ASX Announcement

Diamond Drilling Underway at Carlow Castle

18 September 2020

Highlights

- ~2,500m Carlow Castle Diamond Drilling has commenced as part of Project One Million and aims to:
 - Expand the mineralised envelope which remains open in multiple directions.
 - Lift the central portion of the current resource area to the indicated category.
 - Provide data for an updated resource estimate expected in Q4.
- Geophysics program to start at Carlow Castle in mid-October, which will include dipole-dipole IP, Gradient array IP and high-resolution magnetics and radiometrics.
- Reverse Circulation drilling to start mid-October at Carlow Castle and aims to:
 - Complete further extensional drilling.
 - Test any potential anomalies identified by the concurrent IP survey.
- Very shallow pattern drilling at Carlow West reveals > 1km long gold anomalism (multiple >0.4gpt Au intercepts) in the central traverse zone, with better results including:
 - CWRC006 2m @ 1.62gpt Au from 34m; and
 - CWRC011 1m @ 4.89gpt Au, 13.7gpt Ag from 24m
 - CWRC011 1m @ 1.4gpt Au from 2m
 - CWRC017 1m @ 1.15gpt Au from 9m

Artemis Resources Limited ("Artemis" or "the Company") (ASX:ARV, Frankfurt: ATY, US OTCQB: ARTTF) is pleased to provide an update on its Pilbara gold projects in Western Australia.

Alastair Clayton, Executive Director commented; "With significant financial resources now in place we can attack Carlow Castle, Project One Million in earnest. Kicking off today we will in all likelihood be drilling and testing at Carlow Castle and surrounding targets for the remainder of the year thus allowing for a new and upgraded mineral resource estimate in late Q4. This will generate a huge amount of data and news-flow throughout that period and we believe it will demonstrate that the Greater Carlow Project is very much underestimated in many people's minds as to its potential to be a regionally significant gold deposit.

At Carlow West we typically only drilled to ~20m vertical depth to cost-effectively cover as much of the 3km-long surface gold trend as possible. Results have delineated a large (>1km) central gold anomaly within a very complex, sheared geological setting. Before we head out to drill test below the top few 10's of meters depth we will shoot some more geophysics and undertake structural interpretation work to maximise our chances of honing-in on any primary mineralised structures.

In the Paterson we are delighted to see the granting of a Mining Licence covering Havieron. This certainly changes the dynamics of the region and underpins a mine development we surround on three sides and adjacent to most of our primary targets. The Company intends to report back as and when material data are at hand from our own work.

It is without doubt a busy time for the Company all across the Pilbara and we wish our crews safe and successful programmes".

Carlow Castle Diamond Drill Holes: Eastern Resource Area

CSA Global, the Company's structural geology and resource consultants, recommended 11 drill holes for 1980m on 3 sections intermediate to the existing reverse circulation drill sections, on the eastern resource area. It is proposed to include two DD tails to complete reverse circulation (**RC**) holes, adding an additional 250m to the program.

The 11 drill holes:

- Will be the first diamond drill holes in the eastern resource area, which is dominated by RC drilling.
- The structurally controlled mineralisation model will be tested with CSA structural geologist (Dr Robert Holm) to undertake the detailed core logging.
- The structural interpretation of the Carlow Castle East resource area will assist with Mineral Resource Estimate (**MRE**) updates.
- Close up the drill spacing for potential MRE JORC category increases.
- Provide material for additional metallurgical testwork when needed.

Carlow Castle Reverse Circulation Drill Program: Eastern Resource Extension

An RC drill program has been designed to test potential strike extensions to the east, north and northeast of the current inferred MRE. The final RC drill design will be refined by the structural data collected from the diamond drill program and new geophysical programs designed by Resource Potentials, that will be completed while the RC rig is at Carlow Castle.

The Top Drill RC rig is due to start drilling around 10 October.

Carlow Castle Geophysics Program

Resource Potentials (led by Dr Jayson Meyers) has proposed that an induced polarisation (**IP**) surveying be carried out over the Carlow Castle resource area and surrounds, as well as high resolution aeromagnetic and radiometric (AMAG) surveying over the majority of tenement E47/1797 (**Figure 1**), which contains Carlow Castle and surrounding prospective geology, to assist with interpretation, target generation and direct drill planning.

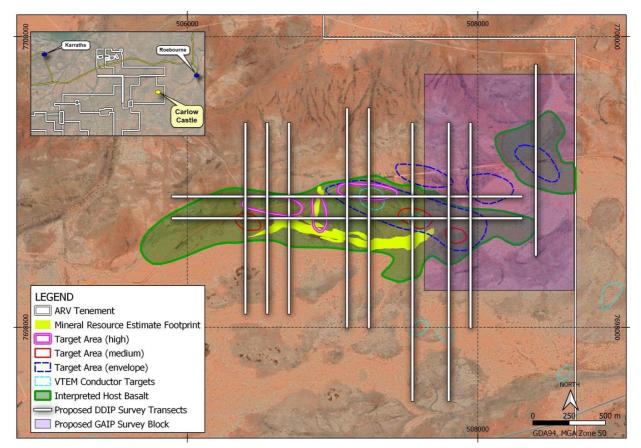
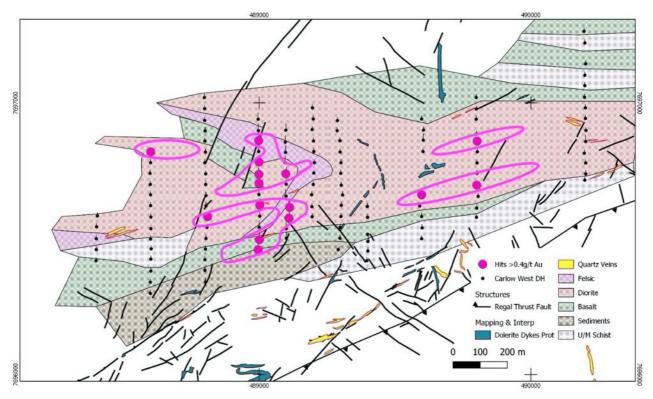



Figure 1: Carlow Castle resource area with target selection by Resource Potentials, based on existing geophysical data sets, overlayed with the proposed geophysical surveys.

IP surveys proposed include gradient array IP (GAIP) to provide shallow IP chargeability and apparent resistivity anomaly patterns over the eastern extent of the Carlow Castle mineral resource trend, as well as over an interpreted basalt zone faulted to the northeast of Carlow Castle which represents a prospective target zone for extensions of Au-Cu-Co mineralisation. Several survey traverses of dipole-dipole IP (DDIP) have been planned to cross over target areas and known high-grade Au-Cu-Co mineralisation zones at Carlow Castle and Quod Est, to test the effectiveness of this technique to map IP chargeability anomaly responses associated with the mineralisation and to provide additional information on the potential dip and plunge geometry of IP chargeable features at depth for deeper drill targeting around the resource bodies as well as generate targets for drilling in the surrounding area.

Summary of Drilling at Carlow West

Figure 2: Carlow West Interpreted Geology, drill collars with identified mineralised zones.

Drilling at Carlow West was targeted to follow-up anomalous soil geochemical and rockchip sampling results. A total of 126 holes for 3694m was completed, initially planned as an air core drilling program, and availability of an RC drill rig (at competitive prices) was then used to complete the shallow drilling averaging 20m with a maximum depth of 50m. Although numerous geochemical and rockchip results at surface indicate the strong presence of gold, the shallow drilling has not explained the source of the gold in what we now understand to be a structurally complex area, with multiple geological units. The next step is to look at geophysical techniques, like Sub Audio magnetics that was successfully used at Carlow Castle, to better understand these highly anomalous areas for gold.

Singsix Summary

Fourteen holes (14) were completed for a total 376m with maximum hole depth of 48m from a planned 70-hole program and 1350m program. The drilling program at Singsix ended due to the contractual obligations of the drilling company.

Best drill intercept at Singsix was 2m @ 0.97 g/t Au from 9m in SSRC007 (**Table 2** and **4**), and is associated with surface scrapings in an area of known coarse gold being found by metal detecting. The gold is frequently in a wire-like form and not related to the coarse nuggety gold found at Purdy's Reward.

Sulphide intersections encountered have variable association with nickel and zinc, and may represent a portion of the fertile Ruth Well Formation, a mafic/ultramafic sequence with interflow sediments. Singsix is along strike from the small Ruth Well resource (152kt @ 0.63% Ni & 0.47% Cu: ASX 7th May 2019). Hickman (2016, GSWA Report 160) identified this as the basal unit of the Roebourne Group (3.28-3.16Ga).

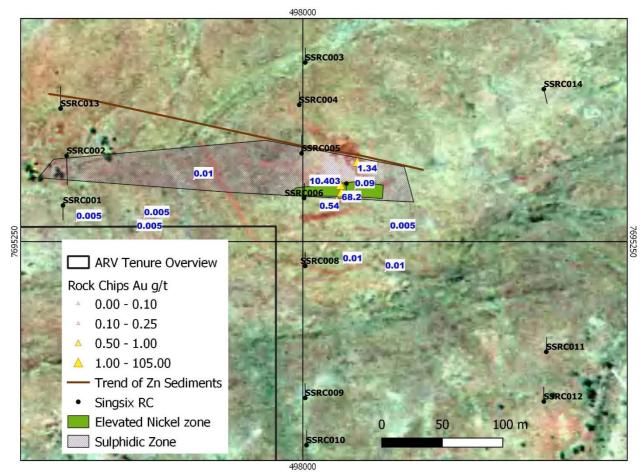


Figure 3: Singsix drill hole location plan.

COMPETENT PERSONS STATEMENT:

The information in this announcement that relates to Exploration Results and Exploration Targets is based on information compiled or reviewed by Allan Younger, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Younger is an employee of Artemis Resources Limited. Mr Younger has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Younger consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

About Artemis Resources

Artemis Resources (ASX: ARV; FRA: ATY; US: ARTTF) is a Perth-based exploration and development company, led by an experienced team that has a singular focus on delivering shareholder value from its Pilbara gold projects – the Greater Carlow Gold Project in the West Pilbara and the Paterson Central exploration project in the East Pilbara.

For more information, please visit www.artemisresources.com.au

This announcement was approved for release by the Board.

Table 1: Carlow West Significant Results	(All results in ppm).
--	-----------------------

Hole_ID mFrom CWRC002 13 CWRC002 42 CWRC004 12 CWRC005 45 CWRC005 46 CWRC005 47 CWRC005 48 CWRC006 29 CWRC006 34 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4	mTo 14 43 13 46 47 48	Au 0.71 0.67 0.41 0.75	Ag 0.6 0.25 0.6	As 9 5 27	Bi 1 1	Co 7 7	Cu 18	Ni 13	Zn 38
CWRC002 42 CWRC004 12 CWRC005 45 CWRC005 46 CWRC005 47 CWRC005 48 CWRC006 29 CWRC006 34 CWRC006 35 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4	43 13 46 47	0.67 0.41 0.75	0.25 0.6	5	1	-		13	38
CWRC004 12 CWRC005 45 CWRC005 46 CWRC005 47 CWRC005 48 CWRC006 29 CWRC006 34 CWRC006 35 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4	13 46 47	0.41 0.75	0.6	-		7			50
CWRC005 45 CWRC005 46 CWRC005 47 CWRC005 48 CWRC006 29 CWRC006 34 CWRC006 35 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4	46 47	0.75		27		•	15	10	58
CWRC005 46 CWRC005 47 CWRC005 48 CWRC006 29 CWRC006 34 CWRC006 35 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4	47		0.05	21	1	6	20	14	72
CWRC005 47 CWRC005 48 CWRC006 29 CWRC006 34 CWRC006 35 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4			0.25	32	1	11	12	14	43
CWRC005 48 CWRC006 29 CWRC006 34 CWRC006 35 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4	48	0.59	0.25	15	1	10	10	15	53
CWRC006 29 CWRC006 34 CWRC006 35 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4		0.1	0.25	11	1	11	8	16	60
CWRC006 34 CWRC006 35 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4	49	1.4	0.25	30	2	9	8	14	47
CWRC006 35 CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4	30	0.61	0.25	29	1	9	12	13	45
CWRC008 9 CWRC011 2 CWRC011 3 CWRC011 4	35	1.56	0.25	28	1	9	9	15	32
CWRC011 2 CWRC011 3 CWRC011 4	36	1.68	0.25	23	1	9	7	13	32
CWRC011 3 CWRC011 4	12	0.72	1.7	25	1	6	63	11	27
CWRC011 4	3	1.24	1.3	14	1	4	16	28	54
	4	0.25	0.25	30	1	4	19	28	46
	5	0.43	0.6	55	3	8	27	65	75
CWRC011 24	25	4.89	13.7	66	9	12	22	33	97
CWRC011 25	26	0.48	2.3	27	3	9	17	18	76
CWRC017 9	10	1.15	0.25	42	1	8	5	9	32
CWRC042 10	11	0.42	0.25	21	1	7	21	17	39
CWRC050 26	27	0.44	2.2	43	29	5	23	15	39
CWRC085 18	19	0.97	0.25	13	1	7	10	16	41
CWRC093 5	6	0.47	1.9	9	1	9	13	13	56
CWRC097 18	19	0.64	0.25	43	1	12	16	23	51
CWRC120 28	29	1.57	0.25	15	1	9	12	13	40
CWRC120 33	34	0.55	0.5	19	3	10	14	15	52
CWRC123 0	1	0.68	0.25	24	1	9	20	28	83
CWRC124 33							22	20	45

Table 2: Singsix Significant Results (All results in ppm unless otherwise indicated).

Hole_ID	mFrom	mTo	Au	Ag	As	Bi	Со	Cu	Ni	S%	Zn
SSRC002	17	18	0.01	0.5	2.5	1	31	59	13	2.73	70
SSRC002	18	19	0.005	0.6	5	3	25	62	14	3.03	68
SSRC002	19	20	0.005	0.25	2.5	1	34	77	142	1.73	145
SSRC002	20	21	0.005	0.8	2.5	3	63	180	153	2.56	134
SSRC002	21	22	0.005	0.7	2.5	1	55	172	146	2.22	98
SSRC002	22	23	0.005	0.6	5	1	49	137	154	2.16	107
SSRC002	23	24	0.005	0.8	2.5	7	67	167	233	3.33	157
SSRC002	24	25	0.005	0.6	2.5	4	67	137	244	2.88	219
SSRC002	25	26	0.005	0.6	2.5	1	44	84	158	1.58	226
SSRC002	26	27	0.005	0.7	2.5	2	86	211	300	4.46	242
SSRC002	27	28	0.005	0.6	2.5	2	67	170	172	4.89	158
SSRC002	28	29	0.01	0.6	2.5	1	90	222	212	7.12	195
SSRC002	29	30	0.01	0.7	2.5	1	88	217	206	6.27	211
SSRC002	30	31	0.005	0.6	2.5	2	76	262	187	5.75	145
SSRC002	31	32	0.01	0.7	5	4	74	223	199	5.81	117
SSRC002	32	33	0.01	0.9	2.5	3	74	230	192	5.72	111
SSRC002	33	34	0.01	0.8	2.5	3	72	245	198	5.67	116
SSRC002	34	35	0.005	0.9	2.5	6	60	213	181	4.54	92
SSRC002	35	36	0.005	1.1	2.5	1	59	761	184	4.19	86
SSRC002	36	37	0.01	1.1	2.5	3	69	327	209	4.72	91
SSRC005	12	15	0.01	0.25	2.5	1	83	229	421	2.92	1300
SSRC005	15	16	0.005	0.8	2.5	2	77	249	427	3.25	2860
SSRC005	16	17	0.01	1	5	1	99	241	710	3.85	11300
SSRC005	17	18	0.01	1	6	3	107	307	817	6.21	1075
SSRC005	18	19	0.005	1.1	6	2	69	218	326	5.13	246
SSRC005	19	20	0.02	0.9	7	1	64	223	245	5.69	225
SSRC005	20	21	0.01	0.6	2.5	4	73	174	215	6.09	290
SSRC005	21	22	0.005	0.8	2.5	6	69	252	201	5.83	283
SSRC005	22	23	0.01	0.8	2.5	2	57	204	171	5.01	136
SSRC007	9	10	1.11	0.25	58	1	106	370	1130	0.01	139
SSRC007	10	11	0.84	0.5	88	1	172	776	1360	0.01	135
SSRC007	11	12	0.05	0.25	35	3	182	851	1100	0.01	131
SSRC007	12	13	0.03	0.5	71	1	183	843	1040	0.02	117

SSRC007	13	14	0.02	0.25	18	3	197	907	1320	0.02	181
SSRC007	14	15	0.17	0.9	30	1	220	875	1130	0.07	176
SSRC007	15	16	0.05	1.2	27	1	166	1010	1300	4.43	201
SSRC007	16	17	0.02	0.8	20	3	194	794	1210	4.72	137
SSRC007	17	18	0.01	1.1	19	5	208	754	1190	5.11	117
SSRC007	18	19	0.01	0.7	15	1	242	628	1170	5.66	136
SSRC007	19	20	0.01	1	19	2	146	629	1220	4.91	128

Table 3: Table Carlow West Drill Collars.

Hole ID	Datum	EASTING	NORTHING	RL	Dip	Azimuth	Depth
CWRC001	MGA94-50	488997	7696898	28.37	-60	0	50
CWRC002	MGA94-50	488998	7696861	28.55	-60	0	50
CWRC003	MGA94-50	488998	7696821	28.84	-60	0	50
CWRC004	MGA94-50	488999	7696782	29.73	-60	0	50
CWRC005	MGA94-50	488998	7696737	30.11	-60	0	50
CWRC006	MGA94-50	488999	7696704	30.75	-60	0	50
CWRC007	MGA94-50	488999	7696663	31.33	-60	0	50
CWRC008	MGA94-50	489002	7696623	31.92	-60	0	50
CWRC009	MGA94-50	489002	7696583	32.43	-60	0	50
CWRC010	MGA94-50	489000	7696542	32.88	-60	0	50
CWRC011	MGA94-50	489001	7696497	32.88	-60	0	50
CWRC012	MGA94-50	488404	7696584	30.00	-60	0	24
CWRC013	MGA94-50	488401	7696544	30.00	-60	0	24
CWRC013	MGA94-50 MGA94-50	488400	7696500	30.00	-60	0	24
CWRC014	MGA94-50 MGA94-50	488400	7696460	30.00	-60	0	24
CWRC016 CWRC017	MGA94-50	488399 488601	7696419 7696819	30.00	-60	0	24
	MGA94-50			30.00	-60	0	24
CWRC018	MGA94-50	488600	7696780	30.00	-60	0	24
CWRC019	MGA94-50	488598	7696741	30.00	-60	1	24
CWRC020	MGA94-50	488599	7696700	30.00	-60	359	24
CWRC021	MGA94-50	488600	7696662	30.00	-60	0.5	24
CWRC022	MGA94-50	488600	7696622	30.00	-60	0	24
CWRC023	MGA94-50	488601	7696580	30.00	-60	0	24
CWRC024	MGA94-50	488601	7696537	30.00	-60	4	24
CWRC025	MGA94-50	488600	7696499	30.00	-60	0	24
CWRC026	MGA94-50	488602	7696463	30.00	-60	0	24
CWRC027	MGA94-50	488601	7696425	30.00	-60	0	24
CWRC028	MGA94-50	488601	7696381	30.00	-60	0	24
CWRC029	MGA94-50	488599	7696340	30.00	-60	0	24
CWRC030	MGA94-50	488599	7696299	30.00	-60	0	24
CWRC031	MGA94-50	488798	7697020	30.00	-60	0	24
CWRC032	MGA94-50	488799	7696979	30.00	-60	0	24
CWRC033	MGA94-50	488799	7696936	30.00	-60	0	24
CWRC034	MGA94-50	488801	7696897	30.00	-60	0	24
CWRC035	MGA94-50	488800	7696860	30.00	-60	0	24
CWRC036	MGA94-50	488802	7696819	30.00	-60	1	24
CWRC037	MGA94-50	488800	7696780	30.00	-60	1	24
CWRC038	MGA94-50	488803	7696739	30.00	-60	0	24
CWRC039	MGA94-50	488803	7696700	30.00	-60	1	24
CWRC040	MGA94-50	488804	7696659	30.00	-60	0	24
CWRC041	MGA94-50	488804	7696621	30.00	-60	0	24
CWRC042	MGA94-50	488808	7696581	30.00	-60	0	24
CWRC043	MGA94-50	488808	7696542	30.00	-60	0	24
CWRC044	MGA94-50	488804	7696501	30.00	-60	0	24
CWRC045	MGA94-50	488802	7696462	30.00	-60	0	24
CWRC046	MGA94-50	488800	7696423	30.00	-60	0	24
CWRC047	MGA94-50	488800	7696384	30.00	-60	0	24
CWRC048	MGA94-50	488802	7696340	30.00	-60	0	24
CWRC049	MGA94-50	488996	7696940	30.00	-60	0	48
CWRC050	MGA94-50	488996	7696459	30.00	-60	0	48
CWRC051	MGA94-50	489196	7696982	30.00	-60	0	24
CWRC052	MGA94-50	489199	7696941	30.00	-60	0	24
CWRC053	MGA94-50	489195	7696902	30.00	-60	1	24
CWRC053 CWRC054	MGA94-50 MGA94-50	489195	7696860	30.00	-60	358	24
CWRC055	MGA94-50	489201	7696821	30.00	-60	357.5	24

CWRC056	MGA94-50	489203	7696780	30.00	-60	0	24
CWRC057	MGA94-50	489201	7696742	30.00	-60	2	24
CWRC058	MGA94-50	489199	7696700	30.00	-60	5	24
CWRC059	MGA94-50	489193	7696662	30.00	-60	4	24
CWRC060	MGA94-50	489194	7696618	30.00	-60	1	24
CWRC061	MGA94-50	489195	7696581	30.00	-60	1	24
CWRC062	MGA94-50	489288	7696935	30.00	-60	0	24
CWRC063	MGA94-50	489287	7696898	30.00	-60	357	24
CWRC064	MGA94-50	489297	7696861	30.00	-60	358	24
CWRC065	MGA94-50	489298	7696819	30.00	-60	0	24
CWRC066	MGA94-50	489301	7696780	30.00	-60	358	24
CWRC067	MGA94-50	489300	7696741	30.00	-60	359	24
CWRC068	MGA94-50	489302	7696697	30.00	-60	0	24
CWRC069	MGA94-50	489307	7696661	30.00	-60	0	24
CWRC070	MGA94-50	489302	7696623	30.00	-60	1.5	24
CWRC071	MGA94-50	489301	7696582	30.00	-60	2	24
CWRC072	MGA94-50	489298	7696542	30.00	-60	1	24
CWRC073	MGA94-50	489297	7696502	30.00	-60	1	24
CWRC074	MGA94-50	489291	7696460	30.00	-60	20	24
CWRC075	MGA94-50	489398	7696619	30.00	-60	0	24
CWRC076	MGA94-50	489399	7696579	30.00	-60	359	24
CWRC077	MGA94-50	489399	7696516	30.00	-60	165	48
CWRC078	MGA94-50	489400	7696490	30.00	-60	359	24
CWRC079	MGA94-50	489400	7696455	30.00	-60	3	24
CWRC080	MGA94-50	489396	7696419	30.00	-60	1	24
CWRC081	MGA94-50	489598	7696941	30.00	-60	358.5	24
CWRC082	MGA94-50	489605	7696900	30.00	-60	1	24
CWRC083	MGA94-50	489604	7696863	30.00	-60	1	48
CWRC084	MGA94-50	489603	7696821	30.00	-60	357	24
CWRC085	MGA94-50	489598	7696660	30.00	-60	1	24
CWRC086	MGA94-50	489591	7696621	30.00	-60	359.5	24
CWRC087	MGA94-50	489598	7696582	30.00	-60	359	24
CWRC088	MGA94-50	489600	7696540	30.00	-60	356	24
CWRC089	MGA94-50	489598	7696500	30.00	-60	357	24
CWRC090	MGA94-50	489799	7697020	30.00	-60	0	24
CWRC091	MGA94-50	489800	7696978	30.00	-60	0	24
CWRC092	MGA94-50	489799	7696940	30.00	-60	0	24
CWRC093	MGA94-50	489803	7696861	30.00	-60	358	24
CWRC094	MGA94-50	489803	7696820	30.00	-60	1	24
CWRC095	MGA94-50	489802	7696779	30.00	-60	358	24
CWRC096	MGA94-50	489802	7696741	30.00	-60	359	24
CWRC097	MGA94-50	489803	7696696	30.00	-60	359.5	24
CWRC098	MGA94-50	489806	7696656	30.00	-60	2	24
CWRC099	MGA94-50	489801	7696613	30.00	-60	359.5	24
CWRC100	MGA94-50	489800	7696579	30.00	-60	1.5	24
CWRC101	MGA94-50	489800	7696886	30.00	-60	1.5	24
CWRC102	MGA94-50	490202	7697144	30.00	-60	2	24
CWRC103	MGA94-50	490199	7697102	30.00	-60	0	24
CWRC104	MGA94-50	490199	7697064	30.00	-60	2	24
CWRC105	MGA94-50	490198	7697021	30.00	-60	358.5	24
CWRC106	MGA94-50	490201	7696982	30.00	-60	0	24
CWRC107	MGA94-50	490201	7696943	30.00	-60	1	24
CWRC108	MGA94-50	490203	7696899	30.00	-60	1	24
CWRC109	MGA94-50	490202	7696858	30.00	-60	358	48
CWRC110	MGA94-50	490197	7696815	30.00	-60	1	24
CWRC111	MGA94-50	490202	7696779	30.00	-60	0	24
CWRC112	MGA94-50	490202	7696739	30.00	-60	1	24
CWRC113	MGA94-50	490199	7696716	30.00	-60	2	24
CWRC114	MGA94-50	490196	7697264	30.00	-60	359	24
CWRC115	MGA94-50	490199	7697221	30.00	-60	0	24
CWRC116	MGA94-50	489098	7696900	30.00	-60	1.5	48
CWRC117	MGA94-50	489096	7696856	30.00	-60	0.5	48
CWRC118	MGA94-50	489097	7696818	30.00	-60	0.5	48
CWRC119	MGA94-50	489095	7696781	30.00	-60	0.5	48
CWRC120	MGA94-50	489100	7696739	30.00	-60	1.5	48
CWRC121	MGA94-50	489099	7696701	30.00	-60	0	48

CWRC123	MGA94-50	489111	7696615	30.00	-60	355	48
CWRC124	MGA94-50	489111	7696577	30.00	-60	358.5	48
CWRC125	MGA94-50	489099	7696537	30.00	-60	0	48
CWRC126	MGA94-50	489100	7696502	30.00	-60	0	48

Table 4: Singsix Drill Collars.

ID	Datum	EASTING	NORTHING	RL	Dip	Azimuth	Depth
SSRC001	MGA94-50	497802	7695280	45	-60	180	24
SSRC002	MGA94-50	497805	7695321	45	-60	178.5	48
SSRC003	MGA94-50	498002	7695398	45	-60	0	24
SSRC004	MGA94-50	497997	7695363	45	-60	2	21
SSRC005	MGA94-50	497999	7695323	45	-60	1	30
SSRC006	MGA94-50	498001	7695286	45	-60	1.5	24
SSRC007	MGA94-50	498036	7695298	45	-60	180	27
SSRC008	MGA94-50	498002	7695230	45	-60	0	22
SSRC009	MGA94-50	498002	7695121	45	-60	359	24
SSRC010	MGA94-50	498003	7695082	45	-60	1	24
SSRC011	MGA94-50	498201	7695159	45	-60	2	24
SSRC012	MGA94-50	498199	7695118	45	-60	359.5	24
SSRC013	MGA94-50	497800	7695360	45	-60	0	36
SSRC014	MGA94-50	498199	7695376	45	-60	167	24

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 Reverse circulation drilling was used to obtain 1 m samples. Samples were collected on a 1m basis and stockpiled. Sample bulks were spear sampled and 3m composites were formed. The single metre samples of any composite sample reporting greater than 0.1g/t Au were retrieved and assayed. All samples were pulverized produce a 50 g charge for fire assay.
Drilling techniques	Reverse Circulation drilling by KTE Drilling.
Drill sample recovery	 Drilling recoveries for Reverse circulation drilling were excellent, with no ground water intersected.
Logging	Artemis Reverse Circulation drilling has been logged,
Sub-sampling techniques and sample preparation	 The RC drilling rig was equipped with a rig-mounted cyclone and static cone splitter, which provided one bulk sample of approximately 20-30 kilograms, and a representative sub-sample of approximately 2-4 kilograms for every metre drilled. The sample size of 2-4 kilograms is appropriate and representative of the grain size and mineralisation style of the deposit.
Quality of assay data and laboratory tests	 ALS (Perth) were used for all analysis of drill samples submitted by Artemis. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation defined within the Carlow Castle Project area: Samples above 3Kg riffle split. Pulverise to 95% passing 75 microns 50-gram Fire Assay (Au-AA26) with ICP finish - Au. 4 Acid Digest ICP-AES Finish (ME-ICP61) – Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn. Ore Grade 4 Acid Digest ICP-AES Finish (ME-OG62) Standards were used for external laboratory checks by Artemis. Duplicates were used for external laboratory checks by Artemis.
Verification of sampling and assaying	 Electronic data capture, storage and transfer as .csv. Routine QC checks performed by contractor and independent geophysical consultant. Data were found to be of high quality and in accordance with contract specifications Laboratory standards and blank samples were inserted at regular intervals and some duplicate samples were taken for QC checks.
Location of data points	 A Garmin GPSMap62 hand-held GPS was used to define the location of the drill hole collars. Standard practice is for the GPS to be left at the site of the collar for a period of 5 minutes to obtain a steady reading. Collar locations are considered to be accurate to within 5m. Zone 51 (GDA 94).
Data spacing and distribution	 Current drill hole spacing is variable and dependent on specific geological, and geochemical targets. No sample compositing has been used for drilling completed by Artemis. All results reported are the result of 1 metre downhole sample intervals.
Orientation of data in relation to geological structure	• Drill holes were designed to be perpendicular to the strike of sheared ultramafics. Due to the structural and geological complexity of the area, it is currently unknown what orientation mineralisation strikes.
Sample security	• The chain of custody is managed by the supervising geologist who places calico sample bags in polyweave sacks. Up to 10 calico sample bags are placed in

Criteria	Commentary
	 each sack. Each sack is clearly labelled with: Artemis Resources Ltd Address of laboratory Sample range Samples were delivered by Artemis personnel to the transport company in Karratha and shrink wrapped onto pallets.
	The transport company then delivers the samples directly to the laboratory.
Audits or reviews	• Data is validated upon up-loading into the master database. Any validation issues identified are investigated prior to reporting of results.

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 Carlow West and Singsix are on E47/1746 held by KML no2 Pty Ltd a subsidiary company of Artemis Resources Limited. The tenement is in good standing
Exploration done by other parties	No previous exploration.
Geology	• Style of mineralisation is currently unknown, but inferred to be related to mesothermal lode gold or skarn styles of gold mineralisation, with elevated copper
Drill hole Information	• Drill hole information is contained within this release and is the first drill program completed on the project areas.
Data aggregation methods	 All intervals reported are either 3m composites less than 0.1 g/t Au or 1 metre down hole intervals from Reverse Circulation drilling. No upper or lower cut-off grades have been used in reporting results. No metal equivalent calculations are used in this report.
Relationship between mineralisation widths and intercept lengths	• True widths of mineralisation have not been calculated for this report, and as such all intersections reported are down-hole thicknesses.
Diagrams	Appropriate plans are shown in the text.
Balanced reporting	Reporting of results in this report is considered balanced.
Other substantive exploration data	• Geochemical sampling and geological mapping were completed by Artemis and reported to the ASX on 5 November 2018.
Further work	 Review of work to date. Geophysical surveys. Potential deep drilling.

