

Peer Reviewed Paper Published on Preclinical Study on ARG-007 Stability following Alteplase Administration

Perth, Australia; 21 MARCH 2022 - Argenica Therapeutics Limited (ASX: AGN) ("Argenica" or the "Company"), a biotechnology company developing novel therapeutics to reduce brain tissue death after stroke, is pleased to announce its Chief Scientific Officer, Prof Bruno Meloni, and research collaborators have published a study in the Journal of Thrombosis and Thrombolysis titled *Impact of poly-arginine peptides R18D and R18 on alteplase and tenecteplase thrombolysis in vitro, and neuroprotective stability to proteolysis*¹.

The study's findings have previously been reported in the Company's ASX announcement dated 12 July 2021. The findings suggest that R18D (ARG-007), when co-administered with the thrombolytic inducing agents alteplase (tPA) and tenecteplase (TNK), which can degrade peptides, do not degrade ARG-007 nor have a negative impact on ARG-007's efficacy when used clinically during clot thrombolysis. The paper confirms the superior proteolytic stability of the R18D (ARG-007) peptide.

Chief Executive Officer, Dr Liz Dallimore said: "We are delighted that this research has been recognised by the Journal of Thrombosis and Thrombolysis. It is a testament to the scientific rigour employed by Prof Meloni and his team of collaborators."

This announcement has been approved for release by the Board of Argenica

For more information please contact: info@argenica.com.au

ABOUT ARGENICA

Argenica (ASX: AGN) is developing novel therapeutics to reduce brain tissue death after stroke and improve patient outcomes. Our lead neuroprotective peptide candidate, ARG-007 has been successfully demonstrated to improve outcomes in pre-clinical stroke models and is in the process of being verified for its safety and toxicity before commencing Phase 1 clinical trials in humans. The aim is for our therapeutic to be administered by first responders to protect brain tissue against damage during a stroke with further potential to enhance recovery once a stroke has taken place.

¹ Meloni, B. P., Blacker, D. J., Edwards, A. B., & Knuckey, N. W. (2022). Impact of poly-arginine peptides R18D and R18 on alteplase and tenecteplase thrombolysis in vitro, and neuroprotective stability to proteolysis. *Journal of thrombosis and thrombolysis*, 10.1007/s11239-022-02642-4. Advance online publication. https://doi.org/10.1007/s11239-022-02642-4