

WIDE ZONE OF HIGH-GRADE PRIMARY GOLD MINERALISATION CONFIRMED BENEATH THE LORD NELSON PIT, SANDSTONE GOLD PROJECT

Sandstone Gold Project

Located in a world class gold province in WA

Current resource is 5.4Mt @ 1.7 g/t gold for 290,000oz

Multiple targets

Multi million oz potential

Significant landholding of over 800km² within a major gold district

Capital Structure

Issued Shares: 294m Share Price: \$0.055 Market Cap: \$16m

Directors

Non- Executive Chairman Richard Monti

Non-Executive Director Matthew Bowles

Non-Executive Director Terry Wheeler

Non-Executive Director Dr Jingbin Wang

Company Secretary & CFO Graeme Smith

Contact details

Suite 9, 12-14 Thelma St West Perth WA 6005

T: 61 8 9381 2808

E: admin@altometals.com.au www.altometals.com.au

ASX: AME

#altometals

DRILL RESULTS FROM UNTESTED AREAS BENEATH THE HISTORICAL LORD NELSON PIT CONFIRM WIDE ZONES OF PRIMARY HIGH-GRADE GOLD MINERALISATION REMAINING OPEN IN ALL DIRECTIONS

HIGHLIGHTS

- First three holes (SRC174-176) drilled since the Lord Nelson Mine closed (2010), targeting primary zone shoots below the open pit, <u>all intercept a wide zone of high-grade gold mineralisation</u>
- High grade gold results on wide spaced drilling (80m x 50m spacing) incl.
 - 16m @ 5.5 g/t gold from 240m (incl. 4m @ 12.0 g/t gold from 240m) SRC176
 - 12m @ 3.9 g/t gold from 208m (incl. 4m @ 8.2 g/t gold from 212m) SRC175
 - 12m @ 3.0 g/t gold from 104m (incl 4m @ 7.0 g/t gold from 108) SRC 174
- The newly intersected gold mineralisation highlights the significant potential in primary zone below Lord Nelson pit, which remains open in all directions
- Mineralisation style and geological setting is identical to that of the Lord Nelson deposit.
- **Further assays are pending** from a further five holes from deeper drilling testing fresh rock below the Lord Nelson pit and will be released as and when available
- Mineralisation now confirmed to extend at depth below the pit in addition to, also remaining open ~200m along strike to the south of the Lord Nelson pit, with recent results including:
 - 24m @ 3.7g/t gold from 104m (SRC168)
 - 12m @ 3.0g/t gold from 32m (SRC169)
 - 12m @ 3.4 g/t gold from 66m (SRC148)
- The Lord Nelson target is analogous to depth extensions demonstrated for many other major Yilgarn orogenic gold deposits
- Alto's Sandstone Gold Project covers +800km² and comprises the vast majority of the highly prospective and under-explored Sandstone Greenstone Belt

Note: Gold assay results reported are for 4-metre compositive intervals. Sampling at 1-metre intervals for all holes has been completed, with all samples sent for fire assay analysis. Results will be reported when available.

Non -Executive Director, Matthew Bowles commented:

"These are excellent results from below the historical Lord Nelson pit, where there has previously been little to no deeper drilling to test the fresh rock. This was primarily due to the focus of previous owners being on the softer, shallow oxide material, due to the inability of the former Sandstone process plant to treat large volumes of the harder, fresh ore found at depth.

Our first three RC drill holes targeting shoots in the fresh rock below the open pit, have all intercepting a wide, high-grade zone of primary gold mineralisation.

Everything we are seeing supports our view that there is substantial growth potential at depth as surficial oxide gold deposits, such as Lord Nelson, are the geochemical anomalies which lead to multi-million ounce gold discoveries at depth in orogenic gold systems.

This is an outstanding result for shareholders, we are excited to be back focusing on exploration at Sandstone and look forward to providing updates on further drilling results in the coming weeks.

Wide Zone of High Grade Primary Gold Mineralisation Confirmed Beneath the Lord Nelson Pit, Sandstone Gold Project.

Alto Metals Limited ("Alto") (ASX: AME) is pleased to announce the assay results from the first three RC drill holes targeting primary gold mineralisation beneath the shallow mined historical Lord Nelson pit, within Company's +800km² Sandstone Gold Project ("Project").

The Lord Nelson deposit occurs along the north-northwest striking shear zone (Trafalgar shear zone). The deposit is hosted by granodiorite intrusive rocks above a footwall ultramafic unit. The quartz-sulphide (mainly pyrite) veining mineralisation trends north-northwest, dipping approximately 50° to the west, with a shallow south-southeast plunge that follows the ultramafic footwall contact.

Four-metre composite sample assays received for the first three deeper RC drill holes **targeting primary gold mineralisation beneath the shallow mined historical Lord Nelson pit**, **with gold mineralisation intersected in every drill hole.** Assay results include:

- 16m @ 5.5 g/t gold from 240m (incl. 4m @ 12.0 g/t gold from 240m) SRC176
- **12m @ 3.9 g/t gold** from 208m (incl. **4m @ 8.2 g/t gold** from 212m) SRC175
- **12m @ 3.0 g/t gold** from 104m (incl **4m @ 7.0 g/t gold** from 108) SRC174

Further assays are pending for the remaining five deeper RC holes SRC177- SRC181 and will be released when available.

Lord Nelson pit historically produced 207,000oz gold at 4.6g/t gold and was only mined down to 90m. The significance of these latest results is that they **demonstrate the continuity of mineralisation** <u>BELOW</u> the **historical pit, which has had previously had little to no deeper drilling** to test the fresh rock at depth primarily due to previous owners focus on oxide material due to the inability of the former Sandstone process plant to treat large volumes of the harder, fresh ore found at depth.

Importantly, this drilling confirms the geological model of the mineralisation style and geological setting being identical to the that of the Lord Nelson deposit and is analogous to depth extensions demonstrated for many other major Yilgarn orogenic gold deposits.

Given many other orogenic Yilgarn gold deposits, such as Jundee (+5.5Moz Production), Kanowna Belle (+4.9Moz production), Gwalia (+5.5Moz production) are known to extend to great depth, Alto firmly believes the significant potential of Sandstone has not yet been realised.

Figure 1. Longitudinal projection Lord Nelson.

Shallow Extensions South of the Lord Nelson Pit

Recent wide spaced drilling (80m x 40m) has targeted shallower mineralisation to the south of Lord Nelson pit, has confirmed **extensions of known mineralisation** <u>200m south of the Lord Nelson Pit.</u>

Recent drill results from the southern extension of Lord Nelson include:

- 24m @ 3.7 g/t gold from 104m SRC169 (refer ASX 27/02/20)
- 12m @ 3.0 g/t gold from 32m SRC168 (refer ASX 27/02/20)
- 4m @ 2.2 g/t gold from 52m SRC170 (refer ASX 27/02/20)
- **12m @ 3.4 g/t gold** from 32m SRC148 (refer ASX 22/07/19)

Figure 2. Lord Nelson plan view.

Figure 3: Lord Nelson – Section 6,883,620mN.

Figure 4: Lord Nelson Section 6,883,570mN.

Figures 5 & 6: RC Chips from RC drill hole SRC176

Figure 7: Lord Nelson, 3d view of historical pit, existing resources and drilling.

The Lord Nelson deposits, which produced 207,000oz gold was only mined to a shallow depth of 90m.

Details of drill results shown in Figure 8 are included below.

SRC148	ASX: AME 22 July 2019
TRC339	WAMEX A69776
TRC419	WAMEX 72098
TRC374	WAMEX A72098
TRCD291	WAMEX 69776
TRC383	WAMEX72098
TRC461	WAMEX A72098
TRC410	WAMEX A72098
	SRC148 TRC339 TRC419 TRC374 TRCD291 TRC383 TRC461 TRC410

Historical drill results (Troy Resources NL) are outlined in Table 4:

Figure 8. Lords Deposits and +3km Corridor - 1:5,000 geological interpretation (labelled drill results are from unmined zones)

Sandstone – Untested depth potential

Figures 9 & 10: The image on the left shows all drill holes (~15,000 drill holes) at Sandstone, while the image on the right show all drill holes deeper than 100m (~800 drill holes)

This announcement has been authorised by the Board of Alto Metals Limited.

For further information regarding Alto and its Sandstone Gold Project please visit the ASX platform (ASX: AME) or the Company's website at <u>www.altometals.com.au</u>

Mr Matthew Bowles Non-Executive Director T: +61 8 9381 2808 E: admin@altometals.com.au Mr Richard Monti Non-Executive Chairman T: +61 8 9381 2808 E: admin@altometals.com.au

Competent Persons Statement

The information in this Report that relates to current and historical Exploration Results is based on and fairly represents information prepared by Dr Changshun Jia, who is an employee of Alto Metals Ltd. Dr Jia is a Member of the Australian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Jia has provided his prior written consent to the form and context in which the exploration results and the supporting information is presented in this announcement.

Forward-Looking Statements

This release may include forward-looking statements. Forward-looking statements may generally be identified by the use of forward-looking verbs such as expects, anticipates, believes, plans, projects, intends, estimates, envisages, potential, possible, strategy, goals, objectives, or variations thereof or stating that certain actions, events or results may, could, would, might or will be taken, occur or be achieved, or the negative of any of these terms and similar expressions. which are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of Alto Metals Limited. Actual values, results or events may be materially different to those expressed or implied in this release. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements. Any forward-looking statements in this release speak only at the date of issue. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Alto Metals Limited does not undertake any obligation to update or revise any information or any of the forward-looking statements in this release or any changes in events, conditions or circumstances on which any such forwardlooking statement is based.

No New Information or Data

This release contains references to Mineral Resource estimates, which have been cross referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. With regards to Exploration Results, please refer to ASX announcement or WAMEX reference for full details on these exploration results. Alto Metals Ltd is not aware of any new information or data that materially effects the information in the said announcements.

Hole_ID	From(m)	To(m)	Interval(m)	Au(g/t)	Comment
SRC172					No significant results
SRC173	164	168	4	1.16	
SRC174	60	64	4	1.90	
	104	108	4	0.5	12m @ 3.0g/t Au
	108	112	4	7.00	
	112	116	4	1.51	
SRC175	188	192	4	0.69	
	200	204	4	0.99	
	208	212	4	2.71	12m @ 3.9g/t Au
	212	216	4	8.17	
	216	220	4	0.79	
	224	228	4	0.76	
SRC176	200	204	4	1.09	
	216	220	4	0.51	
	228	232	4	2.31	
	232	236	4	0.96	
	240	244	4	12.0	16m @ 5.5g/t Au
	244	248	4	4.55	
	248	252	4	4.48	
	252	256	4	0.77	

Table 1: Significant assay results for this release (0.5g/t Au cut-off)

Note: Four-metre composite results with Photon assay method only, 1m resplit to be assayed by fire assay.

Hole_ID	Hole_Type	m_East	m_North	m_RL	Dip	Azimith	m_MaxDepth	Prospect
SRC172	RC	746,380	6,883,698	472	-60	90	158	Lord Nelson
SRC173	RC	746,196	6,883,370	471	-60	90	218	Lord Nelson
SRC174	RC	746,089	6,883,561	472	-60	90	164	Lord Nelson
SRC175	RC	746,011	6,883,570	472	-60	90	230	Lord Nelson
SRC176	RC	745,973	6,883,619	472	-60	90	266	Lord Nelson

Figure 11. Location of gold prospects and historical mines at Sandstone Gold Project

Figure 12. Location of Sandstone Gold Project within the East Murchison Gold Field, WA

Table 3:	Sandstone	Gold	Project	Mineral	Resource	Estimate
Table J.	Janustone	GOIG	Troject	wincia	Resource	Louinate

Deposit	Category	Cut-off (g/t Au)	Tonnage (kt)	Grade (g/t Au)	Contained gold (oz)
Lord Henry ¹	Indicated	0.8	1,200	1.6	65,000
TOTAL INDICATED			1,200	1.6	65,000
Lord Henry ¹	Inferred	0.8	110	1.3	4,000
Lord Nelson ²	Inferred	0.8	980	2.2	68,000
Indomitable & Vanguard Camp ³	Inferred	0.3-0.5	2580	1.5	124,000
Havilah & Ladybird ⁴	Inferred	0.5	510	1.8	29,000
TOTAL INFERRED			4,180	1.7	225,000
TOTAL INDICATED AND INFERRED			5,380	1.7	290,000

Note 1. AME ASX Release 16 May 2017. "Maiden Lord Henry JORC 2012 Mineral Resource of 69,000oz."

Note 2. AME ASX Release 28 April 2017. "Lord Nelson Mineral Resource Increased to 68,000oz."

Note 3. AME ASX Release 25 Sept 2018. "Maiden Gold Resource at Indomitable & Vanguard Camps, Sandstone WA"

Note 4. AME ASX release 11 June 2019. "Alto increases Total Mineral Resource Estimate to 290,000oz, Sandstone Gold Project"

All material assumptions and technical parameters underpinning the 2017, 2018 and 2019 JORC (2012) Mineral Resource estimates in the above ASX announcements continue to apply and have not materially changed since last reported.

Table 4: Historical drill results for Lord Nelson previously released Troy Resources (using a 1.0g/t cutoff)

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TAC330	AC	746203	6883853	484	37	-90	0	11	17	6	2.56	69776
TAC331	AC	746157	6883953	485	27	-90	0	21	24	3	1.15	69776
TAC332	AC	746166	6883892	484	51	-90	0	24	33	9	5.33	69776
TAC333	AC	746192	6883891	484	63	-90	0	7	11	4	1.75	69776
TAC334	AC	746141	6883892	485	75	-90	0	12	16	4	1.12	69776
								42	43	1	1.16	
								44	45	1	1.30	
								46	49	3	1.87	
TAC335	AC	746116	6883892	486	57	-90	0	1	2	1	1.16	69776
								16	19	3	3.74	
								22	26	4	12.48	
								36	39	3	5.86	
TAC336	AC	746091	6883891	486	56	-90	0	17	18	1	2.54	69776
								21	36	15	4.28	
								41	47	6	2.69	
								52	53	1	1.28	
TAC337	AC	746066	6883892	487	59	-90	0	35	51	16	9.51	69776
TAC338	AC	746217	6883811	484	19	-90	0	6	14	8	4.21	69776
TAC339	AC	746191	6883810	484	31	-90	0	26	30	4	1.69	69776
TAC340	AC	746166	6883810	485	49	-90	0	0	2	2	1.45	69776
	-				-		-	5	6	1	1.07	
								19	20	1	2.76	
								26	27	1	4 57	
								37	49	12	3.09	
ΤΔC341	AC	746141	6883810	485	61	-90	0	0	5	5	2 58	69776
17(6541	7.0	740141	0000010	405		50		8	10	2	1 1/	05770
								16	10	2	1.14	
								29	38	9	1.01	
								16	61	15	2.70	
TAC342	٨٢	7/6116	6883810	486	56	-90	0	40	8	5	1 11	69776
TAC542		740110	0883810	400	50	-30	0	11	15	Л	2.24	03770
								10	10	4	1.24	
								24	19	1 2	I.34	
								24	20	2	1.90	
								29	31	2	1.89	
TAC242	10	740000	6002010	400	50	00	0	30	39	3	5.07	60776
TAC343	AC	746090	6883810	486	53	-90	0	38	45	/	1.14	69776
T10244		746066	6000000	407	74			49	53	4	3.51	60776
TAC344	AC	746066	6883808	487	/1	-90	0	60	61	1	1.28	69776
							-	64	/0	6	1.51	
TAC346	AC	746062	6884049	487	39	-90	0	22	32	10	2.72	69776
							-	37	38	1	1.37	
TAC349	AC	746141	6883673	486	53	-90	0	33	34	1	2.46	69776
								41	42	1	2.92	
								48	52	4	1.08	
TAC350	AC	746117	6883673	486	62	-90	0	35	36	1	1.34	69776
								43	44	1	2.05	
								53	60	7	1.11	
TAC351	AC	746093	6883672	487	79	-90	0	75	77	2	2.28	69776

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TAC352	AC	746168	6883668	485	50	-90	0	25	28	3	2.30	69776
								33	34	1	1.67	
TAC353	AC	746191	6883671	485	45	-90	0	12	13	1	1.55	69776
TAC354	AC	746241	6883630	484	20	-90	0	0	1	1	1.15	69776
TAC355	AC	746217	6883630	484	54	-90	0	28	30	2	3.60	69776
								43	44	1	7.73	
								50	52	2	1.60	
TAC356	AC	746192	6883630	485	47	-90	0	46	47	1	2.91	69776
TAC357	AC	746169	6883632	485	68	-90	0	35	36	1	1.61	69776
								66	67	1	2.24	
TAC358	AC	746141	6883629	486	55	-90	0	28	29	1	1.94	69776
								43	44	1	1.00	
								53	55	2	1.19	
TAC362	AC	746242	6883588	484	65	-90	0	2	6	4	1.08	69776
TAC363	AC	746218	6883590	485	65	-90	0	31	32	1	1.07	69776
TAC366	AC	746143	6883590	486	69	-90	0	41	42	1	1.46	69776
								68	69	1	2.07	
TAR1509	RAB	746463	6883881	479	64	-90	0	7	8	1	2.20	72098
TAR1510	RAB	746412	6883930	480	45	-90	0	7	9	2	1.36	72098
TAR646	RAB	746247	6883553	484	55	-90	0	28	34	6	1.71	69776
								38	39	1	1.68	
TAR649	RAB	746088	6883552	487	80	-90	0	44	45	1	5.65	69776
TAR653	RAB	746143	6883898	485	50	-90	0	15	16	1	4.20	69776
								28	29	1	2.60	
					= 0		-	35	38	3	1.86	
TAR654	RAB	746144	6883878	485	52	-90	0	24	30	6	1.97	69776
TARCEE	DAD	746442	6002054	405	5.4	00	0	41	42	1	3.70	60776
TAK055	KAB	746143	6883854	485	54	-90	0	11	4	2	1.06	69776
								10	13	2	1.85	
TADGEG	DAD	746141	6002022	10E	50	00	0	18	20	6	3.94	60776
TAROSO	RAD	740141	0003022	405	50	-90	0	10	14	0	2.00	09770
								20	20	4	2.99	
								23 17	50	3	2.00	
TAR657	BVB	7/6089	6883851	486	61	-90	0	21	25	3	1 22	60776
141057	ILAD	740005	0005051	400	01	50	0	31	61	30	10 31	05770
TAR658	RAB	746109	6883851	486	45	-90	0	2	4	2	1 79	69776
17 11 000	10.00	710105	0000001	100	15	50	Ŭ	8	17	9	8.92	03770
								25	37	12	2.04	
TAR659	RAB	746133	6883849	485	50	-90	0	9	10	1	1.25	69776
								16	28	12	1.30	
								37	41	4	1.72	
								46	47	1	3.25	
TAR660	RAB	746154	6883851	485	45	-90	0	15	20	5	1.47	69776
				_		_		30	34	4	1.09	-
						1		39	45	6	7.87	
TAR661	RAB	746181	6883856	484	56	-90	0	11	27	16	1.92	69776
TAR662	RAB	746075	6883754	487	66	-90	0	65	66	1	1.42	69776
TAR663	RAB	746126	6883755	485	42	-90	0	18	25	7	5.61	69776
								28	42	14	4.84	

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TAR665	RAB	746088	6883964	486	33	-90	0	9	15	6	17.19	69776
								18	26	8	3.19	
TAR666	RAB	746110	6883970	486	44	-90	0	5	9	4	42.93	69776
								17	18	1	1.06	
								21	22	1	4.75	
TAR667	RAB	746137	6883965	485	45	-90	0	17	18	1	1.78	69776
								25	26	1	1.05	
TAR708	RAB	746291	6883453	484	83	-90	0	25	30	5	1.45	69776
TAR971	RAB	746442	6883853	479	53	-90	0	7	9	2	1.94	69776
TAR972	RAB	746392	6883851	480	35	-90	0	7	9	2	1.22	69776
TDD013	DD	746142	6883772	485	90	-90	0	25.4	35.8	10.4	2.92	69776
								38.1	42.2	4.1	1.70	
								75.3	81	5.7	12.37	
TDD015	DD	746080	6883872	486	116	-90	0	75	83	8	2.35	69776
								86	95	9	2.43	
TDD017	DD	746080	6883811	486	149.1	-90	0	105	106	1	1.73	69776
TDD018	DD	746100	6883753	486	75.5	-90	0	34.8	37	2.2	1.12	69776
								40	44.1	4.1	4.59	
TDD024	DD	746042	6883752	487	115	-90	0	95	96	1	1.01	69776
TDD027	DD	746121	6883812	485	110	-90	0	3	4	1	1.34	69776
								14	21	7	11.60	
								24	46	22	3.51	
								59	63.7	4.7	1.42	
								65.8	67.5	1.7	1.38	
								73.2	81	7.8	14.10	
TDD037	DD	745975	6883750	489	264.7	-90	0	228	229	1	1.03	82122
								233	237	4	1.89	
								240	241.5	1.5	2.61	
								250	251	1	1.14	
TDD038	DD	745956	6883949	490	231.6	-90	0	144	145	1	1.77	82122
TRC208	RC	746069	6883753	487	100	-90	0	72	87	15	1.72	69776
TRC209	RC	746111	6883753	486	96	-90	0	21	22	1	2.12	69776
								26	40	14	2.55	
								48	62	14	1.79	
					100		•	//	/8	1	1.64	
TRC210	RC	746151	6883753	485	100	-90	0	4	6	2	2.06	69776
								30	33	3	1.89	
								36	39	3	1.37	
								49	50	1	2.14	
TDC211	DC	746090	6000050	496	00	00	0	70	22	1	1.51	60776
TRCZII	RC	746080	6883852	486	90	-90	0	31	32	1	2.01	69776
								30	60	24	9.80	
TRC212	DC	746142	6002052	405	00	00	0	80	2	1	1.13	60776
TRUZIZ	ĸu	740143	0003052	400	80	-90	U	2 7	3 0	1	1.33	09//0
								10	0 16	1	2.54	
								24	27	4	3.22	
								24	40	3 2	4.4/ 2 00	
					1			57	40 EE	<u>م</u>	3.00 9 nn	
					1			40		3	3.05	
		1										

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC213	RC	746058	6883952	487	102	-90	0	27	54	27	2.32	69776
								65	67	2	1.44	
								82	83	1	1.70	
TRC214	RC	746076	6883951	487	116	-90	0	16	17	1	1.30	69776
								20	30	10	7.89	
								40	43	3	1.38	
								48	51	3	1.33	
								58	64	6	1.02	
								79	97	18	6.22	
TRC215	RC	746091	6883712	486	120	-90	0	54	72	18	2.07	69776
								76	89	13	2.31	
TRC216	RC	746133	6883712	486	102	-90	0	25	26	1	1.24	69776
								27	28	1	1.13	
								39	40	1	1.37	
								41	42	1	1.22	
								85	87	2	1.53	
								99	100	1	1.07	
TRC217	RC	746171	6883712	485	80	-90	0	30	36	6	1.78	69776
								64	68	4	14.19	
								71	74	3	1.82	
TRC218	RC	746068	6883992	487	102	-90	0	18	29	11	4.04	69776
								34	47	13	5.75	
								50	62	12	2.84	
TRC219	RC	746107	6883991	486	80	-90	0	2	6	4	1.55	69776
								57	58	1	1.46	
TRC220	RC	746061	6883852	487	110	-90	0	41	45	4	2.59	69776
								48	55	7	38.60	
TRC221	RC	746041	6883853	487	144	-90	0	55	56	1	1.28	69776
								60	65	5	8.40	
TRC223	RC	746044	6883892	487	102	-90	0	51	59	8	7.17	69776
TRC224	RC	746065	6883892	487	102	-90	0	35	47	12	8.58	69776
								50	51	1	1.08	
								56	57	1	2.31	
								71	72	1	1.16	
								76	77	1	1.36	
TRC225	RC	746132	6883812	485	90	-90	0	0	5	5	2.00	69776
								15	23	8	1.82	
								27	28	1	2.84	
								31	34	3	5.33	
								38	41	3	1.//	
								45	46	1	1.04	
TD 0000	56	746050	6004050	407	0.6		•	60	72	12	12.29	60776
TRC229	RC	746050	6884052	487	96	-90	0	22	23	1	2.00	69776
								27	33	6	1.86	
								61	62	1	2.40	
TROOM		746070	C004000	407	440	00		82	86	4	1.38	60776
TRC231	КC	/460/2	6884033	487	110	-90	U	6	13	/	1.53	69776
TRODO	50	746054	(004600	407	420	00	•	38	41	3	1.81	60776
TRC232	RC	746051	6884033	487	120	-90	0	31	34	3	2.70	69776
								60	66	Ь	6.43	

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC233	RC	746132	6883993	485	70	-90	0	24	26	2	1.63	69776
								42	45	3	2.29	
TRC234	RC	746091	6883992	486	90	-90	0	12	18	6	7.59	69776
								28	29	1	1.12	
								32	34	2	1.52	
								40	41	1	1.27	
								46	47	1	1.29	
TRC235	RC	746046	6883992	487	120	-90	0	37	63	26	2.22	69776
TRC236	RC	746036	6883952	488	160	-90	0	47	48	1	1.28	69776
								136	140	4	1.75	
TRC237	RC	746080	6883892	486	120	-90	0	23	43	20	9.10	69776
								66	67	1	18.40	
								70	76	6	2.57	
								87	88	1	3.94	
								96	102	6	2.03	
TRC238	RC	746021	6883851	488	100	-90	0	74	75	1	1.51	69776
TRC239	RC	746101	6883852	486	85	-90	0	11	18	7	1.17	69776
								22	32	10	1.51	
								35	36	1	1.54	
TRC240	RC	746121	6883852	485	80	-90	0	5	6	1	1.04	69776
								8	9	1	1.66	
								16	21	5	2.49	
								25	26	1	4.47	
								29	32	3	3.09	
								39	41	2	1.41	
								53	54	1	2.19	
								60	71	11	12.73	
TRC241	RC	746161	6883853	485	70	-90	0	11	16	5	1.52	69776
								26	27	1	6.98	
								31	40	9	5.99	
TRC242	RC	746050	6883812	487	110	-90	0	58	59	1	1.84	69776
	_							68	72	4	5.62	
TRC243	RC	746091	6883812	486	105	-90	0	34	35	1	1.23	69776
								40	61	21	4.92	
								81	82	1	1.63	
TD 62 44	50	746472	6000040	40.4	66		0	86	8/	1	1.28	60776
TRC244	RC	/461/2	6883812	484	66	-90	0	26	36	10	2.01	69776
TD 62 45		746052	6002752	407	120	00		41	45	4	3.79	60776
TRC245	RC	746052	6883752	487	126	-90	0	88	89	1	3.80	69776
TRC246	RC	746090	6883753	486	96	-90	0	18	19	1	1.30	69776
								49	54	5	2.89	
TDC247	DC	746121	6002752	405	120	00	0	04	25	2	2.15	60776
160247	ĸL	740131	0003/52	485	120	-90	U	24	25 E1	1 21	2.70	09//0
								30	02	21	3.70	
TRC249	PC	7/6071	6802712	/107	120	-00	0	24	92		1.20	60776
TRCZ40	ΝC	740071	0003712	407	130	-30	0	70	35	2	2.59	09770
								07	08	1	1.05	
TRC250	RC	746086	6883677	<u>1</u> 87	10/	_م0	Ο	60	61	1	2 10	69776
11(230	inc.	7-10000	0003072	+07	104	-30	0	76	92	16	1 21	03770
						I		70	ĴΖ	10	1.21	

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC251	RC	746126	6883672	486	126	-90	0	42	43	1	1.11	69776
								53	54	1	1.46	
								65	69	4	1.05	
TRC253	RC	746096	6883632	487	114	-90	0	49	50	1	1.07	69776
								77	78	1	1.36	
								79	84	5	1.50	
								91	94	3	1.47	
TRC254	RC	746077	6883632	487	150	-90	0	103	106	3	2.07	69776
								109	111	2	1.23	
								127	129	2	1.24	
								139	140	1	1.35	
TRC255	RC	746106	6883672	486	102	-90	0	59	63	4	1.41	69776
								71	72	1	1.04	
TRC256	RC	746067	6883672	487	125	-90	0	77	78	1	1.25	69776
								80	85	5	1.17	
								88	90	2	1.67	
								95	98	3	1.14	
								108	114	6	1.15	
TRC257	RC	746192	6883712	484	75	-90	0	47	59	12	2.41	69776
TRC258	RC	746112	6883712	486	113	-90	0	40	45	5	1.69	69776
								58	59	1	2.17	
								103	104	1	1.27	
TRC260	RC	746152	6883812	485	75	-90	0	0	2	2	1.66	69776
								6	7	1	2.19	
								27	28	1	1.06	
								45	48	3	2.65	
								52	59	7	17.24	
TRC261	RC	746111	6883812	486	100	-90	0	3	4	1	1.00	69776
								12	18	6	1.29	
								25	35	10	1.86	
								38	42	4	2.82	
								56	73	17	2.53	
								76	77	1	1.59	
								85	88	3	10.92	
TRC262	RC	746073	6883812	487	108	-90	0	19	20	1	1.50	69776
								46	49	3	1.42	
								54	72	18	4.47	
								77	78	1	1.08	
								88	95	7	1.33	
								102	103	1	1.24	
TRC263	RC	746002	6883852	488	120	-90	0	97	98	1	1.00	69776
TRC264	RC	746157	6883892	485	72	-90	0	4	5	1	1.82	69776
								24	25	1	1.46	
								30	37	7	6.48	
TRC265	RC	746127	6883893	485	80	-90	0	19	20	1	1.43	69776
								29	30	1	3.33	
								35	36	1	1.09	
TRC267	RC	746097	6883951	486	86	-90	0	6	9	3	3.13	69776
								13	20	7	6.94	
								51	52	1	3.95	
								72	78	6	5.33	

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC268	RC	746180	6883852	484	60	-90	0	10	16	6	1.03	69776
								22	24	2	5.99	
TRC269	RC	746032	6883812	487	108	-90	0	82	90	8	2.54	69776
TRC271	RC	746115	6883852	486	150	-90	0	8	12	4	3.45	69776
								16	19	3	7.73	
								27	55	28	28.14	
								63	64	1	1.03	
TRC272	RC	746198	6883852	484	120	-90	0	13	17	4	6.13	69776
								20	31	11	2.99	
								34	40	6	12.90	
TRC273	RC	746027	6883992	488	110	-90	0	45	48	3	1.55	69776
								63	66	3	3.41	
TRC274	RC	746032	6884032	488	120	-90	0	51	58	7	3.10	69776
TRC275	RC	746032	6884052	488	140	-90	0	46	49	3	1.53	69776
TRC282	RC	746271	6883452	485	90	-90	0	37	41	4	1.05	69776
								44	45	1	5.28	
								59	60	1	1.65	
TRC283	RC	746232	6883451	485	130	-90	0	72	74	2	1.26	69776
								82	88	6	2.51	
								92	95	3	3.59	
TRC284	RC	745980	6883852	489	150	-90	0	113	116	3	8.09	69776
TRC285	RC	746115	6883951	486	100	-90	0	8	14	6	2.47	69776
								39	40	1	1.00	
								44	45	1	1.35	
								49	52	3	4.01	
								58	70	12	2.50	
TRC286	RC	746170	6883773	485	70	-90	0	24	33	9	1.75	69776
	-							42	57	15	4.24	
TRC287	RC	746150	6883773	485	89	-90	0	1	3	2	1.09	69776
								21	25	4	2.63	
								28	42	14	1.95	
							•	58	75	17	19.55	
1RC288	RC	746131	6883772	485	96	-90	0	4	/	3	1.28	69776
								29	48	19	2.06	
TRCOOR	5	746444	6002772	100	120	00	0	86	90	4	35.99	60776
TRC289	RC	746111	6883772	486	130	-90	0	21	22	1	1.06	69776
трсроо	PC	746001	6002772	196	150	00	0	32	38	20	2.57	60776
TRC290	ĸĊ	746091	0883772	480	150	-90	0	50	43	/	1.37	09770
								52	55		1.20	
								00	01	1	1.97	
								102	10/	- <u>-</u> 2	2 72	
								117	119	1	2.75 2.80	
								122	179	- <u>-</u>	5 20	
TRC202	PC	7/6121	6882021	185	۵۵	-00	0	5	6	1	1 01	69776
11(232	ne	740131	0003331	405	30	-30	0	56	57	1	1.91	03770
TRC202	RC	746111	6882021	486	80	_م0	0	18	21	2	1.05	69776
1110235	ne	, 40111	0000001	-100	00		0	48	60	12	2.02	0,770
								67	70	3	3.12	
						<u> </u>		0,	,,,	5	5.12	
		1		I		I			I			

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC294	RC	746091	6883932	486	95	-90	0	13	16	3	1.80	69776
								19	23	4	2.57	
								40	41	1	1.12	
								44	45	1	2.04	
								48	51	3	1.76	
								87	88	1	1.31	
TRC295	RC	746071	6883932	487	100	-90	0	22	39	17	6.63	69776
								70	74	4	1.09	
								82	87	5	2.22	
TRC296	RC	746051	6883932	487	100	-90	0	40	52	12	5.12	69776
							-	62	63	1	1.18	
								67	68	1	2.37	
TRC300	RC	746192	6883772	484	70	-90	0	33	44	11	3.58	69776
TRC302	RC	746150	6883992	485	70	-90	0	33	34	1	2.71	69776
TRC303	RC	746006	6883991	488	110	-90	0	74	79	5	1.55	69776
TRC304	RC	745962	6883851	489	150	-90	0	129	131	2	3.61	69776
								136	138	2	1.27	
TRC305	RC	746211	6883712	484	76	-90	0	28	29	1	1.20	69776
								33	36	3	1.67	
								40	44	4	2.48	
TRC308	RC	746031	6883933	488	125	-90	0	56	60	4	1.14	69776
								63	68	5	1.90	
TRC309	RC	746173	6883931	484	80	-90	0	24	32	8	4.28	69776
TRC311	RC	746040	6884091	487	80	-90	0	21	27	6	7.10	69776
TD 6343		746426	6000050	405			•	36	38	2	1.52	60776
TRC312	RC	746136	6883950	485	80	-90	0	14	1/	3	6.30	69776
TDC244	D.C.	746404	6002622	405	102	- 00	0	52	54	2	5.65	60776
180314	RC	746191	6883632	485	102	-90	0	48	49	1	1.23	69776
TRC216		746222	6002712	101	70	00	0	10	10	1	1.07	60776
INCOLO	RC.	740252	0005712	404	70	-90	0	22	21	 o	2.25	09770
TPC219	PC	746211	6002772	лол	70	90	0	14	15	0	1 22	60776
11/2310	nc	740211	0883772	404	70	-90	0	20	22	2	1.55	09770
								20	3/	7	2.00	
TRC319	BC	746232	6883771	//83	78	-90	0	/ 	10	, 1	1.36	69776
Incoro	ne	740232	0003771	405	70	50	0	12	13	1	1.00	05770
TRC320	RC	746207	6883852	484	70	-90	0	10	14	4	2 14	69776
TRC321	RC	746157	6883950	485	70	-90	0	35	37	2	2.10	69776
TRC322	RC	746177	6883950	484	70	-90	0	21	24	3	3.92	69776
TRC324	RC	746146	6884053	485	70	-90	0	9	10	1	1.96	69776
TRC328	RC	746191	6883451	486	150	-90	0	125	131	7	3.13	69776
TRC329	RC	746192	6883752	484	80	-90	0	24	25	1	3.07	69776
	-			_				28	29	1	4.97	
								45	48	3	1.81	
TRC331	RC	746017	6883892	488	100	-90	0	72	83	11	3.26	69776
TRC333	RC	746022	6884092	488	80	-90	0	52	53	1	2.03	69776
TRC334	RC	746042	6884132	487	80	-90	0	11	15	4	2.80	69776
TRC336	RC	746190	6883931	484	70	-90	0	16	19	3	23.79	69776

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC337	RC	746152	6883931	485	70	-90	0	20	21	1	1.18	69776
								23	24	1	2.46	
								27	28	1	1.53	
								40	42	2	5.31	
TRC338	RC	746186	6883672	485	90	-90	0	16	17	1	8.64	69776
								61	62	1	4.71	
								75	77	2	5.74	
TRC339	RC	746051	6883772	487	180	-90	0	83	86	3	1.18	69776
								125	126	1	1.08	
								128	129	1	1.56	
								131	136	5	1.22	
								167	173	6	16.35	
TRC340	RC	746182	6883792	484	70	-90	0	19	22	3	1.80	72098
								25	26	1	2.47	
								31	38	7	4.47	
								43	44	1	3.78	
TRC341	RC	746161	6883792	485	90	-90	0	0	2	2	1.56	72098
								22	31	9	2.94	
								50	61	11	22.88	
								79	81	2	16.37	
TRC342	RC	746141	6883792	485	130	-90	0	0	4	4	3.91	69776
								16	20	4	2.11	
								23	24	1	1.56	
								28	40	12	1.73	
								45	50	5	7.66	
								53	60	7	1.12	
								63	76	13	9.13	
TRC343	RC	746122	6883792	485	150	-90	0	27	28	1	4.73	69776
								35	42	7	2.08	
								85	88	3	5.36	
TRC352	RC	746018	6883933	488	120	-90	0	72	78	6	1.92	69776
TRC363	RC	746062	6883872	487	160	-90	0	42	59	17	6.95	72098
								63	84	21	4.50	
								121	122	1	13.70	
TRC364	RC	746041	6883872	487	160	-90	0	54	62	8	13.32	72098
								66	67	1	1.12	
								139	140	1	8.20	
TRC365	RC	746021	6883872	488	180	-90	0	75	78	3	4.88	72098
								158	161	3	7.62	
TRC366	RC	746221	6883832	483	60	-90	0	7	9	2	2.07	72098
TRC367	RC	746200	6883832	484	60	-90	0	12	13	1	3.08	72098
								23	26	3	1.67	
TRC368	RC	746181	6883832	484	70	-90	0	6	7	1	1.15	72098
								12	13	1	1.96	
								17	18	1	2.53	
								25	26	1	1.50	
								32	36	4	3.30	
TRC369	RC	746161	6883832	485	80	-90	0	16	17	1	2.96	72098
								20	24	4	9.75	
								27	45	18	3.94	

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC370	RC	746141	6883831	485	90	-90	0	0	5	5	1.49	72098
								22	28	6	2.29	
								34	35	1	1.22	
								37	38	1	1.29	
								40	41	1	1.31	
								46	60	14	4.47	
TRC371	RC	746123	6883831	485	110	-90	0	0	3	3	2.12	72098
								9	18	9	1.69	
								27	29	2	14.15	
								63	71	8	21.70	
TRC372	RC	746101	6883831	486	120	-90	0	22	45	23	2.69	72098
TRC373	RC	746081	6883831	486	140	-90	0	6	7	1	1.47	72098
								31	32	1	3.03	
								35	36	1	1.19	
								39	40	1	1.11	
								44	59	15	11.20	
								68	75	7	3.06	
								103	104	1	1.08	
								116	123	7	3.43	
TRC374	RC	746062	6883831	487	168	-90	0	52	62	10	6.06	72098
								95	96	1	1.83	
								99	104	5	13.00	
								114	118	4	4.59	
								125	134	9	1.24	
TRC375	RC	746042	6883831	487	170	-90	0	13	15	2	2.49	72098
								58	59	1	2.11	
								66	70	4	7.83	
TRC376	RC	746021	6883830	488	126	-90	0	81	85	4	4.75	72098
TRC377	RC	746240	6883792	483	60	-90	0	6	8	2	8.23	72098
TRC378	RC	746222	6883792	483	60	-90	0	4	5	1	1.10	72098
								10	11	1	1.22	
								16	17	1	2.51	
								20	28	8	2.25	
TRC379	RC	746201	6883792	484	60	-90	0	26	35	9	1.78	72098
TRC380	RC	746102	6883791	486	150	-90	0	23	24	1	3.03	69776
								33	58	25	2.34	
								102	103	1	1.18	
TRC381	RC	746081	6883791	486	160	-90	0	30	35	5	1.02	69776
								43	45	2	2.71	
								53	69	16	3.82	
								74	81	7	2.14	
								84	85	1	1.27	
								111	112	1	4.46	
TRC382	RC	746061	6883791	487	170	-90	0	71	73	2	2.55	69776
								80	81	1	1.22	
								93	94	1	2.94	
								99	101	2	1.44	
								105	106	1	1.91	
								121	127	6	5.59	
								135	143	8	1.73	

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC383	RC	746042	6883791	487	180	-90	0	82	99	17	3.22	72098
								164	166	2	9.50	
TRC384	RC	746021	6883791	488	198	-90	0	85	86	1	2.82	72098
								90	91	1	1.11	
								93	102	9	3.95	
								112	113	1	2.79	
								182	184	2	1.48	
TRC385	RC	746202	6883911	484	60	-90	0	8	9	1	2.38	72098
TRC386	RC	746180	6883911	484	60	-90	0	16	25	9	2.20	72098
TRC387	RC	746161	6883911	485	60	-90	0	32	35	3	2.72	72098
TRC389	RC	746121	6883911	486	90	-90	0	9	10	1	1.81	72098
								14	22	8	7.05	
								40	41	1	1.49	
								44	45	1	1.94	
								48	49	1	1.03	
TRC390	RC	746101	6883911	486	100	-90	0	5	6	1	2.84	72098
								11	20	9	12.04	
								43	50	7	2.29	
								64	65	1	1.62	
								78	83	5	4.19	
TRC391	RC	746081	6883911	486	120	-90	0	22	34	12	26.96	72098
								38	40	2	1.42	
								70	71	1	1.53	
								77	82	5	3.19	
								91	99	8	5.35	
TRC392	RC	746060	6883911	487	130	-90	0	32	42	10	5.63	72098
								71	77	6	5.06	
								113	116	3	2.68	
TRC393	RC	746042	6883911	487	150	-90	0	50	56	6	7.10	72098
								129	130	1	4.20	
TRC394	RC	746022	6883911	488	168	-90	0	68	79	11	9.46	72098
								145	150	5	4.66	
TRC397	RC	746151	6883971	485	70	-90	0	20	22	2	1.79	72098
TRC398	RC	746132	6883971	485	70	-90	0	23	24	1	24.25	72098
								31	32	1	1.27	
TRC399	RC	746111	6883971	486	90	-90	0	5	6	1	1.86	72098
								59	64	5	1.59	
TRC400	RC	746092	6883971	486	100	-90	0	8	22	14	3.45	72098
								26	27	1	1.48	
								43	45	2	1.29	
								70	75	5	10.54	
								79	80	1	1.31	
TRC401	RC	746071	6883970	487	120	-90	0	20	36	16	18.11	72098
								40	43	3	5.69	
								47	48	1	1.29	
								51	54	3	1.29	
								64	66	2	1.91	
								80	97	17	5.89	
											-	

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC402	RC	746051	6883970	487	138	-90	0	36	46	10	2.58	72098
								49	53	4	1.30	
								58	59	1	1.01	
								68	76	8	1.67	
								111	113	2	1.59	
TRC403	RC	746032	6883970	488	150	-90	0	131	132	1	2.64	72098
TRC404	RC	746142	6884012	485	60	-90	0	16	18	2	2.40	72098
TRC405	RC	746121	6884012	485	70	-90	0	44	46	2	1.33	72098
TRC407	RC	746082	6884012	486	90	-90	0	7	11	4	3.49	72098
								15	21	6	1.51	
								26	31	5	1.89	
								36	41	5	1.37	
TRC408	RC	746060	6884012	487	100	-90	0	22	48	26	3.45	72098
								51	55	4	2.88	
								89	90	1	1.13	
TRC409	RC	746041	6884012	487	124	-90	0	40	50	10	3.46	72098
								60	61	1	1.97	
								91	92	1	1.00	
TRC410	RC	746021	6884012	488	140	-90	0	67	72	5	9.54	72098
								98	101	3	1.49	
								130	131	1	1.47	
TRC411	RC	746223	6883731	484	60	-90	0	22	31	9	3.22	72098
								36	37	1	4.43	
TRC412	RC	746200	6883732	484	70	-90	0	26	27	1	5.40	72098
								34	36	2	4.67	
								39	41	2	1.78	
TRC413	RC	746181	6883731	485	86	-90	0	54	58	4	8.57	72098
TRC414	RC	746161	6883731	485	110	-90	0	31	34	3	1.64	72098
TRC415	RC	746142	6883731	485	107	-90	0	25	26	1	2.25	72098
								31	32	1	2.00	
TRC416	RC	746121	6883731	486	137	-90	0	28	33	5	5.14	72098
								40	44	4	1.48	
								50	52	2	3.49	
								57	59	2	1.67	
TRC417	RC	746100	6883731	486	126	-90	0	45	46	1	2.19	72098
								51	65	14	1.50	
								79	80	1	1.14	
								114	115	1	1.32	
TRC418	RC	746081	6883731	487	174	-90	0	16	17	1	1.21	72098
								58	63	5	3.00	
								69	73	4	1.46	
								85	88	3	1.23	
								127	128	1	1.46	
								138	149	11	2.78	
TRC419	RC	746061	6883731	487	186	-90	0	77	97	20	4.11	72098
								106	107	1	1.28	
TRC420	RC	746236	6883692	484	60	-90	0	31	35	4	1.01	72098

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC421	RC	746218	6883692	484	83	-90	0	18	19	1	1.08	72098
								32	34	2	1.28	
								37	38	1	1.28	
								40	41	1	1.40	
								45	47	2	2.57	
TRC422	RC	746196	6883692	484	80	-90	0	58	61	3	12.52	72098
TRC423	RC	746177	6883692	485	100	-90	0	15	17	2	6.99	72098
								26	27	1	1.13	
								37	39	2	1.12	
								40	41	1	1.01	
								76	77	1	1.41	
TRC424	RC	746158	6883692	485	107	-90	0	19	22	3	1.03	72098
								25	26	1	1.21	
								46	47	1	1.74	
								94	99	5	1.81	
TRC425	RC	746138	6883692	486	125	-90	0	18	20	2	1.95	72098
								27	28	1	1.03	
								31	32	1	1.11	
								41	42	1	1.98	
								49	51	2	1.35	
								54	55	1	2.18	
TRC426	RC	746116	6883691	486	159	-90	0	22	23	1	1.75	72098
								42	44	2	2.84	
								64	66	2	1.20	
								104	106	2	1.19	
								127	129	2	2.21	
TRC432	RC	746041	6884071	487	110	-90	0	27	32	5	3.02	72098
TRC433	RC	746021	6884071	488	150	-90	0	55	57	2	11.67	72098
TRC434	RC	746051	6884111	487	82	-90	0	57	58	1	1.27	72098
TRC435	RC	746031	6884112	488	96	-90	0	26	30	4	9.18	72098
TRC437	RC	746171	6883753	485	75	-90	0	29	30	1	1.17	69776
								50	54	4	1.09	
								59	60	1	1.01	
TRC438	RC	746111	6883852	486	90	-90	0	0	1	1	1.14	69776
								3	4	1	1.12	
								7	18	11	3.42	
								22	23	1	1.21	
								24	28	4	2.33	
								31	32	1	1.34	
								39	40	1	1.15	
								73	78	5	10.38	
TRC439	RC	746091	6883852	486	110	-90	0	25	42	17	9.27	69776
								49	50	1	1.40	
								58	59	1	2.08	
								69	70	1	1.65	
								82	84	2	1.35	
TRC440	RC	746102	6883812	486	125	-90	0	26	27	1	1.86	69776
								30	56	26	3.83	
								69	75	6	8.19	
								98	102	4	1.36	

Hole_ID	Hole	Easting	Northing	RL	Depth	Dip	Azi	From (m)	To (m)	Interval (m)	g/t Au	WAMEX
TRC441	RC	746226	6883812	483	125	-90	0	6	13	7	3.53	69776
								19	27	8	3.12	
								40	42	2	2.18	
TRC443	RC	746166	6883672	485	108	-90	0	19	21	2	3.22	72098
								26	33	7	2.25	
								42	43	1	2.12	
								48	53	5	2.21	
TRC444	RC	746010	6883773	488	252	-90	0	103	104	1	1.59	72098
								136	137	1	2.88	
								166	174	8	2.96	
								178	191	13	3.23	
								202	203	1	1.28	
TRC448	RC	746227	6883672	484	66	-90	0	25	26	1	1.00	72098
TRC449	RC	745996	6883891	489	204	-90	0	98	100	2	5.00	72098
TRC450	RC	746001	6883791	488	210	-90	0	110	112	2	5.75	72098
								121	122	1	1.57	
								125	126	1	1.41	
								128	132	4	1.78	
								142	143	1	1.18	
								148	149	1	1.32	
								153	156	3	1 21	
TRC454	RC	746312	6883352	484	108	-90	0	90	91	1	1 31	72098
TRC/61	RC	746000	6883913	180	198	-90	0	92	97	5	10.39	72098
TRC507	RC	740000	6883551	486	120	-90	0	36	37	1	1 /6	72008
TRC5//3	RC	746405	6883876	480	120	-90	0	5	57	1	2.02	72008
		740403	6992772	400	150	- 30	0	50	60	1	1.02	60776
TREDZ51		740070	0003772	407	133	-30	0	71	00 91	10	2 11	03770
								117	124.9	70	7 70	
								120	124.0	1	1.00	
								120	152	1	7.00	
		746022	6002772	407	210	00	0	17	192	1	1.20	72009
TRCD445	עט	740032	0883772	487	210	-90	0	17	18	1	1.31	72098
								90	91	1	1.04	
								94	90	2 1	3.04	
								159.1	100.1	1	1.90	
	DD	740005	(002772	400	1 4 7 1	00	0	1/0.0	52	- 1	19.18	72000
TRCD457	עט	740085	0883772	480	147.1	-90	0	45	52	2	1.43	72098
								50	58	2	4.02	
								76	//	1	1.27	
								79	83	4	1.25	
							-	86	90	4	2.40	
TVR1/9/	RAB	746142	6883950	485	36	-90	0	9	11	2	2.43	69776
TVR1822	RAB	746144	6883861	485	50	-90	0	13	15	2	1.44	69776
					0.5		-	23	26	3	1.36	
TVR1885	RAB	746445	6883829	479	20	-90	0	7	8	1	2.00	69776
TVR1886	RAB	746422	6883829	480	20	-90	0	5	8	3	1.41	69776
TVR1893	RAB	746443	6883881	479	20	-90	0	7	8	1	1.05	69776
TVR1894	RAB	746420	6883881	480	20	-90	0	5	6	1	1.87	69776
TVR1895	RAB	746395	6883881	480	20	-90	0	5	8	3	3.34	69776
TVR1899	RAB	746420	6883903	480	20	-90	0	5	10	5	1.49	69776

JORC Code, 2012 Edition – Table 1 report Lord Nelson - Sandstone Project JORC (2012) Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Item	Comments
Sampling techniques	 2020 RC drilling by Alto Metals Ltd used similar sampling techniques as Troy Resources, except a for a 4 metre composite sample being collected for laboratory assay.
	• From the bulk 1m sample, a 4 metre composite sample was collected using a split PVC scoop and then submitted to the laboratory for analysis.
	 RC 1m splits were submitted (2016 and 2019 RC program) or are to be submitted (the current 2020 RC program) to the laboratory if the composite sample assay values are equal to or greater than 0.2g/t Au.
	 All drilling up to 2010 was carried out by Troy Resources NL (Troy).
	 Troy's RC samples were passed directly from the in-line cyclone through a rig mounted multi-tier riffle splitter. Samples were collected in 1 m intervals into bulk plastic bags and 1 m calico splits (which were retained for later use).
	 From the bulk sample, a 5 m composite sample was collected using a split PVC scoop and then submitted to the laboratory for analysis. The 1 m calico splits were submitted to the laboratory if the composite sample returned assay values equal to or greater than 0.2 g/t Au. In certain cases, selected samples from some holes were passed from the cyclone through a rig mounted multi-tier riffle splitter, and samples collected into calico bags at 1 m intervals were submitted directly for analyses. The remaining bulk sample was placed on the ground in 1 m intervals.
	 Diamond cores were marked on the core by the geologist according to geological intervals. The core was cut in half by Troy field technicians, with half being placed in a pre-numbered calico bag and the other half returned to the core tray. For duplicate samples the core to be submitted for analysis is quartered.
Drilling techniques	 Alto's 2019 RC drilling program used a KWL 350 drill rig with an onboard 1100/350 compressor using a sampling hammer of nominal 140mm hole.
	 The 2017 Mineral Resource Estimate for Lord Nelson was based on 260 reverse circulation (RC) and 18 diamond drill holes (DDH) and 18 rotary air blast (RAB) drill holes. RAB drill holes were used to guide mineralisation interpretation and excluded for estimation purposes.
	• For diamond drilling, triple tube coring was used due to the friable nature of the oxide zone lithologies being drilled. The angled core holes were orientated where possible using a crayon marker spear tool and the holes were regularly surveyed using an Eastman downhole camera. Due to the deeply weathered, soft and friable nature of the core, most of the orientations either failed or could not be pieced together over any useful continuous lengths.
Drill sample	For Alto's 2020 drilling program, RC samples generally had good recovery.
recovery	Recovery was estimated as a percentage and recorded on field sheets prior to entry into the database.
	 Snowden has no quantitative information on sample recovery for TRC holes.
	Review of the available DDH core in the core yard shows generally good recovery.
Logging	Alto's RC drill chips were sieved from each 1m sample and geologically logged.
	Washed drill chips from each 1m sample were stored in chip trays and photographed.
	 Geological logging of drill hole intervals was carried out with sufficient detail to meet the requirements of resource estimation
	 Qualitative geological logging of most Troy drill hole intervals was done with sufficient detail to meet the requirements of resource estimation.
Subsampling	Alto has not undertaken any diamond coring at Lord Nelson.
techniques and sample preparation	 Alto's 4m and 1m RC samples (pre 2019) were transported to MinAnalytical Laboratory Services Australia Pty Ltd located in Canning Vale, Western Australia, who were responsible for sample preparation and assaying for all RC drill hole samples and associated check assays.
	 MinAnalytical is certified to NATA in accordance with ISO 17025:2005 ISO requirements for all related inspection, verification, testing and certification activities.
	 3kg 4m composite RC samples were dried and then ground in an LM5 ring mill for 85% passing 75 Microns.
	 Alto's 4m RC samples (2020 current RC program) Samples submitted for analysis via Photon assay technique were dried, crushed to nominal 85% passing 2mm, linear split and a nominal 500g sub sample taken (method code PAP3512R)
	 The 500g sample is assayed for gold by PhotonAssay (method code PAAU2) along with quality control samples including certified reference materials, blanks and sample

	duplicates.
	About the MinAnalytical Photon Assay Analysis Technique:
	 Developed by CSIRO and the Chrysos Corporation, the Photon Assay technique is a fast and chemical free alternative to the traditional fire assay process and utilizes high energy x-rays. The process is nondestructive on and utilises a significantly larger sample than the conventional 50g fire assay.
	 MinAnalytical has thoroughly tested and validated the Photon Assay process with results benchmarked against conventional fire assay.
	 The National Association of Testing Authorities (NATA), Australia's national accreditation body for laboratories, has issued MinAnalytical with accreditation for the technique in compliance with ISO/IEC 17025:2018-Testing.
	 Subsequently, intervals of 4m composite samples reporting greater than 0.2g/t Au were selected for re-assay, and 1m re-split samples were submitted (2016 and 2019 RC program) for 50gm fire assay.
	 Troy's diamond drill holes were sampled using half core samples. RC samples were split using a multi- tier riffle splitter with approximately 2 kg samples collected.
	 SGS Australia Pty Ltd (SGS) located in Perth, Western Australia, were responsible for sample preparation and assaying for drill hole samples and associated check assays. The company, at the time, were certified to the ISO 9001 requirements for all related inspection, verification, testing and certification activities.
	• Resource definition RC and DDH samples were assayed using 50 g fire assay with AAS finish.
	 Snowden cannot find any further information on the sample preparation process (crushing and grinding stages) but acknowledges that SGS typically use appropriate methods and have significant experience in this style of mineralisation.
	Sample sizes are considered to be appropriate.
Quality of assay data	 Alto's 2020 4m RC composite samples were submitted to the laboratory with field duplicates and field blank samples inserted at a ratio of 1:20.
and laboratory	• For 1m re-split samples, field standards and field blanks were inserted at a ratio of 1:20.
16313	 Laboratory Certified Reference Materials and/or in-house controls, blanks, splits and replicates are analysed with each batch of samples by the laboratory. These quality control results are reported along with the sample values in the final report. Selected samples are also re-analysed to confirm anomalous results.
	Laboratory and field QA/QC results were reviewed by Alto Metals Ltd (AME) personnel.
	 For Troy's RC and DDH resource evaluation drilling, an average of one field duplicate, one blank and one standard were submitted for every 50 samples.
	 For RAB drilling, one field duplicate and one standard were submitted in every 50 samples. Blank samples were not routinely used for RAB sampling.
	Quality control (QC) samples were inserted randomly throughout the sample sequence.
	 For all exploration work a minimum of one standard QC sample was submitted with each batch of samples.
	• Standards were purchased from Gannet Holdings Pty Ltd (Gannet) in Perth, WA. The actual standard used was dependent on the expected assay results and type of sample being taken (i.e. oxide, transitional or fresh rock). The grade of the standard used was also routinely varied.
	 Blank material (crushed basalt) for the resource drilling at Lord Nelson and Lord Henry was also purchased from Gannet.
	• The results of the QC standards were assessed by Troy on a batch-by-batch basis. Batches of samples where the results of the submitted standards differ from the expected value by more than ±10% were re-analysed by the laboratory. Troy had independent checking of all QC sample results carried out by Maxwell Geoservices (Maxwell) on a monthly basis. Maxwell monitored the laboratory performance over the longer period and liaised with the laboratory and with Troy when QC problems were detected. Maxwell reported that all standards and blanks fell within the expected limits. The field duplicate results show that 20% to 25% of the repeat samples are outside of ±10% compared to the original sample values with no apparent bias. This is to be expected given the style of mineralisation.

Verification of sampling and assaying	 AME submitted its own Standards to the laboratory and recent independent assaying of the AME Standards has shown values consistent with AME nominal values.
assaying	Values below the analytical detection limit were replaced with half the detection limit value.
	• For Troy's samples, Snowden has not conducted any independent verification of the assay data.
	• Values below the analytical detection limit were replaced with half the detection limit value.
l a cation of	 Troy maintained a well audited database, however as Alto do not own the database, the data used for the 2017 Mineral Resource is based on a database compiled by Alto from publicly available data. Review of the statistics of the compiled database shows that it is not materially different to that reported by Troy (Snowden, 2007).
Location of	The Lord Nelson grid is based on GDA 94 zone 50.
data points	 Alto used handheld Garmin GPS to locate and record drill collar positions, accurate to +/-5 metres, which is sufficient for exploration drilling.
	 There is no documentation on the collar survey methodology or downhole surveys for Troy RC drill holes. Snowden has noted variations between the collar locations of the DDH and RC compared to the AC and RAB drill holes and there is the potential for some error here.
	• The angled diamond core holes were orientated where possible using a crayon marker spear tool and the holes were regularly surveyed using an Eastman downhole camera.
	Mined pit survey wireframe was supplied by Alto.
	• Snowden created a pre mining surface topography wireframe using the top limit string of the pit from the mined pit survey, with the drill hole collar locations within the pit. In the waste dump areas, the base string around the dumps was used to define the original surface topography.

Item	Comments
Data spacing and distribution	 Alto's RC drill holes were designed to test the geological and mineralisation models at Lord Nelson Southern Extensions on 5 sections 40 m apart, drill hole spaced at 40-80m on section and depth extension below the open pit on 4 sections 50-100m apart, drill hole spaced at 40- 80m on section. The drill orientation is typically -60° → 090° which is designed to intersect mineralisation perpendicular to the interpreted ore zones.
	 For Troy, within the defined Lord Nelson resource area, sections were spaced 20 m apart, with drill holes spaced at about 20 m on section, with some infill to 10 m. The drill orientation is typically -60° → 090° which is designed to intersect mineralisation perpendicular to the interpreted ore zones. The drilling was composited downhole for estimation using a 1 m interval.
Orientation of data in relation	 Both Alto's and Troy's drill orientation is typically -60° → 090° which is designed to intersect mineralisation perpendicular to the interpreted mineralised zones.
to geological	 Geological and mineralised structures have been interpreted from RC drilling.
structure	• Previous mapping in the area indicates that there are west-northwest striking veins and a sheeted swarm of granodiorite intrusions at Lord Nelson which are oblique to this north-northwest trend of the mineralised interpretation. This suggests that within the ore zone the sheeted veins may produce sub-horizontal shoots oriented west-northwest.
Sample security	 For Alto, RC 4m composite and 1m original RC drill samples comprised approximately 3 kg of material within a labelled and tied calico bag.
	 Individual sample bags were placed in a larger plastic poly-weave bag then into a bulka bag that was tied and dispatched to the laboratory via McMahon Burnett freight.
	 Sampling data was recorded on field sheets and entered into a database then sent to the head office.
	 Laboratory submission sheets are also completed and sent to the laboratory prior to sample receival.
	 For Troy, drill samples comprised approximately 2 kg of material within a labelled and tied calico bag. After wet samples were dried, six bags were placed in a larger plastic polyweave bag that ass labelled with the laboratory address and sender details and tied with wire.
	 Samples were dispatched three times per week. On each occasion, a sample submission form was completed which lists the sample IDs, the total number of samples and analyses to be conducted. This form was faxed to the laboratory and to the database technician in Troy's Perth office.
	 Samples were picked up by a courier firm, who counted the total number of polyweave bags before taking them to the Mt Magnet depot 150 km to the west of Sandstone. Here the samples were picked up by the courier's road train and taken to the Perth depot before being dispatched to the lab.
	 Upon receipt of the samples, the lab checked the sample IDs and total number of samples and notified Troy of any differences from the sample submission form.
	 After the analysis of the samples had been completed, results were sent to the senior geologist and database technician in both digital and paper format
Audits and reviews	 Alto's Exploration Manager attended the 2020 Lord Nelson current RC drilling program and ensured that sampling and logging practices adhered to Alto's prescribed standards, which meet industry wide "best practice".
	 Alto's Chief Geologist has reviewed the laboratory assay results against field logging sheets and drill chip trays and confirmed the reported assays occur with logged mineralised intervals, and checked that assays of standards and blanks inserted by the Company were appropriately reported.
	Alto have reviewed and compiled Troy's drilling and assay data for Lord Nelson.
	 Snowden is not aware of any other independent reviews of the drilling, sampling and assaying protocols, or the assay database, for the Lord Nelson project.

JORC (2012) Table 1 – Section 2 Reporting of Exploration Results

Item	Comments
Mineral tenement and land tenure	 AME's Sandstone Project is located in the East Murchison region of Western Australia and covers approximately 800 km² with seven exploration licences all granted on 20th September 2016, 11th March 20197th June 2019 and , two mining leases granted on 5th June 2019 and 17th December, three mining leases in application, two prospecting licences granted on 11 June 2016, and 1 prospecting license in application. All tenements are currently in good standing with the Department of Mines, Industry Regulation and Safety. Royalties include a 2% of the Gross Revenue payable to a third party, and a 2.5% royalty payable to the State Government. AME has undertaken heritage surveys with the Native Title Claimants and the surveys have
	 AME has undertaken heritage surveys with the Native intervalive interval and the surveys have cleared the areas of drilling of any heritage sites. AME's 2020 RC drilling program at Lord Nelson was carried out on Exploration Licence 57/1031 granted on 20th September 2016 to Sandstone Exploration Pty Ltd, a wholly owned subsidiary of ASX listed AME.
Fruitzastian dans	
by other parties	 All drilling to date at Lord Nelson has been carried out by Troy and AME. Some historical regional exploration and mining was carried out in previous years, with many areas containing old shafts from artisanal mining.
Geology	 The Lord Nelson deposit occurs along the north-south trending Trafalgar shear zone. The Lord Nelson deposit is hosted within a zone of intermixed high-magnesium basalt and granodiorite intrusive rocks above a footwall ultramafic unit. The mineralisation trends north-north-west, dipping approximately 50° to the west increasing to 70° with depth. The main eastern lode is a zone of pyrite + silica + biotite +/- quartz veining that follows the ultramafic footwall contact. West-northwest striking veins and a sheeted swarm of granodiorite intrusions at Lord Nelson are oblique to the north-northwest trend of the ore envelope inferred from drilling. This suggests that within the ore zone the sheeted veins may produce sub-horizontal shoots oriented west northwest. The interpreted mineralisation domains are based on a nominal 0.2 g/t Au to 0.3 g/t Au cut-off which appears to be a patural brock in the grade distribution.
Drill hole	 2020 Drill hole collars and assays +0.5g/t Au reported.
Data aggregation methods	Reported mineralised intervals +0.5g/t Au may contain up to 2 metres of internal waste.
Relationship between mineralisation widths and intercept lengths	 2020 RC drill holes were angled at -60° and were broadly orthogonal to dip and strike. Downhole intercepts are not true widths, but are close to true widths.
Diagrams	• Refer to plans and figures in this Report. All 2020 RC holes illustrated in Sections and plan.
Balanced reporting	 This report outlines existing JORC (2012) Inferred Mineral Resource at Lord Nelson previously reported, and places Alto's 2020 RC drilling results down plunge in context, and reporting is considered to be balanced.
Other substantive exploration data	 No exploration results being reported. Historic Troy Resources NL drill results over the Southern Extension Corridor support Alto's 2020 RC drill results and Alto's contention that the Footwall (east Lode at Lord Nelson plunges shallowly to the south.
Further work	Alto is planning further RC drilling at Lord Nelson's Southern Extension Corridor and depth extension for later in 2020.

JORC (2012) Table 1 – Section 3 Estimation and Reporting of Mineral Resources

Item	Comments
Database integrity	• Troy maintained a well audited database, however as Alto do not own the database, the data used for the 2016 Mineral Resource is based on a database compiled by Alto from publicly available data. Review of the statistics of the compiled database shows that it is not materially different to that reported by Troy (Snowden, 2007).
	 Snowden undertook a basic check of the data for potential errors as a preliminary step to compiling the resource estimate. No significant flaws were identified.
Site visits	 Snowden's General Manager Geosciences, Lynn Olssen, and Principal Consultant, John Graindorge, visited the Lord Nelson project on 31 August 2016 and 1 September 2016, observing the existing open pit, local geology and general site layout, along with diamond drill core.
	 Staff from Alto, who accept responsibility for the reliability of the underlying drill hole data, have been to site several times.
Geological interpretation	 Snowden believes that the local geology is reasonably well understood.
	• The interpreted mineralisation domains are based on a nominal 0.2 g/t Au to 0.3 g/t Au cut-off which appears to be a natural break in the grade distribution. The interpreted domains include:
	 Eastern mineralisation – main ultramafic contact: A continuous domain of mineralisation which runs along the ultramafic to intermediate contact on the eastern edge of the deposit.
	 Eastern mineralisation – southern extension: Poorly informed extension to the main ultramafic contact domain.
	 Western mineralisation: A continuous domain of mineralisation on the western edge of the deposit.
	 Central, disconnected mineralisation: A series of less continuous mineralised pods between the two main domains, with the larger areas potentially related to west-northwest structures.
	 Flat lying near surface mineralisation: A lower grade flat lying, near surface domain overlying the main mineralisation. A second flat lying, near surface domain lies to the east in an area which is poorly drilled at depth. This eastern near surface domain indicates potential for a repeat of the Lord Nelson mineralisation and is a target for further exploration.
	 Alternative interpretations of the mineralisation are unlikely to significantly change the overall volume of the mineralised envelopes in terms of the reported classified resources.
Dimensions	• The Lord Nelson gold mineralisation covers an area of around 750 m along strike by 400 m across strike and extends to over 200 m below surface. The mineralisation interpretation extends around 150 m down dip from the base of the current pit.
	• The mineralisation is open in all directions. There is a second near surface mineralised domain to the east of the area reported above, which is poorly drilled at depth. This eastern near surface domain indicates potential for a repeat of the Lord Nelson mineralisation and is a target for further exploration.
Estimation and modelling techniques	 Snowden estimated gold grades using ordinary block kriging (parent cell estimates) using CAE Datamine Studio 3 software. Due to the variable dip of the mineralisation, dynamic anisotropy was used to locally adjust the orientation of the search ellipse and variogram models.
	• The statistical analysis shows that the main mineralised domains have positively skewed gold distributions with high coefficients of variation (CV), indicating there are outliers in the domains which have the potential to cause local over estimation. As a result, a top cut of 30 g/t Au was applied to these domains prior to estimation. This top cut impacts around 1% of the composites. The CV for these domains is still slightly elevated after top cutting, however review of the high grade outliers shows that they are located in the centre of the mined out portion of the open pit and as such will have no influence on the Mineral Resource. As a result, Snowden considers that ordinary kriging with a top cut is an appropriate estimation technique for these domains. The near surface flat lying mineralisation is lower grade and less skewed. A top cut of 6 g/t Au was applied to this domain prior to estimation.
	Boundaries between the mineralised domains were treated as hard for estimation.
	• A block model was constructed using a parent block size of 5 mE by 10 mN by 5 mRL based on the nominal drill hole spacing along with an assessment of the grade continuity using a kriging neighbourhood analysis.
	 The initial search ellipse of 40 m by 15 m by 10 m was defined based on the results of the variography and assessment of the data coverage. A minimum of eight and maximum of 24 samples was used for the initial search pass, with no more than four samples per drill hole in the

Item	Comments
	main mineralisation domains, and no more than two samples per drill hole in the near surface flat lying mineralised domain.
	 Grade estimates were validated against the input drill hole composites (globally and using grade trend plots) and show a good comparison. There is evidence of some over-smoothing and underestimation in the mined out and supergene area as expected from the statistical analysis.
	The previous Mineral Resource for Lord Nelson was estimated in 2007 (Snowden, 2007) and reported in accordance with the 2004 JORC Code. For comparison purposes Snowden compare the 2016 Mineral Resource to the depleted Mineral Resource reported in the Troy annual report (2011). No mining has occurred since this time. Snowden notes that the reporting cut-off was changed from 0.8 g/t Au to 0.5 g/t Au between the original reporting of the Mineral Resource in 2007, and the depleted reporting in 2011. The comparison shows that the updated 2016 Mineral Resource has almost twice the tonnes at 25% lower grade. The increase in Mineral Resources in 2016 is a result of the updated interpretation and extension of the Mineral Resource at depth to 80 m below the existing pit.
Moisture	All tonnages have been estimated as dry tonnages.
Cut-off parameters	• The mineralisation has been reported above a 0.8 g/t Au cut-off grade based on historical mining.
Mining factors	• It is assumed the deposit will be mined using conventional open cut mining methods.
and assumptions	• The flat lying mineralisation to the east of the main deposit lies under the existing waste dump and any mining of this assumes that it will be economic to remove this.
Metallurgical factors and assumptions	 The deposit has been mined previously by Troy with the material processed at the Sandstone Mill. The previous operation focused mainly on the oxide resources, however with a suitable process flowsheet, in Snowden's opinion, the sulphide ore should also be recoverable.
Environmental factors and assumptions	 It is assumed that no environmental factors exist that could prohibit any potential mining development at the Lord Nelson deposit. The Sandstone area has a strong history of mining and several prospecting leases are currently being worked. Anecdotal evidence suggests strong local support for mining in the area.
Bulk density	• At Lord Nelson, model blocks that lie between the topography and base of oxidation were assigned a bulk density of 1.92 t/m ³ . This includes transported and oxide material. Model blocks between the base of oxidation and above the top of fresh surface were assigned a bulk density of 2.29 t/m ³ . Model blocks below the top of fresh surface were assigned a bulk density of 2.66 t/m ³ .
	 These assigned bulk density values are based on those used for the previous estimate (Snowden, 2007), however Snowden has not reviewed the values and does not have access to any information on the source of the values. However, the bulk densities appear reasonable for the style of mineralisation.
Classification	 The Mineral Resource has been classified as an Inferred Resource where the mineralisation is supported by drilling data. Extrapolation beyond the drilling is limited to approximately 5 drill sections.
	 The Inferred Mineral Resource has been limited to 80 m below the current mined pit. All material below this remains unclassified. In addition, the poorly informed southern extension of the main eastern mineralised domain is not classified. Snowden considers that there is potential for economic extraction in the areas classified as Inferred Resources.
	• The Mineral Resource classification appropriately reflects the view of the Competent Person.
Audits and reviews	 The Mineral Resource estimate has been peer reviewed as part of Snowden's standard internal peer review process.
	Snowden is not aware of any external reviews of the Lord Nelson Mineral Resource estimate.
Discussion of relative accuracy/ confidence	 The Mineral Resource has been validated both globally and locally against the input composite data.
	 Comparison to historically reported production data shows that the 2016 estimate has slightly higher tonnes for lower grade. Snowden is aware that the estimate within the mined out area is slightly over-smoothed and underestimated as a result of high grade outliers in the supergene; as such Snowden considers this a good result.