target Area at Big One Deposit

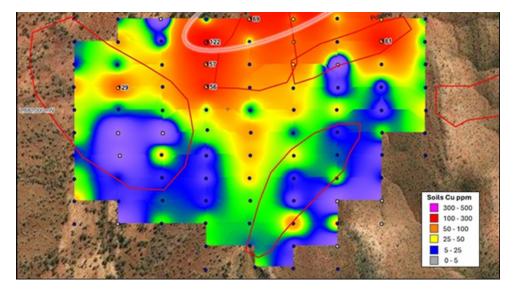
Castillo Copper Limited (LSE and ASX: CCZ), a base metal explorer primarily focused on copper across Australia and Zambia, is delighted with the findings from the recent surface sampling campaign which has increased the priority copper target area at the Big One Deposit proximal to the line of lode, historical workings and known orebody.

Highlights:

- Completed a comprehensive surface sampling campaign at the Big One Deposit, within the NWQ Copper Project in the Mt Isa copper-belt, which delivered encouraging results and increased the target area:
 - Assayed surface samples (including rock chips up to 12% Cu) verified a significant anomaly that suggests copper mineralisation extends west along strike from historical workings and the known orebody
 - (Note: Big One Deposit Mineral Resource Estimate: 2.1Mt @ 1.1% Cu for 21,886t contained copper metal) $^{\rm 1}$
 - o Further, the assays indicated potential for copper mineralisation to extend south and to the east of the line of lode
 - o Pleasingly, reconciling the new geochemical results with historical geophysical findings, validated known induced polarisation conductivity anomalies north of the line of lode
- To gain further insights and geological understanding of the Big One Deposit, especially copperbearing faulting trends, the field team completed a comprehensive mapping exercise
- As a result, the geology team, post-reconciling the new geochemical inputs with legacy data, now has sufficient information to select priority targets for test-drilling that can potentially extend known mineralisation across an expanded area

Ged Hall, Chairman, commented: "The systematic surface sampling campaign around the Big One Deposit delivered encouraging results. Notably, the assays confirmed significant anomalous copper zones west of the known orebody, complemented with indications of incremental mineralisation to the south and east. Furthermore, completing a comprehensive mapping exercise has provided the geology team with deeper insights into localised copper-bearing faulting trends. Consequently, there are now more than sufficient data points to develop a comprehensive drilling campaign that has the potential to extend known mineralisation."

ENLARGED PRIORITY COPPER TARGET AREA


Based on previous drilling campaigns and utilising historical data, the Big One Deposit's current MRE is 2.1Mt @ 1.1% Cu for 21,886t contained copper metal¹.

The assayed surface samples, which include rock chips up to 12% Cu, verified a significant anomaly that suggests copper mineralisation extends west along strike from historical workings and the known orebody (Figure 1 and Appendix A-C). Furthermore, the assays suggest the potential for copper mineralisation to extend south and to the east of the line of lode.

Incrementally, the fresh geochemical results validated known induced polarisation conductivity anomalies that are north of the line of lode.

FIGURE 1: ENLARGED COPPER TARGET AREA AT BIG ONE DEPOSIT

Source: CCZ geology team (Reference 2 and Appendix A)

As the field team were at the Big One Deposit for three days, they were able to complete a comprehensive mapping exercise to gain further insights and geological understanding of the copperbearing faulting trends.

Next Steps

Reconciling the new geochemical data from the surface sampling campaign with legacy information will enable the geology team to select viable targets to test-drill which have the potential to extend known mineralisation.

For further information, please contact:

Castillo Copper Limited Gerrard Hall (UK), Chairman	+61 8 6558 0886
SI Capital Limited(Financial Adviser and Corporate Broker) Nick Emerson	+44 (0)1483 413500
Gracechurch Group (Financial PR)	+44 (0)20 4582 3500

Harry Chathli, Alexis Gore, Henry Gamble

References

- 1) CCZ ASX Release 28 February 2022
- 2) Porter, M., 2024, Memo of Big One Field Inspection, Global Ore Discovery, unpublished report, August 2024, 33pp.

About Castillo Copper

Castillo Copper Limited is an Australian-based, Australian-focussed copper exploration Company with a strategy to develop multi-commodity assets that demonstrate future potential as an economic mining operation.

Through the application of disciplined and structured exploration and analysis, Castillo Copper has identified assets deemed core to the Company's sustained growth and is actively progressing these interests up the value curve.

Current focus will be on advancing exploration activity at the Company's wholly owned NWQ Project, situated in the copper-belt district approximately 150km north of Mt Isa in north-west Queensland.

Other interests include the Broken Hill Project in western New South Wales and the Cangai Copper Mine in north-east New South Wales, as well as exploration targets in Zambia.

Castillo Copper is listed on the LSE and ASX under the ticker "CCZ".

Competent Person's Statement

I, Mark Biggs, confirm that I am the Competent Person for the Competent Person Report from which the information to be publicly released has been obtained and confirm that:

- I have read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition) and the relevant sections of Chapter 5 and Guidance Note 31 from the ASX Listing Rules.
- I am a Competent Person as defined by the JORC Code 2012 Edition, having 35 years of experience that is relevant to the copper mineralisation types, quality and potential mining method(s) of the deposit(s) described in the Report. In addition, I have 21 years of experience in the estimation, assessment and evaluation of Exploration Results and Mineral Resource Estimates, the activity for which I am accepting responsibility.
- I am a Member of The Australasian Institute of Mining and Metallurgy (Member # 107188).
- · I have reviewed the Report or Excerpt from the Report to which this Consent Statement applies.
- I am a consultant working for ROM Resources and have been engaged by Castillo Copper Limited to prepare the documentation for the Big One Deposit on which the Report is based.

In addition:

- I have disclosed to Castillo Copper Limited the full nature of the relationship between myself and the Company, including any issues that could be perceived by investors as a conflict of interest. Mr Biggs is a director of ROM Resources, a company which is a shareholder of Castillo Copper Limited. ROM Resources provides ad-hoc geological consultancy services to Castillo Copper Limited.
 Lyerify that the Report is based on and fairly and accurately reflects in the form and context in which
- I verify that the Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating to Coal Resources.

I consent to the release of the Report and this Consent Statement by the Directors of Castillo Copper Limited.

APPENDIX A: JORC CODE, 2012 EDITION - TABLE 1

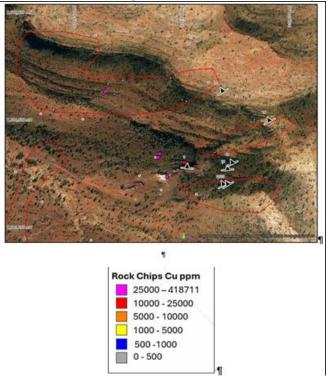
The following JORC Code (2012 Edition) Table 1 is supplied to provide background for the recent geological mapping, soil, and rock chip sampling program at the 'Big One' Deposit, EPM 26574.

The reader of the current ASX Release is referred to the Castillo's other publications of the exploration results, diagrams, geological information, exploration planning activities and/or information contained in the body or appendices of the following Castillo ASX Releases:

- "Field analysis verifies high-grade copper with newly identified gold mineralisation at Big One" released on the ASX by Castillo on the 14-Sep-2020.
- "Plans underway to fully develop the big one deposit in the world-class Mt Isa copper belt", released on the ASX by Castillo on the 14-May-2024.
- "Chief Geologist outlines plans for big one deposit surface sampling campaign", released on the ASX by Castillo on the 24-May-2024.

SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation				
Sampling techniques	• Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling	• Rock Chip Sample a 3m radius around rock chip fragment sample included 1 from 2-5cm and 0.2 samples were coll were progressed 1			


 Include reference to measures taken to ensure sample representity and the appropriate cabibration of any measurement tools or systems used. Appets to of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., treverse circulation affing was used to obtain 1 m samples from which 3 kg was publicied to produce a 30 g cooplination may be required, such as where there is casers gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., such as where there is casers gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., such as there there is casers gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., such as there there is casers gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., such as there there is casers of the top of diamond table, face samples or standard tube, depth of diamond table, face samples or standard tube, depth of diamond table, face samples or standard tube, depth of diamond table, face samples path encoveres and results assessed. Method of recording and assessing care and chip samples recovers and dises, face samples or the sample base may be accurred due to preferential kiesgan of fine/coarse material. Whether care and chip samples have been geologically and geotenohically legged to a level of the samples. Whether sample top coverise sample top coverise samples frame and whether anter the samples. Whether sample top coverise samples for diversions for dipapendis the sample scale of dipapendis for all core taken. Messares taken to ensure that the sampling is representation of metallaying at an addite the samples. In one covery dipacts and whether sample table and metallurgical studies. Whether sample top cov		broad meaning of sampling.	were progressed i
that are Material to the Public Report. - Soil Samples • In cases where industry standard work has been doe this would be relatively simple (e.g. trevers consistence surprises that his ment as supports and to obtain 1 m samples from which 3 kg was public due to produce a 30 to coplanation may be required, such as where there is consistence of the samples in the instant manipular problems. • Soil Samples coplanation may be required, such as where there is consistence of the sample is the single (e.g. trevers circulation due) is face sampling problems. Drilling techniques • Drill type (e.g. core, preverse circulation, open-hole the due), edpth of diamond tails, face sampling problems. • Not Applicable were drilled. Drill sample recovers • Method of recording and assessing core and chip sample recovers and grade and whether sample is samples. • Not Applicable were drilled. Drill sample recovers and reading is qualitative or quantitative in nature. Core (are castean, channel, etc) photography. • Not Applicable were drilled. Drill sample recovers and grade and whether sample bass may have courred due to preferential lossgain of final/coarse material. • Not Applicable were drilled. Logging • Whether core and chip samples have been geologically and gocotechnically logged to a level of mature. Core (are casteen, channel, etc) photography. • The total length and percentage of the relevant intersections logged. Subsampling techniques • If core, whether rute or sawn and whether sample bass may have a sample gocotechnically logged to a level of samples to maximise representive or an addiki twerty		• Include reference to measures taken to ensure sample representivity and the appropriate calibration	Samples were collu unprocessed low-r Samples of typical were sampled cor
Anamer, rotary air, blast, auger, Bangka, sonic, etc.) were drilled. and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face sampling bit or ther type, whether core is oriented and if so, by what method, etc). • Net Applicable Drill sample recovery • Method of recording and assessing core and chip sample recoveries and results assessed. • Not Applicable Drill sample recovery • Method of recording and assessing core and chip sample recoveries and results assessed. • Not Applicable Image: Core of the sample recovery and ensure representative nature of the samples recovery and grade and whether sample bias may have accurred due to preferential lossigain of fine/coarse material. • Descriptions of Appendix B of this 30-Sep-2024. Logging • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource stimation, mining studies and metallurgical studies. • Descriptions of Appendix B of this 30-Sep-2024. • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. • The total length and percentage of the relevant intersections logged. • Of the sample or 30-60g of sieved analyses. Subsampling techniques and sample preparation • If core, whether rifled, tube sampled, rotary split, etc and whether sample divest or dry. • Of the sample or 30-60g of sieved analyses. • Jub control procedures adopted for all sub- sampling stages to maximise representive of samples. • Meas		that are Material to the Public Report. • In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of	reconnaissance su approximately 10(
sample recoveries and results assessed. were drilled. • Measures taken to maximise sample recovery and ensure representative nature of the samples. • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. • Descriptions of Appendix B of this 30-Sep-2024. Logging • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. • Descriptions of Appendix B of this 30-Sep-2024. • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • Descriptions of Appendix B of this subsampling techniques and sample preparation Subsampling techniques and sample preparation • If core, whether cut or sawn and whether quarter, half or all core taken. • Of the sample core analyses. Subsampling techniques and sample preparation • If core, whether rut or sawn and whether quarter, half or all core taken. • Of the sample core analyses. • Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. • Assays were doi No field duplicate/second-half sampling. Quality of assay data and laboratory tests • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether stretchnique is considered partial or total. • Assays were doi No determinion the analysis includin	Drilling techniques	hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is oriented and if so, by what	• •
ensure representative nature of the samples. • Whether a relationship exists between sample precovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Logging • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metalungrical studies. • Descriptions of Appendix B of this 30-Sep-2024. • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • Whether and percentage of the relevant intersections logged. Subsampling techniques and metalung is representative of the ast and dition appropriateness of the sample types, the nature, quality, and appropriateness of the sample types, the nature, quality, and appropriateness of the sample preparation explicit control procedures adopted for all subsampling. • Assays were down in finestrum anterial collected, including for instance results for field duplicate/second-half sample sing. Quality of assay data and laboratory procedures used and whether the technique is considered partial or total. • Assays were down inside representivity of the insitu material collected, including for instance results for field duplicate/second-half sample ing. Quality of assay data and laboratory tests • The nature, quality and appropriateness of the assaying and laboratory procedures used in the technique is considered partial or total. • Assays were down this and Britsbar analysely method Cu- OG46 both sutable are surger	Drill sample recovery		
Image: course and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Whether sample detail to reason and whether quarter, half or all core taken. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sample types, the nature, quality, and appropriateness of the sample types ampling stages to maximise representivity of sampling stages to maximise representivity of sampling. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Assays were do Mt isa and Brisbar the technique is considered and whether the technique is considered and whether the technique is considered partial or total. Subsampling tages do the sampled collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheid XFF instruments, etc, the parameters used in the say by meth Aqua Regia digest For geophysical tools, spectrometers, handheid XFF instruments, etc, the paramet			
geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Appendix B of this 30-5ep-2024. • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • Where appropriate the techniques and sample preparation size of the relevant intersections logged. • Where appropriate to the sample of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged. • Of the sample cost of the relevant intersections logged to a level of on-core, whether ralified, tube sampled, rotary split, etc and whether sample types, the nature, quality, and appropriateness of the sample preparation technique. • Assays were do with all samples init to 75 microns, with all samples init to 75 microns, with all samples. • Assays were do with all samples init to 75 microns, with all samples. • Measures taken to ensure that the sampling is representative of the in-situ material co		recovery and grade and whether sample bias may have occurred due to preferential loss/gain of	
 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. Subsampling techniques and sample preparation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sample wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsamples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Assays were do Mt Isa and Brisbar analysed by mether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make 	Logging	geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	Appendix B of this
Subsampling techniques and sample preparation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. If non-core, whether sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Assays were down Mt is an and risibar analysed by mether analysed by mether			 Where appropria taken at an additic twenty (20) rock ch
and sample preparation quarter, half or all core taken. 30-60g of sieved analyses. • If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. • For all sample types, the nature, quality, and appropriateness of the sample preparation technique. • Assays were do with all samples init to 75 microns, with microns. Standard procedures adopted for all subsampling stages to maximise representivity of samples. • Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled. • Assays were do Mit Isa and Brisbar the technique is considered partial or total. Quality of assay data and laboratory tests • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. • Assays were do Mit Isa and Brisbar the technique is considered partial or total. • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make • Assays greater the method Cu- OG46			
split, etc and whether sampled wet or dry.• Assays were do with all samples init to 75 microns, with appropriateness of the sample preparation technique. • Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.• Assays were do with all samples init to 75 microns, with microns. Standard procedures were considered appropri samples.• Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.• Assays were do with all samples init to 75 microns, with microns. Standard procedures were considered appropri appropriate to the grain size of the material being sampled.• Assays were do microns. Standard procedures were considered appropriate to the grain size of the material being sampled.Quality of assay data and laboratory tests• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.• Assays were do Mt Isa and Brisbar analysed by method Aqua Regia digest assays greater thi method Cu- OG46 both suitable and wethod Sure Cu- Sure			 Of the sample co 30-60g of sieved analyses.
Quality of assay data and laboratory tests The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Assays were double to the grain size of the material being sampled. Assays were double to the grain size of the material being sampled. Assays were double to the grain size of the material being sampled. Assays were double to the grain size of the material being sampled. Assays were double to the grain size of the material being sampled. Assays greater the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make Assays greater the method Cu- 0G46 both suitable an method Cu- 0G46 Assays greater the method cu- 0G46 both suitable an method Cu- 0G46 Assays greater the method cu- 0G46 both suitable an method Cu- 0G46 both suitable an method Cu- 0G46 both suitable and to the suitable and to the suitable and the suitable and the subscience to the subscience to the subscience to the subscu at the subscience to the subscience to the subscience to the su		split, etc and whether sampled wet or dry.	 Assays were do with all samples ini to 75 microns with
 samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Whether sample sizes are appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make 		appropriateness of the sample preparation technique.	microns. Standard
representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.• Whether sample sizes are appropriate to the grain size of the material being sampled.Quality of assay data and laboratory tests• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.• Assays were don Mt Isa and Brisbar analysed by method Aqua Regia digest assays greater the method Cu- OG46 both suitable an		sampling stages to maximise representivity of samples.	
Quality of assay data and laboratory tests • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. • Assays were dound the matching of the assays were dound the matching of the technique is considered partial or total. • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make • Assays were dound the matching of the analysis including instrument make		representative of the in-situ material collected, including for instance results for field	
laboratory testsassaying and laboratory procedures used and whether the technique is considered partial or total.Mt Isa and Brisbar analysed by methor Aqua Regia digest assays greater the method Cu- OG46 both suitable an			
XRF instruments, etc, the parameters used in method Cu- OG46 determining the analysis including instrument make both suitable an		assaying and laboratory procedures used and whether the technique is considered partial or total.	
		XRF instruments, etc, the parameters used in	method Cu- OG46 both suitable an

	 and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	• The assay result and drilling results
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Independent L confirmed, within a high-grade copper Laboratory standa accordance with s assaying as noted
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	Batch MI24236156
	• Discuss any adjustment to assay data.	 This batch has r for the company Q an overall insertic duplicates were recommended that Table A1: Summary
		 Both the compar for elements Cu, C two standard devi present in the batc
		Batch BR24245495
		 This batch has rates for the conduplicate and coar blanks (Pulp) wer insertion rate of coarse blank and detailed in Table A.
		 Both the compa verified for elemen within two standard Coarse blanks are were not reviewed.
		Batch MI24241903
		 This batch has rates for the compi- and field duplicate included in the t standard, 3% Coa included in a batch of QAQC insertion r The company pu Cu, Co and Ag and deviations (SD). St blanks are not pre reviewed. N.B ple
		table below. Table A1: Summary of
		Batch # Original Samples
		Recommended insertion rate Image: Comparison of the comparison
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 The spatial loc collected during th were collected by MGA94 Zone54; F locations and desc
	Ouality and adequacy of topographic control.	

Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The spatial local during the prelimin were collected a exposed the copper previously identifies areas were defined sampling results described in the 200 sampling and field to the north and so Regional historical Quilalar Formation which is 9 times siltstones of the Lot that were up to 4 geochemical respoeither the faulted local enrichment at local enrichment at some some some some some some some some
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 In general, the trachyte dyke in t dip mildly (5 to 3 between east to no
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Rock chip samp from observed mineralised dyke, s heaps, and acros originally identified
Sample security	• The measures taken to ensure sample security.	 The rock chip sar were securely loc delivered to Mt Isa in person by the fie
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• The sampling tec the laboratory ass by consultant geol Project and deeme

quality and dacquacy of topographic control.

Figure A1: Location of Bedding Measurements and Rock Chip Sampling

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the	preceding s	section also	apply to	this section.)

Criteria	JORC Code explanation	
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. in the area. 	 The following m subsidiaries of Cast of 736.8 km² in the Project Status (PRC EPM 26574 (Valpa One historical miner Pty Ltd, Granted 12 100 sub-blocks (323 A1-2):
		Figure A2: Regional Project
		 EPM 26462 (Big 'Boomerang' histori mine, Holder: QLD Aug-2017 for a 5 (216.5Km²), Expires EPM 26525 (Hill significant aerom Minerals Pty Ltd for (128.8Km²), Grante
		 EPM 26513 (Torpe 13-Aug-2018 for a (74.2Km²), Expires : EPM 27440 (The 12-Dec-2019 was g
		sub-blocks (~215K tenure expires on t • A check on the 'GeoResGlobe' on the currentness of t
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Historical QDEX / reviewed for hist cover the Projec and State Gov historical mineral exploration recor

		Cu-Au-U and provin to the several sma Big Oxide and Josej With the NWQ Proje numerous historica has seen portion: subject to various selected locations (Total hole depth is • The NWQ Project opportunity to be ri- exploration methods with three of thes package. Various Hk 'Big One' historical m range of mining acti what is now the ' unpublished work i shown in the referend o West Au Programme North Queei NL. • Wilson, D., 2 5481 Memor • Wilson, D. Memorandur • Csar, M, 19 Deposits, un • The SRK Independ CCZ on the ASX on 2 on the 'Exploratic Acknowledgment and parties' this report Persons Report on Copper Limited' Pr Copper Limited' Pr
Geology	Deposit type, geological setting, and style of mineralisation.	 The Mt Oxide Nor Isa Inlier of wester section of Proterozc old) crustal rocks. T tectonic evolution, n Broken Hill Block in w The NWQ Project straddling the Lawn Fault Trough. The gec comprised of rocks Formations which conglomerates, arki minor dolomites and The Project area is north- northeast - so This fault is associ several tight syncl length. The Desktop stud granted mineral ten mineralisation acco within the rocks of tl Cranfield, 2013). Sediment hosted within fine-grained s basin within the We Black Star (Mount Is North, George. Fisher South (Hil brecciated sedime dominantly within the basin of the Wester

dolomitic, carbonac brecciated rocks pr Includes the Mount Esperanza/Mammoth

• Iron-oxide-copper chalcopyrite-pyrite within high grade n Fold Belt. Deposits Osborne, and Selwyr

• Broken Hill type high-grade metamor Cannington is the m currently sub-econor

• Gold is primarily fc the IOCG deposits o significant exceptior grade gold mineralis and 1995 by Carper tonnes of ore was n g/t Au, producing 1! style is poorly under:

• ROM Resources reports for CCZ on t known mineralisation

o Stratabou ferruginous Surprise Cre

- o Disseminate dykes.
- o Copper-rich fault zones.
- o Possible stockwork anomalous c

• The Mt Oxide and I to be breccia interconnecting fault: is hosted by brittl carbonaceous shale to the Isan Orogeny

• Mineralisation at al pyrite-chalcocite, ty_| breccias associated 2420) that is intruded

Other observations a

• The mineralised preventical (850), with the up to 9m at surface.

• At least 600m in s staining observed a historical open pits 200m of this strike. original ground surf documents, given t anticipated that exc beneath the original

• Associated with fractured and/or sl described as brecci shear as carbonacec

• The known minactivities to date | mineralisation, with mineralisation in and the mineralisation s downdip.

A strongly alter

		malachite and mineralisation has b the prevalence of the • The mineralisation pit mining methods indicated by nume workings into the she Desktop studies comm Resources and SRK Ex One prospect is prospe
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• Not Applicable presented.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Independent Labor chip and 20 soil sam averaged if more tl was given. There wa results as they are mineralisation style: samples. Results are There were no reporting of the labor
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Rock chip samples from observed mine the mineralised dy surrounding identified (8) rock chip sample outcrops. Sampling was gen identified from prev ground IP geophysica
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate diagrathe Appendices of scales are absent frincluded and clearly distance. Maps and Plans priare in MGA94 Zone (mN), unless clearly l
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced	 Rock chip samples from observed mine the mineralised dyke spoil hears and to

	grades and/or whether should be practiced avoiding misleading reporting of Exploration Results.	lode to check the anomalous map area		
Other Substantial Exploration Data				
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The following recomm (2024): A major focus she mineralisation is stru Identify and map drilling from northern Soils - expand sc orientation data stuc Gravity - giver mineralisation, a s justified. The survey lithology contrasts w proceed with the completed to give (and reporting signific 		

010 9887 9 988 • 10 60 132 13.6 162 • 14 19 1828 • 183 998 000 • 20 1640 1640 88 20 20 • 25 480 107 • 17 808 888 = 60 10.6 14.6 • 17 • 18 • 20 XRF Soils Cupp Cu ppm Assay / Fraction Method N 00-317 50 m 2mm CASTILLO 300 MGA:54 GDA2020 50 - 100 25 - 50 im soit lab an -25

Figure A3: Soil Sample locations and PXRF Results of Size Fractions

Modified after Porter (2024)

Dip Dir	Dip	Strike	Easting	Northing	Feature	Lthcode	Description
deg	Deg	deg	GDA94	GDA94			
30.5	10	120.5	335582	7880358	Bedding	QT	Quartzite
31.5	25	121.5	335592	7880358	Bedding Contact	QT	Quartzite
365.5	29	455.5	335596	7880398	Bedding	IS	Haematitic Sandstone
26.5	40	116.5	335603	7880409	Bedding	IS	Haematitic Sandstone
27.5	14	117.5	335689	7880507	Bedding	SS	Sandstone
30.5	20	120.5	335580	7880575	Bedding	SS	Sandstone
355.5	9	445.5	335504	7880403	Bedding	ST	Siltstone

APPENDIX B: MAPPING AND SAMPLE DATA

Source: CCZ geology team

Sample_ID	Easting	Northing	RL	Lithology	Alt_Type	Alt_Int	Alt_Style	Comments	LAB	
RB08900	335446	7880420	171	Trachyte with Malachite				Malachite - material almost certainly ejecta from pit - not insitu	ALS	Ν
RB08901	335551	7880319	162	Sandstone	He	W	Pat	Proximal to contact with southern quartzite	ALS	Ν
RB08902	335549	7880316	181	Quartzite				Fine grained - meta siltstone. Trace bedding visible	ALS	N
RB08903	335582	7880361	183	Quartzite	He	S	Fr	Fractured quartzite with haematitic fault gauge	ALS	Ν
RB08904	335588	7880369	182	Sandstone	He	S	Per	haematitic sandstone	ALS	Ν
RB08905	335596	7880383	182	Sandstone	He	S	Per	haematitic sandstone - gossanous textures developing. Sub-cropping on steep hill	ALS	Ν
RB08906	335593	7880397	181	Sandstone	He	S	Per	haematitic sandstone - Mn surface staining in places	ALS	Ν
RB08907	335327	7880582	182	Sandstone	He	S	Per	haematitic sandstone - gossanous textures developing.	ALS	Ν
RB08908	335302	7880550	183	quartzite	He	S	Per	haematitic quartzite	ALS	Ν
RB08909	335667	7880499	207	Ant Hill sample				Ant Hill sample	ALS	ſ
RB08912	335508	7880542	207	Sandstone - partly brecciated	He	W	pat	Brecciated /conglomeritic sandstone, weakly he stained.		
RB08913	335499	7880546	212	Sandstone	He	W	pat	haematitic sandstone		Τ

1000314	2 I FULL	1000551	200	900112110	110	••	μαι	haematitic	
RB08915	335361	7880590	212	Sandstone	Не	S	Per	haematitic sandstone	
RB08916	335341	7880558	193	Sandstone	Не	S	Per	haematitic sandstone	
RB08917	335318	7880563	182	Sandstone	He	М	Per	haematitic sandstone - Mn surface staining in places	
RB08918	335312	7880563	183	haematitic sandstone	Не	S	per	He sandstone	
RB08919	335443	7880412	168	trachyte with Malachite				Malachite on fracture surfaces in trachyte - not insitu, most likely ejecta	
RB08920	335464	7880367	186	Malachite	, haematitic		e, fractured, ive contact	Malachite, azurite, mine stockpile above pit	
RB08921	335504	7880400	172	Malachite, haematitic ironstone, fractured, trachyte	He	S	Per	Fault contact - trachyte / haematitic sandstone	

Source: CCZ geology team

SiteID	Samp_#	X	Y	Z	Company	Locality	From	То	Thick	TYPE
RB08900	RB08900	335446.0	7880420.0	171.0	CCZ-GOD	Big One	0	1	1	RC
RB08901	RB08901	335551.0	7880319.0	162.0	CCZ-GOD	Big One	0	1	1	RC
RB08902	RB08902	335549.0	7880316.0	181.0	CCZ-GOD	Big One	0	1	1	RC
RB08903	RB08903	335582.0	7880361.0	183.0	CCZ-GOD	Big One	0	1	1	RC
RB08904	RB08904	335588.0	7880369.0	182.0	CCZ-GOD	Big One	0	1	1	RC
RB08905	RB08905	335596.0	7880383.0	182.0	CCZ-GOD	Big One	0	1	1	RC
RB08906	RB08906	335593.0	7880397.0	181.0	CCZ-GOD	Big One	0	1	1	RC
RB08907	RB08907	335327.0	7880582.0	182.0	CCZ-GOD	Big One	0	1	1	RC
RB08908	RB08908	335302.0	7880550.0	183.0	CCZ-GOD	Big One	0	1	1	RC
RB08909	RB08909	335667.0	7880499.0	207.0	CCZ-GOD	Big One	0	1	1	RC
RB08912	RB08912	335508.0	7880542.0	207.0	CCZ-GOD	Big One	0	1	1	RC
RB08913	RB08913	335499.0	7880546.0	212.0	CCZ-GOD	Big One	0	1	1	RC
RB08914	RB08914	335472.0	7880597.0	208.0	CCZ-GOD	Big One	0	1	1	RC
BBA001E	DDA0A1 E	225261 0	7000500 0	212.0		Pia One	0	1	1	DC

APPENDIX C: LABORATORY ASSAY RESULTS

KDUGATO	кроятр	חידסככככ	0.0800390.0	212.0	ՀՀՀ-ԱՕՆ	віў Опе	U	т	т	ĸL
RB08916	RB08916	335341.0	7880558.0	193.0	CCZ-GOD	Big One	0	1	1	RC
RB08917	RB08917	335318.0	7880563.0	182.0	CCZ-GOD	Big One	0	1	1	RC
RB08918 RB08919	RB08918 RB08919	335312.0 335443.0	7880563.0 7880412.0	183.0 168.0	CCZ-GOD CCZ-GOD	Big One Big One	0	1	1	RC RC
RB08920	RB08920	335464.0	7880367.0	186.0	CCZ-GOD	Big One	0	1	1	RC
RB08921	RB08921	335504.0	7880400.0	172.0	CCZ-GOD	Big One	0	1	1	RC
SB05472	SB05472	334749.9	7880044.4		CCZ-GOD	Big One	0.2	0.5	0.3	SOIL - 80µm
SB05473	SB05473	334951.0	7880144.6		CCZ-GOD	Big One	0.2	0.5	0.3	SOIL - 80µm
SB05474	SB05474	334952.7	7880094.9		CCZ-GOD	Big One	0.2	0.5	0.3	SOIL - 80µm
SB05475	SB05475	334949.4	7880047.7		CCZ-GOD	Big One	0.2	0.5	0.3	SOIL - 80µm
SB05476	SB05476 SB05477	335047.9 335049.6	7880398.7		CCZ-GOD	Big One Big One	0.2	0.5	0.3	SOIL - 80µm SOIL
SB05477	SB05477	335049.0	7880297.7		CCZ-GOD	Big One	0.2	0.5	0.3	
SB05479	SB05479	335051.2	7880248.9		CCZ-GOD	Big One	0.2	0.5	0.3	- 80µm SOIL
SB05480	SB05480	335051.2	7880195.1		CCZ-GOD	Big One	0.2	0.5	0.3	- 80µm SOIL
SB05481	SB05481	335151.4	7880496.4		CCZ-GOD	Big One	0.2	0.5	0.3	- 80µm SOIL
SB05481	SB05481_Duplicate	335151.4	7880496.4		CCZ-GOD	Big One			0.3	80µm SOIL -
SB05482	SB05482	335153.0	7880445.9		CCZ-GOD	Big One	0.2	0.5	0.3	80µm SOIL -
SB05483	SB05483	335152.2	7880398.7		CCZ-GOD	Big One	0.2	0.5	0.3	80μm SOIL - 80μm
SB05484	SB05484	335150.5	7880347.4		CCZ-GOD	Big One	0.2	0.5	0.3	SOIL - 80µm
SB05485	SB05485	335153.9	7880293.6		CCZ-GOD	Big One	0.2	0.5	0.3	SOIL - 80µm
SB05486	SB05486	335153.0	7880246.4		CCZ-GOD	Big One	0.2	0.5	0.3	SOIL - 80µm
SB05487 SB05488	SB05487 SB05488	335149.7 335153.0	7880199.2 7880145.4		CCZ-GOD	Big One Big One	0.2	0.5	0.3	SOIL - 80µm SOII
SB05488	SB05488 SB05489	335153.0	7880145.4		CCZ-GOD	Big One	0.2	0.5	0.3	SOIL - 80µm SOIL
SB05499	SB05499	335350.0	7880197.5		CCZ-GOD	Big One	0.2	0.5	0.3	- 80µm SOIL
SB05491	SB05491	335352.5	7880149.5		CCZ-GOD	Big One	0.2	0.5	0.3	- 80µm SOIL
										۔ 80µm

Source: CCZ geology team

SitelD	Ag	As	Ba	Ce	Со	Cr	Cu	Fe	La	Mn	Р	Pb	Sb
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
RB08900	3.04	128	310	2.05	21.6	341	120000	0.62	0.8	17	280	3.4	435
RB08901	<0.01	5.2	300	149.5	3.6	25	20.9	1.62	95.5	151	310	2.6	0.56
RB08902	0.02	2.4	150	28	1.9	12	154.5	0.81	17	56	90	1.9	1.25
RB08903	0.01	0.8	180	38.3	0.9	15	9.4	0.61	17	56	100	2.9	0.77
RB08904	< 0.01	22.7	110	39.3	3.5	10	30.6	1.55	18.4	191	120	2.5	1.36
RB08905	0.02	16.4	620	60.1	31.4	25	185	19.25	35.2	3030	3250	9.5	8.67
RB08906	0.01	7.9	3100	62.5	109.5	21	236	6.2	31.3	18300	660	10.4	7.9
RB08907	0.01	4.4	720	29.8	8.8	20	46.2	4.08	14.6	2800	130	8.5	1.51
RB08908	0.01	1.6	330	45.2	8.1	11	14.4	2.49	20.3	3160	150	5.8	1.08
RB08909	0.08	20.8	150	91.5	3.9	58	55	1.59	48	207	200	9.6	4.19
SB05472	< 0.01	0.5	<10	2.94	0.4	5	4.7	0.34	1.4	37	10	1	0.15
SB05473	0.01	3.8	520	72.8	9.8	32	20.7	2.28	37.6	1085	210	14.2	1.02
SB05474	0.01	13	510	73.1	18.4	63	125	3.86	38.2	1160	660	14.6	1.99
SB05475	0.02	5.8	410	102.5	11.9	50	42.9	3.89	52.2	857	590	13.6	2.05
SB05476	0.03	5.9	530	98.2	17.8	44	27.5	3.72	49.2	3280	410	14.6	1.62
SB05477	< 0.01	3.8	500	93.3	12.4	41	12.2	2.94	49.9	1470	240	14.2	1.37
SB05478	0.02	6.1	500	82.3	12.2	41	90.7	2.86	41.2	2090	270	12.3	1.16
SB05479	0.02	5.6	450	72.2	15	49	76.1	2.59	31.3	2020	200	12	0.97
SB05480	0.01	3.5	520	67.9	10.6	28	14.2	2.11	31.7	1130	180	12.4	0.94
SB05481	0.01	4.2	570	107	15	44	16.4	3.03	53.9	1595	290	15	1.32
SB05481	0.01	3.9	570	96.4	14.3	42	15.9	3.04	50	1600	290	14.6	1.28
SB05482	0.06	8.8	430	75.5	17	73	486	3.93	40.1	2830	320	11.1	1.28
SB05483	0.02	6.4	500	91.7	17.2	38	20.7	3.02	40.1	2720	270	15.3	1.3
SB05484	< 0.01	5.1	490	84.1	16.2	36	20.3	2.99	38.8	1785	260	14.9	1.12
SB05485	0.01	6.9	670	112.5	18.6	46	23	3.78	53.6	1915	380	15.7	1.68
SB05486	0.01	7.4	680	113.5	22.7	38	14.6	3.23	47.9	3630	460	13.8	1.47
SB05487	0.02	4.5	480	79.1	12.5	42	36.5	3.97	41.8	2650	390	11	1.2
SB05488	0.03	8	460	86.6	13.2	43	135.5	3.11	44.1	2270	310	11.7	1.16
SB05489	0.02	7.3	450	69.5	8.9	29	159.5	1.98	32.9	668	220	12.2	2.12
SB05490	0.02	6.6	640	76.9	11.6	34	110.5	2.4	38.9	1470	360	11.6	1.54
SB05491	0.02	5.3	630	89.7	13.1	40	136	3.17	43.3	2250	390	12.8	1.23

Source: CCZ geology team

Notes:

ALS Reporting details discussed in JORC Table 1 1. 2.

Table shows selected results from method ME-MS61R

4

Þ

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact <u>rns@lseg.com</u> or visit <u>www.rns.com</u>.

RNS may use your IP address to confirm compliance with the terms and conditions, to analyse how you engage with the information contained in this communication, and to share such analysis on an anonymised basis with others as part of our commercial services. For further information about how RNS and the London Stock Exchange use the personal data you provide us, please see our Privacy Policy.

END

DRLBQLLBZBLXFBZ