

More Shallow High-Grade Lodes Identified Outside Current 1Moz at 11.3 g/t Resource

Recent drilling results include 5.6m @ 33.4 g/t, pointing to further resource potential

Auteco Minerals Ltd (Auteco or the **Company**) (ASX: **AUT**) is pleased to announce strong drilling results outside the current Resource, paving the way for an increase in the Independent JORC 2012 Inferred Resource at Pickle Crow of 1Moz @ 11.3 g/t gold (refer ASX release 1 September 2020).

KEY POINTS

- Auteco's current 45,000m drilling program is generating strong results in line with the Company's strategy to extend the known mineralisation at Pickle Crow
 - o 19,400m (84 holes) drilled to date; Assays have been fully or partially returned for 25 drill holes
- The current phase of drilling has successfully intersected extensions to known mineralised structures in addition to the discovery of previously undefined mineralisation, all of which are outside of the reported 1Moz Resource. Results include:
 - 5.6m @ 33.4 g/t gold from 20.3m in hole AUDD0078 (Shaft 3 Veins) New Structure
 - o 1.6m @ 16.7 g/t gold from 12.7m in hole AUDD0077 (Shaft 3 Veins) New Structure
 - o 2m @ 8.2 g/t gold from 396.5m in hole AUDD0056 (Shaft 1 Veins) Extension of Structure
 - o 4m @ 5.9 g/t gold from 420m in hold AUDD0056 (Shaft 1 Veins) Extension of Structure
- Latest drilling has also extended the Shaft 1 veins, demonstrating continuity from previously released Auteco drill results (refer ASX 1/09/2020). Results include:
 - o **0.6m @ 99.4 g/t gold** from 167.4m in hole AUDD0017 (Shaft 1 Veins)
 - 1.6m @ 25.8 g/t gold from 95m in hole AUDD0013 (Shaft 1 Veins)
 - o **1.6m @ 19.6 g/t gold** from 372m in AUDD0019 (Shaft 1 Veins)
 - o **1.53m @ 26.6 g/t gold** from 8.53m in 744-28 (Shaft 3 Veins)
- Mineralisation continues to remain open in all directions in all target areas
- Mineralisation is adjacent to existing underground and surface infrastructure
- An updated Mineral Resource estimate is on track for delivery in the June quarter, 2021
- Auteco is fully funded to continue its 3-rig drill program to increase the Resource and test significant new targets at Pickle Crow with \$32M cash on hand (at 30 September 2020)
- Recent appointment of <u>Darren Cooke as Chief Operating Officer</u>; Mr Cooke will oversee Auteco's push to increase the Resource and identify new targets at Pickle Crow

W: www.autecominerals.com.au

Auteco Executive Chairman, Ray Shorrocks, said:

"These latest results provide more evidence of the strong potential to grow the 1Moz Resource at Pickle Crow.

"This is supported by the definition of multiple new areas of high-grade quartz vein-hosted mineralisation with excellent geological continuity and multiple instances of visible gold. This is the same style of mineralisation from which the mine produced 1.5Moz at 16 g/t historically 1 .

"The width and high grade of recently returned results, coupled with their shallow nature reinforces the numerous resource growth opportunities at the project. These results are supported by numerous high grade historical drill intercepts outside of current resources which will help to fast-track the definition of the new areas towards resource classification.

"With three drill rigs currently operating and given the strength of the latest results, we remain on track to meet our intended Resource upgrade in the June quarter of 2021."

ABOUT THE EXPLORATION PROGRAM

Auteco has a detailed and systematically phased strategic plan designed to unlock the potential of the Pickle Crow deposit in Ontario, Canada (Figure 1).

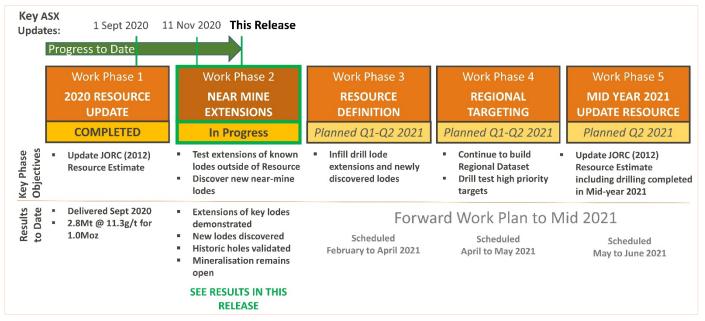
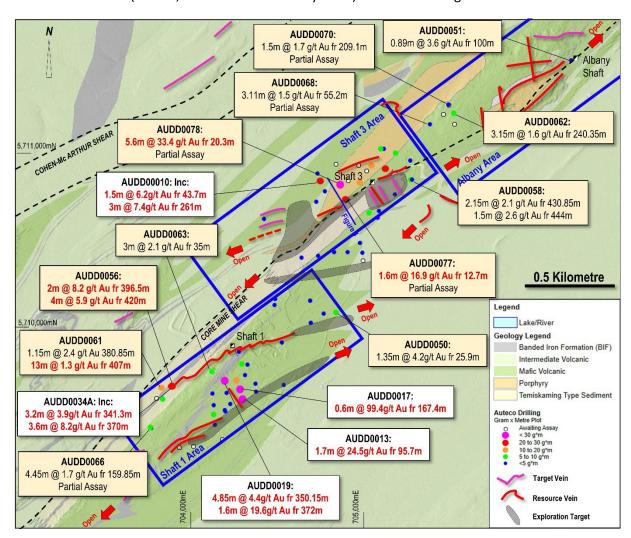


Figure 1: Pickle Crow Strategic Work Plan

A 45,000m drill program is underway with the ultimate objective of delivering an updated Mineral Resource estimate in the June quarter, 2021. A small portion of the budget (A\$3M) has been allocated to complete preliminary testing of the high-quality exploration targets within the 320 sq. km of regional tenure held by Auteco in the greater Pickle Crow camp.


To date, a total of 84 diamond drill holes for 19,423m have been completed with assay results returned or partially returned for 25 holes (refer to Appendix A and Figure 2 for details). Auteco expects to receive the balance of the assay results in the first quarter 2021, noting that these time frames are subject to change and could be affected by factors outside of Auteco's control, such as further outbreaks of COVID-19. There are currently 3 surface diamond drill rigs on site. The drilling thus far has focused exclusively on near mine extensions and discovery of mineralised structures (Figure 2) outside of the reported Resource. At the completion of phase 2 work program (near mine extensions), the program will transition to infill drilling and Resource definition, providing sufficient data density to update the Mineral Resource estimate.

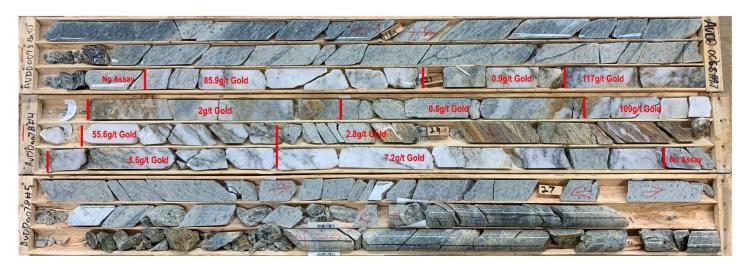
EXPLORATION AND GEOLOGICAL DETAIL

Reconnaissance drilling highlights new shallow high-grade gold discoveries

Near mine extensional drilling completed to date has focused on 3 key areas in close proximity to existing shaft infrastructure (Shaft 1, Shaft 2 and the Albany Shaft) as denoted in Figure 2.

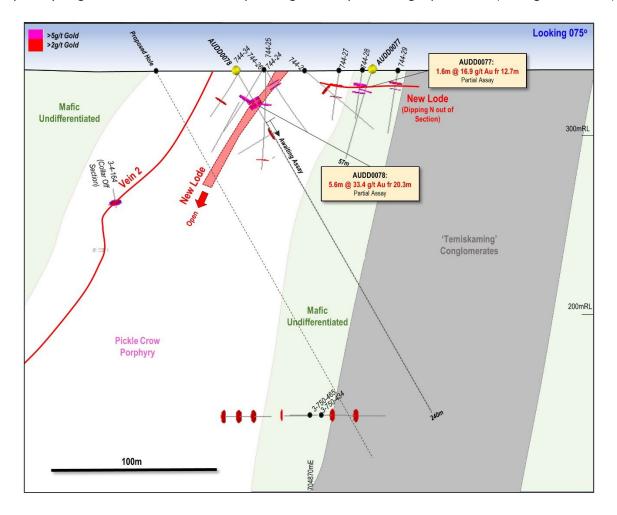
Figure 2: Plan View of Pickle Crow mineralised trend highlighting location, Shaft locations and all results of recent reconnaissance drilling (refer to ASX 01/09/2020, 11/11/2020 and Appendix A for details). Collars represented as max gram x metre results (g*m), Results <5g*m not represented by labels, please refer to Appendix A – Table 2 for details.

Recent exploration drilling has resulted in multiple new high-grade gold discoveries and the definition of areas of resource extension. Mineralisation remains open in all directions on all target areas and work will now be focused on defining high-grade gold shoots within the mineralised envelopes and bringing them into the Inferred Resource category.


SHAFT 3 EXPLORATION

Recent drilling around Shaft 3 has resulted in the discovery of multiple new veins currently outside of resources. Hole AUDD0078 intersected **5.6m @ 33.4 g/t gold** from 20.3m (includes **3.4m @ 51.1 g/t gold** from 20.3m) with individual assay grades of **up to 117 g/t gold and 109 g/t gold** (0.4m @ 117 g/t gold from 21.3m and 0.3m @ 109 g/t gold from 22.8m – see Appendix A, Figure 3 and 4 below).

Figure 3: AUDD0078: Multiple 1-2mm flecks of visible gold in laminated quartz-tourmaline-gold vein within strongly sericite-altered Quartz Feldspar Porphyry. Sample 40cm at 117 g/t gold from 21.3m. Diamond core NQ diameter (image 47.6mm width).


Figure 4: AUDD0052: No 5 Vein. 20.3m to 25.9m. Laminated quartz-tourmaline-gold vein within high strain sericite altered Quartz-Feldspar Porphyry. Interval 5.6m @ 33.4 g/t Gold.

This result is supported by high-grade historical results currently outside of resources including, but not limited to (see Appendix A – Table 2 for full list):

- o 1.2m @ 103.4 g/t gold from 20.2m in 744-24
- 2.7m @ 43.7 g/t gold from 2.96m in 3-2-112

These additional results are open down dip and along strike in both directions and this area represents a priority target for Auteco with follow up drilling down dip from target prioritised (see Figure 5 below).

Figure 5: Shaft 3 drilling significant intercept. Section view looking 075°, showing geology, historical stopes, recent drillhole intercepts and proposed drilling (refer to Appendix A for details and Figure 2 for location of Section Line).

VEIN 5 EXTENSION DISCOVERY

Ongoing drilling targeting the South West extension of the Vein 5 and Vein 11 have returned results including:

- 2m @ 8.2 g/t gold from 396.5m in AUDD0056
- 4m @ 5.9 g/t gold from 420m in AUDD0056

These additional drill results are supported on an 80m x 80m framework by recent drill results including **3.6m @ 8.2 g/t gold** from 370m in AUDD0034A. In total this defines an area of approximately 300m x 200m on two separate lodes with mineralisation remaining open to the South West and down plunge.

The entire drill area around Vein 5 is open at depth to 710m below surface with high-grade intercepts of up to **0.31m @ 61 g/t gold** in hole 1-26-27 intersected on Vein 5 in historical drilling a further 550m below the intercept in AUDD0017 (refer ASX 01/09/2020). Historic sampling protocols selectively sampled quartz vein material only and may not represent the full width of mineralisation. Work completed by Auteco demonstrates gold is not constrained exclusively to quartz veining, with mineralisation present in surrounding alteration halos. Follow up drilling will now be focused on defining high-grade shoot controls and locations within the now well constrained mineralised envelopes at Vein 5.

FORWARD PLAN

Exploration efforts are currently focused on the identification of additional structures with the potential to host additional Resources within the top 500m from surface and within the Core Trend; host to the current Inferred Resource and historical mining and infrastructure. Numerous compelling drill targets based on historic drilling have been identified in close proximity to existing infrastructure. Recent drilling completed by Auteco continues to validate the historic information in addition to identifying additional mineralised structures.

Auteco plans to provide an updated Mineral Resource estimate prepared in accordance with the JORC Code (2012 Edition) in the June guarter of 2021.

PROGRESS TO DATE

Auteco commenced its maiden drilling program at Pickle Crow in late May 2020 and now has a 45,000m diamond core drill programme underway.

- Mineralisation is open on all lodes along strike and at depth.
- Resources are from the surface and are adjacent to existing underground mine development and infrastructure.

There is significant scope for resource expansion through further discoveries 'in the shadow of the headframe' as well as along strike and at depth. Further Exploration drill results from targets outside of the Resource Estimate include the following high-grade drill results, which have been selected to demonstrate prospectively (refer to Appendix A and ASX announcement 01/09/2020 for details):

Vein 11 Extension:

- o 4.85m @ 4.4 g/t gold from 350.15m in AUDD0019
- 1.6m @ 19.6 g/t gold from 372m in AUDD0019 (include 0.5m @ 59.5 g/t gold from 372.35m)

Vein 13 Footwall and Hanging wall Lodes:

- 18.52m @ 2.75 g/t gold from 122.18m (include 1.38m @ 21.02 g/t gold from 131.94m) in 3-750-3-7-5
- o **1.52m @ 12.34 g/t gold** from 91.44m in 744-3
- 1.52m @ 17.28 g/t gold from 6.41m in 3-2-111 (no selvedge sampling)

Vein 112 Target:

o 3m @ 7.4 g/t gold from 261m in AUDD0010

Vein 5 Extensions:

- 1.6m @ 25.8 g/t gold from 95m in AUDD0013 (including 0.6m @ 65.2 g/t gold from 96m and 0.3m @ 122.0 g/t gold from 95.7m)
- 0.6m @ 99.4 g/t gold from 167.4m in AUDD0017 (include 0.3m @ 181.0 g/t gold from 167.4m)
- o 3.6m @ 8.2 g/t gold from 370m in AUDD0034A

Additional potential for near term Resource expansion through the incorporation of 'BIF style mineralisation' currently outside of the Resource Estimate, with historical drill results (refer ASX 01/09/2020) including:

- o **8.54m @ 12.2 g/t gold** from 4.27m in 1-29-45
- o 23.03m @ 6.0 g/t gold from 42.54m in 2450-24
- 16.53m @ 5.5 g/t gold from 0m on 1-26-54
- o 6.62m @ 8.9 g/t gold from 22.6m in 1-26-50

In addition, multiple underexplored, walk-up, near-mine targets outside of resources associated with regional-scale major shear zones include (refer ASX 26/03/2020):

Springer Shaft Target:
F Vein Target:
SW Powder house Target:
East Pat Shear:
1.7m @ 36.6 g/t gold from 15.1 m in CPSH-88-01
4.6m @ 9.3 g/t gold from 27.1m in CP-88-92
6.1m @ 7.3 g/t gold from 86.6 m in PL04-26
6.0 m @ 7.7 g/t gold from 232 m in PC-10-145

ABOUT THE MINERAL RESOURCE ESTIMATE – PICKLE CROW GOLD PROJECT

The Inferred Resource Estimate of 1Moz @ 11.3 g/t gold announced on the ASX 1 September 2020 is from within a 3.5km section of the core mineralised shear zone and incorporates multiple high-grade Lodes within a large, mineralised corridor. This 3.5km section previously produced 1.5Moz @ 16 g/t gold¹ until the mine closed in 1966. The current Resource includes 22 separate modelled lodes. All resources are reported at a 3.5 g/t gold lower cut-off which is deemed acceptable based on industry costings associated with the likely mining method (narrow vein underground). Auteco confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the estimates in the announcement continue to apply and have not materially changed.

For further information regarding Auteco Minerals Ltd please visit the ASX platform (ASX: AUT) or the Company's website https://www.autecominerals.com.au/

This announcement has been authorised for release by the Auteco Board.

For further information, please contact:

Mr Ray Shorrocks
Executive Chairman
Auteco Minerals Ltd
+61 8 9220 903

Paul Armstrong
Media enquiries
Read Corporate
+61 8 9388 1474

¹ Refer Sedar Technical report for historical production https://www.sedar.com/GetFile.do?lang=EN&docClass=24&issuerNo=00022404&issuerType=03&projectNo=02810557&docId=4375165

ABOUT AUTECO MINERALS

Auteco Minerals Ltd (ASX: AUT) is an emerging mineral exploration company focused on advancing high-grade gold resources at the Pickle Crow Gold Project in the world-class Uchi sub-province of Ontario, Canada.

The Pickle Crow Gold Project currently hosts a JORC 2012 Mineral Resource of 1Moz at 11.3 g/t gold, with a 45,000m drilling program underway to expedite Resource growth.

Pickle Crow is one of Canada's highest-grade gold mines – historically, producing 1.5 Moz at 16 g/t gold.

The Company also has a joint venture on the Limestone Well Vanadium-Titanium Project in Western Australia.

For further information regarding Auteco Minerals Ltd please visit the ASX platform (ASX: AUT) or the Company's website https://www.autecominerals.com.au

COMPETENT PERSON STATEMENT

Certain Exploration Results referred to in this announcement were first reported in accordance with ASX Listing Rule 5.7 in the Company's announcements of 28/01/2020, 26/03/2020, 01/09/2020 and 11/11/2020. Auteco confirms that it is not aware of any new information or data that materially affects the information included in the original announcements. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Any information in this announcement that relates to new Exploration Results is based on and fairly represents information and supporting information compiled by Mr Marcus Harden, who is a Member of the Australasian Institute of Geoscientists. Mr Harden is an employee of the Company and has sufficient experience in the style of mineralisation and type of deposit under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Harden holds securities in Auteco Minerals Limited and consents to the inclusion of all technical statements based on his information in the form and context in which it appears.

DISCLAIMER

References to previous ASX announcements should be read in conjunction with this release.

FORWARD LOOKING INFORMATION

Various statements in this announcement constitute statements relating to intentions, future acts, and events. Such statements are generally classified as "forward looking statements" and involve known and unknown risks, uncertainties and other important factors that could cause those future acts, events, and circumstances to differ materially from what is presented or implicitly portrayed herein. The Company gives no assurances that the anticipated results, performance, or achievements expressed or implied in these forward-looking statements will be achieved.

APPENDIX A:

Table 1 - Significant Intercept Table.

Cut-off grade of 1 g/t Gold allowing for 1m internal dilution (NSI – No significant Intercept). All cords in UTM NAD 83 z15.

Hole No.	Easting	Northing	Elevation	Azimuth	Drilled Lengtl Dip		From	То	Width	Assay	Comment							
noie No.	Easting	Northing	Elevation	Azimutn	Ыþ	(m)	(m)	(m)	(m)	g/t Au	comment							
AUDD0044	704501	5710142	342	185.0	60.0	264				NSI	Partial Assay							
AUDD0045	704999	5710365	343	185.0	50.0	168					Awaiting Assay							
AUDD0046	704501	5710142	342	185.0	50.0	198				NSI								
AUDD0047	704438	5710598	343	175.0	60.0	261	128.55	129.8	1.25	1.01								
V11DD0048	704407	E710100	246	196.0	50.0	165	150.6	151	0.4	3.59								
AUDD0048	704497	5710108	346	186.0	50.0	105	160.5	161	0.5	1.55								
AUDD0049	705091	5710643	342	140.0	55.0	120				NSI								
AUDD0050	704848	5710066	345	180.0	55.0	150	25.9	27.25	1.35	4.17								
							17.18	17.88	0.7	3.36								
AUDD0051	706189	5711501	346	140.0	55.1	111.68	34.18	35.5	1.32	1.03								
							100	100.9	0.89	3.61								
							39.9	40.3	0.4	2.17								
					180.0 60.0 2		48	49.5	1.5	1.12								
AUDD0052	704148	5709537	352	180.0		263	119.8	121.8	1.95	2.05								
							126	126.3	0.3	13								
							216.7	217	0.3	1.12								
							220	220.6	0.55	1.39								
AUDD0053 705183	705183	5710740	342	250.1	55.4	321	225.7	226.5	0.75	1.01								
							238.95	240	1.05	2.59								
AUDD0054	704141	5709602	353	180.0	60.0	393	78.1	78.6	0.5	1.91								
							31.62	32.21	0.6	3.42								
							210.86	212.6	1.77	2.31								
					49.0	49.0	49.0	49.0		132.43	133.5	1.02	2.32					
AUDD0055	705270	5710931	343	264.0					456.25	144.36	144.9	0.56	1.31					
														225.6	226.4	0.77	1.23	
																		446
							452.86	453.6	0.7	1.77								
							54.3	55	0.7	1.23								
							396.5	398.5	2	8.16								
AUDD0056	703910	5709647	341	170.0	65.0	510	403	404.5	1.5	1.03	Partial Assay							
							414.2	415.2	1	1.01								
							420	424	4	5.91								
ALIDDOOF	705007	F740004	242	205	60	422	311	312	1	1.02								
AUDD0057	705087	5710604	343	305	60	432	397.3	397.7	0.4	4.58								
ALIDDOGGO	705222	F746000	2	265.0	60.0	45.0	430.85	433	2.15	2.06								
AUDD0058	705280	5710822	344	265.0	60.0	456	444	445.5	1.5	2.59								
AUDD0059	704387	5709660	350	240.0	55.0	225	NSI											
AUDD0060	704329	5709709	350	240.0	55.0	225		١	NSI									

Hole No.	Easting	Northing	Elevation	Azimuth Dip		Drilled Length ip		То	Width	Assay	Comment	
						(m)	(m)	(m)	(m)	g/t Au		
						453	380.85	382	1.15	2.37		
AUDD0061	703851	5709637	340	175.0	50.0		407	420	13	1.3	Partial Assay	
						inc:	414	415	1	5.02		
							192.5	193.6	1.1	1.95		
AUDD0062	705520	5711200	357	265.0	55.0	309	209.7	211	1.3	1.01		
							240.35	243.5	3.15	1.63		
AUDD0063	704139	5709729	351	260.0	50.0	96	35	38	3	2.09	Partial Assay	
AUDD0064	703789	5709411	346	150.0	55.0	309					Awaiting Assay	
AUDD0065	705489	5711249	354	310.0	55.0	238.35		1	NSI			
AUDD0066	703789	5709410	346	150.0	65.0	423	159.85	164.3	4.45	1.7	Partial Assay	
AUDD0067	705489	5711249	354	265.0	55.0	122.2			Awaiting Assay			
AUDD0068	705382	5711137	347	210.0	55.0	207	55.2	58.3	3.11	1.52	Partial Assay	
AUDD0069	703950	5709298	352	180.0	55.0	150					Awaiting Assay	
AUDD0070	705489	5711249	354	265.0	55.0	363	209.1	210.6	1.5	1.65	Partial Assay	
AUDD0071	704030	5709305	352	180.0	55.0	153					Awaiting Assay	
AUDD0072	704195	5709342	352	180.0	55.0	180					Awaiting Assay	
AUDD0073	703820	5709580	340	160.0	65.0	434					Awaiting Assay - Current Hole	
AUDD0074	705458	5711197	354	265.0	55.0	207					Awaiting Assay	
AUDD0075	705520	5711140	356	265.0	55.0	286					Awaiting Assay	
AUDD0076	704973	5710906	340	160.0	60.0	89.5					Awaiting Assay	
AUDD0076A	704973	5710906	340	160.0	60.0	180					Awaiting Assay	
ALIDD0077	704000	F71071F	244	350.0	70.0	57	12.7	14.3	1.6	16.86	Deutial Assau	
AUDD0077	704898	5710715	341	350.0	70.0	inc:	13.6	14.3	0.7	36.6	Partial Assay	
AUDD0070	704974	F710704	240	160.0	60.0	240	20.3	25.9	5.6	33.39	Dortiol Associ	
AUDD0078	704871	5710794	340	160.0	60.0	inc:	20.3	23.7	3.4	51.13	Partial Assay	
AUDD0079	704845	5710913	339	160	60	122	Awaiting Assay-Current		Awaiting Assay-Current Hole			
AUDD0080	704912	5710820	340	190.0	60.0	30	Awaiting Assa		Awaiting Assay			

Table 2 - Historical Significant Intercept Table. Cut-off grade of 1 g/t Gold allowing for 1m internal dilution (NSI – No significant Intercept). All cords in UTM NAD 83 z15. Historical drillholes completed by previous operators.

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay	Comment											
Hole No.	Lusting	HOTEIMIE	Elevation	Azimuui	Бір	(m)	(m)	(m)	(m)	g/t Au	Comment											
744-26	704876	5710777	340	158	60	46	9.14	9.45	0.31	8.57												
744 20	704070	3710777	340	150	00	40	11.58	12.01	0.43	15.77												
744-24	704877	5710779	340	338	60	46	20.24	21.46	1.22	103.37												
744-14	704909	5710860	340	157	60	245	219.46	222.81	3.35	6.83												
3-4-149	704964	5710841	229	171	-60	16	12.05	12.96	0.91	15.77	Single sample											
3-4-148	704964	5710841	229	171	-74	18	15.98	16.41	0.43	9.94												
3-4-150	704964	5710841	229	171	-30	30	11.62	11.71	0.09	6.17												
							1.83	2.53	0.70	1.62												
3-2-112	704907	5710796	310	161	11	96	2.96	5.67	2.71	43.74												
							8.63	8.69	0.06	33.21												
							7.75	8.05	0.30	2.06												
744-29	704907	5710701	341	338	80	39	8.23	8.74	0.51	8.95												
							11.89	11.96	0.07	6.86												
							8.53	10.06	1.53	26.55												
744.20	704900	5710721	2.41	338	80	00	21	11.10	11.40	0.30	1.37											
744-28	744-28 704899	3/10/21	341			31	13.77	14.33	0.56	75.09												
							14.45	14.68	0.23	1.03												
			244	338	00		9.14	12.93	3.79	19.44												
744.20	704026	5740724				22	13.41	14.02	0.61	1.03												
744-38	704926	5710734	341		338	338	80	33	18.90	19.02	0.12	1.37										
							24.38	24.99	0.61	1.03												
							24.87	25.04	0.17	3.43												
							35.05	35.51	0.46	2.06												
						450	450	40	40	40	40	40	40	40	40	40		38.56	40.54	1.98	4.16	
744-3	704908	5710779	340	158	40	40	40										40	40	40	40	40	40
								68.73	69.80	1.07	3.87											
									91.44	92.96	1.52	12.34										
744-34	704869	5710791	340	338	60	34.47	22.38	22.86	0.48	3.09												
							20.85	21.64	0.79	9.60												
744-25	704876	5710777	340	360	90	61	35.05	35.66	0.61	1.37												
							54.69	55.17	0.48	3.09												
744-2	704881	5710754	340	158	40	56.43	17.68	18.64	0.96	3.00												
							9.19	9.88	0.69	2.40												
744-27	704889	5710733	340	338	80	31	10.97	11.40	0.43	1.71												
							16.59	16.76	0.17	2.74												
3-4-164	704837	5710867	233	358.75	-76	20	16.29	16.78	0.49	16.46												
3-750-465	704971	5710839	129	170.32	0	32	16.62	16.78	0.16	3.43												
						_	7.02	7.63	0.61	1.88												
3-750-434	704883	5710743	130	143.87	0	77	22.42	22.88	0.46	2.40												

Table 1 - JORC Code 2012 Edition

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Drilling since 2008, quoted with PC- prefix is from PC Gold exploration with NQ diameter (47.6mm) drill core was recovered from drilling. Noramco drilling, CP- prefix is BQ diameter (36.5mm). All other quoted intercepts and the bulk of historical drilling data is of NQ diameter including Auteco drilling subject to this release (prefix AUDD**). The core was sawn in half following a sample cutting line determined by geologists during logging and submitted for analysis on nominal 1m (1ft for historical drillholes) intervals or defined by geological boundaries determined by the logging geologist. Samples from PC Gold holes (PC- prefix) post 2008 were submitted to ALS Chemex in Thunder Bay and North Vancouver for analysis. Samples were prepared for analysis using a jaw crusher which was cleaned with a silica abrasive between samples resulting in 90% of the sample passing through an 8 mesh screen. A split of the crushed sample weighing 1000g was then pulverised to 90% passing a 150 mesh screen. Sample pulps were analysed for gold by Fire Assay using 50g sample charge with atomic absorption spectroscopy (AAS) finish. If the returned assay result was equal to or greater than 5g/t then the sample was reassayed by Fire Assay with a gravimetric finish. Samples from historical diamond drilling programs conducted between 1981 and 2008 were dispatched to a variety of accredited laboratories in Canada for Fire Assay analysis. Historical drill results prior to 1981are Fire Assay conducted by unknown laboratories (most likely the mine laboratory during the operational life of the Pickle Crow Mine) and with unknown preparation methods and assay charge, however previous operators have duplicated and verified results. Recent sampling by Auteco minerals on drill holes subject to this release (prefix AUDD**) were submitted to AGAT Laboratories, Thunder Bay for analysis. Auteco samples undergo the same preparation and analysis techniques previously used for PC Gold. All samples >10g/t gold and samp
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling quoted with PC- prefix is from PC Gold exploration with NQ diameter (47.6mm) drill core was recovered from drilling. Noramco drilling, CP- prefix is BQ diameter (36.5mm). All other drilling is NQ diameter including Auteco drilling subject to this release (prefix AUDD**).
Drill sample recovery Logging	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 All drilling quoted is NQ diamond core (including Auteco drilling subject to this release -prefix AUDD**) with the exception of Noramco drillholes (CP-prefix). RQD was recorded for all diamond drilling as per industry standard. A review of the available diamond drill core RQD's from the Pickle Crow project (PC- prefix and recently completed Auteco drilling - AUDD* prefix) indicated that nearly all of the holes produced excellent recoveries with an average of >90%. For drilling conducted by other operators recoveries are unknown although reports do not highlight significant core loss. A review of RQD results does not highlight a relationship between sample recovery and grade or highlight any sample bias due to loss of material. All PC Gold and Auteco samples (PC- and AUDD* hole prefix) were geologically logged. Lithology, veining, alteration, mineralisation and weathering are all recorded in the geology table of the drill hole database. Other historical drillholes have been similarly logged and records have been digitized from report format.
		Geological logging of Diamond Core samples is qualitative and descriptive in nature.

Criteria	JORC Code explanation	Commentary
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All holes quoted have been logged in their entirety.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All drilling quoted from PC Gold and Auteco exploration (PC-and AUDD* hole prefix) is NQ diameter (47.6mm) drill core recovered from drilling. All other quoted intercepts are NQ diameter with the exception of Noramco drilling (CP- Prefix) which is BQ (36.5mm) diameter. The core was sawn in half following a sample cutting line determined by geologists during logging and submitted for analysis on nominal 1m (or 1ft) intervals or defined by geological boundaries determined by the logging geologist. This sampling technique is industry standard and deemed appropriate. PC Gold QA/QC protocols include the use of crush duplicates, ¼ core field duplicates, the insertion of certified reference materials (CRM's) including low, medium and high-grade standards and coarse blanks. This was accomplished by inserting the QA/QC samples sequentially in the drill core sample numbering system. One set of the four QA/QC types were inserted every 30 samples consisting of 1 crush duplicate, 1 ½ split field duplicate, 1 CRM (altering between low, medium and high standard) and 1 blank. This resulted in approximately every seventh sample being a QA/QC sample. Auteco minerals (AUDD* prefix holes) follows the same QA/QC protocols but with CRM's and duplicates inserted every 25 samples. QAQC procedures are not disclosed in previous reporting but results are consistent with visual observations of mineralisation as recorded in the geological logs and qualitative proportions of logged veining and sulphide content. Post-Mining Pickle Crow Property operators employed the usual in-laboratory blanks, standards and duplicate analyses to ensure precision and accuracy of results. Whist there is no documentation available for earlier results sample duplicate verification has been conducted. Sample size is deemed industry standard for Orogenic Gold deposits. For a more complete discussion of historical sampling techniques and sample preparation see document 'Updated Mineral Resource Estim
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Samples were submitted to ALS Chemex in Thunder Bay and North Vancouver for analysis. Samples were prepared for analysis using a jaw crusher which was cleaned with a silica abrasive between samples resulting in 90% of the sample passing through an 8 mesh screen. A split of the crushed sample weighing 1000g was then pulverized to 90% passing a 150 mesh screen. Sample pulps were analysed for gold by Fire Assay using 50g sample charge with atomic absorption spectroscopy (AAS) finish. If the returned assay result was equal to or greater than 5g/t then the sample was reassayed by Fire Assay with a gravimetric finish Samples from historical diamond drilling programs conducted between 1981 and 2008 were dispatched to a variety of accredited laboratories in Canada for Fire Assay analysis. Historical drill results prior to 1981are Fire Assay conducted by unknown laboratories (most likely the mine laboratory during the operational life of the Pickle Crow Mine) and with unknown preparation methods and assay charge, however previous operators have duplicated and verified results. Recent sampling by Auteco minerals on drill holes subject to this release (prefix AUDD**) were submitted to AGAT Laboratories, Thunder Bay for analysis. Auteco samples undergo the same preparation and analysis techniques previously used for PC Gold. In addition to the Company QAQC samples (described earlier) included within the batch the laboratory included its own CRM's (Certified Reference Materials), blanks and duplicates. Sample assay results continue to be evaluated through control charts, log sheets, sample logbook and signed assay certificates to determine the nature of any anomalies or failures and failures were re-assayed at the laboratory. Check assaying was also conducted on 1 in every 20 samples. QAQC protocols are unknown for historical drill programs (without the PChole prefix). QA/QC work is industry standard and acceptable levels of accuracy obtained from historical sampling se

Criteria	JORC Code explanation	Commentary
Criteria	JONE code explanation	Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historical significant intersections quoted have been verified by Independent Geological Consultants Micon International Limited. For more details see document 'Updated Mineral Resource Estimate for the Pickle Crow Property, Patricia Mining Division, Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc. There are no twinned holes in the dataset but a comparison of the results of different drilling generations showed that results were comparable. In addition previous operators have duplicated and verified results by resampling historical core. For more details see document 'Updated Mineral Resource Estimate for the Pickle Crow Property, Patricia Mining Division, Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc. For PC Gold drilling (PC- prefix), once all logging data was completed, core marked up, logging and sampling data was entered directly into the Gems Logger program (an MS Access-based database and stored on the onsite server. At approximately weekly intervals the server onsite was synchronised with the main server in Thunder bay. Only one individual was responsible for synchronising the field and office databases. Auteco records new drilling data in Excel spreadsheet format synchronized with the Auteco server in Perth, Australia. No adjustments were made to assay data but the procedure to determine which gold assay to enter into the database is as follows. If a pulp metallic assay was pot performed, then a gravimetric assay was used. If a gravimetric assay was not performed, then a gravimetric assay was used. If a gravimetric assay was not performed, then the AAS assay was used. If a gravimetric assay was not performed, then the AAS assay was used. If a gravimetric assay was not performed, then the AAS assay was used. If a
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Upon completion of PC Gold drillholes collars (PC Gold prefix) were surveyed by third party contractors Delta Surveying and J.D.Barnes of Thunder Bay to with +/- 1m using an SX Blue. For all other drilling hole collars were converted from local grids or digitised from georeferenced maps. Where possible these historical surface drillholes have been relocated, surveyed and verified in the field. Drillhole locations are also recorded by the Ontario Ministry of Northern Development and Mines in freely available GIS datasets. Auteco drilling (AUDD* prefix)has been surveyed with a hand-held GPS to an accuracy of less than 3m. A variety of down hole survey tools have been used on the property. All holes were surveyed at 50m intervals while drilling using an EZY Shot magnetic compass based tool supplied by the drillers. In conjunction with this, all holes were surveyed after completion with a non-magnetic downhole instrument. A variety of tools were trialled including Maxibore tool provided by Reflex Instruments, a Devifelx tool operated by TECH Directional services and an SPT North Seeking Gyro. For Auteco drilling subject to this release down hole surveys have been conducted by a REFLEX North Seeking Gyro. For further historical details of survey reproducibility and tools used please refer to document 'Updated Mineral Resource Estimate for the Pickle Crow Property, Patricia Mining Division, Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc. For all drilling not conducted by PC Gold (lacking the PC- prefix) surveys were conducted during drilling with hole orientation recorded by the geologist in the field. Downhole surveys of dip are recorded by azimuths away from the collar are generally lacking. All location data is in UTM grid (NAD83 Zone 15) except where noted. Topographic Control for PC Gold and Auteco drilling (PC- and AUDD* prefix) is from a D

Criteria	JORC Code explanation	Commentary
		have now been projected to a DTM generated from a LIDAR survey completed in 2008 and are to an accuracy of <1m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Due to the nature of mineralisation the hole spacing is highly variable and of a progressive exploration in nature. Data spacing is considered sufficient to establish geological and grade continuities for mineral resource estimation at the Inferred Category No sample compositing was applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill hole orientations were designed to test perpendicular or subperpendicular to the orientation of the intersected mineralisation. Drilling was typically oriented perpendicular to the trend of geophysical anomalism and the mapped strike and dip of observed mineralisation on surface and elsewhere in the project area. Due to the density of drilling and the orientation of drilling perpendicular to mineralised bodies there is limited bias introduced by drillhole orientation.
Sample security	The measures taken to ensure sample security.	For PC Gold and Auteco drilling (PC- and AUDD* prefix), once the core samples are cut, bagged and sealed with zip ties, ten samples are put into rice bags which are sealed and secured with numbered security tags. Once samples arrive at the laboratory the security tags and corresponding samples were verified against onsite logs. Prior to shipment samples are stored in a locked building onsite. Site is always occupied, and no samples are left at the project during field breaks. For all other drillholes the measures taken to ensure sample security are unknown.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 An audit and review of sampling techniques and data was conducted as part of NI-43-101 resource estimation by Independent Consultants Micon International in 2018. Please refer to document 'Updated Mineral Resource Estimate for the Pickle Crow Property, Patricia Mining Division, Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc. An additional audit and review of sampling techniques and data was conducted by Cube Consulting as part of the Resource Estimation subject to this release and consisted of an audit of QAQC data from previous operators PC Gold Inc. (2011-2017).

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

status

Mineral tenement

and land tenure

JORC Code explanation

- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.

Commentary

- The mineral concessions of the Pickle Crow project consist of 106 patented mining claims covering 1,712ha and 88 contiguous, unpatented claims covering approximately 14,048ha. Of the 106 patented claims 98 (the Pickle Crow Lease) are held in the name of Teck Cominco Limited (Teck) and 8 are held in the name of PC Gold. The unpatented claims are held in the name of PC gold. PC Gold has a lease on the 98 patented claims held by Teck which expires in 2067. These leasehold claims are subject to two net smelter return (NSR) royalties totalling 1.25%. The other 8 patented claims (the Crowshore Patents), plus certain unpatented claims are subject to NSR royalties ranging from 2% to 3%. A full list of tenements along with details of relevant NSR's as they pertain to individual properties is given in Auteco ASX releases dated: 28/01/2020 and 17/02/2020. An additional 600 claims were staked by Auteco subsidiary, Revel Resource (JV) Ltd. and are subject to the terms of the Earn-In-Arrangement.
- Auteco has entered into an agreement to acquire up to 80% of the Pickle Crow Gold Project from First Mining. A payment of C\$50,000 has been made to First Mining. The consideration for acquisition of the assets are as follows: Upon signing a formal agreement: A further C\$50,000 and 25,000,000 Shares in the capital of Auteco at a deemed issue price of A\$0.008 per share. Stage 1 Earn-In (51%): Spending C\$5,000,000 over three years comprising: Spending C\$750,000 within a 12-month period ('Expenditure Payment 1'): and Spending C\$4,250,000 within a 24-month period after Expenditure Payment 1 is satisfied; and Subject to shareholder approval by Auteco, issuing to First Mining 100,000,000 Shares in Auteco. (together 'Stage 1 earn in'). Stage 2 Earn-In (a further 19%): Expending exploration expenditure in the 24-month period commencing on the date that Auteco satisfies the Stage 1 Earn-in of C\$5,000,000 ('Expenditure Payment 3'); and Within 90 days of completing expenditure Payment 3, making a cash payment to Seller in the amount of C\$1,000,000 ('Expenditure Payment 4'), (together the 'Stage 2 Earn In'). Also, Buy In: May buy a further 10% interest by paying C\$3,000,000 to First Mining; and a 2% Net Smelter Return granted after the Stage 2 Earn-In. Further details are included in ASX releases 17/02/2020 and 13/03/20).
- For a more complete discussion of type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings relating to the Pickle Crow Project please refer to document 'Updated Mineral Resource Estimate for the Pickle Crow Property, Patricia Mining Division, Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc.

Exploration done by other parties

- Acknowledgment and appraisal of exploration by other parties.
- The first government survey of the area was performed by William McInnes of the Geological Survey of Canada (GSC) along the Crow River from 1903 to 1905. Prospecting in the Pickle Lake area commenced in 1926. In 1927, Lois Cohen of Haileybury formed a prospecting group and early that winter sent Alex and Murdock Mosher in to stake the first claims (December 1927) on what ultimately became the Central Patricia Gold Mines property. These claims were optioned by F.M Connell and Associates in August 1928 and Central Patricia Gold Mines Limited was incorporated on 19 February, 1929. Diamond drilling commenced at Central Patricia in February 1929 and production in March 1930. The Central Patricia discovery paved the way from exploration in the region which led to the discovery and initial drilling (1929) of the first Pickle Crow orebody the No.1 Vein by Northern Aerial Mineral Exploration Limited, a company set up in 1928 by J.E. (Jack) Hammell. In 1929 gold was also discovered by Albany River Miners Ltd. (Albany River) at the No.16 vein on the Albany River claims to the east of the then Pickle Crow property. Northern Aerial was acquired by Pickle Crow Gold Mines Limited (PCGM) in 1934 with Jack Hammell continuing as president. Production from the Pickle Crow mine began on 17 April, 1935. Albany river sank the Albany shaft to a depth of 190m between 1933 and 1938 and completed extensive underground development. Winoga Patricia Gold Mines was created in 1936 and drilled 73 surface diamond drill holes

Criteria	JORC Code explanation	Commentary
		on a pie-shaped property located between PCGM's holdings and the Albany River Mines ground to the east. A mine shaft was subsequently sunk on the property in 1938. That same year, PCGM took over ownership of both Albany River Mines and Winoga Patricia Gold Mines through a new company called Albany River Gold Mines Ltd. It is believed that the Winoga Patricia Gold Mines shaft later became the No.3 Shaft of the Pickle Crow operation. The Cohen-MacArthur zone, located 2km to the north of the developing Pickle Crow mine, was discovered in 1933. A total of 14 surface diamond holes were drilled at Cohen-MacArthur in the winter of 1936. This property was optioned by PCGM in 1938, With the acquisition of the Cohen-MacArthur claims, PCGM became one of the largest land holders in the Pickle Lake area. The GSC completed a regional synthesis of the Pickle Crow Greenstone belt during this period as well. Ground and airborne geophysical surveys have been completed over all or parts of the Pickle Crow property at various times during its early history. A dip-needle survey completed in 1936 on the Pickle Crow property was useful in tracing out the bands of the iron formation. A detailed magnetic survey was carried out over the property by Teck (or its predecessor companies) around 1960. The property then underwent a series of ownerships until it became wholly owned by Teck in 1971. The property then sat dormant until 1973 when Pickle Crow Exploration Ltd. Reviewed the economics of reopening the mine. In 1978, a merger between Pickle Crow Explorations Ltd. And four other companies saw Teck's ownership reduced to 44.6% and a new exploration company called Highland-Crow Resources Ltd. Highland Crow went on to option the property to Galant Gold Mines Limited in 1979. Gallant performed a VLF_EM geophysical survey and drilled 47 surface diamond drill holes for 7,356m. The only known soil geochemical survey done on the Pickle Crow property was completed for Gallant in 1983. Soil values ranged from 10 to 12,000ppb with the high values
Geology	Deposit type, geological setting and style of mineralisation.	 (www.sedar.com) for First Mining Inc. The Pickle Crow Gold Deposit is considered to be an Archean low-sulphide gold-quartz vein type deposit, also known as shear-hosted gold, Archean quartz-carbonate vein gold deposits, Archean lode gold, Archean mesothermal gold deposits or simply orogenic gold. The deposit occurs primarily within mafic volcanics and banded iron formation (BIF) units in the Pickle Crow assemblage of the Pickle Lake Greenstone belt in the Uchi Lake Sub province of the Superior Craton of the Canadian Shield.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	·

Criteria	JORC Code explanation	Commentary
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All drill hole intersections are reported above a lower cut-off grade of 0.5g/t Gold or 1g/t as indicated, with no upper cut off grade has been applied. A maximum of 1m internal waste was allowed. Tabulated results are presented in ASX announcements 28/01/2020, 26/03/2020 and Appendix A of this release) Metal equivalent values are not used
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All intersections reported in the body of this release are down hole The majority of the drill holes are drilled as close to orthogonal to the plane of the mineralised lodes as possible. A number of drill holes have intersected the mineralisation at high angles. Only down hole lengths are reported.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Maps and sections are included in the body of this release as deemed appropriate by the competent person.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Any significant higher-grade zones in historical drilling quoted in this release have been reported in ASX announcements 28/01/2020, 26/03/2020 and Appendix A of this release) All results above 0.5g/t lower cut-off or 1g/t quoted in this release have been reported in ASX announcements 28/01/2020, 26/03/2020 and Appendix A of this release)
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Appropriate plans are included in the body of this release.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Auteco Minerals Limited is currently conducting drill testing of additional lodes as well as step out and infill drilling of existing lodes to further enhance the resources quoted in this release. More information is presented in the body of this report. Diagrams in the main body of this release show areas of possible resource extension on existing lodes. The company continues to identify and assess multiple other target areas within the property boundary for additional resources.