

ASX Release

VTEM DATA HIGHLIGHTS POTENTIAL NEW UNTESTED MINERALISED ZONES ALONG STRIKE FROM KEMPFIELD DEPOSIT

Potential Extensive VMS mineralisation delineated proximal to the Kempfield's Lode 300 Mineralised Block

 СЦ		HTS
ЧΠ	LIG	пэ

- Three extensive and distinct VTEM anomalies have been delineated, interpreted as potential controlling structures and/or favourable locations for Au-Ag-Cu-Pb-Zn mineralisation along the eastern and western flanks of the Kempfield Deposit.
 - Western EM Trend:

The Western EM Trend extends approximately **2.2km** in a north-south direction and remains completely untested to date.

• Central EM Trend:

The Central EM Trend spans approximately **4.1km** in a northeast-southwest orientation. This corridor has been partially tested by Argent's recent RC drilling, which delineated shallow mineralisation. However, further drilling is warranted along strike and at depth to identify the source of the sulphide mineralisation.

• Eastern EM Trend:

The Eastern EM Trend measures approximately **2.2km** in length, striking northeast-southwest, and remains entirely untested.

• Kempfield NW Zone – VTEM and Drilling Insights:

Preliminary **VTEM plate modelling** indicates that the source of mineralisation in the Kempfield NW Zone may lie at **greater depths**. Drillhole **AKRC287**, which partially tested the IP zone at **Section 6260850N**, intersected:

- 34 m @ 13.60 g/t Ag and 0.91% Cu+Pb+Zn from 22 m, including:
- 13 m @ 27.02 g/t Ag and 1.37% Cu+Pb+Zn from 43 m
- 18 m @ 22.30 g/t Ag and 0.60% Cu+Pb+Zn from 62 m
- Western Margin Potential Footwall Target:

Elevated EM response along the western margin may indicate a deeper footwall position relative to the known mineralised structure. Multiple untested zones along strike from the gossan and recent drilling sites represent high-priority targets for further exploration.

 Positive VTEM anomalies, coincident with gossanous lithologies, surface geochemical anomalies, and drilling-confirmed mineralisation, reinforce the potential of the Kempfield NW Prospect as a significant exploration focus.

Argent Minerals Limited (ASX: ARD) ("Argent" or "the Company") is pleased to announce the interpretation of the Versatile Time Domain Electromagnetic Survey (VTEM) over its 100%-owned Kempfield NW Prospect within the Kempfield Project in New South Wales. During March 2025, Core Geophysics Pty Ltd was commissioned to review the historical VTEM data to determine if any characteristic signatures could be defined that may directly detect the VMS mineralisation or provide vectors to target north of the main Kempfield Deposit.

Argent Managing Director Mr Pedro Kastellorizos commented:

"A high-level interpretation of the VTEM data review conducted by Core Geophysics has identified multiple new drill targets, including several that were previously unknown to Argent. Significantly, three extensive EM trends have been delineated, two of which remain completely untested. These trends extend well beyond the current boundaries of the known Kempfield Deposit, indicating strong potential for the discovery of additional mineralised zones both at depth and along strike. The results highlight the substantial exploration upside at the Kempfield Project, as we continue to expand the mineralised footprint well beyond the established deposit".

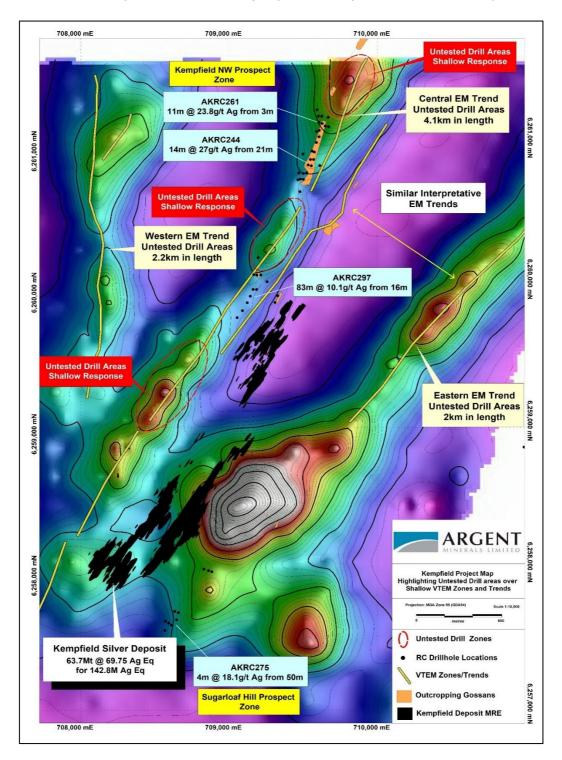


Figure 1 – VTEM Interpreted Map highlighting potential shallow mineralised zones

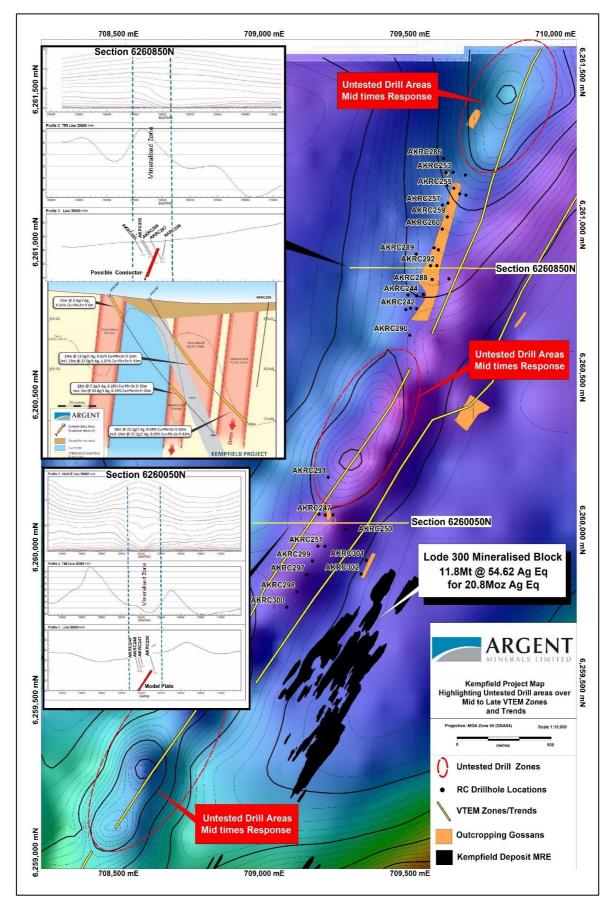


Figure 2 – VTEM Interpreted Map highlighting potential deeper mineralised zones over Kempfield NW Zone

The geophysical review focused on the historical airborne electromagnetic (AEM) survey flown by Argent in 2008. Using the VTEM system, the survey was flown on 200m line spacings oriented east-west with some infill lines to 100m over the Kempfield deposit. Re-processing and examination of the channel imagery has further refined responses that can be related to recent drilling, geochemical and ground mapping at Kempfield NW.

Figure 1 displays an early time channel response which reflects conductivity variations in the near surface (potential sulphide mineralisation). <u>Elevated responses appear associated along well-defined linear trends</u>, with the central Kempfield NW trend, closely following a gossanous outcrop and drilling which intersected <u>silver-copper-lead-zinc mineralisation</u>.

At later times and at deeper depth, the near surface conductive response becomes a well-defined low (Figure 2). This is interpreted to represent an induced polarisation (IP) effect where near surface material is polarizable generally from a high clay or sulphide content and the IP response dominates the EM response at mid to later times. At the Kempfield NW zone this "low" closely bounds the known mineralisation within the gossan and pyritic shale.

The elevated EM response on the western margin <u>may represent a deeper footwall to the mineralised</u> <u>structure</u>. Several untested zones along strike of the gossan and recent drilling represent additional targets for mineralisation. These trends are mostly poorly explored and further investigation along these features is proposed.

Hole	From	То	Interval	Ag	Cu	Pb	Zn	Cu+Pb+Zn	Au
Id	(m)	(m)	(m)	(g/t)	(%)	(%)	(%)	(%)	(g/t)
AKRC242	3	33	30	6.15	0.01	0.04	0.20	0.25	
incl.	3	10	7	15.09	0.01	0.08	0.17	0.26	
AKRC243	0	28	28	13.39	0.27	0.08	0.34	0.69	
incl.	3	4	1	0.5	0.19	0.08	0.11	0.34	1.06
incl.	8	25	17	20.01	0.30	0.10	0.43	0.83	
incl.	11	18	7	32.24	0.22	0.15	0.44	0.81	
AKRC244	1	48	47	10.18	0.01	0.05	0.24	0.30	
incl.	14	16	2	26.90	0.02	0.12	0.48	0.61	
& incl.	21	33	12	27.04	0.01	0.08	0.23	0.32	
incl.	22	26	4	57.45	0.01	0.07	0.33	0.41	
and	52	53	1	45.10	0.01	0.11	0.10	0.22	
AKRC245	0	18	18	4.49	0.20	0.01	0.39	0.61	
incl.	2	6	4	2.93	0.31	0.01	0.31	0.63	3.4
incl.	2	3	1	3.50	0.24	0.01	0.51	0.76	11.15
AKRC247	40	41	1	26.70	0.02	0.01	0.08	0.12	
AKRC248	29	32	3	15.03	0.13	0.11	0.11	0.35	
and	32	52	20	2.50	0.03	0.16	0.13	0.32	
and	57	59	2	15.03	0.13	0.11	0.11	0.35	
AKRC255	3	26	23	12.60	0.04	0.04	0.34	0.42	
incl.	3	10	7	18.73	0.08	0.05	0.38	0.51	
and	32	34	2	13.05	0.01	0.05	0.13	0.19	
AKRC261	4	15	11	23.82	0.02	0.11	0.25	0.38	

Table 1: Significant RC Drilling Intersections from Kempfield NW Zone(Intercepts using 10 g/t Ag, 1 g/t Au and/or 0.1% Cu+Pb+Zn% cut-off)

ARGENT MINERALS LIMITED

Hole	From	То	Interval	Ag	Cu	Pb	Zn	Cu+Pb+Zn	Au
Id	(m)	(m)	(m)	(g/t)	(%)	(%)	(%)	(%)	(g/t)
incl.	6	11	5	42.52	0.03	0.18	0.34	0.55	
AKRC262	5	20	15	15.31	0.16	0.08	0.61	0.85	
incl.	15	19	4	26.50	0.17	0.01	0.90	1.08	
AKRC263	19	34	15	5.1	0.27	0.18	0.50	0.96	
and	37	47	10	4.4	0.06	0.03	0.23	0.32	
AKRC287	9	16	7	0.9	0.00	0.00	0.25	0.26	
and	22	56	34	13.60	0.01	0.17	0.73	0.91	
incl.	43	56	13	27.02	0.02	0.40	0.94	1.37	
and	62	80	18	22.30	0.02	0.21	0.37	0.60	
incl.	62	76	14	27.17	0.02	0.24	0.44	0.69	
AKRC288	0	13	13	3.4	0.02	0.01	0.28	0.31	
and	55	67	12	7.1	0.00	0.02	0.16	0.18	
incl.	56	58	2	24.75	0.01	0.06	0.12	0.19	
AKRC292	7	64	57	4.9	0.02	0.01	0.44	0.47	
incl.	10	12	2	37.5	0.10	0.09	1.06	1.26	
& incl.	39	43	4	2.7	0.07	0.01	0.83	0.91	
& incl.	51	63	12	8.7	0.03	0.03	0.80	0.85	
AKRC293	7	24	17	6.2	0.09	0.02	0.18	0.29	
AKRC294	13	43	30	5.7	0.03	0.04	0.31	0.38	
AKRC295	26	37	11	12.9	0.08	0.08	0.27	0.42	
incl.	31	34	3	30.5	0.11	0.13	0.31	0.55	
AKRC296	48	53	5	40.5	0.02	0.48	0.07	0.58	
incl.	52	53	1	146.0	0.08	0.50	0.04	0.62	
&	62	64	2	5.4	0.04	0.33	0.20	0.57	
AKRC297	16	99	83	10.1	0.00	0.04	0.15	0.20	
incl.	37	41	4	20.2	0.01	0.17	0.66	0.83	
& incl.	60	66	6	33.6	0.00	0.02	0.07	0.09	
& incl.	63	64	1	91.6	0.00	0.03	0.09	0.10	
& incl.	71	75	4	22.7	0.00	0.02	0.08	0.10	
& incl.	82	87	5	20.1	0.00	0.03	0.11	0.14	
AKRC298	0	101	101	2.0	0.00	0.06	0.28	0.34	
incl.	60	73	13	1.7	0.01	0.13	0.52	0.66	
& incl.	95	101	6	13.9	0.01	0.13	0.60	0.74	
&	100	113	13	17.7	0.00	0.03	0.12	0.16	
incl.	111	113	2	38.1	0.00	0.01	0.03	0.05	
AKRC299	20	32	12	2.7	0.00	0.03	0.20	0.24	
&	44	68	24	16.0	0.00	0.06	0.34	0.40	
incl.	55	68	13	24.9	0.00	0.06	0.36	0.43	
AKRC300	0	37	37	4.0	0.01	0.10	0.34	0.44	
incl.	21	27	6	8.9	0.01	0.14	0.70	0.85	
AKRC301	13	19	6	25.2	0.02	0.03	0.09	0.14	
and	24	28	4	2.1	0.01	0.01	0.02	0.03	4.44

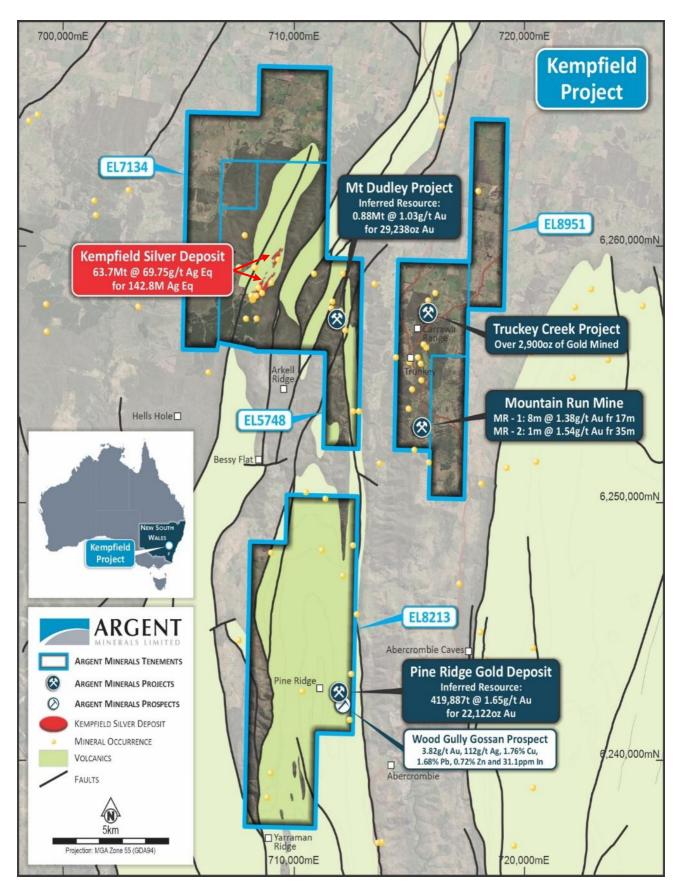


Figure 3 – Kempfield Project location map highlighting surrounding nearby Mineral Resources & Prospects held under Argent Minerals Ltd

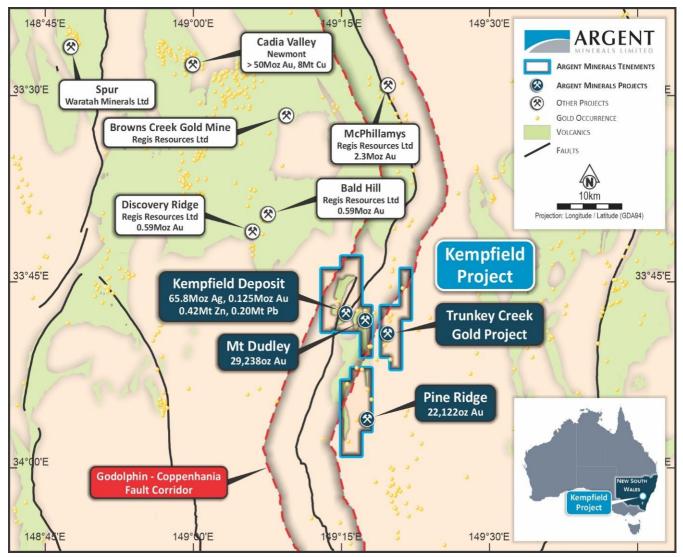


Figure 4 – Kempfield Project location map highlighting surrounding nearby resources

About Kempfield Resource Estimation

The Kempfield Silver Deposit Mineral Resource estimate for all categories was upgraded to **63.7Mt** @ **69.75** g/t silver equivalent for **142.8** million ounces Ag Eq, containing of **65.8Moz silver**, **125,192** oz gold, **207,402t** lead & **420,373t zinc** (ASX Announcement 25 July 2024: Significant Silver Resource Upgrade over Kempfield Deposit). Table 2 shows the July **2024** Resource Estimation tonnes/grade by Indicated and Inferred categories.

	Table 2 – Kempfield Silver Deposit Mineral Resource Estimate by Classification as at July 2024 (at a >15 g/t Ag cut-off & >0.9% Zn)									
Category	gory Million Tonnes (Mt) Volume (m ³) Silver Eq. (g/t) Silver (g/t) Gold (g/t) Lead (g/t) Zinc (%) Million (%) Silver (%) Silver (%) Silver Silver Silver									
Indicated	23.7	8,051,549	79.61	40.04	0.08	0.36	0.67	30.5	60.6	
Inferred	40.0	13,589,739	63.92	27.49	0.05	0.31	0.64	35.4	82.3	
Total	63.7	21,641,287	69.75	32.15	0.06	0.33	0.66	65.8	142.8	

Table 3 is a summary of the updated Kempfield mineral resource as of July 2024 based on the weathering zones, and Table 4 summarises the Mineral Resource by Lodes.

	Table 3 – Kempfield Silver Deposit Mineral Resource Estimate by Weathering Zone as at July 2024 (>15 g/t Ag cut-off, Zn 0.9% Zn cut-off)											
		Grade					Contained Metal					
Weathering Zone	Million Tonnes (Mt)	Silver Eq. (g/t)						MillionThousandThousandThousandOuncesOuncestonnestonnesSilverGoldZincLead				
Oxide	8.3	45.14	38.48	0.08			10.3	20.9			12.1	
Transitional	8.8	60.27	38.87	0.09	0.38	0.37	11.0	24.6	32.5	33.6	17.1	
Fresh	46.6	75.93	29.75	0.05	0.37	0.83	44.5	79.7	387.9	173.8	113.7	
Total	63.7	69.75	32.15	0.06	0.33	0.66	65.8	125.2	420.4	207.4	142.8	

Table 4 – Kempfield Silver Deposit Mineral Resource Estimate by Lode as at July 2024

	(>15 g/t Ag cut-off, >Zn 0.9% cut-off)											
Lode	Million Tonnes (Mt)	Silver Eq. (g/t)	Silver (g/t)	Gold (g/t)	Lead (%)	Zinc (%)	Million Ounces Silver	Million Ounces Silver Eq				
100	23.9	81.13	31.19	0.12	0.49	0.79	23.9	62.3				
200	28.0	66.42	36.03	0.03	0.21	0.57	32.4	59.7				
300	11.8	54.62	24.93	0.01	0.26	0.61	9.50	20.8				
Total	63.7	69.75	32.15	0.06	0.33	0.66	65.8	142.8				

Notes:

1. The silver equivalent formulas were determined using the following metal prices based on a five-year monthly average: US\$22.02/oz silver, US\$1,776.93/oz gold, US\$2,774.16/t zinc, US\$2,066.73/t lead.

 The silver equivalent formulas were determined using different metallurgical recoveries for each weathering zone from test work commissioned by Argent Minerals Limited. For oxide zone metallurgical recoveries of 86% silver and 90% gold. For transitional zone metallurgical recoveries of 86% silver, 67% zinc and 21% lead, 90% gold. For primary zone metallurgical recoveries of 86% silver, 92% zinc and 53% lead, 90% gold.

 The silver equivalent formulas were determined using the metal prices and recoveries listed in Notes 1 & 2 for each weathering zone: Oxide Zone silver equivalent: Ag Eq (g/t) = g/t Ag + g/t Au x 85.4 Transitional Zone silver equivalent: Ag Eq (g/t) = g/t Ag + g/t Au x 85.4 + % Zn x 30.53 + % Pb x 7.13 Primary Zone silver equivalent: Ag Eq (g/t) = g/t Ag + g/t Au x 85.4 + % Zn x 41.92 + % Pb x 17.99

4. In the Company's opinion, the silver, gold, lead and zinc included in the metal equivalent calculations have a reasonable potential to be recovered and sold.

5. Variability of summation may occur due to rounding and refer to Appendices for full details.

The Company is not aware of any new information or data that materially affects the information included in the original market announcement and all material assumptions and technical parameters underpinning the Mineral Resource for Kempfield, announced on 25 July 2024, continue to apply and have not materially changed.

This ASX announcement has been authorised for release by the Board of Argent Minerals Limited.

-ENDS-

For further information, please contact:

Pedro Kastellorizos **Managing Director/Chief Executive Officer** Argent Minerals Limited <u>info@argentminerals.com.au</u>

Competent Persons Statement

The information in this report / ASX release that relates to Mineral Resources Estimation is based on information compiled and reviewed by Mr. Alfred Gillman, Director of independent consulting firm, Odessa Resource Pty Ltd. Mr. Gillman, a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets and Mineral Resources. Mr Gillman is a full-time employee of Odessa Resource Pty Ltd, who specialises in mineral resource estimation, evaluation, and exploration. Neither Mr Gillam nor Odessa Resource Pty Ltd holds any interest in Argent Minerals Ltd, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Gillman consents to the inclusion in this report / ASX release of the matters based on information in the form and context in which it appears. Additionally, Mr Gillman confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report. Mr Gillman has completed all the Mineral Resource Estimations for Kempfield, Mt Dudley and Pine Ridge.

The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Pedro Kastellorizos. Mr. Kastellorizos is the Managing Director/CEO of Argent Minerals Limited and is a Member of the AusIMM of whom have sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Kastellorizos has verified the data disclosed in this release and consent to the inclusion in this release of the matters based on the information in the form and context in which it appears.

Forward Statement

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, commodity prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in commodity prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project; completion of the environmental assessment process; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

References

For further information please refer to previous ASX announcement from Argent Minerals Ltd

- ASX Announcement 2008: Further significant intersections at Kempfield
- ASX Announcement 2009: Kempfield BJ Zone drilling continues with promising results.
- ASX Announcement 2009: Argent to Drill Gold Targets at Kempfield
- ASX Announcement 2009: Significant Results from Kempfield Extension Drilling
- ASX Announcement 2009: Drilling Results from Kempfield and West Wyalong
- ASX Announcement 2010: Highest recorded silver grades at Kempfield
- ASX Announcement 2011: Significant Deep Intersections at Kempfield
- ASX Announcement 2012: Resource upgrade Kempfield Silver Project
- ASX Announcement 2013: Exploration Advances for Kempfield Massive Sulphide Targets
- ASX Announcement 2013: Resource upgrade Kempfield Silver Project
- ASX Announcement 2013: Conductor Targets Identified at Kempfield Silver Project
- ASX Announcement 2013: Sulphides Intercepted at Kempfield Causeway Target
- ASX Announcement 2013: Argent Minerals Advances Exploration for Kempfield Massive Sulphide Targets
- ASX Announcement 2013: Argent Set to Drill Massive Sulphide Targets Dec Start 2013

ARGENT MINERALS LIMITED

ASX Announcement 2014: Geophysics Breakthrough in Kempfield Lead/Zinc Detection ASX Announcement 2014. Kempfield Resource Statement Upgraded to JORC 2012 Standard ASX Announcement 2014. Assays confirm third VMS Len group at Kempfield. ASX Announcement 2015: IP Survey confirms Large Copper Gold Target at Kempfield ASX Announcement 2015: Significant Intersections at Kempfield - Including Copper and High-Grade Gold ASX Announcement 2016: Kempfield Drilling Update ASX Announcement 2016: High grade Zinc Lead Silver and Gold Added to Kempfield ASX Announcement 2016: Diamond Drilling Results in Major Breakthrough at Kempfield ASX Announcement 2017: Significant Ag Pb Zn Intersections ASX Announcement 18 March 2018: Significant Kempfield Milestone Achieved Separate Commercial Grade Zinc and Lead Concentrates Produced Substantial Boost to Project Economics ASX Announcement 30 March 2018: Significant Kempfield Resource Update Contained Metal Eq Signal Boost to Economic Potential ASX Announcement 20 April 2022: Pine Ridge Inferred Resource ASX Announcement 13 September 2022: Maiden JORC Resource Over Mt Dudley Prospect ASX Announcement 1 February 2023: High-grade copper confirmed at Gascoyne Copper Project ASX Announcement 1 March 2023: Extensive New High-Grade Silver-Lead-Zinc at Kempfield ASX Announcement 13 April 2023: Further Extensive New High-Grade Mineralisation over Kempfield ASX Announcement 6 September 2023: Updated Mineral Resource Estimate for Kempfield ASX Announcement 29 January 2024: Kempfield Exploration Update ASX Announcement 12 February 2024: Extensive Mineralisation Confirmed over Sugarloaf Prospect ASX Announcement 1 February 2023: High-grade copper confirmed at Gascoyne Copper Project ASX Announcement 1 March 2023: Extensive New High-Grade Silver-Lead-Zinc at Kempfield ASX Announcement 13 April 2023: Further Extensive New High-Grade Mineralisation over Kempfield ASX Announcement 6 September 2023: Updated Mineral Resource Estimate for Kempfield ASX Announcement 29 January 2024: Kempfield Exploration Update ASX Announcement 12 February 2024: Extensive Mineralisation Confirmed over Sugarloaf Prospect ASX Announcement 21 February 2024: Outstanding Gold-Silver Grades Uncovered at Henry Prospect ASX Announcement 28 February 2024: Golden Wattle delivers Gold-Silver-Lead Mineralisation ASX Announcement 18 March 2024: Second Rock Chip Program completed over Kempfield ASX Announcement 27 March 2024: Massive Silver-Base Metal Discovery NE of Kempfield Deposit ASX Announcement 8 April 2024: Massive Silver Mineralisation Delineated at Sugarloaf Hill ASX Announcement 10 April 2024: Completed RC drilling Program over Kempfield ASX Announcement 17 April 2024: High-Grade Gold & Silver Mineralisation at East of Kempfield ASX Announcement 30 April 2024: New Exceptional High-Grade Drill Results over Kempfield ASX Announcement 13 June 2024: Further Silver-Base Metal Mineralisation Hits at Kempfield ASX Announcement 25 July 2024: Significant Silver Resource Upgrade over Kempfield Deposit ASX Announcement 18 September 2024: Kempfield NW/NE Zones Delivers More High-grade Assay Results ASX Announcement 14 October 2024: Exceptional Drilling Results from Kempfield NW Zone ASX Announcement 14 January 2025: Further Gold Mineralisation Located at Trunkey Creek Project ASX Announcement 5 February 2025: Volcanogenic Massive Sulphide (VMS) Mineralisation Extended at Kempfield NW Zone ASX Announcement 6 March 2025: Expansion of Mineralisation at Kempfield NW Zone

Crawford, A. J., 2015a. Petrographic Report – 46 Rocks from Drillholes AKDD178 and AKDD179 on the Kempfield Ag-Barite Deposit, NSW, for Argent Minerals Ltd (Sydney) 24/06/2015. Internal Unpublished Report.

Crawford, A. J., 2015b. Petrographic Report – 17 Rocks from Drillholes AKDD177, AKDD178 and AKDD159, Kempfield Ag-Barite Deposit, NSW, for Argent Minerals Ltd (Sydney) 26/09/2015. *Internal Unpublished Report.*

David,V. 2013. Geology of the Kempfield silver-barite and base metal (Pb-Zn) Volcanic hosted massive sulphide deposit, Lachlan Orogen, Eastern Australia. AIG Bulletin 55. Mines and Wines 2013.

David, V, 2009. Exploration Licence 7134 Kempfield & Exploration Licence 5748 Kempfield & Exploration Licence 5645 Kempfield Group 2 & PLL 519, Joint Annual Report 2009. Unpublished Company Report.

David, V and Mischler, P, 2013. Exploration Licence 5748, 5645, 7134, 5645, 5645 & PLL 517, 519, 727, 728, Combined Annual Report 2013. Unpublished Company Report.

Edwards, A, McLean, G and Torrey, C, 2001. Exploration Licences EL 5748 & EL 5645 Kempfield & Kempfield Group 2, Annual Report 2001. Unpublished Company Report.

Herrmann, W., 2015. Notes on reconnaissance geological mapping north of Kempfield Quarry Zone – 28/10/2015. Internal Unpublished Report

About Argent Minerals Ltd (ASX: ARD)

Argent Minerals Limited is an ASX listed public company focused on creating shareholder wealth through the discovery, extraction, and marketing of precious and base metals. Currently, Argent has over 1,734km² of exploration ground in NSW and 1,038km² in Western Australia, totalling 2,772 km² within 2 Australian States.

Kempfield Project EL5645, EL5748 (100% ARD) NSW

The Kempfield Project is located 60km SSW of Cadia Newcrest Gold and Copper Mining Operations in Central West New South Wales, 250 kilometres west of Sydney. This is the Company's flagship project and is registered as a New South Wales State Significant Development Project. Kempfield Silver Deposit Mineral Resource estimate for all categories has been upgraded **63.7Mt @ 69.75** g/t silver equivalent for **142.8** million ounces Ag Eq, containing of **65.8** Moz silver, **125,192** oz gold, **207,402t lead & 420,373t zinc** (ASX Announcement 25 July 2024: Significant Silver Resource Upgrade over Kempfield Deposit)

Trunkey Creek Project EL5748 (100% ARD) NSW

The Trunkey Creek Gold Project is located 5 kms east of the Kempfield in Central West region New South Wales. The Project lies within the Trunkey Creek Mineral Field which extends for 5.5 km by 500 m wide with over 2,900 oz of gold extracted from small scale mining. New IP model has delineated three distinct resistive/chargeable zones. Sub-parallel main quartz reefs are spaced 30m to 50m apart over a strike length of 2 km (ASX Announcement 31 May 2022: New Gold Drill Targets Identified at Trunkey Creek).

Pine Ridge Project EL8213 (100% ARD), NSW

The Project is located in the Central Tablelands in New South Wales approximately 65 kilometres south of the township of Bathurst and 10 km south-west of Trunkey. Gold mining commenced in 1877 and continued sporadically until 1948, producing a total of 6,864t ore with variable gold grades. Current 2012 JORC Resource (Inferred Category Only) is 416,887t @ 1.65 g/t Au containing 22,122 oz Gold (ASX Announcement 20 April 2022: Pine Ridge Inferred Resource)

Mt Dudley Project EL5748 (100% ARD), NSW

The Project is located 5 km northwest of the township of Trunkey, near Blayney NSW. The Mt Dudley mine was worked between 1913-1922 and 1928-1931, with the mine's records indicating an average mined grade of approximately 25 g/t of gold. Current 2012 JORC Resource (Inferred Category Only) is 882,636t @ 1.03 g/t Au containing 29,238 oz Gold (ASX Announcement 13 September 2022: Maiden JORC Resource Over Mt Dudley Prospect)

Copperhead Project (100% ARD), WA

The Copperhead Project is located NE of Carnarvon and SW of Karratha in Western Australia Gascoyne Region. The project is proximal to major REE deposits and is considered Elephant country based on its untapped potential.

Helicopter rock-chip sample program has confirmed the extensive copper mineralisation over the Mount Palgrave Prospect. High-grade stratiform copper assays include 2.42%, 4.14%, 5.92%, 8.8%, 14.96% and 21.1% Cu.

The Project is also considered highly prospective for potential ironstone/carbonatite Rare Earth mineralisation. Over Fifty (50) high priority potential ironstone/carbonatite rare earth targets have been delineated and are currently being assessed (ASX Announcement 1 February 2023: High-grade copper confirmed at Gascoyne Copper Project)

ARGENT MINERALS LIMITED

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	 Reverse Circulation (RC) was completed over 40 holes, totalling 2,468m. Sample type was drilling cuttings from RC drilling, sampled between 4m in the barren zones and every 1 metre within the ore zones. Every sample weighted between 1 and 2 kgs. Industry standard practices will be used to ensure sample representation. ALS Laboratories in Brisbane applied QA-QC for sample preparation and appropriate instrument calibration. Individual samples were collected from the riffle splitter below the cyclone into calico bags for analysis. Duplicates, blanks, and standards will be submitted to ensure results are repeatable and accurate. Laboratory comparison checks will also be completed. With no statistically significant lab errors or biasing shown at this stage. Intervals were geologically logged by geologist currently on the drilling programme.
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	RC drilling was completed by standard RC Drilling techniques. Chief Drilling from Orange NSW used a Bormor 150 drill rig and a 900/350 Sullair auxiliary compressor booster unit – 121.5mm diameter face sampling hammer bit. Drill samples are homogenised by riffle splitting prior to sampling and a 1-3kg split sample is submitted for assay only.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	All metre intervals were logged, and sample recoveries were estimated by geologist on site based on bag volume estimation and recorded as a percentage. Sample recoveries were classified as satisfactory, and the volume of sample was considered to represent a good composite sample overall. All samples were noted as dry, moist or wet in the geological logging sheets.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All RC drilling is qualitatively and quantitatively logged for a combination of geological and geotechnical attributes in their entirety including as appropriate major & minor lithologies, alteration, vein minerals, vein percentage, sulphide type and percentage, colour, weathering, hardness, grain size. All RC holes were geological logged from the start to the end of hole. All field descriptions are qualitative in nature

Criteria	JORC Code explanation	Commentary				
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.For all sample types, the nature, quality and appropriateness of the sample preparation technique.Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 All RC holes were sampled and split every 1 metre using a cone splitter to produce a sample between 1 and 3 kgs sub-sample for submission to ALS Labs in Brisbane. All samples submitted to ALS Labs were dried, crushed and pulverised until sample was classified as homogeneous. Approx 7% of submitted samples are in the form of standards, blanks, and duplicates and will be submitted once the drilling programme has been completed. The sample sizes are appropriate to the grain size of the material been sampled. 				
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Geochemical Analysis of the RC samples conducted by ALS in Brisbane included drying and pulverising to 85% passing 75um. Four acid ICP-AES (ME-ICP61) was used to assay for Ag (ppm), As (ppm), Ba (ppm), Cu (ppm), Pb (ppm), Zn (ppm) and Sb (ppm), When high grade assays results were encountered, ICP-AES Ore Grade Element was used If Ag >= 100 ppm then Method Ag-OG62 was used If Cu >= 10,000 ppm then Method Cu-OG62 was used If Pb >= 10,000 ppm then Method Pb-OG62 was used If Zn >= 10,000 ppm then Method Zn-OG62 was used Gold Analysis was undertaken by AA26 Fire Assay method which included drying and pulverising to 85% passing 75um with detection limit of 0.01 ppm Acceptable levels of accuracy for all data referenced in this ASX announcement have been achieved given the purpose of the analysis.				
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.Discuss any adjustment to assay data.	Argent and ALS employ independent QAQC assay checks. Argent uses coarse crush, fine crush and pulp duplicates, blanks and 3 types of CRM's inserted at a ratio of 1:25. Alternative company staff have verified the significant results that are listed in this report. No Twinned Holes were used All drillhole information is stored graphically and digitally in MS excel and MS access formats. No adjustments have been made to assay data.				
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.Specification of the grid system used.Quality and adequacy of topographic control.	e expected accuracy) which is suitable for this stage of exploration. All data used in this report are in: Datum: Geodetic Datum of Australia 94 (GDA94) Projection: Man Grid of Australia (MGA)				

Criteria	JORC Code explanation	Commentary
		Topographic control was gained using government DTM data with handheld GPS check.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Data spacing is listed in a text within the body of the report and within Section 2 under Drillhole Information. There are no historic drill holes in the area, thus spacing, and distribution is not considered sufficient to establish geological and grade continuity appropriate to be added to the creation of a JORC 2012 Mineral Resource at this stage.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Samples were taken with consideration of stratigraphy and alteration; samples do not straddle geological or stratigraphic boundaries. The immediate local geological sequence and foliation is steeply westerly dipping. Drillholes were targeted to intersect geology on mildly oblique sections to increase intercept potential and also to test the true vertical depth of the various mineralised lens. The relationship between drilling orientation and mineralisation orientation is not considered to have introduce any material sampling bias during the drilling program.
Sample security	The measures taken to ensure sample security.	RC sub-samples were stored on site prior to being transported to the laboratory for analyses. Chain of custody involved graphic and digital sign off sheets onsite, sample transfer protocols onsite, delivery to laboratories by Argent Minerals staff with receipts received from the laboratory. Sample pulps are currently stored at the laboratory and will be returned to the Company and stored in a secure location.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Resource Assessment (AL36) and Exploration Licence, Kempfield / EL5748, Trunkey Creek, NSW, held by Argent (Kempfield) Pty Ltd (100% interest), a wholly owned subsidiary of Argent Minerals Limited. There are no overriding royalties other than the standard government royalties for the relevant minerals. There are no other material issues affecting the tenements. All granted tenure is in good standing and there are no impediments to operating in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Argent Minerals Limited through its wholly owned subsidiary Argent (Kempfield) Pty Ltd is the sole operator of the project. Argent Minerals introduced best industry practice work.

Criteria	JORC Code explanation	Commentary Kempfield has been explored for more than forty years by several exploration companies as set out in in the below table:											
		Kemp	field has be	en explored for	more than for	rty years l	oy several	explorat	ion compan	ies as			
		set ou	ut in in the b	elow table:									
		C	ompany	Period		E	xploration	activities					
			Argent ⁄linerals	2007-current		•		•	survey, gravit e EM survey	:y			
			den Cross	1996-2007					nagnetic surve	ey			
		Jor	es Mining	1982-1995			Drillir	-					
			Shell	1979-1982	Drilling,	ground EN		urvey, dipole-dipole IP survey, and soil sampling					
			Inco	1972-1974			Drillir	. –					
Geology	Deposit type, geological setting,						-)						
5,	and style of mineralisation.	The deposit type is Volcanogenic Massive Sulphide (VMS).											
		The geological setting is Silurian felsic to intermediate volcaniclastics within the intra-arc											
		Hill Ei	Hill End Trough in the Lachlan Orogen, Eastern Australia; and										
			tyle of mine ⊦/- gold.	eralisation com	prises stratifo	rm barite	e-rich hori	zons hos	sting silver,	lead,			
Drill hole	A summary of all information	21110,	- golu.										
Information	material to the understanding of the exploration results including a	The to in Tab		e information is	s tubulated be	low with	significant	t drill ass	ay results sh	nown			
	tabulation of the following	mia	ле 1.				1			1			
	information for all Material drill holes:		Hole Id	Easting	Northing	RL	Total	Dip	Azimuth				
	 easting and northing of the drill hole collar 			(GDA 94)	(GDA 94)	Ī	Depth	Î	(GDA)				
			AKRC242	709500	6260753	838	49	-60	90				
	 elevation or RL (Reduced Level 		AKRC243	709479	6260755	838	64	-60	90				
	 − ○ elevation above sea level in 		AKRC244	709523	6260800	839	64	-57	90				
	metres) of the drill hole collar		AKRC245	709500	6260795	840	49	-60	90				
	 o dip and azimuth of the hole o down hole length and 		AKRC246	709470	6260798	839	58	-60	90				
	interception depth		AKRC247	709213	6260078	830	58	-60	90				
	○ hole length.		AKRC248	709186	6260077	829	86	-60	90				
	If the exclusion of this information		AKRC249	709165	6260080	828	83	-60	90				
	is justified on the basis that the information is not Material and		AKRC250	709255	6260030	840	108	-60	90				
	this exclusion does not detract		AKRC251	709185	6259975	833	64	-60	90				
	from the understanding of the report, the Competent Person		AKRC252	709161	6259975	829	79	-60	90				
	should clearly explain why this is		AKRC253	709625	6261200	834	49	-60	90				
	the case.		AKRC254	709601	6261199	839	25	-60	90				
			AKRC255	709627	6261148	844	52	-60	90				
			AKRC256	709603	6261157	837	31	-60	90				
			AKRC257	709588	6261092	836	62	-60	90				
			AKRC258	709607	6261099	837	40	-60	90				
			AKRC259	709605	6261054	831	40	-60	90				
			AKRC260	709587	6261014	826	28	-60	90				
			AKRC261	709647	6261129	838	22	-60	270				
			AKRC262	709669	6261125	834	25	-60	90				
			AKRC263	709463	6260750	837	54	-60	90]			

ARGENT MINERALS LIMITED

Criteria	JORC Code explanation				Commen	tary				
				Easting	Northing	RL	Total	Dip	Azimuth	
			Hole Id	(GDA 94)	(GDA 94)		Depth		(GDA)	
			AKRC285	709667	6261191	834	31	-60	90	
			AKRC286	709592	6261245	832	13	-60	90	
			AKRC287	709553	6260849	836	82	-60	90	
			AKRC288	709532	6260855	838	88	-60	90	
			AKRC289	709498	6260932	813	28	-60	90	
			AKRC290	709476	6260666	837	79	-60	90	
			AKRC291	709196	6260201	815	58	-60	90	
			AKRC292	709569	6260894	838	64	-60	90	
			AKRC293	709547	6260894	838	55	-60	90	
			AKRC294	709574	6260946	842	43	-60	90	
			AKRC295	709559	6260953	842	67	-60	90	
			AKRC296	709610	6260851	839	64	-80	270	
			AKRC297	709122	6259882	805	99	-60	90	
			AKRC298	709089	6259826	808	113	-60	90	
			AKRC299	709142	6259927	817	88	-60	90	
			AKRC300	709054	6259776	812	145	-60	90	
			AKRC301	709327	6259930	867	130	-60	90	
			AKRC302	709309	6259884	868	28	-60	90	
		Note	s:							
			ng and Northi 94), Map Grid	-				c Datum	of Australia	a 94
Data	In reporting Exploration Results,	-	eighting avera					at this n	oint	
aggregation methods	weighting averaging techniques, maximum and/or minimum grade		ts are estimate		-					hidaa
methous	truncations (e.g., cutting of high		ologist and su			aiteratioi	rintensity	anu nui		nues
	grades) and cut-off grades are usually Material and should be stated.	No m	etal equivalen	t values empl	oyed in this re	port.				
	Where aggregate intercepts									
	incorporate short lengths of high- grade results and longer lengths									
	of low-grade results, the									
	procedure used for such aggregation should be stated and									
	some typical examples of such									
	aggregations should be shown in detail.									
	The assumptions used for any									
	reporting of metal equivalent values should be clearly stated.									
Relationship	These relationships are	Orien	itation, true v	widths and t	he shape/geo	ometrv c	of the Ag	-Pb-Zn i	mineralisatio	on at
between	particularly important in the	Kemp	ofield NW Pros	pects cannot	be interprete	d of base	d on the c	omplete	d drilling to	date.
mineralisation widths and	reporting of Exploration Results. If the geometry of the		rue thickness c uired.	n the nigh-gra	ade zones rem	ants uncl	ear in cert	ani afea:	s. Further dr	ming
	mineralisation with respect to the									

Criteria	JORC Code explanation	Commentary
intercept lengths	drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	In conjunction, Table 1 highlights the downhole width in metres from the RC Drilling results from the current completed exploration program.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figure 1 displays an early time channel shallow response which reflects conductivity variations in the near surface (potential sulphide mineralisation).Figure 2 displays the later times, deeper depth, the near surface conductive response.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All Exploration Results are reported. Table 1 of the announcement contains significant intersections. Significant intersections are continuous intervals of sampling where each individual sample is of an individual grade greater than 0.1% Zn, 0.1% Pb, 0.1% Cu, 10 g/t Ag & 1 g/t Au.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The VTEM survey was flown over the project in May 2008. The survey was carried out on flight lines oriented 090-270° on 200m spacings with some 100m infill. System specifications are summarised below. VTEM System Transmitter loop – 26m Peak dipole moment – 424,000 NIA Transmitter Pulse Width – 7 ms Base Frequency: 25Hz Receiver – Z coil Magnetic Sensor: Towed Bird Flying Height - 90 meters EM sensor Height - 40 meters Magnetic sensor Height – 75 meters
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The data was independently verified by Core Geophysics Pty Ltd Further RC/DDH Drilling will be implemented during the 3 rd and 4 th quarter of 2025/2026