Artemis Resources Limited ARBN: 80107051749

Level 3, IBM Building, 1060 Hay Street, West Perth, WA Australia, 6006

PO Box R933
Royal Exchange
NSW
Australia, 1225

Phone: +61 290787670
Facsimile: +61 290787661 Email:
info@artemisresources.com.au Website:
artemisresources.com.au

Directors:

Executive Chairman
David Lenigas

Executive Directors
Ed Mead
Alex Duncan-Kemp
Non-Executive Director Sheikh Maktoum Hasher al Maktoum

Company Secretary: Guy Robertson

Corporate Information ASX Code: ARV

4.5 Mt of Cobalt/Copper/Gold JORC Resources at Carlow Castle - Karratha, Western Australia-

Highlights:

- Significant increases in Carlow Castle JORC 2012 Resources.
- JORC 2012 compliant Indicated and Inferred resources at 0.05\% Co cutoff grade, have increased to 2.3 Mt @ $1.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.11 \% \mathrm{Co}, 0.5 \% \mathrm{Cu}$ \& $1.6 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ within a global resource of $4.5 \mathrm{Mt} \mathrm{@} 0.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.07 \% \mathrm{Co}$, $0.4 \% \mathrm{Cu} \& 1.3 \mathrm{~g} / \mathrm{t}$ Ag.
- Deposits remain open and further drilling is planned in Q1 to expand resources.
- Open Pit optimisation studies and scheduling have commenced.
- Carlow Castle is only 30 km north-east of Artemis's Radio Hill treatment plant.

David Lenigas, Artemis' Executive Chairman, commented;

"We have seen a significant boost to tonnage in this latest resource estimate at Carlow Castle and we believe that this Project has the potential to be a significant new Cobalt province in Australia based upon recent exploration results. With the world cobalt prices now at US $\$ 79,750$ a tonne (LME, 26 Jan 2018) (~AUD $\$ 98,000$ a tonne), our Carlow Castle Project's potential is looking very attractive. These three deposits reported on today are only a few of the many high priority targets now identified by Artemis over $50 \mathrm{~km}^{2}$. Apart from plans to continue drilling to expand the resource base further, we have now engaged consultants to run a fast-track scoping study to assess the potential economics of processing this material through our nearby and soon to be re-commissioned Radio Hill treatment plant. The Radio Hill plant upgrades are progressing well, and we continue to receive interest from international "Cobalt trading houses" for Artemis's conflict-free Cobalt."

Artemis Resources Limited ("Artemis") (ASX: ARV) is pleased to provide a further update to the JORC Code (2012) compliant resource estimates for its 100% owned Carlow Castle Project, which includes Quod Est, Carlow Castle South and Carlow Castle South-East (Cobalt/Gold/Copper) Prospects, located about 20 km southeast of Karratha in the Western Pilbara Region of Western Australia.

Carlow Castle is located only 30 km north-east of Artemis' Radio Hill processing plant, via gazetted roads. Work has also commenced on converting the portion of Exploration Licence E47/1797 covering the deposits to Mining Leases. A diamond drilling programme is planned for geotechnical analysis for detailed open pit planning purposes and for advanced metallurgical recovery optimisation and plant operating cost planning.
The refurbishment and upgrade work at the Radio Hill Plant are progressing well. The Company is progressing towards having the planned works, which includes the
addition of a 70-100 tonne per hour gravity gold recovery circuit to the current sulphide processing circuit, completed and fully operational by the end of June 2018.

Figure 1: Carlow Castle Project areas and geology.

Al Maynard \& Associates ("AM\&A") estimated a total Indicated and Inferred resource (Table 1) of the Carlow Castle Project, within the lode wireframes of Quod Est, Carlow Castle South and Carlow Castle South-East, which are based on 0.5 metal content lower cut-off of 4,500,000 tonnes at $0.9 \mathrm{~g} / \mathrm{t} \mathbf{A u}$ $\mathbf{0 . 0 7 \%} \mathrm{Co}, \mathbf{0 . 4 \%} \mathrm{Cu} \& 1.3 \mathrm{~g} / \mathrm{t} \mathbf{A g}$. The Quod Est resource parameters were released to the ASX on the $22^{\text {nd }}$ January ${ }^{1}$.

Table 1: Global Resource estimate for Carlow Castle Project, which includes Quod Est ${ }^{1}$, Carlow Castle South and Carlow Castle South-East Lode (Phil Jones, 2018; AM\&A).

Description	Category	Million Tonnes	$\mathrm{Au}(\mathrm{g} / \mathrm{t})$	Co (\%)	Cu (\%)	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$
Carlow Castle South	Inferred	3.2	0.9	0.06	0.4	1.3
Carlow Castle South-East Lode	Inferred	0.7	1.2	0.06	0.4	1.8
Quod Est	Indicated	0.3	1.2	0.21	0.5	1.4
Quod Est	Inferred	0.2	0.6	0.07	0.3	1.0
TOTAL	Indicated	0.3	1.2	0.21	0.5	1.4
TOTAL	Inferred	4.2	0.9	0.06	0.4	1.3
TOTAL	Indicated +Inferred	4.5	0.9	0.07	0.4	1.3

Considering the potential commercial value of all three elements and the proximity to the Company's processing plant at Radio Hill and the preliminary metallurgical testwork results previously announced in ASX announcement 19 th June 2017 "Cobalt Metallurgy Tests Prove Positive Carlow Castle Project", the project warrants detailed, systematic assessment. The orebody is shallow and diamond drilling for geotechnical pit optimisation is about to begin, along with further metallurgical studies.

[^0]Table 2: Resource estimate for Carlow Castle Project using a 0.05\% Co cut-off (Phil Jones, 2018; AM\&A)

Description	Category	Million Tonnes	$\mathrm{Au}(\mathrm{g} / \mathrm{t})$	Co (\%)	$\mathrm{Cu}(\%)$	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$
Carlow Castle South	Inferred	1.6	1.2	0.09	0.5	1.5
Carlow Castle South-East Lode	Inferred	0.5	1.6	0.08	0.6	2.2
Quod Est	Indicated	0.2	1.8	0.35	0.7	1.9
Quod Est	Inferred	0.1	0.7	0.15	0.2	0.7
TOTAL	Indicated	0.2	1.8	0.35	0.7	1.9
TOTAL	Inferred	2.1	1.2	0.09	0.5	1.6

TOTAL	Indicated +Inferred	2.3	1.3	0.11	0.5	1.6

New Additional Resources at Carlow Castle South and Carlow Castle South-East:

Al Maynard \& Associates ("AM\&A") estimate for Carlow Castle South and Carlow Castle South-East a total resource (Table 3) within the lode wireframes (Figure 2) which are based on a generic 0.5 metal content lower cut-off calculated by ($\mathrm{Aug} / \mathrm{t}+\mathrm{Cu} \%+10^{*} \mathrm{Co} \%$) of 3,900,000 tonnes at $\mathbf{0 . 9} \mathbf{g} / \mathrm{t} \mathbf{A u}, \mathbf{0 . 0 6 \%}$ Co, $\mathbf{0 . 4 \%} \mathrm{Cu} \& 1.4 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, made up of an Inferred resource of approximately 3,200,000 tonnes at 0.9 $\mathrm{g} / \mathrm{t} \mathrm{Au}, 0.06 \% \mathrm{Co}, 0.4 \% \mathrm{Cu}, 1.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ at Carlow Castle South and an Inferred resource of approximately 700,000 tonnes at $1.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.06 \% \mathrm{Co}, 0.4 \% \mathrm{Cu} \& 1.8 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ at Carlow Castle South-East.

Table 3: AM\&A Resource estimate for Carlow Castle South and Carlow Castle South-East Lode. (Phil Jones, 2018).

Description	Category	Million Tonnes	$\mathrm{Au}(\mathrm{g} / \mathrm{t})$	Co (\%)	Cu (\%)	Ag (g/t)
Carlow Castle South	Inferred	3.2	0.9	0.06	0.4	1.3
Carlow Castle South-East Lode	Inferred	0.7	1.2	0.06	0.4	1.8
TOTAL	Inferred	3.9	0.9	0.06	0.4	1.4

The same resource estimate at cut-off grades of $1.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 0.05 \% \mathrm{Co}$ and at $1.0 \% \mathrm{Cu}$ is provided for comparison in Table 4:

Table 4: AM\&A Resource estimate at selected Au, Co and Cu lower cut-off grades for Carlow Castle South and
Carlow Castle South-East Lode (Phil Jones, 2018).

Au Grade Range	Million Tonnes	$\mathbf{A u}(\mathrm{g} / \mathrm{t})$	$\mathrm{Co}(\%)$	$\mathrm{Cu}(\%)$	$\mathbf{A g}(\mathrm{g} / \mathrm{t})$
>1.0	1.3	1.7	0.09	0.5	1.8
<1.0	2.6	0.5	0.05	0.4	1.1

Co Grade Range	Million Tonnes	Au (g/t)	Co (\%)	Cu (\%)	Ag (g/t)
$>0.05 \%$	2.1	1.2	0.09	0.5	1.6
$<0.05 \%$	1.9	0.5	0.03	0.3	1.0

Cu Grade Range	Million Tonnes	$\mathrm{Au}(\mathrm{g} / \mathrm{t})$	Co (\%)	Cu (\%)	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$
>1.0\%	0.1	1.6	0.15	1.4	3.8
<1.0\%	3.9	0.9	0.06	0.4	1.3

Note : Figures have been rounded and totals may vary due to small rounding errors.

Fifty-two (52) drillholes within Carlow Castle South indicate several potentially economic lodes (Figure 2) from surface to a current vertical extent of about 150 m .

Drill collar locations are listed in Table 5, significant drillhole intersections are listed in Table 6, Search Parameters applied in block model Table 7 and Significant Assays: $>0.5 \mathrm{~g} / \mathrm{t} \mathrm{Au},>1000 \mathrm{ppm}$ Co (0.1%), >5000 ppm Cu (0.5\%) in Table 8.

The Cobalt/Gold/Copper mineralisation at the Carlow Castle Project is hosted in chloritic shear zones within the predominantly Archean mafic sequence. The ore zones appear partially oxidised above 20 m with sulphides extending to depth, the primary sulphides are chalcopyrite, cobaltite and pyrite; the presence of chalcocite in some samples indicates supergene enrichment in the upper portions of the sulphide zone.

The Carlow Castle Project (Figure 1) has 3 current deposits, with the southern deposits being in two (2) portions with a $450 \mathrm{~m} / 500 \mathrm{~m}$ gap between the areas, which is currently undrilled. Geochemical data indicates a degree of continuity between the areas but remains to be tested. (ASX announcement $20^{\text {th }}$ June 2017 High Grade Cobalt - 'Four New Targets Identified').

The structural environment of the area is complex; Carlow South strikes east-west and dips steeply to the north, whereas Quod Est strikes north-south and dips steeply to the east. Carlow Castle South-East is interpreted to strike east-west but very steeply to the south.

A detailed SAM (Sub Audio Magnetics) geophysical survey is in progress to assist with the interpretation of the structural system over the $50 \mathrm{~km}^{2}$ of newly identified Cobalt/Gold/Copper geochemical targets as per the Company's news release date 19 January 2018.
The Resource estimate was compiled by Mr. Philip Jones of AM\&A using MineMap® software. The modelling method is Inverse Distance Cubed confined by wireframes that follow the interpreted geology. This method does not smear the poddy high grades unduly and properly considers the interpreted geological controls on the mineralisation.
The mineralisation was digitised on cross sections, snapping to the drill intercepts, using a lower cutoff where the total of Au grams per tonne plus $\mathrm{Cu} \%$ plus $10 * \mathrm{Co} \%$ is >0.5. This generic metal content factor was used to define the mineralised envelope because the copper, cobalt and gold are strongly associated with each other and are all potentially economically recoverable.

Sample intervals within the interpreted lode below the designated 0.5 metal content were included within the lode wireframe where internal dilution did not drop the total intersection below 0.5 and where it provided improved continuity with other adjacent drill intersections of the lode.

The mineralised zones on each cross-section and long-section were then linked by wireframes to produce "solids" as per Figure 3. The base of oxidation was triangulated from the drill hole geology logs. Separate wireframes were produced for the Oxide and Primary zones in each of the mineralised shears.

This resource estimate was based on data supplied by Artemis Resources consisting of drill collar coordinates, down-hole surveys, down-hole lithology logs, down-hole density measurements, sample recovery data and assay data. The data was reviewed by AM\&A who found the quality of the drilling, sample collection and assays met all the expected industry standards.

A total of 2,431 density measurements (averaged over 1 m) were collected from 52 of the Artemis drill holes using a downhole gamma/caliper/density/resistivity logger by Downhole Services Group. Of these measurements 295 were in mineralised intervals with $>0.5 \mathrm{~g} / \mathrm{t}$ Au. The average density of the 129 partially weathered mineralised measurements was 2.7 while the 118 fresh mineralised samples averaged 2.9. Because the less dense, strongly weathered mineralisation near to the surface was not measured due to the spacing of the drill collars, a conservative overall bulk density of 2.5 was used for weathered mineralisation and 3.0 for the fresh ore.

AM\&A having classified the mineralisation defined at Carlow South and Carlow South-east as Inferred Resources according to the JORC Code (2012). These extend over a strike length of 400 m at Carlow Castle South, drilled on a $40 \mathrm{~m} \times 20 \mathrm{~m}$ grid, and $80 \mathrm{~m} \times 20 \mathrm{~m}$ at Carlow Castle South-East.

Figure 2: Cross section of Carlow Castle South at $506820 \mathrm{mE}+/-5 \mathrm{~m}$ showing mineralised zones and significant intersections.

 with holes colour coded by generic metal content (Au ppm + Cu\%+10*Co\%).

Figure 3: Long section for Carlow Castle South and Carlow Castle South-East Lode showing colour coded Au ppm only.

Figure 4: Long section for Carlow Castle South and Carlow Castle South-East Lode showing colour coded Co ppm only.

CONTACTS:

For further information on this update or the Company generally, please visit our website at www.artemisresources.com.au or contact:

Investors / Shareholders

Edward Mead
Executive Director
Telephone: +61 407445351
Email: ed.mead@artemisresources.com.au

COMPETENT PERSONS STATEMENT:

The information in this document that relates to Resource estimation is based on information compiled or reviewed by Philip Jones, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Jones is a consultant to the Company, and is a consultant to Al Maynard \& Associates (AM\&A). Mr Jones has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Jones consents to the inclusion in the report of the matters based on his information in the form and context in which it appears

COMPETENT PERSONS STATEMENT:

The information in this document that relates to Exploration Results and Exploration Targets is based on information compiled or reviewed by Allan Younger, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Younger is a consultant to the Company, and is employed by Indigo Geochemistry Pty Ltd. Mr Younger has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Younger consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Artemis' tenement package in the Karratha Region of Western Australia

BACKGROUND INFORMATION ON ARTEMIS RESOURCES:

Artemis Resources Limited is a resources exploration and development company with a focus on its prospective Karratha (gold, cobalt, base metals, platinum group elements and iron ore) and the Mt Clement Paulsens (gold) project in Western Australia.

Artemis owns the fully permitted $\sim 500,000$ tpa Radio Hill nickel and copper operations and processing plant located 35 km south of Karratha. JORC Code 2004 compliant resources of gold, nickel, copper PGE's and zinc, all situated within a 40 km radius of the Radio Hill plant and on $1,838 \mathrm{~km}^{2}$ form the newly consolidated assets of Artemis Resources. Artemis is currently refurbishing and upgrading the Radio Hill processing plant and is targeting on having it operational in June 2018.

Artemis have signed Definitive Agreements with Novo Resources Corp. ("Novo"), which is listed on Canada's TSX Venture Exchange (TSXV:NVO), and pursuant to the Definitive Agreements, Novo has satisfied its expenditure commitment, and earned 50% of gold (and other minerals necessarily mined with gold) in conglomerate and/or paleoplacer style mineralization in Artemis' tenements within 100 km of the City of Karratha, including at Purdy's Reward ("the Gold Rights"). The Gold Rights do not include (i) gold disclosed in Artemis' existing (at 18 May 2017) JORC Code Compliant Resources and Reserves or (ii) gold which is not within conglomerate and/or paleoplacer style mineralization or (iii) minerals other than gold. Artemis' Mt Oscar tenement is excluded from the Definitive Agreements.

The Definitive Agreements cover 38 tenements/ tenement applications that are 100% owned by Artemis. Pursuant to Novo's successful earn-in, three 50:50 joint ventures have been formed between Novo's subsidiary, Karratha Gold Pty Ltd ("Karratha Gold") and three subsidiaries of Artemis (KML No 2 Pty Ltd, Fox Radio Hill Pty Ltd, and Armada Mining Pty Ltd). The joint ventures are managed as one
by Karratha Gold. Artemis and Novo will contribute to further exploration and any mining of the Gold Rights on a 50:50 basis. Further definitive agreements covering approximately 19 Artemis tenements/tenement applications that are already subject to third party interests are expected to be signed once all necessary third-party consents have been obtained

FORWARD LOOKING STATEMENTS AND IMPORTANT NOTICE:

This report contains forecasts, projections and forward-looking information. Although the Company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions it can give no assurance that these will be achieved. Expectations, estimates and projections and information provided by the Company are not a guarantee of future performance and involve unknown risks and uncertainties, many of which are out of Artemis' control. Actual results and developments will almost certainly differ materially from those expressed or implied. Artemis has not audited or investigated the accuracy or completeness of the information, statements and opinions contained in this presentation. To the maximum extent permitted by applicable laws, Artemis makes no representation and can give no assurance, guarantee or warranty, express or implied, as to, and takes no responsibility and assumes no liability for (1) the authenticity, validity, accuracy, suitability or completeness of, or any errors in or omission from, any information, statement or opinion contained in this report and (2) without prejudice to the generality of the foregoing, the achievement or accuracy of any forecasts, projections or other forward looking information contained or referred to in this report.

Investors should make and rely upon their own enquiries before deciding to acquire or deal in the Company's securities.

Table 5: Drill Collar Locations

Holeld	MGA_East	MGA_North	MGA_RL	Azimuth	Dip	EOH _Depth
ARC024	506579.80	7698699.80	42.00	180	-60	60
ARC025	506619.20	7698698.10	42.00	180	-60	66
ARC026	506659.40	7698699.30	42.20	270	-60	60
ARC027	506699.10	7698699.70	42.00	270	-60	60
ARC028	506742.00	7698701.20	41.70	180	-60	60
ARC036	506579.18	7698677.42	41.85	180	-60	60
ARC037	506579.80	7698718.95	42.25	180	-60	84
ARC038	506579.56	7698740.73	42.63	180	-60	120
ARC039	506777.66	7698676.15	41.86	180	-60	60
ARC040	506778.78	7698700.75	42.11	180	-60	84
ARC041	506779.34	7698720.74	42.25	180	-60	120
ARC042	506780.18	7698740.84	42.45	180	-60	150
ARC043	506897.41	7698636.05	40.94	180	-60	60
ARC044	506898.75	7698660.97	41.21	180	-60	84
ARC045	506899.47	7698682.47	41.34	180	-60	126
ARC046	506900.75	7698701.73	41.34	180	-60	162
ARC047	507477.90	7698581.08	36.98	180	-60	60
ARC048	507478.81	7698623.51	37.96	180	-60	114
ARC049	507478.89	7698663.21	38.03	180	-60	144
ARC050	507321.28	7698921.04	42.44	0	-60	120
ARC051	507237.30	7699007.97	44.98	0	-60	136
ARC052	507119.90	7698982.04	45.99	0	-60	162
ARC053	507120.27	7699027.22	48.61	0	-60	126
ARC054	507239.93	7698930.55	43.51	0	-60	102
ARC055	506536.05	7698688.90	41.83	180	-60	78
ARC056	506537.23	7698708.54	42.10	180	-60	90
ARC057	506538.58	7698729.57	42.26	180	-60	120
ARC058	506619.04	7698677.50	41.79	180	-60	60
ARC059	506619.96	7698720.27	42.13	180	-60	120
ARC060	506659.80	7698720.78	42.19	180	-60	84
ARC061	506660.86	7698740.46	42.48	180	-60	126
ARC062	506700.16	7698720.64	42.21	180	-60	84
ARC063	506700.76	7698738.61	42.49	180	-60	120
ARC064	506741.50	7698676.08	41.94	180	-60	60
ARC065	506742.69	7698719.49	42.20	180	-60	102
ARC066	506743.53	7698738.36	42.44	180	-60	126
ARC067	506817.45	7698682.40	41.86	180	-60	84
ARC068	506818.23	7698698.12	41.97	180	-60	120
ARC069	506819.53	7698717.79	42.19	180	-60	24
ARC069a	506821.17	7698740.74	42.43	180	-59	162
ARC070	506859.97	7698659.95	41.48	180	-60	60
ARC071	506860.65	7698679.67	41.63	180	-60	84
ARC072	506861.28	7698695.73	41.75	180	-60	126
ARC073	506935.81	7698638.23	40.91	180	-60	60
ARC074	506937.98	7698657.32	40.90	180	-60	84
ARC075	506941.87	7698698.15	41.18	180	-60	150
ARC076	507400.58	7698609.30	37.67	180	-60	66
ARC077	507400.50	7698650.77	38.42	180	-60	162
ARC078	506815.36	7698661.73	41.62	180	-60	60
ARC079	507478.02	7698559.54	37.04	0	-60	108
ARC080	507262.21	7698939.00	42.71	270	-60	84
ARC081	506781.50	7698779.75	43.19	180	-60	264
TOTAL						5,248

Table 6: Significant Intersections in Carlow Castle South.

Hole Number	From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Interval (m)	Cobalt \%	$\begin{gathered} \hline \text { Gold } \\ \mathrm{g} / \mathrm{t} \end{gathered}$	Copper \%
ARCO24	2	5	3	0.02	1.06	0.27
ARCO24	25	30	5	0.31	2.92	0.55
ARCO25	19	23	4	0.04	1.11	0.19
ARC025	48	52	4	0.45	4.09	1.23
ARCO26	1	5	4	0.02	0.86	0.35
ARC027	6	13	7	0.06	1.04	0.76
ARC028	3	25	22	0.06	0.65	0.41
Including	20	25	5	0.07	1.17	0.57
ARCO28	36	41	5	0.25	3.65	0.81
ARC036	8	15	7	0.13	1.03	0.10
ARC036	35	37	2	0.21	2.07	0.23
ARC037	40	43	3	0.20	1.94	0.25
ARC037	55	59	4	0.12	2.65	0.33
ARC037	66	69	3	0.08	3.34	0.54
ARC038	90	95	5	0.008	2.59	0.85
ARC039	0	16	16	0.08	1.66	0.41
39Including	5	13	8	0.13	2.54	0.49
ARC040	10	28	18	0.059	1.59	0.81
40Including	13	18	5	0.006	2.84	0.83
40Including	22	28	6	0.08	1.54	1.03
ARC040	38	40	2	0.03	1.54	0.64
ARC040	49	52	3	0.07	1.77	0.49
ARC041	52	86	34	0.12	1.22	0.69
41Including	52	53	1	0.30	10.75	2.46
41Including	63	68	5	0.27	1.65	0.97
41Including	75	82	7	0.20	1.60	0.84
ARC042	114	123	9	0.10	0.80	0.10
ARC042	123	131	8	0.05	0.60	0.14
ARC044	41	59	18	0.12	2.32	0.75
44Including	43	46	3	0.22	8.82	1.50
ARC045	27	30	3	0.01	0.92	1.03
ARC045	54	61	7	0.08	1.52	0.78
ARC046	63	69	6	0.018	1.58	0.86
ARC046	76	90	14	0.09	1.74	0.82
46Including	85	90	5	0.21	2.97	0.87
ARC046	101	108	7	0.15	1.14	0.49
ARC048	38	45	7	0.08	4.55	0.93
ARC048	69	84	15	0.22	8.26	1.79
48Including	70	72	2	0.15	19.0	1.06
ARC048	96	99	3	0.12	1.57	0.61
ARC048	102	107	5	0.07	2.33	0.68
ARC049	135	138	3	0.237	0.83	0.20
ARC050	29	32	3		0.33	1.23
ARC054	21	27	6	0.37	3.85	2.48
ARC054	48	53	5	0.18	0.33	0.76
ARC054	58	64	6	0.20	1.01	0.31

Hole Number	From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \\ & \hline \end{aligned}$	Interval (m)	Cobalt \%	Gold g/t	Copper \%
ARC054	74	81	7	0.07	0.27	0.71
ARC055	61	69	8		0.31	0.61
ARC058	14	18	4	0.15	1.06	0.53
ARC058	25	27	2	0.09	2.26	0.25
ARC059	28	39	11	0.11	1.49	0.44
59Including	35	39	4	0.23	3.37	0.81
ARC059	59	63	4	0.17	5.87	0.87
ARC060	19	24	5	0.26	0.79	0.39
ARC061	69	77	8	0.13	1.87	0.79
ARC062	27	31	4	0.076	0.86	1.00
ARC062	38	60	22	0.13	1.58	0.64
62 Including	41	46	5	0.30	2.63	0.84
ARC063	64	94	30	0.15	1.97	0.75
63Including	64	69	5	0.26	1.64	0.52
63Including	79	83	4	0.51	8.88	2.57
ARC065	56	72	16	0.12	1.36	0.50
ARC066	61	64	3		3.28	0.61
ARC066	75	88	13	0.17	1.09	0.21
66Including	86	88	2	0.78	3.22	
ARC066	100	118	18	0.18	1.91	0.58
66Including	111	114	3	0.35	3.36	0.57
ARC067	33	38	5	0.04	3.71	1.02
ARC068	25	27	2	0.02	0.97	0.44
ARC068	32	42	10	0.05	3.83	0.73
ARC068	48	51	3	0.09	1.44	0.40
ARC068	60	65	5	0.02	2.03	0.78
ARC069A	97	103	6	0.26	0.87	1.78
ARC069A	121	132	11	0.21	7.76	0.60
ARC069A	140	145	5	0.04	2.62	0.26
ARC069A	148	149	1	0.01	2.58	0.51
ARC070	16	21	5	0.10	2.47	0.47
ARC070	25	30	5	0.09	1.52	0.35
ARC071	30	36	6	0.02	0.68	0.99
ARC071	56	58	2	0.26	5.49	1.20
ARC071	61	62	1	0.12	1.52	0.65
ARC072	58	68	10	0.09	3.19	0.99
72Including	60	63	3	0.17	7.96	1.76
ARC073	22	24	2	0.06	0.96	0.52
ARC075	56	63	7	0.31	1.01	1.42
ARC075	76	78	2	0.21	0.52	0.22
ARC075	99	101	2	0.01	1.01	1.17
ARC077	136	150	14	0.13	2.52	1.05
ARC077	156	158	2	0.04	2.37	0.52
ARC078	0	6	6	0.02	1.51	0.33
ARC079	51	52	1	0.11	1.06	0.48
ARC079	56	57	1	0.25	9.79	0.81
ARC079	83	84	1	0.05	0.99	10.1

Hole Number	From (m)	To (\mathbf{m})	Interval (\mathbf{m})	Cobalt $\mathbf{\%}$	Gold g/t	Copper \%
ARC079	87	90	3	0.10	1.34	2.69
ARC080	38	41	3	0.17	0.74	1.86
ARC081	10	12	2	0.44	0.21	0.13

Table 7: Search Parameters applied in block model.

	Carlow Castle South			Carlow Castle South (East)		
	X	Y	Z	X	Y	Z
Max	507600	7698750	50	507000	7698800	50
Min	507100	7698500	-150	506500	7698550	-150
Cell dimensions	2	2	1	2	2	1
Number	250	125	200	250	125	200
Search radii (confined by wireframes)	100	100	100	100	100	100
Algorithm	Inverse distance cubed			Inverse distance cubed		
Strike	0			0		
Dip	0			0		
Plunge	0			0		

Table 8: Significant Assays: >0.5g/t Au, >1000ppm Co (0.1\%), >5000ppm Cu (0.5\%).

Hole Id	SAMPLE	From \mathbf{m}	To \mathbf{m}	Au g/t	Co ppm	Cu ppm	Ag ppm	As ppm
ARC024	20171730	2	3	1.7	227	1745	0.25	809
ARC024	20171731	3	4	0.64	279	3450	0.25	859
ARC024	20171732	4	5	0.85	253	2970	0.6	555
ARC024	20171744	14	15	1.11	545	1270	1.1	217
ARC024	20171755	25	26	0.56	892	3520	1.2	919
ARC024	20171756	26	27	6.53	7410	13200	3.5	9510
ARC024	20171757	27	28	5.14	4380	6470	3.9	5480
ARC024	20171758	28	29	1.43	2080	1895	0.8	2290
ARC024	20171759	29	30	0.93	888	2420	0.7	1080
ARC024	20171775	43	44	1.98	271	4470	1.3	190
ARC024	20171790	56	57	2.68	257	3170	0.7	310
ARC025	20171797	2	3	0.51	257	2940	0.25	130
ARC025	20171816	19	20	1.26	447	2030	1	158
ARC025	20171817	20	21	1.93	532	3620	0.8	247
ARC025	20171818	21	22	0.65	322	1220	0.25	197
ARC025	20171819	22	23	0.59	424	877	0.25	135
ARC025	20171824	25	26	2.17	1775	961	1.2	115
ARC025	20171830	31	32	1.22	380	1790	0.9	163
ARC025	20171849	48	49	2.54	1680	11000	3.5	2130
ARC025	20171850	49	50	1.59	691	14200	3.5	840
ARC025	20171851	50	51	8.52	11300	15800	5	15500
ARC025	20171852	51	52	3.73	4300	8010	2.3	5490
ARC026	20171865	1	2	0.99	219	3220	0.25	571
ARC026	20171866	2	3	0.96	148	3810	0.25	397
ARC026	20171867	3	4	0.95	138	3940	0.25	359
ARC026	20171868	4	5	0.53	105	2860	0.25	314
ARC026	20171872	8	9	0.53	50	1630	0.25	55
ARC027	20171939	6	7	1.27	348	11300	0.25	471
ARC027	20171942	7	8	1.23	315	7480	0.25	431
ARC027	20171943	8	9	1.12	680	12900	0.6	532

Hole Id	SAMPLE	From m	To m	Au g/t	Co ppm	Cuppm	Ag ppm	As ppm
ARC027	20171944	9	10	0.72	968	7920	0.5	634
ARC027	20171946	11	12	0.6	759	4780	0.25	421
ARC027	20171947	12	13	2.02	295	4120	1.1	357
ARC028	20172004	3	4	0.57	271	4840	0.7	314
ARC028	20172007	6	7	1.3	324	4380	1.1	154
ARC028	20172010	9	10	0.72	326	4010	0.25	348
ARC028	20172011	10	11	0.55	428	4230	0.25	352
ARC028	20172012	11	12	0.45	577	5220	0.5	311
ARC028	20172014	13	14	0.86	816	5340	0.7	612
ARC028	20172016	15	16	1.18	1050	3220	1	402
ARC028	20172023	20	21	0.86	527	5020	2.1	719
ARC028	20172024	21	22	2.17	1095	9140	3.6	911
ARC028	20172025	22	23	0.98	565	5840	2.8	567
ARC028	20172026	23	24	0.7	403	2950	1.6	350
ARC028	20172027	24	25	1.12	957	5460	0.9	538
ARC028	20172039	36	37	3.76	1210	5780	2.3	1605
ARC028	20172042	37	38	3.04	2640	9980	3.8	3480
ARC028	20172043	38	39	2.16	2110	11550	4	2780
ARC028	20172044	39	40	8.12	5720	9240	3.9	7630
ARC028	20172045	40	41	1.15	785	4100	1.9	1025
ARC028	20172048	43	44	0.51	170	1900	1	209
ARC036	36-9	8	9	0.26	1265	1340	<0.5	551
ARC036	36-10	9	10	1.01	2020	901	<0.5	849
ARC036	36-11	10	11	0.21	1130	1000	0.6	477
ARC036	36-14	13	14	0.37	1020	969	<0.5	443
ARC036	36-15	14	15	4.97	2550	1260	1	1000
ARC036	36-29	28	29	0.58	366	1065	0.5	246
ARC036	36-31	30	31	0.78	914	3830	2.5	218
ARC036	36-32	31	32	0.73	557	2160	2.7	90
ARC036	36-37	35	37	3.08	3600	2020	1.2	661
ARC036	36-36	35	36	1.07	514	2550	0.9	71
ARC037	37-41	40	41	1.88	3910	3610	0.7	3060
ARC037	37-42	41	42	2.9	1215	2530	0.8	752
ARC037	37-43	42	43	1.03	931	1440	<0.5	603
ARC037	37-46	45	46	1.04	1140	1580	0.5	1300
ARC037	37-47	46	47	0.68	663	1150	0.5	263
ARC037	37-48	47	48	0.65	763	1330	0.7	920
ARC037	37-56	55	56	1.02	958	2180	0.7	1230
ARC037	37-57	56	57	7.82	3400	9390	3.5	4420
ARC037	37-58	57	58	0.52	375	902	<0.5	450
ARC037	37-59	58	59	1.24	213	920	<0.5	241
ARC037	37-67	66	67	3.37	993	3470	0.9	1315
ARC037	37-68	67	68	2.74	574	2560	0.6	745
ARC037	37-69	68	69	3.91	1050	10300	5.5	1335
ARC038	38-91	90	91	5.73	135	11150	4.2	62
ARC038	38-92	91	92	3.55	68	9380	2.6	21
ARC038	38-93	92	93	0.79	49	1290	<0.5	23
ARC038	38-94	93	94	2.27	108	15400	6	71
ARC038	38-95	94	95	0.63	68	5430	2.1	49
ARC039	39-1	0	1	0.98	90	834	<0.5	106
ARC039	39-2	1	2	0.91	263	2200	<0.5	275
ARC039	39-3	2	3	0.93	225	2270	<0.5	178
ARC039	39-4	3	4	0.56	686	4170	<0.5	656
ARC039	39-5	4	5	0.93	462	4700	<0.5	724
ARC039	39-6	5	6	1.04	978	4080	<0.5	1025
ARC039	39-7	6	7	1.18	2750	5200	<0.5	769
ARC039	39-8	7	8	2.94	2180	5220	<0.5	1860
ARC039	39-9	8	9	5.63	954	4540	1.8	6210

Hole Id	SAMPLE	From m	To m	Au g/t	Co ppm	Cu ppm	Ag ppm	As ppm
ARC039	39-10	9	10	4.51	899	3830	<0.5	2450
ARC039	39-11	10	11	2.21	1400	2800	<0.5	1650
ARC039	39-12	11	12	1.41	355	4620	1.5	426
ARC039	39-13	12	13	1.39	948	8960	1.1	1150
ARC039	39-14	13	14	0.53	291	2300	0.9	403
ARC039	39-16	15	16	1.24	442	6560	0.9	586
ARC039	39-18	17	18	0.57	166	2630	<0.5	229
ARC040	40-11	10	11	2.94	174	10300	1.6	138
ARC040	40-12	11	12	0.005	158	5040	0.9	130
ARC040	40-14	13	14	3.21	663	8400	1.1	384
ARC040	40-15	14	15	0.69	413	3800	<0.5	227
ARC040	40-16	15	16	4.44	831	8720	1.8	178
ARC040	40-17	16	17	2.26	712	9320	1.2	765
ARC040	40-18	17	18	3.58	591	11500	1.5	289
ARC040	40-21	20	21	0.85	510	8260	6.3	277
ARC040	40-22	21	22	0.29	419	8790	4.6	354
ARC040	40-23	22	23	1.53	413	9370	3.1	427
ARC040	40-24	23	24	1.55	613	10850	1.9	717
ARC040	40-25	24	25	1.9	777	11400	1.2	1200
ARC040	40-26	25	26	0.55	888	11200	1.5	1630
ARC040	40-27	26	27	0.75	625	6860	1.3	782
ARC040	40-28	27	28	2.98	1440	10500	1.9	1805
ARC040	40-29	28	29	0.68	705	4070	2.2	678
ARC040	40-39	38	39	0.91	371	8690	2.9	463
ARC040	40-40	39	40	2.17	233	4200	1.7	500
ARC040	40-43	42	43	0.005	191	5420	1.7	261
ARC040	40-47	46	47	0.005	49	5530	1.8	43
ARC040	40-48	47	48	0.52	71	3110	0.9	83
ARC040	40-49	48	49	0.06	1000	2630	0.8	1380
ARC040	40-50	49	50	1.48	784	4950	1.7	1095
ARC040	40-51	50	51	2.46	741	7000	2.8	1015
ARC040	40-52	51	52	1.37	725	2900	1	1020
ARC040	40-69	68	69	0.83	54	10150	3.4	54
ARC041	41-7	6	7	0.53	206	3940	<0.5	150
ARC041	41-8	7	8	0.48	182	6660	1	112
ARC041	41-9	8	9	0.28	168	7800	1.7	93
ARC041	41-52	51	52	0.53	265	3090	0.9	329
ARC041	41-53	52	53	10.75	3060	24600	9	4150
ARC041	41-56	55	56	1.31	384	18650	5.4	401
ARC041	41-59	58	59	0.58	915	9080	2.7	1255
ARC041	41-60	59	60	1.03	851	3470	1.2	1135
ARC041	41-64	63	64	2.21	1075	5180	1.5	1435
ARC041	41-65	64	65	0.53	1320	11700	3.5	1760
ARC041	41-66	65	66	1.24	2660	18650	6	3580
ARC041	41-67	66	67	2.66	4760	6110	2.3	6540
ARC041	41-68	67	68	1.61	3600	6990	2.3	4920
ARC041	41-69	68	69	0.44	786	9220	2.7	1055
ARC041	41-70	69	70	0.73	784	8140	2.4	1025
ARC041	41-71	70	71	0.67	466	4640	1.4	588
ARC041	41-72	71	72	0.89	576	4470	1.3	780
ARC041	41-76	75	76	1.49	3060	8810	2.7	4140
ARC041	41-77	76	77	0.54	1000	10550	3.3	1335
ARC041	41-78	77	78	0.62	302	7680	2.3	383
ARC041	41-79	78	79	3.31	4720	7440	2.8	6360
ARC041	41-80	79	80	0.57	1050	6860	2.2	1385
ARC041	41-81	80	81	2.59	1925	9850	3.4	2540
ARC041	41-82	81	82	2.08	2000	7940	2.9	2670
ARC041	41-83	82	83	0.69	584	4250	1.5	759

Hole Id	SAMPLE	From m	To m	Aug/t	Co ppm	Cuppm	Ag ppm	As ppm
ARC041	41-84	83	84	1.09	942	5320	1.8	1240
ARC041	41-85	84	85	0.88	541	6100	2.2	701
ARC041	41-86	85	86	1.56	645	7170	2.5	876
ARC041	41-91	90	91	0.3	66	8400	3	55
ARC041	41-92	91	92	0.22	77	7280	2.3	56
ARC042	42-58	57	58	0.58	690	2640	1	812
ARC042	42-59	58	59	0.93	604	6500	2.1	777
ARC042	42-73	72	73	0.95	2170	5770	1.8	2880
ARC042	42-88	87	88	0.76	3310	5600	1.6	4500
ARC042	42-101	100	101	1.2	1380	6710	1.8	1835
ARC042	42-116	115	116	1.02	328	1850	0.7	409
ARC042	42-119	118	119	0.64	224	725	0.5	306
ARC042	42-121	120	121	2.68	6280	1410	0.8	8150
ARC042	42-123	122	123	1.3	871	1100	0.6	1090
ARC042	42-125	124	125	0.81	1220	979	<0.5	1545
ARC042	42-126	125	126	1.17	1240	1195	<0.5	1620
ARC042	42-129	128	129	0.7	660	1445	0.5	871
ARC042	42-130	129	130	0.75	328	4480	1.8	425
ARC042	42-131	130	131	0.99	182	4190	1.5	239
ARC044	44-21-24	21	24	0.27	191	5740	2.3	90
ARC044	44-42	41	42	0.77	1190	8760	3.4	1555
ARC044	44-43	42	43	0.57	822	5490	1.9	1055
ARC044	44-44	43	44	2.37	1315	12400	4.3	1650
ARC044	44-45	44	45	22	4640	37300	12	6200
ARC044	44-46	45	46	2.09	705	5440	2	947
ARC044	44-47	46	47	0.92	823	7250	2.7	1095
ARC044	44-49	48	49	0.81	2090	6680	2.5	2850
ARC044	44-50	49	50	0.84	1580	5980	2.2	2150
ARC044	44-52	51	52	1.18	676	7210	2.6	925
ARC044	44-53	52	53	0.5	1225	2890	1	1615
ARC044	44-54	53	54	1.33	280	5680	2.9	396
ARC044	44-56	55	56	1.97	2000	11450	4.2	2600
ARC044	44-57	56	57	2.15	1285	4560	1.9	1700
ARC044	44-58	57	58	1.05	1060	6510	2.5	1415
ARC045	45-24	23	24	0.65	123	3460	0.5	92
ARC045	45-26	25	26	0.54	122	2140	1.1	87
ARC045	45-27	26	27	0.5	124	4070	2.7	82
ARC045	45-28	27	28	0.77	113	12050	4.6	91
ARC045	45-29	28	29	0.84	124	12000	2.4	75
ARC045	45-30	29	30	1.16	324	6890	2.3	205
ARC045	45-45	44	45	0.4	439	7230	2.1	457
ARC045	45-46	45	46	0.33	267	6040	1.2	237
ARC045	45-49	48	49	0.71	425	3220	0.6	337
ARC045	45-50	49	50	1.48	539	3310	0.6	458
ARC045	45-55	54	55	4.36	406	15250	2.7	489
ARC045	45-56	55	56	0.42	498	7230	1.7	578
ARC045	45-57	56	57	0.7	634	14150	3	896
ARC045	45-58	57	58	1.76	484	9560	3.4	552
ARC045	45-59	58	59	1.26	1065	4120	1.4	1110
ARC045	45-60	59	60	1.41	1100	2920	1.2	1400
ARC045	45-61	60	61	0.71	1345	1945	0.5	1605
ARC046	46-59	58	59	1.04	155	2280	0.6	226
ARC046	46-64	63	64	1.3	140	1115	<0.5	257
ARC046	46-65	64	65	4.86	162	2070	0.5	187
ARC046	46-68	67	68	1.56	252	36100	10.8	287
ARC046	46-69	68	69	1.3	219	6340	1.5	247
ARC046	46-72	71	72	0.68	172	21500	5.3	223
ARC046	46-73	72	73	0.36	1110	4120	1	1395

Hole Id	SAMPLE	From m	To m	Aug/t	Co ppm	Cuppm	Ag ppm	As ppm
ARC046	46-77	76	77	1.6	1030	17250	5.7	1495
ARC046	46-78	77	78	0.43	177	8630	2.6	171
ARC046	46-79	78	79	1.07	199	9930	2.9	122
ARC046	46-80	79	80	1.12	149	11050	3.9	56
ARC046	46-81	80	81	1.28	138	8260	3	86
ARC046	46-82	81	82	2.65	180	8060	2.6	174
ARC046	46-83	82	83	0.8	290	3820	1	335
ARC046	46-86	85	86	1.53	874	7550	2.9	1135
ARC046	46-87	86	87	9.56	3090	17650	5.7	4250
ARC046	46-88	87	88	1.87	1980	7920	2.5	2700
ARC046	46-89	88	89	1.23	2460	6550	2.5	3390
ARC046	46-90	89	90	0.68	2100	3740	1.4	2860
ARC046	46-93	92	93	0.82	150	3820	1.1	161
ARC046	46-102	101	102	0.99	1885	2860	0.8	2400
ARC046	46-103	102	103	0.58	1410	2420	<0.5	2390
ARC046	46-104	103	104	1.29	1890	6460	1.9	2620
ARC046	46-105	104	105	1.63	1940	5750	1.7	2690
ARC046	46-106	105	106	1.34	1730	6150	2.2	2370
ARC046	46-107	106	107	1.43	1000	6360	2	1385
ARC046	46-108	107	108	0.74	292	4350	1.3	389
ARC048	48-16	15	16	0.03	784	7120	<0.5	650
ARC048	48-17	16	17	0.18	924	9250	1	568
ARC048	48-18	17	18	0.3	723	11350	1.3	630
ARC048	48-19	18	19	0.21	321	6230	3	242
ARC048	48-22	21	22	0.17	235	6830	5.7	213
ARC048	48-23	22	23	0.18	285	10700	2.5	179
ARC048	48-24	23	24	0.14	203	8720	2.4	170
ARC048	48-25	24	25	0.14	443	6320	3.1	253
ARC048	48-26	25	26	0.14	423	6560	1.5	463
ARC048	48-27	26	27	0.18	487	9130	1.1	438
ARC048	48-28	27	28	0.15	396	6920	4	476
ARC048	48-29	28	29	0.15	937	7100	1.1	1115
ARC048	48-30	29	30	0.21	1410	6380	0.7	1540
ARC048	48-31	30	31	0.23	763	6300	1.2	768
ARC048	48-32	31	32	0.13	731	5250	3.2	769
ARC048	48-33	32	33	0.23	1210	7170	2.6	1640
ARC048	48-34	33	34	0.22	997	11300	4.4	1080
ARC048	48-35	34	35	0.2	768	9820	3.7	771
ARC048	48-36	35	36	0.31	784	8000	4.9	777
ARC048	48-39	38	39	4.88	441	9140	4.1	546
ARC048	48-40	39	40	10.4	860	21700	8.5	1065
ARC048	48-41	40	41	10.05	607	16250	11.1	730
ARC048	48-42	41	42	3.23	701	5810	5.1	495
ARC048	48-43	42	43	2.29	1020	6760	5	908
ARC048	48-44	43	44	0.89	687	3390	2.6	453
ARC048	48-45	44	45	0.14	1270	2380	1.7	640
ARC048	48-51	50	51	1.35	1280	5200	2.1	1240
ARC048	48-53	52	53	0.47	1450	947	0.8	640
ARC048	48-66	65	66	1.32	959	6620	1	656
ARC048	48-70	69	70	1.73	807	2090	1.5	443
ARC048	48-71	70	71	22.5	1380	8170	3.6	573
ARC048	48-72	71	72	15.5	1640	13100	4.6	835
ARC048	48-73	72	73	0.55	642	1050	<0.5	353
ARC048	48-74	73	74	4.6	494	7930	2.2	337
ARC048	48-75	74	75	1.97	446	4450	1.3	191
ARC048	48-76	75	76	4.29	539	4950	1.7	230
ARC048	48-77	76	77	12.85	486	7530	2.9	289
ARC048	48-78	77	78	3.73	411	5680	2.5	261

Hole Id	SAMPLE	From m	To m	Au g/t	Co ppm	Cu ppm	Ag ppm	As ppm
ARC048	48-79	78	79	6.05	2230	27000	7.5	2640
ARC048	48-80	79	80	3.26	1650	15550	6.5	2040
ARC048	48-81	80	81	15.8	6260	50600	13.6	8330
ARC048	48-82	81	82	22.2	9210	54100	14.9	13300
ARC048	48-83	82	83	7.08	5130	48300	13.7	6870
ARC048	48-84	83	84	1.82	1650	18850	6	2090
ARC048	48-87	86	87	0.67	326	4040	1.1	351
ARC048	48-89	88	89	0.34	1390	1130	<0.5	1855
ARC048	48-91	90	91	0.48	1540	923	<0.5	2070
ARC048	48-97	96	97	0.4	680	7040	2	935
ARC048	48-98	97	98	1.86	2270	5980	2	3200
ARC048	48-99	98	99	2.45	772	5220	1.3	1025
ARC048	48-103	102	103	5.15	874	9770	2.7	1195
ARC048	48-104	103	104	3.57	1690	8700	2.3	2320
ARC048	48-105	104	105	0.51	184	2240	0.5	254
ARC048	48-106	105	106	1.63	324	3870	0.9	450
ARC048	48-107	106	107	0.8	267	9570	2.6	342
ARC049	49-132	131	132	2.96	341	1955	0.6	496
ARC049	49-135	134	135	0.53	696	1250	<0.5	910
ARC049	49-136	135	136	0.99	2730	2140	0.6	3480
ARC049	49-137	136	137	0.89	2950	1675	0.7	3700
ARC049	49-138	137	138	0.61	1430	2220	0.7	1770
ARC050	50-30	29	30	0.74	213	19350	6.6	150
ARC050	50-31	30	31	0.12	128	10150	4.3	142
ARC050	50-32	31	32	0.12	99	7310	3.2	94
ARC050	50-93-96	93	96	0.12	1645	1840	<0.5	2510
ARC054	54-5	4	5	0.15	638	4190	1	4490
ARC054	54-22	21	22	0.1	1145	3170	0.7	1185
ARC054	54-24	23	24	0.37	1370	2030	<0.5	2050
ARC054	54-25	24	25	2.52	8110	8720	2.4	>10000
ARC054	54-26	25	26	13.8	5630	87400	30.5	8680
ARC054	54-27	26	27	6.3	5310	47000	15.2	8210
ARC054	54-29	28	29	0.19	410	6230	1.5	650
ARC054	54-49	48	49	0.32	2520	3870	1.2	4100
ARC054	54-50	49	50	0.52	3460	12400	4.3	5700
ARC054	54-51	50	51	0.27	793	7650	2.3	1255
ARC054	54-52	51	52	0.15	392	5480	1.8	609
ARC054	54-53	52	53	0.37	2110	8730	2.5	3290
ARC054	54-59	58	59	2.61	2080	2600	0.8	3150
ARC054	54-60	59	60	2.81	5900	5520	1.7	8910
ARC054	54-63	62	63	0.17	1125	3500	1	1815
ARC054	54-64	63	64	0.23	1800	2520	0.6	2940
ARC054	54-72-75	72	75	0.06	1275	649	<0.5	1810
ARC054	54-77	76	77	0.39	1015	11550	3.7	1505
ARC054	54-78	77	78	0.2	410	5310	1.4	634
ARC054	54-79	78	79	0.22	392	7650	2.4	593
ARC054	54-80	79	80	0.46	992	15850	4.8	1500
ARC054	54-81	80	81	0.53	603	7410	1.9	948
ARC054	54-85	84	85	1.04	219	8770	2.4	263
ARC055	55-40	39	40	1.07	296	1800	0.7	159
ARC055	55-42	41	42	0.92	842	1475	<0.5	146
ARC055	55-56	55	56	0.23	107	8780	2.6	130
ARC055	55-57	56	57	0.53	142	8420	2.3	172
ARC055	55-62	61	62	0.28	110	7390	2.3	131
ARC055	55-63	62	63	0.23	72	7230	2.5	75
ARC055	55-64	63	64	0.17	80	6050	1.8	78
ARC055	55-67	66	67	0.7	123	9190	3	116
ARC055	55-68	67	68	0.49	180	8800	2.6	193

Hole Id	SAMPLE	From m	To m	Au g/t	Co ppm	Cu ppm	Ag ppm	As ppm
ARC055	55-69	68	69	0.43	156	5810	1.4	152
ARC055	55-73	72	73	0.8	138	1210	<0.5	166
ARC055	55-75	74	75	0.54	602	9700	3.3	797
ARC055	55-76	75	76	0.56	72	1370	<0.5	67
ARC058	58-8	7	8	0.65	835	2670	<0.5	445
ARC058	58-15	14	15	0.57	828	6050	1.5	354
ARC058	58-16	15	16	2.98	2280	6140	1.5	1410
ARC058	58-17	16	17	0.45	1825	4660	0.8	359
ARC058	58-18	17	18	0.26	1160	4360	1.1	360
ARC058	58-20	19	20	0.57	585	5480	0.5	383
ARC058	58-21	20	21	0.75	796	5080	1.2	227
ARC058	58-23	22	23	0.52	1000	1615	1.3	326
ARC058	58-26	25	26	0.89	770	2140	0.6	436
ARC058	58-27	26	27	3.64	1035	2900	0.5	511
ARC059	59-3-6	3	6	1.22	174	3380	<0.5	226
ARC059	59-9-12	9	12	0.57	207	2400	0.6	237
ARC059	59-29	28	29	0.34	812	5890	0.5	464
ARC059	59-30	29	30	1.7	751	3520	0.6	444
ARC059	59-31	30	31	0.55	431	2140	<0.5	322
ARC059	59-36	35	36	2.26	3120	7840	1.9	4050
ARC059	59-37	36	37	0.8	1915	7060	2.2	2530
ARC059	59-38	37	38	3.01	3630	10200	3.8	3840
ARC059	59-39	38	39	7.41	630	7220	2.2	819
ARC059	59-60	59	60	1.8	445	1040	<0.5	550
ARC059	59-61	60	61	5.37	3270	7540	3	4210
ARC059	59-62	61	62	10.95	2520	15800	6	3230
ARC059	59-63	62	63	5.37	649	10600	4	763
ARC059	59-75-78	75	78	1.08	361	4080	2.7	442
ARC059	59-81-84	81	84	0.72	535	1400	<0.5	653
ARC059	59-87-90	87	90	0.64	642	787	<0.5	755
ARC059	59-108-111	108	111	0.79	146	584	<0.5	157
ARC060	60-8	7	8	0.35	83	7810	0.6	237
ARC060	60-9	8	9	0.2	125	5340	<0.5	100
ARC060	60-12	11	12	2.19	321	6120	1	188
ARC060	60-13	12	13	1.17	184	5440	<0.5	219
ARC060	60-14	13	14	1.09	296	4060	0.6	578
ARC060	60-15	14	15	0.59	317	2000	<0.5	399
ARC060	60-17	16	17	0.89	303	5510	<0.5	516
ARC060	60-19	18	19	0.7	452	4940	0.8	432
ARC060	60-20	19	20	1.31	1760	3820	0.5	795
ARC060	60-22	21	22	1.02	3710	5290	0.7	2980
ARC060	60-23	22	23	0.99	5290	4500	<0.5	3110
ARC060	60-24	23	24	0.25	1885	3630	<0.5	911
ARC060	60-26	25	26	0.64	852	3920	0.7	667
ARC060	60-27	26	27	2.42	965	9600	1.3	964
ARC060	60-28	27	28	0.26	906	5800	1.2	695
ARC060	60-29	28	29	0.77	957	5630	1.5	941
ARC060	60-31	30	31	2.3	594	6780	1.7	668
ARC060	60-38	37	38	0.32	114	5500	1.8	206
ARC060	60-39	38	39	0.46	180	5080	1.6	229
ARC060	60-65	64	65	0.53	162	1710	<0.5	231
ARC061	61-8	7	8	0.28	455	5780	<0.5	161
ARC061	61-34	33	34	0.35	1170	1195	1.9	512
ARC061	61-35	34	35	0.58	1250	1745	1.3	517
ARC061	61-39	38	39	1.09	897	6180	1.4	1450
ARC061	61-70	69	70	0.64	1370	2560	0.8	1800
ARC061	61-71	70	71	0.64	974	4160	1.6	1300
ARC061	61-72	71	72	1.82	1855	13250	5.2	2370

Hole Id	SAMPLE	From m	To m	Au g/t	Co ppm	Cuppm	Ag ppm	As ppm
ARC061	61-73	72	73	0.84	869	13250	4.7	1150
ARC061	61-74	73	74	1.09	689	7690	2.8	922
ARC061	61-75	74	75	2.25	1690	6480	2.6	2200
ARC061	61-76	75	76	2.64	1550	7090	2.9	2030
ARC061	61-77	76	77	5.07	1485	9140	3.3	1930
ARC061	61-79	78	79	0.36	81	5950	1.9	93
ARC061	61-93-96	93	96	0.72	797	1060	<0.5	861
ARC061	61-103	102	103	0.1	103	5560	1.9	118
ARC061	61-104	103	104	0.65	795	2980	1.2	1000
ARC061	61-105	104	105	0.62	1220	3510	1.6	1590
ARC062	62-3	2	3	0.21	167	5600	<0.5	63
ARC062	62-4	3	4	0.44	255	5910	<0.5	141
ARC062	62-6	5	6	0.08	120	5080	<0.5	74
ARC062	62-9	8	9	0.18	176	5930	0.5	158
ARC062	62-11	10	11	0.16	194	5020	0.5	402
ARC062	62-12	11	12	0.37	321	9440	<0.5	285
ARC062	62-13	12	13	0.25	181	5830	0.8	199
ARC062	62-15	14	15	0.22	104	5670	0.5	113
ARC062	62-17	16	17	0.09	298	7010	0.6	141
ARC062	62-18	17	18	0.21	228	5050	1	125
ARC062	62-21	20	21	0.23	195	5430	3.4	215
ARC062	62-28	27	28	0.66	320	18300	5.7	443
ARC062	62-30	29	30	1.19	1100	9550	1.4	951
ARC062	62-31	30	31	1.17	1330	7750	3	951
ARC062	62-39	38	39	0.99	1590	5580	2.1	2160
ARC062	62-40	39	40	0.94	1035	4200	1.8	1395
ARC062	62-41	40	41	0.41	268	2930	1	354
ARC062	62-42	41	42	1.19	950	3810	1.4	1280
ARC062	62-43	42	43	1.51	1750	8460	3.1	2380
ARC062	62-44	43	44	4.39	4270	10550	3.7	5940
ARC062	62-45	44	45	4.18	5480	14150	4.5	7540
ARC062	62-46	45	46	1.87	2680	5170	1.7	3640
ARC062	62-47	46	47	0.99	781	2680	0.8	1095
ARC062	62-48	47	48	0.85	759	2550	1.8	1045
ARC062	62-49	48	49	0.57	198	15450	5.3	235
ARC062	62-50	49	50	1.22	126	14000	4.9	135
ARC062	62-51	50	51	1.13	121	14250	5	134
ARC062	62-53	52	53	1.59	1900	4680	1.4	2580
ARC062	62-54	53	54	2.32	1610	5800	1.6	2200
ARC062	62-55	54	55	2.05	1380	4880	1.5	1895
ARC062	62-56	55	56	0.91	907	2450	0.9	1250
ARC062	62-58	57	58	2.22	790	3250	1.1	1065
ARC062	62-59	58	59	2.81	1530	7010	2.3	2100
ARC062	62-60	59	60	2.31	765	5050	1.5	1045
ARC062	62-72	71	72	0.1	46	5500	1.5	30
ARC063	63-10	9	10	1.87	156	4310	<0.5	268
ARC063	63-16	15	16	0.64	399	2770	0.5	1360
ARC063	63-39	38	39	0.42	110	10550	3.5	171
ARC063	63-40	39	40	0.35	340	5560	1.6	439
ARC063	63-41	40	41	0.33	214	6710	2.5	192
ARC063	63-45	44	45	1.11	356	3000	1	462
ARC063	63-53	52	53	0.23	259	7680	2.4	172
ARC063	63-65	64	65	1.13	2230	745	<0.5	3070
ARC063	63-66	65	66	2.68	4940	7700	2.6	6940
ARC063	63-67	66	67	0.87	1120	3310	0.8	1520
ARC063	63-68	67	68	2.49	2410	4250	1.3	3250
ARC063	63-69	68	69	1.02	2170	9850	3.6	2930
ARC063	63-72	71	72	0.86	312	5560	1.7	381

Hole Id	SAMPLE	From m	To m	Aug/t	Co ppm	Cuppm	Ag ppm	As ppm
ARC063	63-75	74	75	1.74	1575	4630	1.6	2140
ARC063	63-77	76	77	0.82	418	11900	3.8	561
ARC063	63-78	77	78	1.24	282	28200	9.1	377
ARC063	63-79	78	79	0.78	519	2940	0.5	528
ARC063	63-80	79	80	4.38	1735	13350	5.4	2340
ARC063	63-81	80	81	14.35	3240	22400	6.1	4360
ARC063	63-82	81	82	10.15	9880	40900	12.1	1.45
ARC063	63-83	82	83	6.66	5490	26200	6.5	7550
ARC063	63-84	83	84	1.03	651	3020	0.7	862
ARC063	63-89	88	89	1.61	1175	2350	0.9	1540
ARC063	63-90	89	90	0.53	406	1560	<0.5	529
ARC063	63-91	90	91	2.68	596	7210	2.1	790
ARC063	63-93	92	93	0.87	888	3450	0.8	1205
ARC063	63-94	93	94	0.75	937	4340	1.2	1300
ARC065	65-2	1	2	1	91	2330	<0.5	193
ARC065	65-6	5	6	0.41	254	6110	<0.5	459
ARC065	65-34	33	34	0.37	1190	6550	1.4	1045
ARC065	65-37	36	37	0.18	428	9610	1.6	324
ARC065	65-54	53	54	0.81	881	2830	0.5	1160
ARC065	65-56	55	56	0.5	522	6520	1.6	683
ARC065	65-57	56	57	1.8	2250	11250	3.7	3070
ARC065	65-58	57	58	0.49	458	6990	2	596
ARC065	65-59	58	59	0.96	317	8180	2.4	393
ARC065	65-60	59	60	0.57	390	5390	1.4	501
ARC065	65-61	60	61	3.04	3250	5530	1.8	4380
ARC065	65-62	61	62	1.77	1470	3440	0.8	1990
ARC065	65-63	62	63	1.41	986	2670	0.8	1360
ARC065	65-64	63	64	1.23	1020	2610	0.6	1410
ARC065	65-65	64	65	0.91	571	2450	0.7	772
ARC065	65-66	65	66	1.23	679	4440	1.4	923
ARC065	65-67	66	67	0.64	506	1890	<0.5	681
ARC065	65-68	67	68	1.37	2380	4080	1.3	3270
ARC065	65-69	68	69	1.53	1055	5240	1.3	1425
ARC065	65-70	69	70	1.48	930	5220	1.6	1255
ARC065	65-71	70	71	2.04	1470	5820	1.9	2010
ARC065	65-72	71	72	1.25	739	5070	1.7	1030
ARC065	65-74	73	74	0.6	519	4270	1.2	717
ARC066	66-3	2	3	0.84	289	1980	<0.5	438
ARC066	66-4	3	4	1.12	280	2810	1.3	314
ARC066	66-6	5	6	0.3	333	6010	1.4	430
ARC066	66-19	18	19	0.85	313	60400	14.1	196
ARC066	66-21	20	21	0.3	240	18100	3.8	124
ARC066	66-47	46	47	0.45	1005	6170	2.5	1655
ARC066	66-48	47	48	0.5	534	6710	2.5	823
ARC066	66-50	49	50	0.6	510	6150	2.1	735
ARC066	66-51	50	51	1.04	202	7020	2.7	251
ARC066	66-55	54	55	0.54	161	5150	1.6	176
ARC066	66-56	55	56	1.02	382	5200	1.4	416
ARC066	66-60	59	60	0.6	141	2940	0.9	106
ARC066	66-61	60	61	0.87	148	2660	0.9	173
ARC066	66-62	61	62	1.16	117	3560	1.1	90
ARC066	66-63	62	63	6.98	131	8150	2.8	96
ARC066	66-64	63	64	1.71	209	6620	1.5	204
ARC066	66-68	67	68	1.27	1690	3800	1.1	2230
ARC066	66-76	75	76	1.56	1210	862	0.7	1515
ARC066	66-77	76	77	0.98	989	4360	1.2	1270
ARC066	66-78	77	78	0.31	141	5070	1.4	137
ARC066	66-79	78	79	2.07	314	7290	3.7	375

Hole Id	SAMPLE	From m	To m	Au g/t	Co ppm	Cu ppm	Ag ppm	As ppm
ARC066	66-80	79	80	0.9	607	2920	0.7	788
ARC066	66-82	81	82	0.51	1210	968	<0.5	1595
ARC066	66-83	82	83	0.65	745	1420	<0.5	994
ARC066	66- 84-87	84	87	0.81	1730	243	<0.5	2240
ARC066	66- 87-90	87	90	1.57	3930	993	<0.5	5150
ARC066	66-101	100	101	0.97	854	3100	0.7	1115
ARC066	66-102	101	102	4.13	3080	5750	1.4	3990
ARC066	66-103	102	103	1.2	1550	3140	0.7	1980
ARC066	66-105	104	105	1	411	9340	2.4	513
ARC066	66-106	105	106	1.42	1870	7170	2.3	2490
ARC066	66-107	106	107	0.72	1140	6660	1.8	1505
ARC066	66-108	107	108	1.26	2420	8220	2.4	3180
ARC066	66-109	108	109	8.28	7590	7410	2.5	9980
ARC066	66-110	109	110	0.65	733	8810	2.4	958
ARC066	66-112	111	112	3.62	2850	6030	1.9	3640
ARC066	66-113	112	113	3.63	4250	5500	1.7	5520
ARC066	66-114	113	114	2.83	3320	5640	1.6	4400
ARC066	66-115	114	115	1.9	865	9740	2.7	1130
ARC066	66-116	115	116	0.74	431	5830	1.5	553
ARC066	66-118	117	118	1.25	182	5770	2.1	240
ARC067	67-3	2	3	0.97	531	2850	<0.5	472
ARC067	67-4	3	4	4.88	298	8060	<0.5	208
ARC067	67-5	4	5	0.49	317	8720	<0.5	154
ARC067	67-6	5	6	1.16	258	9700	<0.5	164
ARC067	67-7	6	7	0.69	159	7350	<0.5	101
ARC067	67-8	7	8	0.29	240	8990	<0.5	68
ARC067	67-9	8	9	0.33	163	8150	<0.5	83
ARC067	67-10	9	10	0.94	397	6650	<0.5	117
ARC067	67-11	10	11	0.89	441	7300	<0.5	193
ARC067	67-12	11	12	0.71	228	7080	<0.5	226
ARC067	67-14	13	14	0.74	313	5500	<0.5	199
ARC067	67-15	14	15	0.51	288	4070	<0.5	292
ARC067	67-20	19	20	0.84	480	5290	1.6	657
ARC067	67-21	20	21	1.88	784	4890	1.6	813
ARC067	67-26	25	26	0.95	1060	3320	<0.5	712
ARC067	67-27	26	27	1.04	1170	7130	2.6	1475
ARC067	67-28	27	28	1.59	1350	9900	3.5	1480
ARC067	67-29	28	29	2.39	1200	13600	4.5	1360
ARC067	67-30	29	30	0.47	286	6110	0.5	249
ARC067	67-31	30	31	1.37	311	7410	3.7	510
ARC067	67-32	31	32	1.18	236	5800	1.4	356
ARC067	67-34	33	34	1.99	606	6910	2.7	795
ARC067	67-35	34	35	3.45	204	11600	4.6	246
ARC067	67-36	35	36	10.2	465	11400	4.1	606
ARC067	67-37	36	37	2.25	583	13250	4.8	707
ARC067	67-38	37	38	0.64	111	7640	2.9	132
ARC067	67-39	38	39	0.28	115	6230	2.2	182
ARC067	67-40	39	40	5.77	943	7370	2.9	1295
ARC067	67-41	40	41	1.22	461	4060	1.3	648
ARC067	67-42	41	42	1.06	404	5200	2	577
ARC068	68-21	20	21	1.14	186	19950	5.4	13.2
ARC068	68-23	22	23	0.43	166	5670	1.2	16
ARC068	68-24	23	24	0.21	117	5170	0.9	13.8
ARC068	68-26	25	26	1.27	192	6200	1.9	14.35
ARC068	68-27	26	27	0.68	153	2660	0.6	15.05
ARC068	68-30	29	30	0.48	282	9740	4.1	8.69
ARC068	68-33	32	33	0.46	231	5920	1.5	7.4
ARC068	68-34	33	34	0.66	368	6720	1.9	7.45

Hole Id	SAMPLE	From m	To m	Aug/t	Co ppm	Cu ppm	Ag ppm	As ppm
ARC068	68-35	34	35	0.23	585	9860	4	8.06
ARC068	68-37	36	37	21.2	428	8490	3.4	10.15
ARC068	68-38	37	38	1.91	344	5050	1.3	7.05
ARC068	68-40	39	40	1.2	319	5310	1.8	7.85
ARC068	68-41	40	41	8.4	885	18950	10.6	9.11
ARC068	68-42	41	42	3.59	834	6410	4.3	12.75
ARC068	68-46	45	46	0.51	967	3520	1.2	1015
ARC068	68-49	48	49	2.5	1350	6610	2.5	1340
ARC068	68-50	49	50	0.96	759	3010	1.1	943
ARC068	68-51	50	51	0.85	567	2470	1.1	758
ARC068	68-58	57	58	0.45	343	6240	2.2	438
ARC068	68-61	60	61	2.61	72	14250	5.9	58
ARC068	68-62	61	62	2.23	274	5270	2.2	497
ARC068	68-63	62	63	3.5	198	9060	3.3	330
ARC068	68-65	64	65	1.35	182	6950	2.6	233
ARC069a	69a-98	97	98	1.39	634	90500	25.1	801
ARC069a	69a-100	99	100	1.47	7110	1490	0.6	9750
ARC069a	69a-101	100	101	1.4	6460	1075	0.5	8490
ARC069a	69a-103	102	103	0.63	402	9310	2.5	476
ARC069a	69a-108-111	108	111	0.66	527	1365	<0.5	664
ARC069a	69-122	121	122	2.4	688	3580	0.8	894
ARC069a	69-123	122	123	5.42	620	13700	3.3	795
ARC069a	69-124	123	124	16	789	11400	3.3	970
ARC069a	69-125	124	125	17.2	5660	3540	1.6	7780
ARC069a	69-126	125	126	26.3	7840	15350	4.4	1.1
ARC069a	69-127	126	127	7.9	2910	6200	2.1	3960
ARC069a	69-128	127	128	2.74	569	5680	1.2	745
ARC069a	69-132	131	132	6.48	2900	2120	0.9	3980
ARC069a	69-141	140	141	0.55	78	997	<0.5	83
ARC069a	69-143	142	143	1.09	252	2750	2.7	317
ARC069a	69-144	143	144	9.57	689	7510	2.1	921
ARC069a	69-145	144	145	1.69	1050	1000	<0.5	1380
ARC069a	69-149	148	149	2.58	97	5100	1.9	127
ARC070	70-5	4	5	0.54	115	2560	<0.5	118
ARC070	70-6	5	6	0.62	97	2230	0.5	169
ARC070	70-8	7	8	0.54	88	1810	<0.5	131
ARC070	70-9	8	9	1.33	84	1960	0.8	244
ARC070	70-10	9	10	0.66	116	2810	<0.5	82
ARC070	70-13	12	13	1.14	534	4050	<0.5	1510
ARC070	70-17	16	17	1.27	592	3570	0.5	769
ARC070	70-19	18	19	8.61	2980	12550	3.2	5190
ARC070	70-20	19	20	1.33	987	4380	1.3	1605
ARC070	70-21	20	21	0.94	181	1150	0.6	388
ARC070	70-26	25	26	1.95	434	4720	2	739
ARC070	70-27	26	27	2.49	1490	4240	2	2060
ARC070	70-28	27	28	1.7	1500	3110	1.3	2060
ARC070	70-30	29	30	0.96	662	3150	1.3	1110
ARC071	71-27	26	27	0.56	846	3790	1	864
ARC071	71-31	30	31	1.4	406	20500	7.8	499
ARC071	71-32	31	32	0.35	158	8500	2.7	128
ARC071	71-33	32	33	0.73	100	8860	3.2	82
ARC071	71-34	33	34	0.64	177	9400	3.7	178
ARC071	71-36	35	36	0.72	325	8150	3.3	378
ARC071	71-37	36	37	0.6	509	3240	1.1	650
ARC071	71-42	41	42	0.86	365	7600	2.5	419
ARC071	71-46	45	46	0.55	348	3320	1.2	456
ARC071	71-47	46	47	0.52	694	4810	1.8	906
ARC071	71-48	47	48	1.25	1500	5560	2	1960

Hole Id	SAMPLE	From m	To m	Au g/t	Co ppm	Cu ppm	Ag ppm	As ppm
ARC071	71-49	48	49	1.38	2030	5310	2.3	2690
ARC071	71-50	49	50	0.76	910	3650	1.3	1190
ARC071	71-51	50	51	1.13	206	2090	1	254
ARC071	71-52	51	52	1.48	159	1950	1	191
ARC071	71-53	52	53	0.57	576	3190	1.2	738
ARC071	71-54	53	54	0.97	831	3470	1.4	1080
ARC071	71-56	55	56	0.61	509	3110	1.1	662
ARC071	71-57	56	57	4.74	2650	13350	6.9	3470
ARC071	71-58	57	58	6.25	2560	10700	3.5	3330
ARC071	71-59	58	59	0.9	672	4240	1.4	859
ARC071	71-62	61	62	1.52	1225	6480	2.7	1650
ARC071	71-65	64	65	0.89	862	4230	1.6	1160
ARC072	72-20	19	20	0.83	105	4900	1.5	75
ARC072	72-46	45	46	0.45	1450	3240	1.4	970
ARC072	72-55	54	55	0.78	420	12350	3.9	262
ARC072	72-58	57	58	0.52	483	2530	1.9	178
ARC072	72-59	58	59	0.51	376	7610	3.4	261
ARC072	72-60	59	60	1.91	921	5160	1.3	436
ARC072	72-61	60	61	3.76	1620	14550	4.4	1450
ARC072	72-62	61	62	13.8	1200	23400	7.2	876
ARC072	72-63	62	63	6.31	2180	14900	6.2	2750
ARC072	72-64	63	64	1.96	756	7510	2.4	949
ARC072	72-65	64	65	1.59	968	7040	2.3	1260
ARC072	72-66	65	66	0.59	362	3640	1.2	443
ARC072	72-67	66	67	0.82	174	11500	3.8	211
ARC072	72-68	67	68	0.67	157	3550	0.9	178
ARC072	72-71	70	71	0.23	214	5030	1.8	253
ARC072	72-73	72	73	1.37	859	2930	1	1020
ARC072	72-120	119	120	0.2	10	5400	2.7	11
ARC073	73-9	8	9	0.67	135	3370	<0.5	205
ARC073	73-11	10	11	0.51	70	2630	<0.5	363
ARC073	73-16	15	16	0.1	221	5690	1.3	245
ARC073	73-21	20	21	0.78	454	6980	0.6	386
ARC073	73-23	22	23	1.16	562	5010	2.4	789
ARC073	73-24	23	24	0.77	708	5470	2.8	928
ARC075	75-54	53	54	0.21	68	8420	2.7	22
ARC075	75-57	56	57	0.72	140	8110	2.1	40
ARC075	75-58	57	58	1.16	1040	47800	15	1350
ARC075	75-59	58	59	0.34	139	13950	4.6	115
ARC075	75-61	60	61	0.76	166	9010	1.1	173
ARC075	75-62	61	62	0.68	144	5840	1.2	149
ARC075	75-63	62	63	3.31	162	9990	2.3	243
ARC075	75-77	76	77	0.52	2480	1930	0.5	3380
ARC075	75-78	77	78	0.53	1710	2410	0.7	2330
ARC075	75-84	83	84	0.21	1180	1340	<0.5	1700
ARC075	75-85	84	85	1.35	686	3840	1.1	962
ARC075	75-100	99	100	1.42	101	4140	1	96
ARC075	75-101	100	101	0.59	74	19250	4.7	49
ARC075	75-108	107	108	0.66	111	7450	2.1	124
ARC075	75-119	118	119	1.11	130	10400	2.7	88
ARC075	75-123	122	123	0.29	79	6080	1.6	44
ARC075	75-129	128	129	0.47	1275	4360	1.3	1700
ARC075	75-144-147	144	147	0.53	168	729	<0.5	219
ARC076	76-7	6	7	0.57	81	2190	<0.5	98
ARC076	76-13	12	13	0.7	73	5440	1.4	322
ARC076	76-17	16	17	0.3	130	5280	1.8	260
ARC076	76-22	21	22	0.59	433	4280	0.5	501
ARC076	76-23	22	23	0.43	1940	15550	5.3	2580

Hole Id	SAMPLE	From m	To m	Au g/t	Co ppm	Cu ppm	Ag ppm	As ppm
ARC077	77-137	136	137	1.6	1090	6600	2.5	1420
ARC077	77-138	137	138	0.42	415	5450	1.7	520
ARC077	77-139	138	139	2.76	2720	5990	2	3420
ARC077	77-140	139	140	0.2	249	6030	1.9	281
ARC077	77-141	140	141	0.22	316	5090	1.5	372
ARC077	77-142	141	142	1.8	699	7920	2.7	879
ARC077	77-143	142	143	3.28	480	12900	5.2	609
ARC077	77-144	143	144	1.82	982	16550	6.1	1280
ARC077	77-145	144	145	9.88	302	22600	7.7	367
ARC077	77-146	145	146	1.62	1210	17450	6.4	1570
ARC077	77-147	146	147	0.74	736	18100	6.3	931
ARC077	77-148	147	148	0.47	804	6170	2.2	1000
ARC077	77-149	148	149	3.57	2350	10500	3.7	2960
ARC077	77-150	149	150	6.83	5410	5260	2.2	7610
ARC077	77-152	151	152	1.48	656	1140	<0.5	844
ARC077	77-157	156	157	0.6	534	3780	0.9	646
ARC077	77-158	157	158	4.14	276	6520	2.3	310
ARC078	78-1	0	1	0.52	98	873	<0.5	310
ARC078	78-2	1	2	0.97	179	2040	0.5	861
ARC078	78-3	2	3	2.51	261	3700	1.6	1700
ARC078	78-4	3	4	2.23	243	3670	1.3	1705
ARC078	78-5	4	5	1.2	206	3110	0.8	936
ARC078	78-6	5	6	1.6	371	6590	<0.5	1265
ARC078	78-7	6	7	0.18	300	5420	<0.5	837
ARC078	78-18	17	18	1.05	1280	1605	0.9	1610
ARC078	78-24	23	24	1.15	247	5660	2.7	475
ARC079	79-52	51	52	1.06	1050	4770	1.5	1800
ARC079	79-57	56	57	9.79	2530	8130	1.6	6960
ARC079	79-76	75	76	0.22	208	5340	4.4	215
ARC079	79-84	83	84	0.99	477	101000	24.9	528
ARC079	79-85	84	85	0.22	373	11050	4.9	576
ARC079	79-86	85	86	0.64	555	7420	3	845
ARC079	79-88	87	88	0.83	912	19950	7.2	890
ARC079	79-89	88	89	2.55	1230	31200	12.4	1520
ARC079	79-90	89	90	0.64	904	29700	13.5	1140
ARC079	79-91	90	91	0.3	496	9000	3.9	1190
ARC079	79-94	93	94	1.6	497	5140	2.7	625
ARC080	80-35	34	35	0.31	1150	5420	1.6	1740
ARC080	80-39	38	39	0.46	1140	26700	7.5	1630
ARC080	80-40	39	40	1.52	3010	26800	8.1	4810
ARC080	80-41	40	41	0.25	1095	2200	<0.5	1700
ARC081	81-11	10	11	0.36	5110	2310	0.7	1730
ARC081	81-12	11	12	0.06	3740	192	<0.5	682
ARC081	81-33	32	33	0.66	166	6320	1.7	201
ARC081	81-155	154	155	0.57	309	21200	6.3	391

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	- All resource drilling was RC drilling performed by Three Rivers Drilling during April and October 2017. - The resource drilling comprised of 52 RC holes totaling $5,248 \mathrm{~m}$ of drilling. No previous drilling work was used in the resource estimation. - Samples from each metre were collected through a rig-mounted cyclone and split using a rig-mounted static cone splitter and submitted to an independent laboratory for chemical analysis. - Drilling included comprehensive QA/QC protocols including the use of certified standards, blanks and duplicate samples. - To assist the site geologist, all samples were analysed using a portable XRF instrument (Niton \& Innovex) at drill site. - Substantial historic drilling has been completed in the vicinity of the drilling completed by Artemis. The most significant work was completed by Consolidated Gold Mining Areas (1969), Open Pit Mining Limited (Open Pit) between 1985 and 1987, and Legend Mining NL (Legend) between 1995 and 2008. Compilation of this data has been completed based on Annual Exploration Reports available through WAMEX. Although limited information is available regarding procedures implemented during this period, work completed by Artemis to date has validated much of this historic data. It is considered that the historic work was completed professionally, and that certain assumptions can reasonably be based on results reported throughout this period.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	- Reverse Circulation drilling at Carlow Castle South was completed by a truck-mounted Schramm 685 RC drilling rig using a $51 / 4$ inch diameter face sampling hammer.
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries	- Sample recoveries were recorded by the field geologist in the field during logging and sampling.

Criteria	JORC Code explanation
	and results assessed.
	Measures taken to maximise sample
	recovery and ensure representative
	nature of the samples.
	Whether a relationship exists
	between sample recovery and grade
and whether sample bias may have	
	occurred due to preferential

Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Minera Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

Commentary

- If poor sample recovery is encountered during drilling, the supervising geologist and driller endeavor to rectify the problem to ensure maximum sample representative nature of the recovery.
- Visual assessments by field geologist was made for moisture, and possible contamination, minor damp samples were encountered, field geologist and driller ensured cleanliness of cyclone and splitter was maintained
- A cyclone and static cone splitter were used to ensure representative sampling and were routinely inspected and cleaned.
- Sample recoveries during drilling completed by Artemis were high, and almost all samples were dry.
- There is no indication of a relationship between grade and sample recovery.
- All drill chip samples were geologically logged at 1 m intervals from surface to the bottom of each drillhole. It is considered that geological logging is completed at an adequate level to allow appropriate future Mineral Resource estimation.
- Geological logging is considered semi-quantitative due to the limited geological information available from the Reverse Circulation method of drilling.
- All RC drillholes completed by Artemis during the current program have been logged in full.
- The RC drilling rig was equipped with a rig-mounted cyclone and three-tier riffle splitter, which provided one bulk sample of approximately 20-30 kilograms, and a representative subsample of approximately 24 kilograms for every metre drilled.
- The sample size of 2-4 kilograms is considered to be appropriate and representative of the grain size and mineralisation style of the deposit, duplicate samples were collected and submitted for analysis confirming subsample representation
- The majority of samples were dry. Where wet sample was encountered, the cleanliness of the cyclone and splitter were closely monitored by the supervising geologist, and maintained to a satisfactory level to avoid contamination and ensure representative samples were being collected.
- Duplicate samples were collected and submitted for analysis. Reference standards inserted during drilling.

Quality of assay data and

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered
- ALS (Perth) were used for all analysis of drill samples submitted by Artemis. The laboratory techniques below are for all samples submitted to ALS and
Criteria JORC Code explanation Commentary

laboratory	
tests	partial or total.
	For geophysical tools,
	spectrometers, handheld XRF
instruments, etc, the parameters	
	used in determining the analysis
including instrument make and	
	model, reading times, calibrations
	factors applied and their derivation
	etc.
	Nature of quality control procedures
	adopted (eg standards, blanks,
	duplicates, external laboratory
checks) and whether acceptable	
	levels of accuracy (ie lack of bias)
and precision have been	
established.	

are considered appropriate for the style of mineralisation defined within the Carlow Castle Project area:

- Samples above 3Kg riffle split.
- Pulverise to 95% passing 75 microns
- 50 gram Fire Assay (AuAA26) with ICP finish - Au.
- 4 acid Digest ICP-AES Finish (ME-ICP61) $\mathrm{Ag}, \mathrm{Al}, \mathrm{As}, \mathrm{Ba}, \mathrm{Be}, \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}$,Cr,Cu,Fe, Ga, K, $\mathrm{La}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{S}$, $\mathrm{Sb}, \mathrm{Sc}, \mathrm{Sr}, \mathrm{Th}, \mathrm{Ti}, \mathrm{Tl}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Zn}$
- Ore Grade 4 Acid Digest ICP-AES Finish (MEOG62)
- Standards were used for laboratory checks by Artemis.
- Duplicates were used for laboratory checks by Artemis.
- Portable XRF (pXRF) analysis was completed using both Niton \& Innovex units. XRF analysis was completed on the single metre sample bulk drill ample retained on site.
- Portable XRF results were only used as a guide to mineralised zones for sampling.
- At least two company personnel verify all significant results.
- No twin holes were drilled.
- All geological logging and sampling information is completed firstly on to paper logs before being transferred to Microsoft Excel spreadsheets.
Physical logs and sampling data are returned to the Hastings head office for scanning and storage.
- No adjustments of assay data are considered necessary.
- A Garmin GPSMap62 hand-held GPS was used to define the location of the drillhole collars. Standard practice is for the GPS to be left at the site of the collar for a period of 5 minutes to obtain a steady reading. Collar locations are considered to be accurate to within 5 m . The collars of all the completed holes were subsequently picked up with DGPS with an accuracy of within 1 cm and these coordinates were used for the resource modelling
- Downhole surveys were captured at 30 metre intervals for the drillholes.
- The grid system used for all Artemis drilling is GDA94 (MGA 94 Zone 50)
- Topographic control is obtained from surface profiles created by drillhole collar data.

Data spacing and
distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade
- Current drillhole spacing is variable and dependent on specific geological, and geophysical targets, and access requirements for each drillhole.
- No sample compositing has been

Criteria	JORC Code explanation	Commentary
	continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	used for drilling completed by Artemis. All results reported are the result of 1 metre downhole sample intervals. - AM\&AA believe that the spacing of the drilling along the shears at Carlow Castle South is sufficient for an Inferred resource estimate.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- The drill holes were located in order to intersect the target at an angle perpendicular to strike direction. As the target structures were considered to be steep to moderately dipping, all Artemis drillholes were angled at -55 or -60 degrees. - The intersection angle of the drilling with respect to the mineralisation was variable, making most drill intersections longer than the true width of the mineralisation. The resource modelling software uses the data in 3D and so compensates for the wider apparent thicknesses.
Sample security	- The measures taken to ensure sample security.	- The chain of custody is managed by the supervising geologist who places calico sample bags in polyweave sacks. Up to 10 calico sample bags are placed in each sack. Each sack is clearly labelled with: - Artemis Resources Ltd - Address of laboratory - Sample range - Samples were delivered by Artemis personnel to the transport company in Karratha and shrink wrapped onto pallets. - The transport company then delivers the samples directly to the laboratory.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- Data is validated upon up-loading into the master database. Any validation issues identified are investigated prior to reporting of results.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- The resource lies entirely within 47/1797-1 and is due to expire on 6/5/2018 after being extended from 6/5/2013. Artemis Resources Ltd, through its wholly owned subsidiary KML No. 2 Pty Ltd, purchased the tenement from Legend Mining Ltd on the 12th June 2012. - This tenement forms a part of a broader tenement package that comprises the West Pilbara Project. - This tenement is in good standing and no known impediments exist (see map provided in this report for location).
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- The most significant work to have been completed historically in the Carlow Castle area, including the Little Fortune and Good Luck prospects, was completed by Open Pit Mining Limited between 1985 and 1987, and subsequently Legend Mining NL between 1995 and 2008. - Work completed by Open Pit consisted of geological mapping, geophysical surveying (IP), and RC drilling and sampling. - Work completed by Legend Mining Ltd consisted of geological mapping and further RC drilling. - Legend also completed an airborne ATEM survey over the project area, with follow up ground-based FLTEM surveying. Re-processing of this data was completed by Artemis, and was critical in developing drill targets for the completed RC drilling. - Compilation and assessment of historic drilling and mapping data completed by both Open Pit and Legend has indicated that this data is compares well with data collected to date by Artemis. Validation and compilation of historic data is ongoing. - All exploration and analysis techniques conducted by both Open Pit and Legend are considered to have been appropriate for the style of deposit. - No drilling information from this previous work was used in the current resource modelling and estimation.
Geology	- Deposit type, geological setting and style of mineralisation.	- The Carlow Castle Co-Cu-Au prospect includes a number of mineralised shear zones, located on the northern margin of the Andover Intrusive Complex. Mineralisation is exposed in numerous workings at surface along numerous quartz rich shear zones. Both oxide and sulphide mineralisation is evident at surface

Criteria	JORC Code explanation	Commentary
		associated with these shear zones. - Sulphide mineralisation consists of chalcopyrite, chalcocite, cobaltite and pyrite
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	- Collar information for all drillholes reported is provided in the body of this report.
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	- All intervals reported are composed of 1 metre down hole intervals, and are therefore length weighted. - No upper or lower cut off grades have been used in reporting results. - No metal equivalent calculations are used in this report.
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	- True widths of mineralisation have not been calculated for this report, and as such all intersections reported are down-hole thicknesses. - Due to the moderately to steeply dipping nature of the mineralised zones, it is expected that true thicknesses will be less than the reported down-hole thicknesses. - The resource modelling was carried out in 3D and all apparent widths accounted for in the estimation method.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole	- Appropriate maps and sections are available in the body of this announcement.

Criteria	JORC Code explanation	Commentary
	collar locations and appropriate sectional views.	
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- Reporting of results in this report is considered balanced.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- No other exploration data other than local geology maps were considered in the resource estimate.
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	- The results at the Carlow Castle CoCu -Au project warrant further drilling. As this is a first phase drill program the results to date are considered excellent.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	- Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. - Data validation procedures used.	- Data used as received was checked for Hole ID and sample interval errors by MineMap © software. Some RC sample assays in database were checked against laboratory spread sheets and no errors were found.
Site visits	- Comment on any site visits undertaken by the Competent Person and the outcome of those visits. - If no site visits have been undertaken indicate why this is the case.	- Al Maynard from AM\&A has visited the site to verify the general site layout, available outcropping geology and drill hole collar locations using a hand-held GPS.
Geological interpretation	- Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. - Nature of the data used and of any assumptions made. - The effect, if any, of alternative interpretations on Mineral Resource estimation. - The use of geology in guiding and controlling Mineral Resource estimation. - The factors affecting continuity both of grade and geology.	- The mineralisation is controlled by shears dipping steeply to the north. The mineralisation cannot be mapped at the surface due to soil cover however can be confidently interpreted from drilling data. Some supergene effects may have remobilised and possibly enriched some of the mineralisation in the upper oxidised zone.
Dimensions	- The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	- The modelled mineralisation strikes approximately $1,000 \mathrm{~m}$ east-west (including a 500 m gap as yet un-drilled between the main Carlow Castle South lode and the Eastern lode) and with multiple lodes spanning a zone up to 35 m north-south. The mineralisation is not properly closed off along strike or down dip.
Estimation and modelling techniques	- The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. - The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. - The assumptions made regarding	- The resource modelling was carried out with MineMap © software by interpolating grades into a digital block model using an Inverse Distance Cubed (ID3) algorithm confined by wire framing of the $>0.5 \mathrm{Au} \mathrm{ppm}+\mathrm{Cu} \%$ $+10 * \mathrm{Co} \%$ mineralised zones with 50 m search radii along and across strike and 100 m up and down dip only within the wireframes. - Various high grade cuts were applied on basis of cutting to the mean plus two standard deviations method. - $\mathrm{AM} \& \mathrm{~A}$ considers that these modelling parameters are appropriate for the resource of the type and style of mineralisation being modelled.

Criteria	JORC Code explanation	Commentary
	recovery of by-products. - Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). - In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. - Any assumptions behind modelling of selective mining units. - Any assumptions about correlation between variables. - Description of how the geological interpretation was used to control the resource estimates. - Discussion of basis for using or not using grade cutting or capping. - The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	
Moisture	- Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	- All tonnes and grades are on a dry basis.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	- The resource modelling was confined by wire framing of the >0.5 Au ppm + $\mathrm{Cu} \%+10 * \mathrm{Co} \%$ mineralised zones.
Mining factors or assumptions	- Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	- No mining factors were considered for the resource estimate. - Due to the shallow nature of the mineralisation, it is currently envisaged that open pit mining methods will be used, and geotechnical diamond drilling is being planned.
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous.	- Only basic gravity and floatation/cyanidation testing was done on representative samples collected from the mineralised zone. This testing indicated that gravity and cyanidation is amenable to recovering most of the contained gold.

Criteria	JORC Code explanation	Commentary
	Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmenta I factors or assumptions	- Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	- No environmental factors were considered however the tenement has sufficient suitable area to accommodate a small mining and processing operation including provision for waste disposal. - There are no obvious especially environmentally sensitive areas in the vicinity of the deposit although the usual impact studies and government environmental laws and regulations will need to be complied with.
Bulk density	- Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. - The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. - Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	- A bulk density of 2.5 was used in the assumed oxide zone and 3.0 in the primary zone. These values are based on down hole readings of a density probe and typical, if slightly conservative, for the rock types found at Carlow Castle South.
Classification	- The basis for the classification of the Mineral Resources into varying confidence categories. - Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). - Whether the result appropriately reflects the Competent Person's view of the deposit.	- Considering the spacing of the drill intersections, quality of the drilling and sampling and the degree of understanding of the geological controls on the mineralisation, AM\&A have classified the reported resources at Carlow Castle South as Inferred according to the JORC Code (2012). - AM\&A believes that this classification to be appropriate.
Audits or reviews	- The results of any audits or reviews of Mineral Resource estimates.	- No audits or reviews of the Mineral Resource Estimates have been made.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	- Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. - The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. - These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	- AM\&A have classified the reported resources at Carlow Castle South as Inferred according to the JORC Code (2012). - This resource classification appropriately consider the relative accuracy of the estimates. The Inferred resource estimate relies on drill hole sampling and other geological data of sufficient quality, amount and its distribution to imply but not verify an interpretation of the geological framework and continuity of mineralisation. - The quality of the data is considered to be reasonable for a resource estimate with adequate reporting of the QA/QC. - All quoted estimates are global for the deposit. - No mine production has been recorded at the deposit.

[^0]: ${ }^{1}$ ASX release dated 22 January 2018 " First of the Cobalt/Copper/Gold JORC Resources at Carlow Castle-amended"

