ASX Announcement

Additional High-Grade Gold and Copper Intercepts from the Carlow East Zone

Highlights

High-grade East Zone intercepts occur at depth and continue to define the mineralised shoots down-dip and outside the 2021 optimised pit shell.

Third batch of results from our 52 hole, ~14,000m RC drill programme has intersected multiple high-grade zones with the better intersections being:

- 20.0m @ 2.06g/t Au, 0.40% Cu, 0.254% Co, from 258m; Hole ARC359
 - o Including 3.0m@ 8.78g/t Au, 1.18% Cu, 1.140% Co, from 258m
- 3.0m @ 21.91 g/t Au, 0.80 % Cu, 0.01 % Co, from 246m; Hole ARC355
 - o Including 1.0m @ 53.1g/t Au, 1.27% Cu 0.01% Co, from 246m
- 11.0m @ 1.69 g/t Au, 0.49 % Cu, 0.256 % Co, from 246m; Hole ARC357
 - o Including 2.0m @ 6.68g/t Au, 0.75% Cu, 0.916% Co, from 246m
- 6.0m @ 4.61 g/t Au, 0.44 % Cu, 0.02 % Co, from 294m; Hole ARC356
 - o Including 2.0m @ 5.75g/t Au, 0.42% Cu, 0.015% Co, from 296m
- 2.0m @ 11.93 g/t Au, 0.67 % Cu, 0.02 % Co, from 199m; Hole ARC356
- 1.0m @ 25.10 g/t Au, 0.43 % Cu, 0.01 % Co, from 245.00 m; Hole ARC358

Resource development and exploration drilling can now be planned with a higher level of confidence.

A further 3 holes are still pending assays with additional drill planning in progress to follow up these outstanding gold and copper results.

Artemis Resources Limited ("Artemis" or "the Company") (ASX:ARV, Frankfurt: ATY, US OTCQB: ARTTF) is pleased to provide an update on assay results from the recent RC drilling programme targeting the East and Quod Est Zones at its 100%-owned Carlow Gold and Copper Project in the west Pilbara region of Western Australia.

Alastair Clayton, Executive Director commented: "Once again Steve Boda, Artemis General Manager and his team have, delivered outstanding results from the Carlow Project.

Through diligent analysis we can now target and intercept very high-grade shoots as well as thick zones of gold and copper with a high degree of certainty.

As demonstrated by the outstanding gold and copper intercepts presented to shareholders over the last five weeks the exploration scope and potential continues to grow across the Carlow group of deposits and regionally at the new Chapman discovery.

We will be accelerating our Carlow exploration efforts in the New Year with our aim of delivering a new resource statement in H1 of 2022."

Eastern Zone

These recent results have shown that the potential of the eastern zone lies in depth extensions while further discoveries of offset high-grade shoots to the south of the main East Zone will widen the mineralised area at depth.

Figure 1 shows the location of the collars for the program along with sections lines for the cross-sections presented in this document.

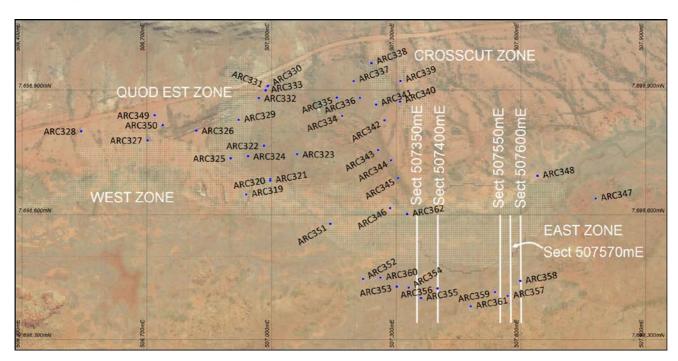


Figure 1: Section lines and collar locations of holes for the East Zone as referenced in this document. Refer to section lines for diagrams.

Reinterpretation of the Carlow deposit suggests that high-grade steeply-plunging shoots occur in the East Zone, which in turn potentially identifies the East Zone as the feeder to the Carlow system. This interpretation has enabled ARV to plan drill targets with accuracy, with the majority of the targets intersecting mineralisation, and returning excellent results.

Table 1: Significant results for drilling in the East Zone of the Carlow Main Area. These results are cut at >1.0g/t Au. Table 2 contains results for >0.5g/t Au, 2m included waste.

	-	COMMING	1034113 101 >	0.3g/t Au, 2111111	loraded Waste.		
HoleID		From (m)	To (m)	DH Width (m)	Au (g/t)	Cu (%)	Co (%)
ARC349		73	75	2	1.83	0.44	0.020
ARC349		132	133	1	1.23	0.47	0.007
ARC349		139	142	3	2.78	0.54	0.032
ARC349	including	140	141	1	7.17	1.13	0.045
ARC349		160	161	1	1.18	0.17	0.016
ARC349		228	231	3	1.57	1.70	0.008
ARC350		15	16	1	1.82	0.14	0.020
ARC350		42	43	1	3.15	0.78	0.110
ARC350		47	52	5	3.51	1.39	0.173
ARC350	including	47	48	1	10.90	3.59	0.012
ARC350	including	50	51	1	4.31	1.07	0.614
ARC350		78	79	1	1.98	2.88	0.021
ARC350		171	172	1	1.16	0.96	0.100
ARC351		42	48	6	1.38	0.62	0.100
ARC352		249	250	1	1.63	4.27	0.014
ARC353		68	70	2	4.87	0.01	0.006
ARC353		122	124	2	1.49	0.07	0.005
ARC353		314	315	1	1.20	1.36	0.302
ARC354		298	299	1	3.89	1.38	0.582
ARC355		211	212	1	3.54	0.40	0.006
ARC355		215	218	3	1.45	0.59	0.011
ARC355		237	238	1	1.33	2.01	0.008
ARC355		246	249	3	21.91	0.80	0.009
ARC355	including	246	248	2	31.63	1.10	0.011
(ARC355	including	246	247	1	53.10	1.27	0.010)
ARC355		283	288	5	1.31	0.18	0.121
ARC356		199	201	2	11.93	0.67	0.025
ARC356		231	232	1	6.23	1.05	0.010
ARC356		254	255	1	1.24	0.47	0.009
ARC356		294	300	6	4.61	0.44	0.019
ARC356	including	294	295	1	3.33	0.12	0.013
ARC356	including	296	298	2	5.75	0.42	0.015
ARC356	including	299	300	1	7.22	1.05	0.040
ARC357		185	186	1	1.12	0.03	0.005
ARC357		246	257	11	1.69	0.49	0.256
ARC357	including	246	248	2	6.68	0.75	0.916
ARC357		294	295	1	1.21	1.38	0.011
ARC357		315	316	1	1.10	0.03	0.004

HoleID		From (m)	To (m)	DH Width (m)	Au (g/t)	Cu (%)	Co (%)
ARC358		245	246	1	25.10	0.43	0.009
ARC358		262	267	5	1.71	0.46	0.069
ARC358	including	266	267	1	3.77	0.57	0.016
ARC359		258	278	20	2.06	0.40	0.254
ARC359	including	258	261	3	8.78	1.18	1.140
ARC359	including	267	274	7	1.16	0.38	0.128
ARC361		274	276	2	1.31	6.00	0.014
ARC361		330	331	1	2.33	0.36	0.050
ARC361		351	357	6	1.01	1.81	0.027
ARC362		198	199	1	1.42	0.54	0.018
ARC362		224	225	1	4.85	4.72	0.059

Most of these results extend existing mineralised trends downward in the East Zone, such as the results for ARC355 Section 507360mE (Figure 2). These results extend the current mineralised envelops 80 metres below the 2021 optimised pit outline.

Other holes such as ARC356, (Section 507400mE; Figure 3) intersected another zone of high-grade of 6m @ 4.61 g/t Au, 0.44 % Cu, 0.02 % Co, from 294m that effectively extends the current mineralised envelope 60 metres below the 2021 optimisation pit.

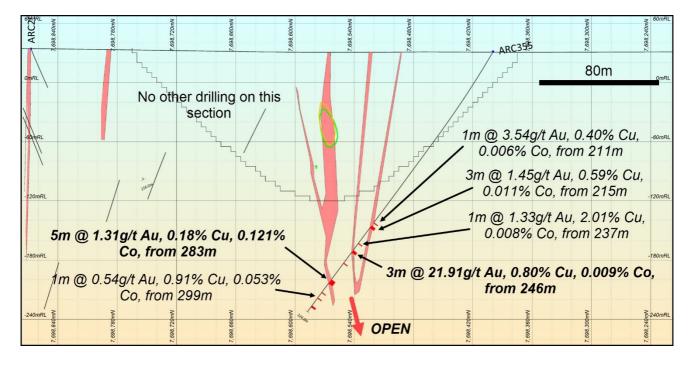


Figure 2: Hole ARC355 Section 507360 showing a series of mineralised intervals down along the drill trace, well below the 2021 optimised pit outline. This remains open at depth. The line traces highlight the low grade halo with orange outlining the >0.25g/t Au trace and green outlining >0.25% Cu as defined by implicit modelling.

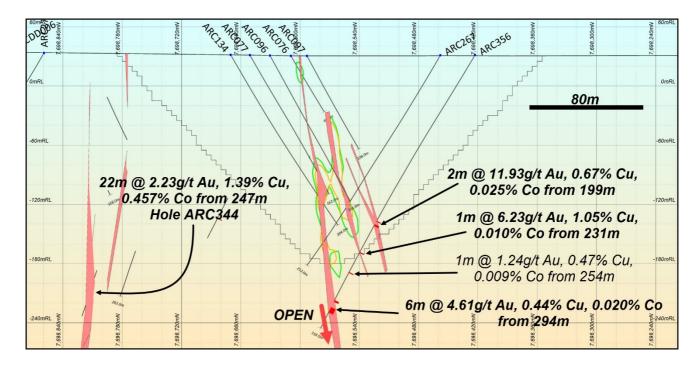


Figure 3: Hole ARC356 Section 507400mE showing significant intersections well below the 2021 optimised pit outline, with mineralisation open at depth. This section of the East Zone is near the Crosscut Zone, as shown by the significant intersection in hole ARC344. The line traces highlight the low grade halo with orange outlining the >0.25g/t Au trace and green outlining >0.25% Cu as defined by implicit modelling.

A thick interval of 20m @ 2.06g/t Au, 0.40% Cu, 0.254% Co from 258m is particularly interesting not just for the Au and Cu, but significant Co values as well (Figure 4).

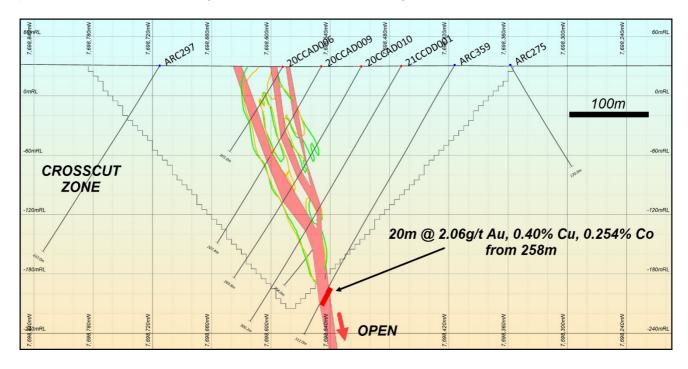


Figure 4: Hole ARC359 Section 507540mE highlighting the thick mineralised intersection outside of the 2021 optimised pit outline. This mineralised trend remains open down dip. The line traces highlight the low grade halo with orange outlining the >0.25g/t Au trace and green outlining >0.25% Cu as defined by implicit modelling.

Continuation of the mineralised trend can be seen in Figures 5 and 6, with significant values extending below the optimised 2021 pit. These mineralised trends remain open at depth.

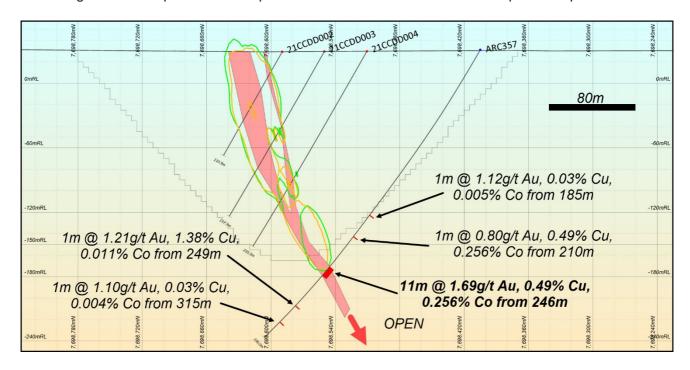


Figure 5: Hole ARC357 Section 507570mE showing the wide interval of mineralisation below the 2021 optimised pit. The line traces highlight the low grade halo with orange outlining the >0.25g/t Au trace and green outlining >0.25% Cu as defined by implicit modelling.

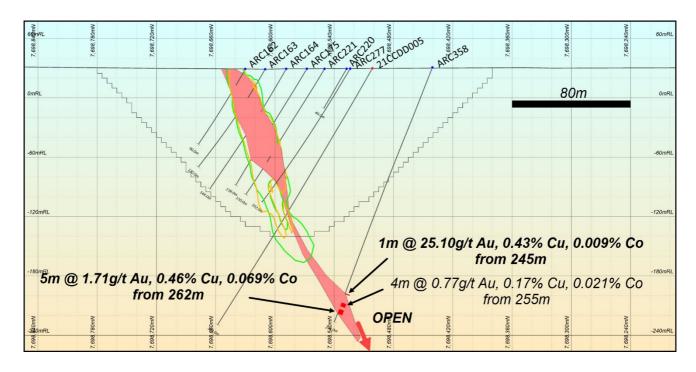


Figure 6: Hole ARC358 Section 507600mE showing the continuation of the mineralisation at depth and well below the 2021 optimised pit outline. The line traces highlight the low grade halo with orange outlining the >0.25g/t Au trace and green outlining >0.25% Cu as defined by implicit modelling.

The new interpretation along with the drilling traces can be seen in Figure 7. The recent program has added significant geological and analytical information that can be used in the next phase of drilling.

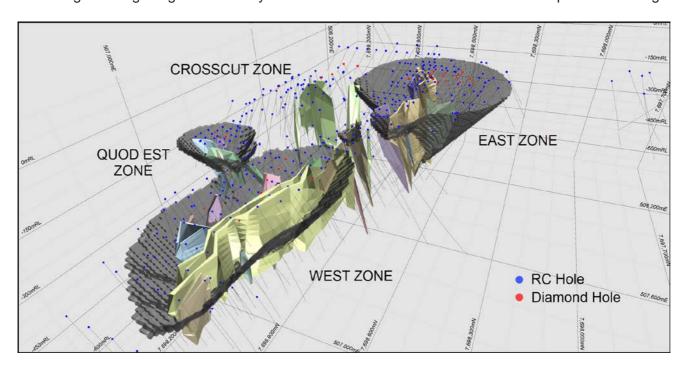


Figure 7: Oblique view of the Carlow System looking northeast, displaying its typical vein splay. New shoot developments occur on the western side of the East Zone pit. Further drilling is required to extend these systems along strike and down dip. Grid scale is approximately 300m.

Mineralisation on the East Zone is enveloped by a low-grade Cu-Au halo which is likely a result of fracturing of the host rock during high-grade shoot development. Grades of this halo are typically >0.25g/t Au and >0.25% Cu, but seem to be more confined than that of the West Zone. These can be seen in the sections.

Modelling of this halo is in progress.

Competent Persons Statement

The information in this announcement that relates to Exploration Results and Exploration Targets is based on information compiled or reviewed by Mr. Steve Boda, who is a Member of the Australasian Institute Geoscientists. Mr. Boda is an employee of Artemis Resources Limited. Mr. Boda has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Boda consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

About Artemis Resources

Artemis Resources (ASX: ARV; FRA: ATY; US: ARTTF) is a Perth-based exploration and development company, led by an experienced team that has a singular focus on delivering shareholder value from its Pilbara gold projects – the Greater Carlow Gold Project in the West Pilbara and the Paterson Central exploration project in the East Pilbara.

For more information, please visit www.artemisresources.com.au

This announcement was approved for release by the Board.

For further information contact:

Alastair Clayton

Executive Director

alastair.clayton@artemisresources.com.au

Table 2: Hole Statistics

HoleID	Туре	Easting GDA94	Northing GDA94	RL (m)	Dip	Azim Mag	Total Depth (m)
ARC349	RC	506718.57	7698839.34	37.5	-59.9	178.7	276
ARC350	RC	506738.09	7698815.83	36.9	-59.4	181.1	306
ARC351	RC	507141.48	7698578.31	32.3	-59.4	3.3	120
ARC352	RC	507220.15	7698445.77	32.2	-64.2	2.0	300
ARC353	RC	507301.16	7698427.29	31.6	-62.1	0.8	336
ARC354	RC	507329.84	7698424.89	31.4	-68.8	359.1	312
ARC355	RC	507359.49	7698399.61	31.2	-60.5	1.6	324
ARC356	RC	507399.42	7698422.96	31.2	-59.5	0.8	318
ARC357	RC	507568.49	7698404.99	31.2	-60.3	359.4	336
ARC358	RC	507598.08	7698440.63	30.8	-68.9	1.9	276
ARC359	RC	507537.55	7698414.06	31.2	-60.7	359.8	312
ARC360	RC	507261.97	7698448.89	31.9	-60.7	357.9	270

Table 3: Significant Intersections for the East Zone. Results are >0.5g/t Au 2m internal dilution.

NSI = *No Significant Intersections*

1V31 = 1V0 Significant intersections							
HoleID		From (m)	To (m)	DH Width (m)	Au (g/t)	Cu (%)	Co (%)
ARC349		73	75	2	1.83	0.44	0.020
ARC349		99	102	3	0.87	1.17	0.332
ARC349		132	133	1	1.23	0.47	0.007
ARC349		139	142	3	2.78	0.54	0.032
ARC349	including	140	141	1	7.17	1.13	0.045
ARC349		160	161	1	1.18	0.17	0.016
ARC349		168	169	1	0.55	0.13	0.015
ARC349		171	172	1	0.97	0.28	0.343
ARC349		191	192	1	0.56	0.17	0.091
ARC349		214	215	1	0.60	0.42	0.044
ARC349		228	231	3	1.57	1.70	0.008
ARC350		11	12	1	0.59	0.12	0.024
ARC350		15	16	1	1.82	0.14	0.020
ARC350		20	21	1	0.53	0.28	0.045
ARC350		42	43	1	3.15	0.78	0.110
ARC350		47	52	5	3.51	1.39	0.173
ARC350	including	47	48	1	10.90	3.59	0.012
ARC350	including	50	51	1	4.31	1.07	0.614
ARC350		78	79	1	1.98	2.88	0.021
ARC350		82	83	1	0.59	0.49	0.011
ARC350		171	172	1	1.16	0.96	0.100
ARC350		304	305	1	0.94	0.10	0.003
ARC351		42	48	6	1.38	0.62	0.100
ARC352		173	174	1	0.74	3.47	0.005
ARC352		249	250	1	1.63	4.27	0.014
ARC352		258	259	1	0.85	0.21	0.015
ARC352		261	262	1	0.60	0.16	0.163
ARC352		265	269	4	0.69	0.51	0.125

HoleID			From	То				_
ARC353	HoleID				DH Width (m)	Au (g/t)	Cu (%)	Co (%)
ARC353	ARC352		273	274	1	0.69	0.17	0.205
ARC353	ARC353		68	70	2	4.87	0.01	0.006
ARC353	ARC353		122	124	2	1.49	0.07	0.005
ARC353	ARC353		219	220	1	0.70	1.84	0.022
ARC353	ARC353		239	240	1	0.50	1.53	0.003
ARC353 314 315 1 1.20 1.36 0.302 ARC354 200 204 4 0.88 0.30 0.004 ARC354 298 299 1 3.89 1.38 0.582 ARC354 310 311 1 0.62 0.07 0.006 ARC355 211 212 1 3.54 0.40 0.006 ARC355 215 218 3 1.45 0.59 0.011 ARC355 237 238 1 1.33 2.01 0.008 ARC355 246 249 3 21.91 0.80 0.009 ARC355 including 246 248 2 31.63 1.10 0.011 ARC355 262 263 1 0.88 1.65 0.013 ARC355 299 300 1 0.54 0.91 ARC355 316 318 2 0.87 0.36 0.055 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 0.81 1.15 0.016 ARC356 254 255 1 1.22 1 0.81 0.009 ARC356 199 201 2 11.93 0.67 0.025 ARC356 286 288 2 0.74 0.36 0.038 ARC356 274 255 1 1.24 0.47 0.009 ARC356 1 190 201 2 11.93 0.67 0.025 ARC356 286 288 2 0.74 0.36 0.038 ARC356 1 294 300 6 4.61 0.44 0.019 ARC356 1 294 295 1 3.33 0.12 0.013 ARC356 1 1.04 294 295 1 3.33 0.12 0.013 ARC357 246 257 11 1.69 0.49 0.256 ARC357 1 1.50 296 298 2 5.75 0.42 0.015 ARC357 246 257 11 1.69 0.49 0.256 ARC357 1 1.04 246 248 2 6.68 0.75 0.916 ARC357 1 1.05 0.004 ARC358 246 248 2 6.68 0.75 0.916 ARC358 255 259 4 0.777 0.17 0.021 ARC358 256 267 5 1.71 0.46 0.069 ARC358 1 1.104 0.09 258 260 267 5 1.71 0.46 0.069 ARC358 1 1.104 0.09 258 260 260 0.40 0.254 ARC359 1 1.04 0.09 255 5 0.59 0.23 0.101 ARC359 1 1.04 0.09 255 5 0.59 0.23 0.101 ARC359 1 1.04 0.09 255 5 0.59 0.23 0.101 ARC359 1 1.04 0.09 255 5 0.59 0.23 0.101	ARC353		247	248	1	0.53	0.05	0.393
ARC353 314 315 1 1.20 1.36 0.302 ARC354 200 204 4 0.88 0.30 0.004 ARC354 298 299 1 3.89 1.38 0.582 ARC354 310 311 1 0.62 0.07 0.006 ARC355 211 212 1 3.54 0.40 0.006 ARC355 215 218 3 1.45 0.59 0.011 ARC355 221 222 1 3.54 0.40 0.006 ARC355 226 263 1 1.33 2.01 0.008 ARC355 including 246 249 3 21.91 0.80 0.009 ARC355 including 246 248 2 31.63 1.10 0.011 ARC355 including 246 248 2 31.63 1.10 0.013 ARC355 283 288	ARC353		254	255	1	0.65	0.16	0.116
ARC354 200 204 4 0.88 0.30 0.004 ARC354 298 299 1 3.89 1.38 0.582 ARC355 211 212 1 0.62 0.07 0.006 ARC355 211 212 1 3.54 0.40 0.006 ARC355 215 218 3 1.45 0.59 0.011 ARC355 221 228 1 1.33 2.01 0.008 ARC355 246 249 3 21.91 0.80 0.009 ARC355 10cluding 246 248 2 31.63 1.10 0.011 ARC355 262 263 1 0.88 1.65 0.013 ARC355 283 288 5 1.31 0.18 0.121 ARC355 283 288 5 1.31 0.18 0.121 ARC356 306 307 1 0.97 0.23 </td <td>ARC353</td> <td></td> <td>256</td> <td>257</td> <td>1</td> <td>0.60</td> <td>0.16</td> <td>0.120</td>	ARC353		256	257	1	0.60	0.16	0.120
ARC354 298 299 1 3.89 1.38 0.582 ARC354 310 311 1 0.62 0.07 0.006 ARC355 211 212 1 3.54 0.40 0.006 ARC355 215 218 3 1.45 0.59 0.011 ARC355 227 238 1 1.33 2.01 0.008 ARC355 246 249 3 21.91 0.80 0.009 ARC355 including 246 248 2 31.63 1.10 0.011 ARC355 262 263 1 0.88 1.65 0.013 ARC355 283 288 5 1.31 0.18 0.121 ARC355 299 300 1 0.54 0.91 0.053 ARC355 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 </td <td>ARC353</td> <td></td> <td>314</td> <td>315</td> <td>1</td> <td>1.20</td> <td>1.36</td> <td>0.302</td>	ARC353		314	315	1	1.20	1.36	0.302
ARC354 310 311 1 0.62 0.07 0.006 ARC355 211 212 1 3.54 0.40 0.006 ARC355 215 218 3 1.45 0.59 0.011 ARC355 237 238 1 1.33 2.01 0.008 ARC355 246 249 3 21.91 0.80 0.009 ARC355 including 246 248 2 31.63 1.10 0.001 ARC355 262 263 1 0.88 1.65 0.013 ARC355 283 288 5 1.31 0.18 0.121 ARC355 299 300 1 0.54 0.91 0.053 ARC355 306 307 1 0.97 0.23 0.745 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67<	ARC354		200	204	4	0.88	0.30	0.004
ARC355 211 212 1 3.54 0.40 0.006 ARC355 215 218 3 1.45 0.59 0.011 ARC355 237 238 1 1.33 2.01 0.008 ARC355 1.04 249 3 21.91 0.80 0.009 ARC355 1.04 246 248 2 31.63 1.10 0.011 ARC355 1.04 262 263 1 0.88 1.65 0.013 ARC355 283 288 5 1.31 0.18 0.121 ARC355 299 300 1 0.54 0.91 0.053 ARC355 306 307 1 0.97 0.23 0.745 ARC356 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93	ARC354		298	299	1	3.89	1.38	0.582
ARC355 215 218 3 1.45 0.59 0.011 ARC355 237 238 1 1.33 2.01 0.008 ARC355 246 249 3 21.91 0.80 0.009 ARC355 including 246 248 2 31.63 1.10 0.011 ARC355 262 263 1 0.88 1.65 0.013 ARC355 283 288 5 1.31 0.18 0.121 ARC355 299 300 1 0.54 0.91 0.053 ARC355 306 307 1 0.97 0.23 0.745 ARC356 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 199 201 2 11.93 0.67	ARC354		310	311	1	0.62	0.07	0.006
ARC355 237 238 1 1.33 2.01 0.008 ARC355 246 249 3 21.91 0.80 0.009 ARC355 including 246 248 2 31.63 1.10 0.011 ARC355 262 263 1 0.88 1.65 0.013 ARC355 283 288 5 1.31 0.18 0.121 ARC355 299 300 1 0.54 0.91 0.053 ARC355 306 307 1 0.97 0.23 0.745 ARC355 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 286 288 2 0.74 0.36<	ARC355		211	212	1	3.54	0.40	0.006
ARC355 246 249 3 21.91 0.80 0.009 ARC355 including 246 248 2 31.63 1.10 0.011 ARC355 262 263 1 0.88 1.65 0.013 ARC355 283 288 5 1.31 0.18 0.121 ARC355 299 300 1 0.54 0.91 0.053 ARC355 306 307 1 0.97 0.23 0.745 ARC355 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 16 cincluding 294 300 6	ARC355		215	218	3	1.45	0.59	0.011
ARC355 including 246 248 2 31.63 1.10 0.011 ARC355 262 263 1 0.88 1.65 0.013 ARC355 283 288 5 1.31 0.18 0.121 ARC355 299 300 1 0.54 0.91 0.053 ARC355 306 307 1 0.97 0.23 0.745 ARC355 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36<	ARC355		237	238	1	1.33	2.01	0.008
ARC355 262 263 1 0.88 1.65 0.013 ARC355 283 288 5 1.31 0.18 0.121 ARC355 299 300 1 0.54 0.91 0.063 ARC355 306 307 1 0.97 0.23 0.745 ARC355 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36 0.038 ARC356 including 294 295 1 3.33 0.12 </td <td>ARC355</td> <td></td> <td>246</td> <td>249</td> <td>3</td> <td>21.91</td> <td>0.80</td> <td>0.009</td>	ARC355		246	249	3	21.91	0.80	0.009
ARC355 283 288 5 1.31 0.18 0.121 ARC355 299 300 1 0.54 0.91 0.053 ARC355 306 307 1 0.97 0.23 0.745 ARC355 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36 0.038 ARC356 10cluding 294 295 1 3.33 0.12 0.013 ARC356 including 294 295 1 3.33 0.12 0.013 ARC357 185 186 1 1.	ARC355	including	246	248	2	31.63	1.10	0.011
ARC355 299 300 1 0.54 0.91 0.053 ARC355 306 307 1 0.97 0.23 0.745 ARC355 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36 0.038 ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 294 295 1 3.33 0.12 0.015 ARC356 including 296 298 2 5.75 0.42 0.015 ARC357 185 186	ARC355		262	263	1	0.88	1.65	0.013
ARC355 306 307 1 0.97 0.23 0.745 ARC355 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36 0.038 ARC356 10ding 294 295 1 3.33 0.12 0.013 ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 185	ARC355		283	288	5	1.31	0.18	0.121
ARC355 316 318 2 0.87 0.36 0.055 ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36 0.038 ARC356 294 300 6 4.61 0.44 0.019 ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 185 186 1 1.12 0.03 0.005 ARC357 210 211	ARC355		299	300	1	0.54	0.91	0.053
ARC356 195 196 1 0.81 1.15 0.016 ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36 0.038 ARC356 294 300 6 4.61 0.44 0.019 ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 including 299 300 1 7.22 1.05 0.040 ARC357 210 211 1 0.80 0.52 0.009 ARC357 315 246 257 11 1.69 0.49 </td <td>ARC355</td> <td></td> <td>306</td> <td>307</td> <td>1</td> <td>0.97</td> <td>0.23</td> <td>0.745</td>	ARC355		306	307	1	0.97	0.23	0.745
ARC356 199 201 2 11.93 0.67 0.025 ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36 0.038 ARC356 294 300 6 4.61 0.44 0.019 ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 296 298 2 5.75 0.42 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC357 185 186 1 1.12 0.03 0.004 ARC357 210 211 1 0.80 0.52 0.009 ARC357 246 257 11 1.69 0.49 0.256 ARC357 294 <td>ARC355</td> <td></td> <td>316</td> <td>318</td> <td>2</td> <td>0.87</td> <td>0.36</td> <td>0.055</td>	ARC355		316	318	2	0.87	0.36	0.055
ARC356 231 232 1 6.23 1.05 0.010 ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36 0.038 ARC356 294 300 6 4.61 0.44 0.019 ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 185 186 1 1.12 0.03 0.005 ARC357 210 211 1 0.80 0.52 0.009 ARC357 including 246 257 11 1.69 0.49 0.256	ARC356		195	196	1	0.81	1.15	0.016
ARC356 254 255 1 1.24 0.47 0.009 ARC356 286 288 2 0.74 0.36 0.038 ARC356 294 300 6 4.61 0.44 0.019 ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 185 186 1 1.12 0.03 0.005 ARC357 210 211 1 0.80 0.52 0.009 ARC357 246 257 11 1.69 0.49 0.256 ARC357 including 246 248 2 6.68 0.75 0.916 ARC357 315 316 1 1.21 1.38 0.011 ARC358 245 246 1 25.10 0.43 0.09 ARC358 255	ARC356		199	201	2	11.93	0.67	0.025
ARC356 286 288 2 0.74 0.36 0.038 ARC356 294 300 6 4.61 0.44 0.019 ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 185 186 1 1.12 0.03 0.005 ARC357 210 211 1 0.80 0.52 0.009 ARC357 246 257 11 1.69 0.49 0.256 ARC357 including 246 248 2 6.68 0.75 0.916 ARC357 315 316 1 1.21 1.38 0.011 ARC358 245 246 1 25.10 0.43 0.09 ARC358 245 246 1 25.10 0.43 0.09 ARC358 includin	ARC356		231	232	1	6.23	1.05	0.010
ARC356 294 300 6 4.61 0.44 0.019 ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 185 186 1 1.12 0.03 0.005 ARC357 210 211 1 0.80 0.52 0.009 ARC357 246 257 11 1.69 0.49 0.256 ARC357 10cluding 246 248 2 6.68 0.75 0.916 ARC357 294 295 1 1.21 1.38 0.011 ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 262 267 5 1.71 0.46 0.069 ARC359 includi	ARC356		254	255	1	1.24	0.47	0.009
ARC356 including 294 295 1 3.33 0.12 0.013 ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 185 186 1 1.12 0.03 0.005 ARC357 210 211 1 0.80 0.52 0.009 ARC357 246 257 11 1.69 0.49 0.256 ARC357 including 246 248 2 6.68 0.75 0.916 ARC357 294 295 1 1.21 1.38 0.011 ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 includin	ARC356		286	288	2	0.74	0.36	0.038
ARC356 including 296 298 2 5.75 0.42 0.015 ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 185 186 1 1.12 0.03 0.005 ARC357 210 211 1 0.80 0.52 0.009 ARC357 246 257 11 1.69 0.49 0.256 ARC357 including 246 248 2 6.68 0.75 0.916 ARC357 294 295 1 1.21 1.38 0.011 ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC359 including 258	ARC356		294	300	6	4.61	0.44	0.019
ARC356 including 299 300 1 7.22 1.05 0.040 ARC357 185 186 1 1.12 0.03 0.005 ARC357 210 211 1 0.80 0.52 0.009 ARC357 246 257 11 1.69 0.49 0.256 ARC357 including 246 248 2 6.68 0.75 0.916 ARC357 294 295 1 1.21 1.38 0.011 ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 including 258	ARC356	including	294	295	1	3.33	0.12	0.013
ARC357 185 186 1 1.12 0.03 0.005 ARC357 210 211 1 0.80 0.52 0.009 ARC357 246 257 11 1.69 0.49 0.256 ARC357 including 246 248 2 6.68 0.75 0.916 ARC357 294 295 1 1.21 1.38 0.011 ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 including 258 261 3 8.78 1.18 1.140 ARC359 including 267	ARC356	including	296	298	2	5.75	0.42	0.015
ARC357 210 211 1 0.80 0.52 0.009 ARC357 246 257 11 1.69 0.49 0.256 ARC357 including 246 248 2 6.68 0.75 0.916 ARC357 294 295 1 1.21 1.38 0.011 ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 including 258 278 20 2.06 0.40 0.254 ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 <td>ARC356</td> <td>including</td> <td>299</td> <td>300</td> <td>1</td> <td>7.22</td> <td>1.05</td> <td>0.040</td>	ARC356	including	299	300	1	7.22	1.05	0.040
ARC357 246 257 11 1.69 0.49 0.256 ARC357 including 246 248 2 6.68 0.75 0.916 ARC357 294 295 1 1.21 1.38 0.011 ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 including 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC357		185	186	1	1.12	0.03	0.005
ARC357 including 246 248 2 6.68 0.75 0.916 ARC357 294 295 1 1.21 1.38 0.011 ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 including 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC357		210	211	1	0.80	0.52	0.009
ARC357 294 295 1 1.21 1.38 0.011 ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC357		246	257	11	1.69	0.49	0.256
ARC357 315 316 1 1.10 0.03 0.004 ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC357	including	246	248	2	6.68	0.75	0.916
ARC358 245 246 1 25.10 0.43 0.009 ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC357		294	295	1	1.21	1.38	0.011
ARC358 255 259 4 0.77 0.17 0.021 ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC357		315	316	1	1.10	0.03	0.004
ARC358 262 267 5 1.71 0.46 0.069 ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC358		245	246	1	25.10	0.43	0.009
ARC358 including 266 267 1 3.77 0.57 0.016 ARC359 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC358		255	259	4	0.77	0.17	0.021
ARC359 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC358		262	267	5	1.71	0.46	0.069
ARC359 258 278 20 2.06 0.40 0.254 ARC359 including 258 261 3 8.78 1.18 1.140 ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC358	including	266	267				
ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC359		258	278	20	2.06	0.40	0.254
ARC359 including 267 274 7 1.16 0.38 0.128 ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC359	including	258	261	3	8.78	1.18	1.140
ARC360 220 225 5 0.59 0.23 0.101 ARC360 230 231 1 0.82 0.06 0.115	ARC359	including	267	274	7	1.16	0.38	0.128
ARC360 230 231 1 0.82 0.06 0.115					5			
	ARC360		230		1_	0.82		
		<u></u>	274		2	1.31		0.014

HoleID	From (m)	То (m)	DH Width (m)	Au (g/t)	Cu (%)	Co (%)
ARC361	330	331	1	2.33	0.36	0.050
ARC361	351	357	6	1.01	1.81	0.027
ARC362	2	3	1	0.50	0.33	0.016
ARC362	198	199	1	1.42	0.54	0.018
ARC362	224	225	1	4.85	4.72	0.059

JORC Code, 2012 Edition – Table 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of ampreasurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. Reverse circulation drilling was used to obtain both 2m composite and one metre samples, using a 5 ¼" face samples amples that face amples were collected on a 2m composite basis to a prescribed depth predetermined by previous drilling, wireframing abasay data. Once the predetermined by previous drilling, wireframing abasay data. Once the predetermined depth is achieved, the samples are sample results received, all samples that return a value of >0.1g/t Au will result in the resplitting of the one metre bulk bags at site using a 75:25 jones riffle splitter. These one metre samples are then submitted for analysis. All samples are pulverized to produce a 50g charge for fire assay. Duplicate samples were collected at the right from a static cone splitter, with the primary and duplicate bag both simultaneously collected from separate chutes. The cyclone was cleared between rod changes to minimise contamination.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). Reverse Circulation drilling completed by Topdrill. Drilling was completed using a truck mounted T685 Schramm rig mounted on 8x8 trucks This can produce 1000psi/2700CFM with an axillary booster which is capable of achieving dry samples at depths of around 300m.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Recoveries are recorded on logging sheets along with encounters with water and whether the samples are dry, moist or wet. Drilling recoveries for Reverse Circulation drilling were >80% with some exceptions that maybe caused by loss of return through faults or encounters with water. >90% of samples returned dry. Statistical analysis shows that no bias of grade exists due to recoveries

Criteria Commentary

Logging

- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc)
 photography.
- The total length and percentage of the relevant intersections • logged.
- RC samples were collected from the static cone splitter as two samples, one bulk sample and one primary (analytical) sample.
- The bulk samples are one metre splits.
- These bags are then placed in neat rows of 50 bags each clear of the rig for safety reasons.
- A field technician mixes the bag by hand before taking a sample using a sieve and sieves the sample to remove fines.
- The sieved sample is then transferred to a wet sieve in a bucket of water, and the sample is sieved further until rock fragments are clearly visible.
- These rock fragments are then logged by the site geologist, taking note of colour, grainsize, rock type, alteration if any, mineralisation if any, veining if any, structural information if notable and any other relevant information.
- This information is then written down on pre-printed logging sheets, using codes to describe the attributes of the geology.
- A representative sample is transferred to pre-labelled chip trays into the corresponding depth from where the sample was drilled from.
- The remainder of the sample from the sieve is then transferred into a core tray that has been marked up by depths at metre intervals.
- An identification sheet noting the hole number and from-to depths that correspond to each tray is then written up and placed above the tray and a photograph is taken of the chips.
- The hole is logged in its entirety, hence 100%
- The geological data would be suitable for inclusion in a Mineral Resource Estimation (MRE)

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of • the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of • the in-situ material collected, • including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

- RC samples were collected on the drill rig using a cone splitter. If any mineralised samples were collected wet these were noted in the drill logs and database.
- The RC drilling rig is equipped with a rig-mounted cyclone and static cone splitter, which provided one bulk sample of approximately 20-30 kilograms, and a sub-sample of approximately 2-4 kilograms for every metre drilled.
- Field QC procedures involve the use of Certified Reference Materials (CRM's) as assay standards, along with duplicates and blank samples. The insertion rate of these was approximately 1:20.
- For RC drilling, field duplicates were taken on a routine basis at approximately 1:20 ratio using the same sampling techniques (i.e. cone splitter) and inserted into the sample run.
- Primary and duplicates results have been compared.
- The sample sizes are appropriate, representative and are considered more than adequate to ensure that there are no particle size effects relating to the grain size of the mineralisation.

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations

www.artemisresources.com.au

- A certified laboratory, ALS Chemex (Perth) was used for all analysis of drill samples submitted. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation defined within the Carlow Castle Project area
- The sample preparation followed industry best practice. Fire assay samples were dried, coarse crushing to ~10mm, split to 300g subsample, followed by pulverisation in an LM5 or equivalent pulverising mill to a grind size of 85% passing 75 micron.
- This fraction was split again down to a 50g charge for fire assay
- 50-gram Fire Assay (Au-AA26) with ICP finish for Au.

Criteria Commentary

factors applied and their derivation, etc.

- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.
- All samples were dried, crushed, pulverised and split to produce a sub-sample of 50g which is digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acid (4 acid digest).
- This digest is considered a total dissolution for most minerals
- Analytical analysis is performed using ICP-AES Finish (ME-ICP61) for Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn.
- Additional Ore Grade ICP-AES Finish (ME-OG62) for Cu reporting out of range.
- Standards are matrix matched by using previous pulps from drilling programs and homogenised using certified laboratories.
- Standards were analysed by round robins to determine grade.
- Standards were routinely inserted into the sample run at 1:20.
- Laboratory standards and blank samples were inserted at regular intervals and some duplicate samples were taken for QC checks.

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.
- Sampling was undertaken by field assistants supervised by experienced geologists from Artemis Resources. Significant intercepts were checked by senior personnel who confirmed them as prospective for gold mineralisation.
- No twin holes using RC was completed in this program.
- Electronic data capture on excel spreadsheets which are then uploaded as .csv files and routinely sent to certified database management provider.
- Routine QC checks performed by Artemis senior personnel and by database management consultant.
- PDF laboratory certificates are stored on the server and are checked by the Exploration Manager.

Location of data points

- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
- Specification of the grid system used.
- Quality and adequacy of topographic control.
- A Garmin GPSMap62 hand-held GPS was used to define the location of the initial drill hole collars. Standard practice is for the GPS to be left at the site of the collar for a period of 5 minutes to obtain a steady reading. Collar locations are considered to be accurate to within 5m.
- A high-quality downhole north-seeking multi-shot or continuous survey gyro-camera was used to determine the dip and azimuth of the hole at 30m intervals down the hole
- The topographic surface was calculated from the onsite mine survey pickups and subsequently verified by RTK GNSS collar surveys.
- Zone 50 (GDA 94).
- Surface collar coordinates are surveyed via RTK GNSS with 1cm accuracy by a professional surveying contractor.

Data spacing and distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- In certain areas, current drill hole spacing is variable and dependent on specific geological, and geochemical targets.
- A nominal 40x20m drill spacing is considered adequate to establish the degree of geological and grade continuity appropriate for JORC (2012) classifications applied.
 - Sample compositing has only been applied within the hangingwall to mineralised zones. All results reported within mineralised zones are the result of one metre downhole sample intervals.

Criteria		Commentary
	 Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill holes were designed to be perpendicular to the strike of known mineralisation. Due to the structural and geological complexity of the area, mineralisation of unknown orientation can be intersected.
Sample security •	The measures taken to ensure • sample security.	The chain of custody is managed by the supervising geologist who places calico sample bags in polyweave sacks. Up to 10 calico sample bags are placed in each sack. Each sack is clearly labelled with: Artemis Resources Ltd Address of laboratory Sample range Samples were delivered by Artemis personnel to the transport company in Karratha and shrink wrapped onto pallets. The transport company then delivers the samples directly to the laboratory.
Audits or reviews •	The results of any audits or • reviews of sampling techniques and data.	Data is validated upon up-loading into the master database. Any validation issues identified are investigated prior to reporting of results.

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Drilling by Artemis was carried out on E47/1797 – 100% owned by Artemis Resources Ltd. This tenement forms a part of a broader tenement package that comprises the West Pilbara Project. This tenement is in good standing.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. The most significant work to have been completed historically in the Carlow Castle area was completed by Open Pit Mining Limited between 1985 and 1987, and subsequently Legend Mining NL

Criteria		Commentary
Geology	• Deposit type, geological setting and style of mineralisation.	 between 1995 and 2008. Work completed by Open Pit consisted of geological mapping, geophysical surveying (IP), and RC drilling and sampling. Work completed by Legend Mining Ltd consisted of geological mapping and further RC drilling. Legend also completed an airborne AEM survey over the project area, with follow up ground-based FLTEM surveying. Re-processing of this data was completed by Artemis. Compilation and assessment of historic drilling and mapping data completed by both Open Pit and Legend has indicated that this data is compares well with data collected to date by Artemis. Validation and compilation of historic data is ongoing. All exploration and analysis techniques conducted by both Open Pit and Legend are considered to have been appropriate for the style of deposit. The Carlow Castle Co-Cu-Au prospect includes a number of mineralised shear zones, located on the northern margin of the Andover Intrusive Complex. Mineralisation is exposed in numerous workings at surface along quartz-rich shear zones. Both oxide and sulphide mineralisation are evident at surface associated with these shear zones. Sulphide mineralisation appears to consist of chalcopyrite, chalcocite, cobaltite, pyrrhotite and pyrite. The style of mineralisation suggests that Carlow had formed syndeformation during dextral wrench faulting in a brittle regime, creating high-grade Au-Cu shoots defined as 'flower' structures, with a low-grade Cu halo forming in the more massive brittle hosts.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Carlow is an Orogenic style Au deposit. Drill hole information is contained within this release.

Criteria Commentary Data aggregation In reporting Exploration All intervals reported within mineralized zones are composed of 1 methods metre down hole intervals for Reverse Circulation drilling. Results, weighting averaging techniques, Two metre composites are weight-averaged. maximum and/or Aggregated intercepts do include reported lengths of higher-grade minimum grade internal intercepts. truncations (eg cutting of No upper or lower cut-off grades have been used in reporting results. high grades) and cut-off No metal equivalent calculations are used in this report. grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. Relationship The mineralisation in the Carlow Castle West Zone strikes generally These relationships are between particularly important in E-W and dips to the north at approximately -75 to -80 degrees. The mineralisation the reporting of drill orientation in the West Zone was 180 -60 dip. widths and intercept Exploration Results. The mineralisation in the Carlow Castle East Zone strikes generally lengths If the geometry of the E-W and dips to the south at approximately -75 to -80 degrees. The mineralisation with drill orientation in the East Zone was 000, -60. respect to the drill hole Drilling is believed to be generally perpendicular to strike. Given the angle is known, its angle of the drill holes and the interpreted dip of the host rocks and nature should be mineralisation, reported intercepts approximate true width. reported. True thicknesses are calculated from interpretation deriving from If it is not known and only orientation of high-grade intervals, orientation of the main the down hole lengths mineralised trend and its dip. are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). **Diagrams** Appropriate plans are shown in the text. Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Balanced reporting Where comprehensive The significant results tabulated in the release are reported at a base grade of >0.5 g/t Au or >0.5% Cu. Internal dilution of up to two reporting of all Exploration Results is metres is included in an intersection. not practicable, representative reporting of both low and high grades and/or widths should be practiced to

Criteria		Commentary
	avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Targeting for the RC drilling completed by Artemis was based on updated geological interpretation, using previous drill results and from the 2021 block model information.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work (RC and diamond drilling) is justified to locate extensions to mineralisation both at depth and along strike.

