

ASX ANNOUNCEMENT

Pickle Crow Gold Project, Canada

Shallow high-grade gold at Carey discovery highlights potential for open pit Resource

Plus, strong underground results to help underpin imminent Resource update

Key Points

- Auteco has made a significant discovery at Pickle Crow, called Carey, with shallow high-grade intersections
- The shallow broad zones of mineralisation highlight the potential for open pit mining
- The Carey intersections include:
 - o **20.4m @ 5.3 g/t gold** from 102.7m in AUDD0158 (New Structural Zone)
 - Including 2.2m @ 39.3g/t
 - o 13.8m @ 2.0 g/t gold from 29.8m in AUDD0137 (New Structure)
 - o **16.5m @ 2.2 g/t gold** from 160.6m in AUDD0141 (New Structure)
 - 6.5m @ 4.6g/t gold from 86.5m in AUDD0138 (New Structure)
 - o **4.5m @ 3.5 g/t gold** from 54.3m in AUDD0134 (New Structure)
- In addition to the Carey discovery, drilling has extended the known high-grade gold mineralisation in the Shaft 3 and Shaft 1 areas. These results include:
 - **4.9m @ 7.5g/t gold** from 483.2m in hole AUDD0152 (New Structure)
 - 3.3m @ 8.0g/t gold from 836.4m in hole AUDD0166 (80m Extension of Structure)
 - 4.6m @ 7.5g/t gold from 183.5m in hole AUDD0064 (80m Extension of Structure)
 - 1.3m @ 21.4g/t gold from 82.1m in hole AUDD0128 (80m Extension of structure)
 - 0.6m @ 42.9g/t gold from 320m in hole AUDD0128 (80m Extension of structure)
- The latest underground Shaft 3 drilling results will be included in next month's update to the existing Pickle Crow Inferred Resource of 1Moz at 11.3g/t1 gold
- Regional mapping and reconnaissance sampling has yielded significant results, with outcropping veins at the Springer target, south of Pickle Crow, returning rock chip results including:
 - 145.7g/t gold, 6.2g/t gold, 5.7g/t gold and 4.3g/t gold
- The 45,000m drill program has now been completed. An additional 50,000m drill campaign has been approved by the Auteco Board and will start immediately
- Auteco is fully funded for its growth strategy, with \$26.8M cash on hand at March 31 2021

¹ Please refer to ASX Release dated 1 September 2020 for details of the Inferred Mineral Resource for Pickle Crow. All future references in this release to the 1Moz Resource at a grade of 11.3g/t refer the announcement dated 1 September 2020.

Auteco Minerals Ltd (ASX: AUT) is pleased to announce that it has made a shallow high-grade gold discovery at its Pickle Crow gold project in Canada.

The Carey discovery, which was the first in a series of shallow exploration targets which will be tested by Auteco, is particularly notable because it highlights the potential for open pit mining in addition to what was historically a narrow-vein underground operation at Pickle Crow.

Further drilling will be conducted to determine the continuity of mineralisation between historic drillholes to the north and south of the initial intersections.

In addition to the Carey discovery, Auteco is also pleased to announce that it has extended the known high-grade underground mineralisation in the Shaft 3 area. The latest Shaft 3 drilling results will help underpin the Resource update set to be completed next month. The existing Pickle Crow Inferred Resource stands at 1Moz grading 11.3g/t gold.

Mapping, outcrop sampling and the acquisition of detail ground magnetics is in progress on the regional tenure outside of the current Resource. Assay results returned from rock chip samples of outcropping veins at the Springer prospect returned results up to 145.7g/t gold.

The 45,000m Resource definition and exploration program that commenced in September 2020 has now been successfully completed.

In anticipation of continued success, Auteco has engaged leading environmental consulting firm Wood PLC to coordinate and conduct activities relating to Advanced Exploration permitting with the Ontario Ministry of Energy, Northern Development and Mines. Additionally, Auteco has commenced preliminary discussions with a number of engineering firms to conduct assessments of processing and mining infrastructure inherited with the Pickle Crow project.

In light of these strong results, the Auteco Board has given approval for the commencement of an additional 50,000m of drilling. The dual strategy of driving near-mine Resource growth combined with early-stage exploration targeting will continue to be the focus of the drilling program.

Auteco Executive Chairman Ray Shorrocks said: "The latest drilling program has been a huge success and we will further capitalise on this success with additional drilling.

"The high grades and the substantial widths of the new mineralisation highlight the potential for highly beneficial bulk mining methods to be used, either as wider stopes in an underground setting or as an open pit.

"We will now complete the Resource update in parallel with starting the new drilling program, ensuring we maximise the opportunity to generate newsflow and create value for shareholders."

ABOUT THE GROWTH AND EXPLORATION PROGRAM

The current strategic work program detailed in previous ASX² releases (Figure 1) is nearing its conclusion after successful delivery of the key objectives to date. The drilling phases of the work program have been completed, with a total of 166 diamond holes drilled for 45,522m. Results are yet to be returned for 28 holes.

² Please refer to AuTECO ASX releases dated 7 April 2021 & 29 April 2021 for details

Figure 1: AuTECO strategic work plan, key work phases and progress to date (this forward work plan is indicative).

The company is currently utilising the acquired drill data to produce an updated Resource estimate (as at 30 June 2021) that is planned for completion and reporting in July 2021.

Growth & Exploration Program – Highlights to Date

The growth and exploration work completed between September 2020 and June 2021 has delivered significant results (Figure 2) that demonstrate the organic growth potential of Pickle Crow.

AUTEC	O STRATEGIC WORK PROGRAM – September 2020 to July 2021
FOCUS	DELIVERED HIGHLIGHTS TO DATE
Mid Year 2020 Resource	 Resource upgrade to 1Moz gold at a grade of 11.3g/t Prepared in accordance with the JORC Code (2012 Edition)
Near Mine Extension	 ~30,000m of near mine extension drilling completed Successfully discovered mineralised vein structures in the near-mine environment outside of the current Resource Continued to identify extensions to the known Resource veins Key drill results delivered outside of the current Resource³ included: 0.6m @ 313.0g/t, 0.6m @ 42.9g/t, 1.0m @ 34.9g/t, 5.6m @ 33.4g/t, 1.2m @ 29.7g/t, 1.5m @ 26.6g/t, 1.3m @ 21.4g/t, 1.5m @ 19.3g/t, 1.6m @ 19.2g/t, 1.5m @ 19.3g/t, 1.2m @ 11.9g/t, 5.0m @ 9.5g/t, 3.6m @ 8.2g/t, 3.3m @ 8.0g/t, 2.3m @ 7.8g/t, 4.9m @ 7.5g/t, 4.6m @ 7.5g/t, 3.0m @ 7.4g/t
Resource Definition	 ~10,000m of definition drilling completed Infill drilling completed on some of the newly discovered veins and extensions This data forms the basis of the updated MY2021 Resource estimation
Regional Exploration	 ~5,000m of conceptual early stage exploration target testing completed Early success with the Carey Discovery (20.4m @ 5.3g/t, see this release)
Mid Year 2021 Resource	 Interpretation, Estimation and Validation in progress To be announced July 2021

Figure 2: Highlights delivered to date from the Auteco strategic work program (Sep 2020 to July 2021)³.

³ For detail on the Resource and drill results referred to in Figure 2, please refer to ASX releases dated 1 Sep 2020, 11 Nov 2020, 19 Jan 2021 and 7 Apr 2021 in addition to results announced in this release.

Key highlights, as summarised in Figure 2, include:

- Successful upgrade of the Resource to 1Moz at 11.3g/t gold in September 2020
- Discovery of multiple previously unknown mineralised structures proximal to the Resource
- Step-out extensions of known mineralised structures that form the current Mineral Resource
- Commencement of concept-stage exploration target testing, which has yielded immediate results with the Carey discovery that returned a intersection of 20.4m @ 5.3g/t gold

It is important to note that all drilling completed between September 2020 and June 2021 has been conducted outside of the Inferred 1Moz Resource at 11.3g/t gold.

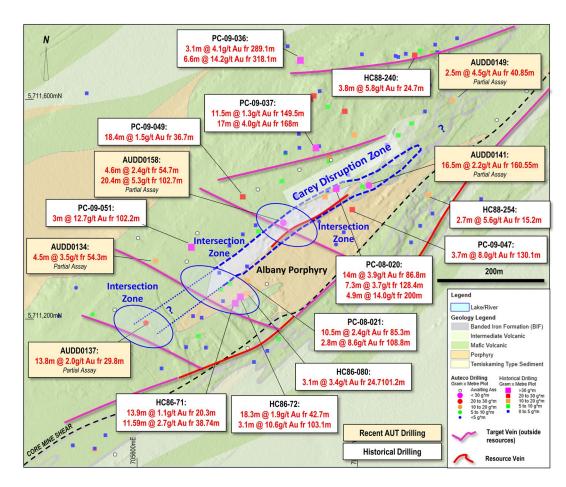
EXPLORATION AND GEOLOGICAL DETAIL

The Pickle Crow deposit is a typical Mesothermal narrow-vein high grade Archean orogenic gold deposit, with mineralised veins present within local structures formed within a broader Riedel shear zone. Historically between 1935 and 1966, 1.5Moz of gold at a grade of 16.1g/t was mined from more than 10 individual quartz reefs. To date >30 individual veins have been identified proximal to underground shaft infrastructure (Shaft 1, Shaft 3, and Albany Shaft). Exploration results have been grouped based on proximity to the three main shafts.

Carey Discovery

The Carey prospect was a conceptual target zone focused on an area of structural disruption adjacent to the contacts between multi-generational porphyritic intrusions and the host rock, which includes mafic volcanics and banded iron formation (BIF).

Drilling completed since April 2021 has confirmed several bulk tonnage targets centred around high grade gold veins proximal to the Albany Porphyry and later stage quartz-feldspar porphyries (Figure 3). Intersections returned from first pass target testing include:


- **20.4m @ 5.3g/t gold** from 102.65m in hole AUDD0158 (New Structure)
- 13.8m @ 2.0g/t gold from 29.8m in hole AUDD0137 (New Structure)
- **16.5m @ 2.2g/t gold** from 160.55m in hole AUDD0141 (New Structure)
- 4.5m @ 3.5g/t gold from 54.3m in AUDD0134 (New Structure)

Please refer to Appendix A – Table 1 for details of all new holes drilled in this area.

Mineralisation is observed within Quartz-Ankerite-Pyrite veins and disseminated sulphides in shearing developed both to the contacts of the Albany Porphyry and Riedel shears developed within the intrusion. The intrusion has been crosscut by intermediate porphyry dykes which, due to rheological contrast, preferentially undergo brittle-ductile deformation. The dykes are intensely sericite-ankerite-pyrite altered, and locally contain discrete Quartz-Ankerite-Pyrite veins. High grade gold zones are associated with the sulphides.

The mineralisation encountered in hole AUDD0158 (20.4m @ 5.3g/t) is shown in Figure 4. Mineralisation remains open in all directions on targeted structures, and work will now focus on defining continuity within the mineralised envelopes.

Figure 3: Map of the greater Carey-Albany area, showing the location of the Carey prospect proximal to the Albany Porphyry (refer to Appendix 1 - Tables 1 and 2 for details of drill hole results).

Figure 4: AUDD0158: New Discovery. 102.65m to 123m. Sericite-ankerite-pyrite altered intermediate dyke within sericite-ankerite-pyrite altered Quartz-Feldspar-Porphyry. Alteration to the selvedge of and is related to multiple sheared Quartz-Ankerite-Pyrite veins. Interval is 20.4m @ 5.3g/t Gold including 2.2m @ 39.3g/t Gold from 116m (refer to Appendix 1 – Table 1).

Greater Carey-Albany Area

Review of historic drilling in the greater Carey-Albany area demonstrates broad shallow mineralisation has been previously encountered, with intersections including:

- **11.6m @ 2.7 g/t gold** from 38.7m in hole HC86-71
- **18.3m @ 1.9 g/t gold** from 42.7m in hole HC86-72
- **11.7m @ 2.0 g/t gold** from 46.8m in hole HC88-251
- 14m @ 3.9g/t gold from 86.8m in PC-08-020
- **10.5m @ 2.4 g/t gold** from 85.3m in PC-08-021
- **18.4m @ 1.5g/t gold** from 36.7m in PC-09-049

Please refer to Appendix A – Table 2 for details of historic drill holes drilled in this area.

Exploration drilling is planned to confirm historic results and test the open pit potential of the Carey-Albany area.

Near Mine Extension and Exploration Drilling (Shaft 3, Shaft 1)

Drilling has continued to focus on the Shaft 3 area, with results returned for both extension and exploration drilling. The location of new drilling is shown in Figure 5.

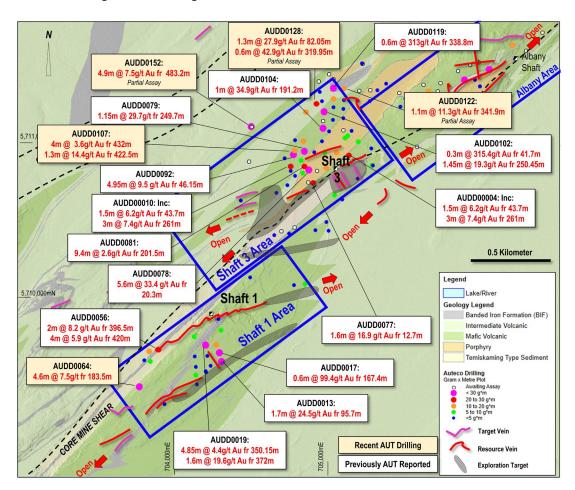


Figure 5: Plan location map of recent drilling in the Shaft 3 and Shaft 1 areas of the Pickle Crow deposit (refer to Appendix 1 – Table 1).

Shaft 3

Exploration drilling in the Shaft 3 area has intersected a previously undiscovered shear vein in hole AUDD0152 within the Pickle Crow assemblage. This intersection includes multiple occurrences of visible gold and is located ~250m north-west of the nearest drillhole (Figure 5). The assayed intersection for this hole was:

4.9m @ 7.5 g/t gold from 483.2m in hole AUDD0152

The mineralised intersection from hole AUDD0152 is shown in Figure 6. This new structure remains open in all directions and will be the focus of ongoing exploration drilling in the shaft 3 area.

Figure 6: AUDD0152: New discovery. 483.2m to 488.1m. Laminated quartz-tourmaline-scheelite-gold vein within sericite-carbonate altered sandstone unit. Veining around sericite-ankerite-pyrite altered porphyry dyke. Interval 4.9m @ 7.5 g/t Gold, including 1.5m @ 17.0g/t Gold from 483.5m (Refer to Appendix 1 – Table 1).

Step-out drilling in the Shaft 3 area has also returned intersections that demonstrate the continuation of known veins beyond the current known extents. Significant results returned include:

- 3.3m @ 8.0 g/t gold from 836.4m in hole AUDD0166 (80m Extension of Structure)
- **1.3m @ 21.4g/t gold** from 82.1m in hole AUDD0128 (80m Extension of Structure)
- 0.6m @ 42.9g/t gold from 320m in hole AUDD128 (80m Extension of Structure)

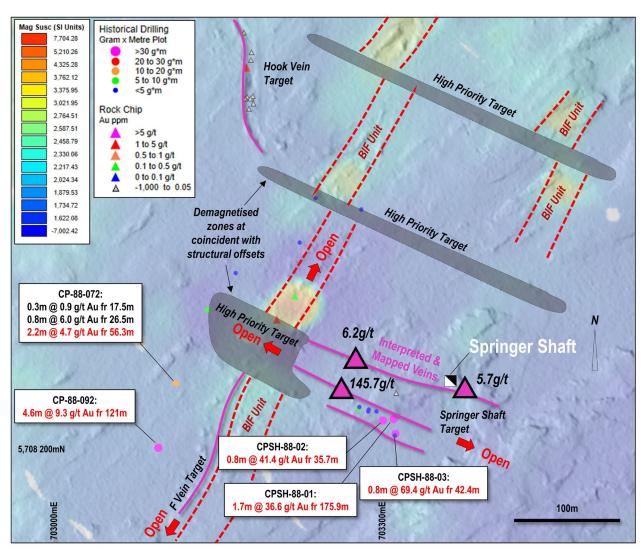
Shaft 1

A drillhole from the Shaft 1 area previously reported as a partial assay (AUDD0064) has also been returned:

4.6m @ 7.5 g/t gold from 183.5m in hole AUDD0064 (80m Extension of Structure)

Regional Exploration

Regional field reconnaissance and mapping in areas outside of the current Resource is in progress, supported by ongoing ground magnetic surveys that have been successfully utilized to identify geophysical signatures associated with high grade, Quartz-Scheelite-Tourmaline-Gold bearing structures in the Pickle Crow area.


The magnetic survey highlights displacement and demagnetisation of the magnetic Banded Iron Formation coincident with mineralised cross structures (Figure 7). Analogous geophysical target signatures have now been identified both to the south-west of Vein 5, the Crowshore area and at the Springer Shaft.

At the Springer Shaft displacements in the Banded Iron Formation (BIF) observed in the Ground Magnetics are coincident with high grade historical drill intercepts including:

- 1.7m @ 36.6 g/t gold from 175.9m in hole CPSH-88-01
- 4.6m @ 9.3g/t gold from 121m in hole CP-88-092
- **0.8m @ 69.4 g/t gold** from 42.4m in CPSH-88-03
- **0.8m @ 41.4 g/t gold** from 35.7m in CPSH-88-02
- 4.6m @ 9.3 g/t gold from 121m in CP-88-092

Please refer to Appendix A – Table 2 for details of historic drill holes drilled in this area.

Figure 7: High quality ground magnetic survey data completed by Auteco in the Shaft 1 (top left) and Springer (right) areas. Structural displacement of the BIF units is observed, in addition to demagnetisation at structural intersections. White labels represent historical drill intervals subject to this release, results <10g*m not represented by labels (refer to ASX Release 26 March 2020 and Appendix A).

These results are supported by recent mapping which has identified three mineralised shear veins in the proximity of the Springer Shaft (Figure 7) with rock chip results including:

- 145.7g/t gold (rock chip sample of outcropping surface vein)
- 6.2g/t gold (rock chip sample of outcropping surface vein)
- 5.7g/t gold (rock chip sample of outcropping surface vein)
- 4.3g/t gold (rock chip sample of outcropping surface vein)

Please refer to Appendix A – Table 3 for full detail of rock chip sampling completed by Auteco in this area.

The newly identified target zones represent compelling targets that will undergo preliminary drill testing by Auteco in coming months.

FORWARD WORK PROGRAM

Resource Update

Data from the drilling acquired between September 2020 and June 2021 has been compiled and validated. Geological interpretation, domaining and wireframing of the mineralised zones is in progress.

Reputable independent consultants Cube Consulting Pty Ltd have been engaged to complete the Mineral Resource estimate with strong oversight from Auteco personnel. The estimate will be prepared in accordance with the JORC Code (2012 Edition).

The updated estimate is scheduled for completion in early to mid-July 2021 with results released immediately thereafter.

Growth and Exploration Program

Auteco has a compelling pipeline of exploration and growth drill targets, ranging from early-stage concepts through to advanced prospects with potential to generate additional Resources. Due to the strong success of the recent drill campaigns, the Auteco Board has given approval for the immediate commencement of an additional 50,000m of drilling.

The dual strategy of driving near-mine Resource growth combined with early-stage exploration targeting will continue to be the focus of the program.

Pathway to Development

In anticipation of continued success, Auteco has engaged leading environmental consulting firm Wood PLC to coordinate and conduct activities relating to Advanced Exploration permitting with the Ontario Ministry of Energy, Northern Development and Mines.

Additionally, Auteco has commenced preliminary discussions with a number of engineering firms to conduct assessments of processing and mining infrastructure inherited with the Pickle Crow project.

This announcement has been authorised for release by the Auteco Board.

For further information, please contact:

Mr Ray Shorrocks
Executive Chairman
Auteco Minerals Ltd
+61 8 9220 9030

Paul Armstrong
Media enquiries
Read Corporate
+61 8 9388 1474

ABOUT AUTECO MINERALS

Auteco Minerals Ltd (ASX: AUT) is an emerging mineral exploration company focused on advancing high-grade gold resources at the Pickle Crow Gold Project in the world-class Uchi sub-province of Ontario, Canada.

The Pickle Crow Gold Project currently hosts a JORC 2012 Mineral Resource of 1 Moz at 11.3 g/t gold, with a 45,000m drilling program underway to expedite Resource growth.

Pickle Crow is one of Canada's highest-grade gold mines – historically, producing 1.5 Moz at 16 g/t gold.

For further information regarding Auteco Minerals Ltd please visit the ASX platform (ASX: AUT) or the Company's website https://www.autecominerals.com.au

COMPETENT PERSON STATEMENT

Certain Exploration Results referred to in this announcement were first reported in accordance with ASX Listing Rule 5.7 in the Company's announcements of 28/01/2020, 26/03/2020, 01/09/2020 and 11/11/2020, 19/1/2021 and 7/4/2021. Auteco confirms that it is not aware of any new information or data that materially affects the information included in the original announcements. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Auteco's Inferred Mineral Resource was most recently updated in an ASX Release dated 1 September 2020. Auteco confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that the material assumptions and technical parameters underpinning the resource continue to apply.

Any information in this announcement that relates to new Exploration Results is based on and fairly represents information and supporting information compiled by Mr Marcus Harden, who is a Member of the Australasian Institute of Geoscientists. Mr Harden is an employee of the Company and has sufficient experience in the style of mineralisation and type of deposit under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Harden holds securities in Auteco Minerals Limited and consents to the inclusion of all technical statements based on his information in the form and context in which it appears.

DISCLAIMER

References to previous ASX announcements should be read in conjunction with this release.

FORWARD LOOKING INFORMATION

Various statements in this announcement constitute statements relating to intentions, future acts, and events. Such statements are generally classified as "forward looking statements" and involve known and unknown risks, uncertainties and other important factors that could cause those future acts, events, and circumstances to differ materially from what is presented or implicitly portrayed herein. The Company gives no assurances that the anticipated results, performance, or achievements expressed or implied in these forward-looking statements will be achieved.

APPENDIX A: DRILLING AND ROCK CHIP SAMPLING RESULTS

TABLE 1: Significant Intercept Table – Auteco Drilling: Recent Drilling

Cut-off grade of 1 g/t Gold allowing for 1m internal dilution (NSI – No significant Intercept). All cords in UTM NAD 83 z15.

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay	Comment					
Hole No.	Lasting	Northing	Lievation	Azimutii	ыр	(m)	(m)	(m)	(m)	g/t Au	Comment					
AUDD0064	703789	5709411	346	150.0	55.0	309	183.5	188.1	4.6	7.54						
AUDD0097	704864	5710718	340	129	55	160		N	SI							
							72	72.3	0.3	1.87						
AUDD0101	705003	F74440F	220	452.5		100	74.6	75	0.4	2.56						
AUDD0101	705093	5711185	339	152.5	55	180	86.25	86.55	0.3	14						
							129.75	130.25	0.5	1.59						
							122	123	1	1.29						
AUDD0104	704962	5711060	340	519	60	180	191.2	192.2	1	34.9						
							426.5	463.5	1	4.34						
							95.95	96.25	0.3	1.9						
AUDD0105	704906	5710907	339	412	60	160	339	340.5	1.5	1.59						
							343	344.5	1.5	3.29						
							342.5	345.7	3.2	1.96						
							347.5	348	0.5	1.18						
							369.05	370.5	1.45	3.28						
							395.05	395.4	0.35	5.71						
AUDD0107	704781	5710921	339	160	60	390	399.15	399.5	0.35	1.34						
												375.25	375.75	0.5	4.26	
							401.6	403	1.4	1.78						
								422.5	423.8	1.3	14.4					
							432	436	4	3.55						
AUDD0108	705184	5711235	339	180	60	402.1	57	58	1	1.43						
AUDD0108W							279.1	280.1	1	3.84						
AUDD0110	706911	5712209	338	110	45	206		N	SI							
							82.7	83	0.3	4.19						
AUDD0111	705260	5711233	339	180	55	369	215	215.5	0.5	1.8						
							276.2	276.6	0.4	2.76						
							206.2	206.95	0.75	7.08						
							244.95	245.25	0.3	3.11						
							252.15	252.75	0.6	2.83						
							273.8	276.1	2.3	2.77						
AUDD0112	704843	5711292	338	160	60	537	301.45	301.75	0.3	1.29						
							302.6	303	0.4	1.89						
							382.1	383.3	1.2	11.9						
							502.8	503.4	0.6	5.3						
							269.75	270.05	0.3	1.4						
AUDD0113	704719	5710869	340	160	60	471	286.7	287.15	0.45	2.72						

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay	Comment
Hole No.	Lasting	Northing	Lievation	Azimutii	ыр	(m)	(m)	(m)	(m)	g/t Au	Comment
							326	326.3	0.3	2.39	
							375.1	376	0.9	1.04	
							439.25	439.55	0.3	2.57	
411000444	704755	F740707	240	160		240	213.7	214	0.3	4.35	
AUDD0114	704755	5710787	340	160	55	249	232.2	233.3	1.1	1.4	
411000445	704665	F740C4C	244	160		400	34.5	36	1.5	1.96	
AUDD0115	704665	5710646	341	160	55	198	148.5	149.8	1.3	1.67]
AUDD0116	705365	5711346	338	180	60	288	166	166.3	0.3	1.54	Partial Assay
AUDD0117	704579	5710741	341	160	55	402		N	ISI		
AUDD0118	704600	5710562	343	160	55	201		N	ISI		
							68.4	39	0.6	4.88	
							177.5	178.8	1.3	1.03	1
AUDD0119	705029	5711316	337	180	60	393	338.8	339.4	0.6	313	1
						inc:	338.8	339.1	0.3	613.5	1
							369	369.5	0.5	4.02	1
							302.2	302.65	0.45	33.7	
							323.6	323.9	0.3	23.4	1
AUDD0120	704853	5711166	338	180	55	501	365.45	366	0.55	1.14	1
							402.2	402.8	0.6	2.35	1
							471.8	472.3	0.5	1.58	1
AUDD0121	705309	5711301	338	180	60	296	148.45	148.75	0.3	1.73	Partial Assay
AUDD0122	705095	5711315	337	180	62	447	341.9	343	1.1	11.3	Partial Assay
AUDD0123	704921	5710791	340	140	65	204			l		Awaiting Assay
AUDD0124	705025	5711114	340	180	55	255	196.8	197.1	0.3	12.9	
AUDD0125	705090	5711050	340	180	55	260			l		Awaiting Assay
AUDD0126	705261	5711307	338	180	62	444					Awaiting Assay
AUDD0127	705026	5711377	337	180	60	510					Awaiting Assay
							82.05	83.35	1.3	21.43	
AUDD0128	704919	5711220	337	175	60	399	319.95	320.55	0.6	42.9	Partial Assay
AUDD0129	705445	5711288	342	310	55	168		I	<u>I</u>	I.	Awaiting Assay
AUDD0130	704959	5711109	339	180	55	303					Awaiting Assay
AUDD0131	705190	5711302	338	180	60	339					Awaiting Assay
AUDD0132	704930	5711362	337	160	60	519					Awaiting Assay
AUDD0133	705210	5711475	337	180	60	519					Awaiting Assay
							10.4	11.05	0.65	6.83	Partial Assay
AUDD0134	705635	5711299	358	200	60	345	54.3	58.8	4.5	3.5	<u> </u>
AUDD0135	705520	5711140	356	180	55	128					Awaiting Assay
AUDD0136	705560	5710945	347	210	55	102					Awaiting Assay
AUDD0137	705617	5711186	355	180	55	345	29.8	43.6	13.8	2.0	Partial Assay
AUDD0138	705837	5711257	350	210	55	258	86.5	93	6.5	4.6	Partial Assay
AUDD0139	705058	5711257	338	185	75	636	508.35	508.9	0.55	11.9	Partial Assay

Hala Na	Fasting	Nouthing	Florestion	0 = i marrich	Die	Drilled Length	From	То	Width	Assay	Commont
Hole No.	Easting	Northing	Elevation	Azimuth	Dip	(m)	(m)	(m)	(m)	g/t Au	Comment
AUDD0139	705058	5711454	338	185	75	636	520.25	520.55	0.3	3.13	
							524.5	524.8	0.3	3.78	
AUDD0440	705240	5744475	227	405	7.5	507	544	544.95	0.95	1.2	Partial Assay
AUDD0140	705210	5711475	337	195	75	587	547.5	547.8	0.3	7.01	
AUDD0141	706024	5711437	354	210	60	189	160.55	177	16.45	2.2	Partial Assay
AUDD0142	705802	5711140	347	180	55	133					Awaiting Assay
							43.5	44.4	0.9	1.66	Partial Assay
AUDD0143	705934	5711370	353	210	55	219	52.9	59.5	0.3	1.35	
							68.95	69.3	0.35	2.5	
AUDD0144	705954	5711484	360	330	60	141					Awaiting Assay
AUDD0145	705820	5711430	361	210	55	221					Awaiting Assay
AUDD0146	705802	5711140	348	250	55	210					Awaiting Assay
AUDD0147	705897	5711466	361	330	55	105					Awaiting Assay
AUDD0148	705210	5711475	337	180	73	582	544.75	545.4	0.65	1.04	Partial Assay
AUDD0149	706177	5711593	350	180	55	138	40.85	43.35	2.5	4.5	Partial Assay
AUDD0150	705964	5711328	350	200	50	252	83.75	84.75	1	1.28	Partial Assay
AUDD0151	706257	5711557	345	145	55	168					Awaiting Assay
							466.05	467	0.95	1.89	Partial Assay
AUDD0152	704504	5711072	338	160	63	765	483.2	488.1	4.9	7.5	
						inc:	483.5	485	1.5	17	
AUDD0153	706312	5711610	346	145	55	129					Awaiting Assay
AUDD0154	706361	5711673	348	145	55	135					Awaiting Assay
AUDD0155	705710	5711350	358	200	55	249					Awaiting Assay
AUDD0156	705965	5711328	350	145	50	225	36.8	37.5	0.7	1.69	Partial Assay
AUDD0157	704999	5711407	337	180	76	672					Awaiting Assay
							54.7	59.25	4.55	2.44	_
							68.25	68.55	0.3	1.23	
							87	87.5	0.5	1.09	
AUDD0158	705868	5711368	356	210	55	348	102.65	123	20.35	5.3	Partial Assay
						inc:	116	118.15	2.15	39.34	,
							122.65	123	0.35	3.12	
							128.6	130	1.4	1.19	
							152.75	153	0.25	3.02	
AUDD0159	705690	5711298	358	200	55	291					Awaiting Assay
AUDD0160	705602	5711341	356	200	55	274					Awaiting Assay
AUDD0161	704776	5710431	342	175	55	257					Awaiting Assay
AUDD0162	704694	5710407	342	175	55	222					Awaiting Assay
AUDD0163	705559	5711210	358	180	55	301					Awaiting Assay
AUDD0164	704485	5710851	340	160	57	585					Awaiting Assay
AUDD0165	704504	5711072	338	165	72	108					Awaiting Assay
AUDD0166	704489	5711151	338	160	72	850	836.4	839.7	3.3	8.0	Partial Assay

TABLE 2: Significant Intercept Table – Historical Drilling

Cut-off grade of 1 g/t Gold allowing for 1m internal dilution (NSI – No significant Intercept). All cords in UTM NAD 83 z15.

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
noie No.	Lasting	Northing	Elevation	Azimutii	Dib	(m)	(m)	(m)	(m)	g/t Au
2070-5	705509	5711605	340	136	50	232	188.19	188.26	0.07	1.37
GA81-24	706229	5711412	343	140	50	124		N	ISI	
GA81-28	705727	5711140	349	140	50	124	56.30	57.19	0.89	2.74
GA81-6	706184	5711370	343	140	50	124	68.44	70.33	1.89	4.78
							20.28	34.16	13.88	1.08
							38.74	50.33	11.59	2.72
HC86-71	705780	5711221	351	140	50	181	73.96	75.49	1.53	0.51
							102.02	103.24	1.22	7.33
							107.48	109.01	1.53	2.88
							42.70	61.00	18.30	1.93
HC86-72	705791	5711233	351	140	50	118	64.97	68.02	3.05	1.49
							103.09	106.14	3.05	10.60
HC86-73	705690	5711141	351	140	50	139	28.98	32.03	3.05	1.37
UC96 74	705645	F711101	251	140	F0	140	3.97	5.49	1.52	1.61
HC86-74	705645	5711101	351	140	50	149	14.06	15.59	1.53	1.09
UC96 70	705710	E71110 <i>4</i>	252	140	50	144	110.41	111.94	1.53	0.78
HC86-79	705719	5711194	352	140	50	144	118.04	119.56	1.52	0.96
							29.89	30.81	0.92	2.84
HC86-80	705801	5711240	351	140	50	185	70.24	72.07	1.83	1.68
							77.01	78.54	1.53	0.85
							101.99	105.04	3.05	3.40
							8.94	9.27	0.33	0.72
							11.56	12.69	1.13	1.11
							33.58	34.28	0.70	0.81
							42.88	44.41	1.53	0.57
							47.46	48.56	1.10	0.78
HC87-108	705802	5711288	354	140	60	194	87.44	88.97	1.53	0.73
							107.36	108.58	1.22	0.65
							123.49	126.03	2.54	1.28
							134.08	138.01	3.93	1.30
							149.94	150.79	0.85	0.51
							20.19	20.95	0.76	0.58
							38.37	39.13	0.76	0.68
							53.99	54.75	0.76	0.58
HC87-126	705754	5711247	353	142	60	277	73.05	74.57	1.52	5.52
							91.20	92.72	1.52	0.77
							94.25	97.30	3.05	1.65

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
TIOIC IVO.	Lusting	Working.	Lievation	ALIIIIGUI	۷.۳	(m)	(m)	(m)	(m)	g/t Au
							107.21	109.50	2.29	1.35
HC87-126	705754	5711247	353	142	60	277	122.06	122.82	0.76	1.23
							132.00	132.31	0.31	2.98
							163.33	164.09	0.76	2.57
							197.95	198.71	0.76	1.74
							24.10	24.86	0.76	0.75
							43.62	44.47	0.85	0.82
							48.25	49.01	0.76	0.72
							52.09	52.86	0.77	1.02
							64.23	64.97	0.74	1.68
HC87-127	705771	5711257	354	142	60	264	76.56	77.32	0.76	1.57
11007 127	703771	3/1123/	334	142	00	204	100.19	101.72	1.53	4.52
							107.54	108.31	0.77	8.53
							112.85	113.61	0.76	1.47
							115.05	115.53	0.48	0.82
							126.73	132.68	5.95	1.34
							189.04	189.41	0.37	0.89
							12.51	14.79	2.28	1.22
							49.56	50.33	0.77	0.61
							53.99	54.75	0.76	0.75
HC87-128	705758	5711225	353	142	60	255	60.24	60.70	0.46	0.68
							116.51	118.19	1.68	2.16
							146.25	147.77	1.52	0.72
							247.66	248.42	0.76	1.26
							70.61	71.37	0.76	1.23
							86.93	87.69	0.76	0.92
HC87-129	705751	5711276	355	142	60	264	103.09	104.16	1.07	1.44
							131.46	134.51	3.05	1.47
							183.00	183.76	0.76	0.58
							193.37	194.35	0.98	0.65
HC87-172	706185	5711705	346	180	57	115			SI	
							14.55	15.40	0.85	3.42
HC87-174	706146	5711694	348	180	55	81	24.58	26.14	1.56	0.53
							44.23	44.80	0.57	0.58
HC87-178	706074	5711673	350	180	50	97	15.37	15.65	0.28	0.96
							22.27	23.03	0.76	1.06
							22.94	23.27	0.33	2.40
HC87-179	706078	5711672	352	180	60	91	29.86	30.62	0.76	0.68
							86.74	87.50	0.76	0.68
							131.76	132.68	0.92	0.78
HC87-181	706135	5711620	354	0	50	160	138.17	138.93	0.76	1.13
							141.22	141.83	0.61	0.61

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
						(m)	(m)	(m)	(m)	g/t Au
							63.68	64.17	0.49	0.75
							119.07	119.47	0.40	1.71
HC87-193	705703	5711198	353	160	60	194	121.97	122.73	0.76	2.74
							127.03	127.80	0.77	1.37
							158.45	159.21	0.76	0.68
							185.68	185.87	0.19	0.51
							39.19	39.96	0.77	0.58
							46.48	47.67	1.19	1.16
							55.82	57.34	1.52	6.46
HC87-195	705712	5711161	351	160	60	149	63.78	64.05	0.27	3.32
							66.86	67.28	0.42	5.86
							86.83	87.32	0.49	0.54
							101.29	102.05	0.76	1.09
							28.88	28.98	0.10	0.79
							33.37	33.82	0.45	1.20
HC88-234	706127	5711572	355	140	45	93	67.44	68.47	1.03	0.89
							73.02	73.78	0.76	0.93
							82.81	84.64	1.83	0.99
							44.07	44.84	0.77	0.34
HC88-235	706102	5711550	357	140	48	93	79.00	79.67	0.67	0.93
11000 233	700102	3711330	337	140	40	33	80.28	81.19	0.91	0.86
							84.30	85.83	1.53	5.20
							63.87	64.63	0.76	0.79
							66.49	67.98	1.49	1.71
							76.13	76.89	0.76	0.65
							79.57	81.83	2.26	2.71
HC88-236	706078	5711529	357	140	47	99	85.67	86.50	0.83	2.13
							86.96	87.72	0.76	0.62
							89.79	90.55	0.76	0.34
							92.84	93.48	0.64	0.62
							94.67	96.14	1.47	1.06
							2.14	2.90	0.76	0.58
							36.78	37.09	0.31	2.09
							42.52	43.19	0.67	0.82
HC88-237	706057	5711511	358	140	47	105	47.49	50.94	3.45	0.99
				0	••	_55	67.28	68.32	1.04	1.17
							68.63	69.60	0.97	0.51
							70.15	70.91	0.76	3.22
							100.44	101.11	0.67	0.82
							26.78	26.99	0.21	0.79
HC88-238	706034	5711491	357	140	47	92	28.46	32.33	3.87	2.19
							32.42	32.51	0.09	1.75

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
noie No.	Lasting	Northing	Lievation	Azimutii	Dip	(m)	(m)	(m)	(m)	g/t Au
							51.55	52.49	0.94	2.78
							24.71	25.47	0.76	0.69
HC88-239	706092	5711678	352	140	47	63	21.52	22.86	1.34	4.16
11600 240	705400	F74467F	254	450	47	50	24.69	28.47	3.78	5.76
HC88-240	706109	5711675	354	150	47	50	33.92	34.17	0.25	5.66
							24.55	24.71	0.16	30.58
HC88-241	706118	5711683	352	150	47	45	35.63	35.94	0.31	3.91
							36.30	38.25	1.95	2.57
							11.68	12.08	0.40	0.51
HC88-243	706141	5711679	350	150	47	41	13.91	14.27	0.36	0.62
							35.20	35.81	0.61	25.44
							13.30	14.52	1.22	0.99
HC88-244	706149	5711680	349	160	47	51	36.54	38.06	1.52	0.75
							40.93	41.48	0.55	3.91
HC88-245	705866	5711498	363	140	47	70		Ν	ISI	
HC88-246	705898	5711505	362	140	47	65		Ν	ISI	
HC88-247	705934	5711508	361	140	47	66	14.03	14.67	0.64	0.65
HC88-248	705952	5711490	360	320	45	31	7.78	9.91	2.13	5.88
HC88-249	705862	5711399	359	140	47	93		Ν	ISI	
HC88-250	705842	5711383	358	140	47	93		14.27 0.36 35.81 0.61 14.52 1.22 38.06 1.52 41.48 0.55 NSI 14.67 0.64 9.91 2.13 NSI 17.35 0.30 27.82 0.77 28.76 0.33 34.37 0.76 40.41 2.47 58.50 11.71 62.46 1.00 NSI NSI NSI 44.38 2.69		
							17.05	17.35	0.30	0.55
							27.05	27.82	0.77	2.30
							28.43	28.76	0.33	1.30
HC88-251	705817	5711364	358	140	47	90	33.61	34.37	0.76	0.51
							37.94	40.41	2.47	0.99
							46.79	58.50	11.71	2.02
							61.46	62.46	1.00	1.47
HC88-252	705889	5711424	359	140	47	35		N	ISI	
HC88-253	705947	5711450	358	140	47	92		Ν	ISI	
HC88-254	706134	5711419	348	120	47	92	41.69	44.38	2.69	5.64
HC88-255	706140	5711385	344	140	47	114	15.28	16.87	1.59	2.02
11000 255	700110	3711303	311	110	17		18.70	19.22	0.52	5.86
HC88-256	706119	5711363	344	140	47	50	17.08	18.00	0.92	1.85
							8.08	8.54	0.46	0.69
HC88-257	706101	5711332	344	140	47	38	17.08	17.54	0.46	1.37
							28.06	29.74	1.68	0.96
HC88-258	706083	5711306	344	140	47	46		٨	ISI	
HC88-259	706062	5711286	344	140	47	41	20.13	24.10	3.97	1.78
HC88-260	706039	5711271	345	140	47	38		٨	ISI	
HC88-261	705859	5711157	347	140	47	67	1.22	4.58	3.36	2.16
HC88-262	705839	5711134	347	140	47	63		٨	ISI	
HC88-263	705815	5711114	347	140	47	66	57.34	57.95	0.61	1.34

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
noie No.	Lasting	Northing	Lievation	Azimutii	Dip	(m)	(m)	(m)	(m)	g/t Au
HC88-264	706190	5711362	343	140	47	79		N	ISI	
HC88-265	705893	5711418	359	140	47	92	59.48	61.00	1.52	2.39
							12.81	13.02	0.21	1.68
							13.36	14.58	1.22	0.81
							14.64	14.95	0.31	2.06
HC88-266	705794	5711347	357	140	47	92	15.56	15.86	0.30	1.65
							65.58	66.34	0.76	0.69
							79.30	79.45	0.15	1.06
							89.79	90.43	0.64	0.51
							3.36	4.27	0.91	0.99
HC88-267	705770	5711326	356	140	47	95	80.58	81.50	0.92	0.62
							86.13	86.74	0.61	0.58
							32.03	32.94	0.91	0.65
							45.14	46.06	0.92	0.58
							65.27	68.02	2.75	0.86
							79.30	79.45	0.15	1.06
HC88-281	705979	5711351	350	140	47	185	100.04	100.96	0.92	1.03
HC88-281	703373	3/11331	330	140	47	183	114.99	115.60	0.61	0.55
							116.97	117.55	0.58	1.30
							132.68	133.90	1.22	0.75
							143.23	143.87	0.64	2.37
							157.69	159.21	1.52	1.58
PC-08-016	705931	5711535	362	168	50	122		N	ISI	
PC-08-017	705882	5711521	363	168	50	155		N	ISI	
PC-08-018	706142	5711679	350	187	52	74	40.27	40.91	0.64	9.70
							6.40	14.30	7.90	0.83
							21.55	22.55	1.00	1.80
							86.80	100.80	14.00	3.89
PC-08-020	705965	5711431	356	140	63	284	128.40	135.70	7.30	3.74
							155.30	156.30	1.00	1.16
							177.45	179.30	1.85	0.92
							200.00	204.90	4.90	13.97
							9.00	10.00	1.00	0.76
PC-08-021	705802	5711262	352	140	53	248	54.70	55.00	0.30	0.67
							66.60	72.80	6.20	1.06
							74.40	77.60	3.20	2.35
PC-08-021	705802	5711262	352	140	53	248	80.65	81.10	0.45	4.70
							85.30	95.80	10.50	2.37
							101.05	101.95	0.90	1.22
							108.80	111.60	2.80	8.56
							169.55	170.50	0.95	1.85
PC-08-022	705822	5711352	358	142	50	299	6.85	8.50	1.65	1.44

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
						(m)	(m)	(m)	(m)	g/t Au
							28.50	29.30	0.80	2.12
							31.45	35.90	4.45	0.81
							42.80	43.10	0.30	0.70
							53.35	55.35	2.00	0.76
							57.25	57.55	0.30	3.06
							63.00	64.25	1.25	1.43
							88.40	90.75	2.35	0.64
PC-08-022	705822	5711352	358	142	50	299	142.25	143.25	1.00	0.57
							162.10	163.40	1.30	1.44
							176.75	177.35	0.60	2.81
							180.00	181.20	1.20	3.02
							183.85	184.45	0.60	3.88
							193.65	194.00	0.35	0.59
							203.75	204.25	0.50	3.80
							228.30	230.00	1.70	3.80
							249.50	249.90	0.40	0.96
							17.60	18.45	0.85	4.71
							44.00	48.45	4.45	1.53
							159.45	159.75	0.30	0.97
							166.05	166.35	0.30	0.93
							172.50	173.00	0.50	1.32
							200.70	201.60	0.90	0.82
PC-08-023	705822	5711353	358	142	77	446	203.10	208.00	4.90	1.06
							213.95	214.80	0.85	0.52
							269.45	269.95	0.50	2.29
							272.75	273.75	1.00	4.54
							309.30	310.20	0.90	2.21
							329.35	329.65	0.30	0.58
							333.40	333.85	0.45	1.32
							288.00	289.20	1.20	1.45
							304.50	305.50	1.00	3.24
							332.00	333.20	1.20	1.43
PC-08-024	705872	5711496	363	140	59	366	337.45	338.00	0.55	3.84
							339.50	340.20	0.70	1.03
							346.70	348.05	1.35	0.86
							354.50	356.30	1.80	4.49
							200.58	201.53	0.95	1.15
							213.10	213.70	0.60	0.88
DC 00 035	705073	E711#00	262	142	60	FO4	229.30	230.40	1.10	0.59
PC-08-025	705872	5711496	363	142	69	504	251.88	252.63	0.75	1.49
							301.18	302.28	1.10	1.17
							303.78	304.28	0.50	1.38

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
Hole No.	Lasting	Northing	Lievation	Azimutii	υίρ	(m)	(m)	(m)	(m)	g/t Au
							312.90	313.90	1.00	0.81
PC-08-025	705872	5711496	363	142	69	504	364.72	365.72	1.00	0.91
							374.20	374.80	0.60	1.38
							383.75	384.55	0.80	0.81
							388.45	389.58	1.13	1.34
							399.00	400.30	1.30	1.42
							405.95	406.25	0.30	1.39
							415.25	415.55	0.30	0.64
							420.50	421.00	0.50	0.50
							427.05	427.45	0.40	0.52
							212.00	212.30	0.30	0.68
							224.10	224.40	0.30	0.72
							225.40	228.05	2.65	1.15
							298.00	300.20	2.20	3.00
DC 09 036	705918	5711594	362	140	го	420	335.00	335.45	0.45	1.12
PC-08-026	705918	5/11594	362	140	58	420	345.25	346.80	1.55	0.69
							354.35	355.20	0.85	1.40
							359.35	360.00	0.65	1.72
							362.50	363.00	0.50	0.74
							389.50	390.50	1.00	0.97
							57.50	58.00	0.50	0.56
							229.00	229.80	0.80	0.80
							240.75	242.45	1.70	0.58
							316.33	318.80	2.47	0.77
							346.45	354.40	7.95	3.10
							361.17	364.90	3.73	4.48
							373.55	373.85	0.30	0.57
PC-08-027	705918	5711594	362	140	72	525	377.85	378.85	1.00	1.21
							409.00	412.00	3.00	0.46
							420.45	421.75	1.30	14.82
							451.50	455.60	4.10	1.88
							460.60	462.60	2.00	1.23
							465.60	466.10	0.50	0.87
							489.00	490.50	1.50	5.01
							504.15	504.80	0.65	0.59
							112.20	112.70	0.50	0.93
							273.90	278.00	4.10	6.40
							281.50	284.00	2.50	1.66
PC-09-028	705924	5711601	362	140	75	575	286.00	290.70	4.70	0.90
							299.00	299.70	0.70	0.62
							302.00	307.20	5.20	1.62
							376.00	376.50	0.50	2.02

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
Hole Ho.	Lusting	rtor timig	Lievation	ALIIIIdeii	D.P	(m)	(m)	(m)	(m)	g/t Au
							388.00	388.45	0.45	1.23
							556.75	557.60	0.85	2.36
							561.45	562.80	1.35	4.96
							117.60	120.90	3.30	0.58
							172.00	172.90	0.90	1.15
							289.10	292.20	3.10	4.13
							300.60	301.50	0.90	0.86
							311.00	312.40	1.40	0.68
							314.60	316.60	2.00	1.35
							318.10	324.70	6.60	14.20
							343.80	344.60	0.80	2.82
PC-09-036	705900	5711666	345	135	71	668	347.30	348.90	1.60	0.69
							386.40	387.20	0.80	0.53
							416.25	416.85	0.60	0.61
							420.80	421.40	0.60	11.41
							428.00	429.00	1.00	8.11
							440.50	441.00	0.50	0.55
							486.10	487.00	0.90	7.00
							520.00	520.80	0.80	0.94
							526.30	527.30	1.00	0.64
							144.50	145.00	0.50	1.43
							146.50	147.00	0.50	0.72
							149.50	161.00	11.50	1.27
							168.00	185.00	17.00	3.97
PC-09-037	705928	5711506	362	140	61	358	246.10	246.55	0.45	1.45
							299.30	299.60	0.30	2.36
							317.00	318.00	1.00	3.00
							353.00	354.00	1.00	0.66
							87.45	88.15	0.70	0.57
							127.50	130.40	2.90	0.88
PC-09-038	705819	5711545	358	320	50	614	152.90	153.70	0.80	0.56
							488.81	489.31	0.50	1.65
							11.55	12.40	0.85	0.50
							105.60	106.55	0.95	0.70
PC-09-039	705945	5711417	356	140	63	242	182.00	186.80	4.80	1.56
							191.40	192.70	1.30	1.74
							195.80	200.60	4.80	1.20
							209.25	212.90	3.65	4.68
PC-09-039	705945	5711417	356	140	63	242	220.10	222.40	2.30	0.41
							233.40	234.40	1.00	1.16
							118.00	119.60	1.60	1.63
PC-09-040	705987	5711456	357	140	63	263	124.05	132.00	7.95	1.48

Hole No.	Facting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
Hole No.	Easting	Northing	Elevation	Azimuth	Dip	(m)	(m)	(m)	(m)	g/t Au
							147.75	148.15	0.40	7.78
PC-09-040	705987	5711456	357	140	63	263	157.00	158.00	1.00	1.05
							169.60	170.65	1.05	4.55
							173.10	173.95	0.85	0.63
							176.00	176.70	0.70	7.69
							195.40	196.90	1.50	0.93
							198.40	198.90	0.50	0.61
							203.55	205.00	1.45	2.38
							207.70	208.20	0.50	7.77
							217.40	218.90	1.50	1.52
							226.00	227.60	1.60	0.77
							74.00	76.40	2.40	0.76
							89.00	89.50	0.50	1.16
							167.00	167.50	0.50	0.66
PC-09-041	705876	5711691	342	135	73	464	285.00	285.40	0.40	3.05
							294.70	295.40	0.70	0.78
							381.20	382.00	0.80	1.29
							385.00	386.00	1.00	1.56
							102.40	103.00	0.60	0.89
							204.00	205.20	1.20	1.97
PC-09-043	705950	5711580	361	355	75	497	365.00	366.00	1.00	1.05
							392.40	399.00	6.60	1.03
							401.00	402.00	1.00	0.62
							31.30	31.80	0.50	5.25
							111.50	112.50	1.00	0.72
							232.00	233.00	1.00	0.60
							286.70	290.50	3.80	1.25
PC-09-044	705934	5711608	362	350	74	560	364.80	365.30	0.50	1.34
							446.70	447.40	0.70	1.12
							471.70	472.70	1.00	8.98
							514.00	516.00	2.00	0.70
							518.00	519.00	1.00	0.71
							162.30	163.20	0.90	1.17
PC-09-045	706012	5711676	350	175	73	458	266.00	266.90	0.90	0.63
							331.50	331.95	0.45	1.52
							400.80	402.80	2.00	0.72
							167.40	169.20	1.80	4.06
							190.00	193.00	3.00	0.78
PC-09-046	705998	5711530	360	175	72	524	204.90	210.10	5.20	2.07
							218.20	218.80	0.60	1.09
							222.70	224.00	1.30	0.97
							233.60	234.80	1.20	1.04

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
noie No.	Lasting	Northing	Lievation	Azimuth	Dip	(m)	(m)	(m)	(m)	g/t Au
							322.90	323.80	0.90	1.04
PC-09-046	705998	5711530	360	175	72	524	332.20	332.80	0.60	3.19
							364.00	365.00	1.00	0.66
							369.00	370.00	1.00	0.70
							376.30	380.30	4.00	0.79
							417.75	418.25	0.50	0.68
							450.00	451.00	1.00	0.62
							26.90	28.50	1.60	0.77
							96.35	98.08	1.73	2.89
							101.00	102.00	1.00	0.57
DC 00 047	705004	F711202	252	140		362	108.00	109.00	1.00	0.50
PC-09-047	705994	5711393	353	140	55	302	130.10	133.75	3.65	8.02
							137.55	138.55	1.00	0.73
							154.70	155.70	1.00	0.58
							163.20	164.00	0.80	0.69
							15.70	17.20	1.50	0.64
							88.00	93.00	5.00	2.06
							119.00	121.70	2.70	0.52
							125.00	125.90	0.90	1.77
PC-09-048	705796	5711415	360	170	52	671	140.80	141.60	0.80	0.78
PC-09-048	705796	5/11415	360	170	52	6/1	194.70	195.70	1.00	0.58
							224.70	225.70	1.00	0.98
							244.64	247.00	2.36	0.44
							269.95	270.65	0.70	0.72
							313.00	314.00	1.00	4.21
							10.00	11.00	1.00	3.72
PC-09-049	705794	5711416	360	170	75	350	36.65	55.00	18.35	1.46
1 0 03 043	703734	3/11410	300	170	73	330	143.50	144.50	1.00	3.25
							147.50	152.00	4.50	0.51
							50.00	52.00	2.00	2.48
							116.80	117.40	0.60	0.71
							119.00	120.00	1.00	2.68
PC-09-050	705700	5711323	359	170	53	515	159.00	160.00	1.00	1.04
							163.00	164.60	1.60	0.68
							171.65	172.00	0.35	2.57
							196.70	197.20	0.50	7.96
							199.30	200.00	0.70	0.71
							223.40	224.00	0.60	2.46
							237.00	237.50	0.50	2.53
PC-09-050	705700	5711323	359	170	53	515	239.00	239.80	0.80	0.68
							241.50	242.50	1.00	0.55
							248.50	257.50	9.00	1.78

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length	From	То	Width	Assay
more no.	Lusting	rtor timig	Lievation	Azimatii	D.P	(m)	(m)	(m)	(m)	g/t Au
PC-09-050	705700	5711323	359	170	53	515	271.50	273.40	1.90	2.16
							281.10	282.60	1.50	4.01
							319.00	319.50	0.50	1.96
							9.70	10.40	0.70	0.59
							81.00	82.00	1.00	3.69
							102.20	105.70	3.50	11.00
PC-09-051	705700	5711323	359	170	75	286	229.55	230.60	1.05	0.76
							234.50	235.30	0.80	0.52
							255.40	256.10	0.70	0.59
							267.83	268.13	0.30	1.94
							79.00	79.50	0.50	0.58
							113.00	114.00	1.00	1.06
PC-09-053	705627	5711491	343	170	53	428	340.00	341.00	1.00	1.01
FC-03-033	703027	3/11491	343	170	55	420	354.45	355.54	1.09	1.92
							396.00	398.00	2.00	1.85
							420.40	423.00	2.60	1.16
PC-09-054	705686	5711518	346	170	78	488	41.50	41.85	0.35	3.64
PC-03-034	703080	3/11318	340	170	76	400	340.00	341.00	1.00	1.57
							81.00	82.00	1.00	1.37
PC-09-055	705765	5711554	350	170	75	381	266.70	267.70	1.00	1.00
							296.00	297.00	1.00	0.98
							16.10	17.08	0.98	0.92
							93.33	95.30	1.97	0.71
PC98-01	705951	5711481	360	200	71	630	401.53	403.73	2.20	4.35
							409.16	410.84	1.68	1.00
							424.26	426.05	1.79	0.75
							441.03	441.58	0.55	1.13
							390.61	394.15	3.54	1.74
PC98-02	705865	5711444	362	200	70	544	396.35	402.23	5.88	0.72
							475.95	477.20	1.25	1.37
							256.72	257.51	0.79	1.16
							306.53	307.44	0.91	0.54
PC98-03	705981	5711572	359	200	70	435	313.69	315.92	2.23	1.16
							317.72	323.61	5.89	3.61
							367.10	367.98	0.88	3.39
							371.19	375.24	4.05	0.74
PC98-03	705981	5711572	359	200	70	435	383.08	386.13	3.05	2.04
							561.51	563.03	1.52	0.78
	7672						570.59	571.27	0.68	0.72
PC98-04	705897	5711530	363	200	70	679	572.76	573.37	0.61	3.46
							587.43	588.96	1.53	0.75
							651.48	653.01	1.53	0.51

Hole No.	Easting	Northing	Elevation	Azimuth	Dip	Drilled Length (m)	From (m)	To (m)	Width (m)	Assay g/t Au
PC99-08	705949	5711427	357	330	56	109	46.40	48.00	1.60	1.04
							8.00	9.00	1.00	0.99
PC99-14	706013	5711434	355	330	45	114	13.40	17.90	4.50	2.24
							22.35	23.55	1.20	0.75
							34.29	34.56	0.27	4.11
W-22	705524	5710954	350	154	30	150	38.71	48.01	9.30	1.27
VV-22	703324	3710934	330	154	30	150	58.58	59.59	1.01	2.06
							145.08	146.61	1.53	0.69
W-37	705543	5710980	350	156	45	106	9.05	9.14	0.09	0.69
VV-3/	705543	3710980	550	130	45	100	13.72	14.42	0.70	2.06
W-42	705484	5710961	350	153	45	149	NSI			
W-49	705523	5710955	350	154	60	126	92.45	93.27	0.82	0.52

TABLE 3: Auteco Rock Chip Sampling – Springer Shaft Area

Assay results for reconnaissance rock chip sampling in the Springer Shaft area.

Easting	Northing	Exposure Type	Sample Type	Structure	Au ppm
703374.00	5708260.00	Outcrop	Rock Chip	Vein Qtz	0.04
703374.00	5708260.00	Outcrop	Rock Chip	Vein Qtz	5.66
703370.00	5708264.00	Outcrop	Rock Chip	Vein Qtz	4.34
703370.00	5708266.00	Outcrop	Rock Chip	Vein Qtz	1.46
703369.00	5708262.00	Outcrop	Rock Chip	Vein Qtz	4.33
703369.00	5708263.00	Outcrop	Rock Chip	Vein Qtz	0.24
703369.00	5708263.00	Outcrop	Rock Chip	Vein Qtz	0.01
703152.00	5708612.00	Outcrop	Rock Chip	Vein Qtz	0.05
703152.00	5708612.00	Outcrop	Rock Chip	Vein Qtz	0.01
703152.00	5708612.00	Outcrop	Rock Chip	Vein Qtz	0.02
703154.00	5708613.00	Outcrop	Rock Chip	Vein Qtz	0.01
703166.00	5708588.00	Outcrop	Rock Chip	Vein Qtz	0.00
703166.00	5708588.00	Outcrop	Rock Chip	Vein Qtz	0.01
703166.00	5708588.00	Outcrop	Rock Chip	Vein Qtz	0.13
703166.00	5708588.00	Outcrop	Rock Chip	Vein Qtz	0.01
703169.00	5708555.00	Outcrop	Rock Chip	Vein Qtz	0.18
703169.00	5708555.00	Outcrop	Rock Chip	Vein Qtz	1.50
703213.00	5708346.00	Outcrop	Rock Chip	Vein Qtz	0.22
703197.00	5708324.00	Outcrop	Rock Chip	Vein Qtz	1.02
703262.00	5708260.00	Outcrop	Rock Chip	Vein Qtz	145.70
703272.00	5708287.00	Outcrop	Rock Chip	Vein Qtz	0.16
703272.00	5708287.00	Outcrop	Rock Chip	Vein Qtz	6.18
703306.00	5708257.00	Outcrop	Rock Chip	Vein Qtz	0.02

APPENDIX B - JORC CODE, 2012 EDITION

Table 1 – JORC Code 2012 Edition

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Drilling since 2008, quoted with PC- prefix is from PC Gold exploration with NQ diameter (47.6mm) drill core was recovered from drilling. Noramco drilling, CP- prefix is BQ diameter (36.5mm). All other quoted intercepts and the bulk of historical drilling data is of NQ diameter including Auteco drilling subject to this release (prefix AUDD**). The core was sawn in half following a sample cutting line determined by geologists during logging and submitted for analysis on nominal 1m (1ft for historical drillholes) intervals or defined by geological boundaries determined by the logging geologist. Samples from PC Gold holes (PC- prefix) post 2008 were submitted to ALS Chemex in Thunder Bay and North Vancouver for analysis. Samples were prepared for analysis using a jaw crusher which was cleaned with a silica abrasive between samples resulting in 90% of the sample passing through an 8 mesh screen. A split of the crushed sample weighing 1000g was then pulverised to 90% passing a 150 mesh screen. Sample pulps were analysed for gold by Fire Assay using 50g sample charge with atomic absorption spectroscopy (AAS) finish. If the returned assay result was equal to or greater than 5g/t then the sample was reassayed by Fire Assay with a gravimetric finish. Samples from historical diamond drilling programs conducted between 1981 and 2008 were dispatched to a variety of accredited laboratories in Canada for Fire Assay analysis. Historical drill results prior to 1981are Fire Assay conducted by unknown laboratories (most likely the mine laboratory during the operational life of the Pickle Crow Mine) and with unknown preparation methods and assay charge, however previous operators have duplicated and verified results. Recent sampling by Auteco minerals on drill holes subject to this release (prefix AUDD**) were submitted to AGAT Laboratories, Thunder Bay for analysis. Auteco samples undergo the same preparation and analysis techniques previously used for PC Gold. All samples >10g
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling quoted with PC- prefix is from PC Gold exploration with NQ diameter (47.6mm) drill core was recovered from drilling. Noramco drilling, CP- prefix is BQ diameter (36.5mm). All other drilling is NQ diameter including Auteco drilling subject to this release (prefix AUDD**).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All drilling quoted is NQ diamond core (including Auteco drilling subject to this release -prefix AUDD**) with the exception of Noramco drillholes (CP- prefix). RQD was recorded for all diamond drilling as per industry standard. A review of the available diamond drill core RQD's from the Pickle Crow project (PC- prefix and recently completed Auteco drilling - AUDD* prefix) indicated that nearly all of the holes produced excellent recoveries with an average of >90%. For drilling conducted by other operators recoveries are unknown although reports do not highlight significant core loss. A review of RQD results does not highlight a relationship between sample recovery and grade or highlight any sample bias due to loss of material.

Criteria	JORC Code explanation	Commentary
Criteria Logging Sub-sampling techniques and sample preparation	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All PC Gold and Auteco samples (PC- and AUDD* hole prefix) were geologically logged. Lithology, veining, alteration, mineralisation and weathering are all recorded in the geology table of the drill hole database. Other historical drillholes have been similarly logged and records have been digitized from report format. Geological logging of Diamond Core samples is qualitative and descriptive in nature. All drilling quoted from PC Gold and Auteco exploration (PC-and AUDD* hole prefix) is.NQ diameter (47.6mm) drill core recovered from drilling. All other quoted intercepts are NQ diameter with the exception of Noramco drilling (CP- Prefix) which is BQ (36.5mm) diameter. The core was sawn in half following a sample cutting line determined by geologists during logging and submitted for analysis on nominal 1m (or 1ft) intervals or defined by geological boundaries determined by the logging geologist. This sampling technique is industry standard and deemed appropriate. PC Gold QA/QC protocols include the use of crush duplicates, % core field duplicates, the insertion of certified reference materials (CRM's) including low, medium and high-grade standards and coarse blanks. This was accomplished by inserting the QA/QC samples sequentially in the drill core sample numbering system. One set of the four QA/QC types were inserted every 30 samples consisting of 1 crush duplicate, 1 % split field duplicate, 1 CRM (altering between low, medium and high standard) and 1 blank. This resulted in approximately every seventh sample being a QA/QC sample. Auteco minerals (AUDD* prefix holes) follows the same QA/QC protocols but with CRM's and duplicates inserted every 25 samples. QAQC procedures are not disclosed in previous reporting but results are consistent with visual observations of mineralisation as recorded in the geological logs and qualitative proportions of logged veining and sulphide content. Post-Mining Pickle Crow Property operators employed the usual in-labo
		 available for earlier results sample duplicate verification has been conducted. Sample size is deemed industry standard for Orogenic Gold deposits.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Samples were submitted to ALS Chemex in Thunder Bay and North Vancouver for analysis. Samples were prepared for analysis using a jaw crusher which was cleaned with a silica abrasive between samples resulting in 90% of the sample passing through an 8 mesh screen. A split of the crushed sample weighing 1000g was then pulverized to 90% passing a 150 mesh screen. Sample pulps were analysed for gold by Fire Assay using 50g sample charge with atomic absorption spectroscopy (AAS) finish. If the returned assay result was equal to or greater than 5g/t then the sample was reassayed by Fire Assay with a gravimetric finish Samples from historical diamond drilling programs conducted between 1981 and 2008 were dispatched to a variety of accredited laboratories in Canada for Fire Assay analysis. Historical drill results prior to 1981are Fire Assay conducted by unknown laboratories (most likely the mine laboratory during the operational life of the Pickle Crow Mine) and with unknown preparation methods and assay charge, however previous operators have duplicated and verified results. Recent sampling by Auteco minerals on drill holes subject to this release (prefix AUDD**) were submitted to AGAT Laboratories, Thunder Bay for analysis. Auteco samples

Criteria	JORC Code explanation	Commentary
		 undergo the same preparation and analysis techniques previously used for PC Gold. In addition to the Company QAQC samples (described earlier) included within the batch the laboratory included its own CRM's (Certified Reference Materials), blanks and duplicates. Sample assay results continue to be evaluated through control charts, log sheets, sample logbook and signed assay certificates to determine the nature of any anomalies or failures and failures were re-assayed at the laboratory. Check assaying was also conducted on 1 in every 20 samples. QAQC protocols are unknown for historical drill programs (without the PC- hole prefix). QA/QC work is industry standard and acceptable levels of accuracy and precision have been established.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historical significant intersections quoted have been verified by Independent Geological Consultants Micon International Limited. For more details see document 'Updated Mineral Resource Estimate for the Pickle Crow Property, Patricia Mining Division, Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc. There are no twinned holes in the dataset but a comparison of the results of different drilling generations showed that results were comparable. In addition previous operators have duplicated and verified results by re-sampling historical core. For PC Gold drilling (PC- prefix), once all logging data was completed, core marked up, logging and sampling data was entered directly into the Gems Logger program (an MS Access-based database and stored on the onsite server. At approximately weekly intervals the server onsite was synchronised with the main server in Thunder bay. Only one individual was responsible for synchronising the field and office databases. Auteco records new drilling data in Excel spreadsheet format synchronized with the Auteco server in Perth, Australia. No adjustments were made to assay data but the procedure to determine which gold assay to enter into the database is as follows. If a pulp metallic assay was performed, then a gravimetric assay was used. If a gravimetric assay was not performed, then the AAS assay was used unless a QA/QC investigation proved that the first assay was suspect, in
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Which case the second analysis was then used. Upon completion of PC Gold drillholes collars (PC Gold prefix) were surveyed by third party contractors Delta Surveying and J.D.Barnes of Thunder Bay to with +/- 1m using an SX Blue. For all other drilling hole collars were converted from local grids or digitised from georeferenced maps. Where possible these historical surface drillholes have been re-located, surveyed and verified in the field. Drillhole locations are also recorded by the Ontario Ministry of Northern Development and Mines in freely available GIS datasets. Auteco drilling (AUDD* prefix) has been surveyed with a hand-held GPS to an accuracy of less than 3m. A variety of down hole survey tools have been used on the property. All holes were surveyed at 50m intervals while drilling using an EZY Shot magnetic compass based tool supplied by the drillers. In conjunction with this, all holes were surveyed after completion with a non-magnetic downhole instrument. A variety of tools were trialled including Maxibore tool provided by Reflex Instruments, a Devifelx tool operated by TECH Directional services and an SPT North Seeking Gyro. For Auteco drilling subject to this release down

Criteria	JORC Code explanation	Commentary
		hole surveys have been conducted by a REFLEX North Seeking Gyro. For further historical details of survey reproducibility and tools used please refer to document 'Updated Mineral Resource Estimate for the Pickle Crow Property, Patricia Mining Division, Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc. For all drilling not conducted by PC Gold (lacking the PC- prefix) surveys were conducted during drilling with hole orientation recorded by the geologist in the field. Downhole surveys of dip are recorded by azimuths away from the collar are generally lacking. • All location data is in UTM grid (NAD83 Zone 15) except where noted. • Topographic Control for PC Gold and Auteco drilling (PC- and AUDD* prefix) is from a DTM created generated from a LIDAR survey completed in 2008 and are to an accuracy of <1m and verified by drill collar surveys. For all other collar data elevation was estimated from contours provided from SRTM. Topographic control for underground drillhole collars has been digitised from level plans or converted from mine grids. All surface collars have now been projected to a DTM generated from a LIDAR survey completed in 2008 and are to an accuracy of <1m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Due to the nature of mineralisation the hole spacing is highly variable and of a progressive exploration in nature. Data spacing is considered sufficient to establish geological and grade continuities for mineral resource estimation at the Inferred Category No sample compositing was applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill hole orientations were designed to test perpendicular or sub-perpendicular to the orientation of the intersected mineralisation. Drilling was typically oriented perpendicular to the trend of geophysical anomalism and the mapped strike and dip of observed mineralisation on surface and elsewhere in the project area. Due to the density of drilling and the orientation of drilling perpendicular to mineralised bodies there is limited bias introduced by drillhole orientation.
Sample security	The measures taken to ensure sample security.	 For PC Gold and Auteco drilling (PC- and AUDD* prefix), once the core samples are cut, blagged and sealed with zip ties, ten samples are put into rice bags which are sealed and secured with numbered security tags. Once samples arrive at the laboratory the security tags and corresponding samples were verified against onsite logs. Prior to shipment samples are stored in a locked building onsite. Site is always occupied, and no samples are left at the project during field breaks. For all other drillholes the measures taken to ensure sample security are unknown.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 An audit and review of sampling techniques and data was conducted as part of NI-43-101 resource estimation by Independent Consultants Micon International in 2018. Please refer to document 'Updated Mineral Resource Estimate for the Pickle Crow Property, Patricia Mining Division, Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria **JORC Code explanation** Commentary Mineral tenement and • The mineral concessions of the Pickle Crow project consist of Type, reference name/number, location and land tenure status ownership including agreements or material 106 patented mining claims covering 1,712ha and 88 issues with third parties such as joint ventures, contiguous, unpatented claims covering approximately 14,048ha. Of the 106 patented claims 98 (the Pickle Crow partnerships, overriding royalties, native title interests, historical sites, wilderness or national Lease) are held in the name of Teck Cominco Limited (Teck) park and environmental settings. and 8 are held in the name of PC Gold. The unpatented The security of the tenure held at the time of claims are held in the name of PC gold. PC Gold has a lease on the 98 patented claims held by Teck which expires in reporting along with any known impediments to 2067. These leasehold claims are subject to two net smelter obtaining a license to operate in the area. return (NSR) royalties totalling 1.25%. The other 8 patented claims (the Crowshore Patents), plus certain unpatented claims are subject to NSR royalties ranging from 2% to 3%. A full list of tenements along with details of relevant NSR's as they pertain to individual properties is given in Auteco ASX releases dated: 28/01/2020 and 17/02/2020. An additional 600 claims were staked by Auteco subsidiary. Revel Resource (JV) Ltd. and are subject to the terms of the Earn-In-Auteco has entered into an agreement to acquire up to 80% of the Pickle Crow Gold Project from First Mining. A payment of C\$50,000 has been made to First Mining. The consideration for acquisition of the assets are as follows: Upon signing a formal agreement: A further C\$50,000 and 25,000,000 Shares in the capital of Auteco at a deemed issue price of A\$0.008 per share. Stage 1 Earn-In (51%): Spending C\$5,000,000 over three years comprising: Spending C\$750,000 within a 12-month period ('Expenditure Payment 1'): and Spending C\$4,250,000 within a 24-month period after Expenditure Payment 1 is satisfied; and Subject to shareholder approval by Auteco, issuing to First Mining 100,000,000 Shares in Auteco. (together 'Stage 1 earn in'). Stage 2 Earn-In (a further 19%): Expending exploration expenditure in the 24-month period commencing on the date that Auteco satisfies the Stage 1 Earn-in of C\$5,000,000 ('Expenditure Payment 3'); and Within 90 days of completing expenditure Payment 3, making a cash payment to Seller in the amount of C\$1,000,000 ('Expenditure Payment 4'), (together the 'Stage 2 Earn In'). Also, Buy In: May buy a further 10% interest by paying C\$3,000,000 to First Mining; and a 2% Net Smelter Return granted after the Stage 2 Earn-In. Further details are included in ASX releases (17/02/2020 and 13/03/20). For a more complete discussion of type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings relating to the Pickle Crow Project please refer to document 'Updated Mineral Resource Estimate for the Pickle Crow Property, Patricia Mining Division, Northwestern Ontario, Canada' NI-43-101 dated 15 June 2018 and available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for First Mining Inc. Exploration bν Acknowledgment and appraisal of exploration by The first government survey of the area was performed by other parties other parties. William McInnes of the Geological Survey of Canada (GSC) along the Crow River from 1903 to 1905. Prospecting in the Pickle Lake area commenced in 1926. In 1927, Lois Cohen of Haileybury formed a prospecting group and early that winter sent Alex and Murdock Mosher in to stake the first claims

(December 1927) on what ultimately became the Central

Criteria **JORC Code explanation** Commentary Patricia Gold Mines property. These claims were optioned by F.M Connell and Associates in August 1928 and Central Patricia Gold Mines Limited was incorporated on 19 February, 1929. Diamond drilling commenced at Central Patricia in February 1929 and production in March 1930. The Central Patricia discovery paved the way from exploration in the region which led to the discovery and initial drilling (1929) of the first Pickle Crow orebody the No.1 Vein by Northern Aerial Mineral Exploration Limited, a company set up in 1928 by J.E. (Jack) Hammell. In 1929 gold was also discovered by Albany River Miners Ltd. (Albany River) at the No.16 vein on the Albany River claims to the east of the then Pickle Crow property. Northern Aerial was acquired by Pickle Crow Gold Mines Limited (PCGM) in 1934 with Jack Hammell continuing as president. Production from the Pickle Crow mine began on 17 April, 1935. Albany river sank the Albany shaft to a depth of 190m between 1933 and 1938 and completed extensive underground development. Winoga Patricia Gold Mines was created in 1936 and drilled 73 surface diamond drill holes on a pie-shaped property located between PCGM's holdings and the Albany River Mines ground to the east. A mine shaft was subsequently sunk on the property in 1938. That same year, PCGM took over ownership of both Albany River Mines and Winoga Patricia Gold Mines through a new company called Albany River Gold Mines Ltd. It is believed that the Winoga Patricia Gold Mines shaft later became the No.3 Shaft of the Pickle Crow operation. The Cohen- MacArthur zone, located 2km to the north of the developing Pickle Crow mine, was discovered in 1933. A total of 14 surface diamond holes were drilled at Cohen-MacArthur in the winter of 1936. This property was optioned by PCGM in 1938, With the acquisition of the Cohen-MacArthur claims, PCGM became one of the largest land holders in the Pickle Lake area. The GSC completed a regional synthesis of the Pickle Crow Greenstone belt during this period as well. Ground and airborne geophysical surveys have been completed over all or parts of the Pickle Crow property at various times during its early history. A dipneedle survey completed in 1936 on the Pickle Crow property was useful in tracing out the bands of the iron formation. A detailed magnetic survey was carried out over the property by Teck (or its predecessor companies) around 1960. The property then underwent a series of ownerships until it became wholly owned by Teck in 1971. The property then sat dormant until 1973 when Pickle Crow Exploration Ltd. Reviewed the economics of reopening the mine. In 1978, a merger between Pickle Crow Explorations Ltd. And four other companies saw Teck's ownership reduced to 44.6% and a new exploration company called Highland-Crow Resources Ltd. Highland Crow went on to option the property to Galant Gold Mines Limited in 1979. Gallant performed a VLF_EM geophysical survey and drilled 47 surface diamond drill holes for 7,356m. The only known soil geochemical survey done on the Pickle Crow property was completed for Gallant in 1983. Soil values ranged from 10 to 12,000ppb with the high values attributed to mine tailings and cultural anomalies. In 1983 the property returned to Highland-Crow. Noramco Mining Corp. bought Highland-Crow in 1988. Between 1985 and 1987 Highland-Crow completed line-cutting, magnetometer and IP, geophysical surveying, geological mapping, surface trenching, diamond drilling and environmental baseline studies. Noramco drilled surface exploration holes, completed geophysical surveys and commenced dewatering of the No.1 shaft. Noramco

Criteria	JORC Code explanation	Commentary
		drilled 286 surface diamond drill holes for 46,189m and 79 underground holes for 9,341m. Noramco also commissioned Historic (non-compliant) Resource Estimates. In 1994 Noramco changed its name to Quest Capital. Quest assigned its interest to Pickle Crow Resources Inc. A total of 4 surface diamond drill holes for 2,287m were completed. Quest then sold its interest to Wolfden Resource Inc who entered into an option agreement with Jonpol Explorations Ltd. Who drilled 18 surface diamond holes for 2,173.5m. Wolfden also entered into a surface mining agreement with Cantera Mining Limited in 2000. Canterra commenced building a 225tpd gravity mill on site in 2002 but was placed into receivership in 2004. In 2006 Wolfden transferred Pickle Crow to Premier Gold Mines Ltd. Before the property was sold to PC Gold in 2007. PC Gold then explored the property completing 184 holes for 62,968m by 2011 and 173 holes for 35,840.4m from 2011 to 2014 before commissioning an NI-43-101 compliant Resource Estimate.
Geology	Deposit type, geological setting and style of mineralisation.	The Pickle Crow Gold Deposit is considered to be an Archean low-sulphide gold-quartz vein type deposit, also known as shear-hosted gold, Archean quartz-carbonate vein gold deposits, Archean lode gold, Archean mesothermal gold deposits or simply orogenic gold. The deposit occurs primarily within mafic volcanics and banded iron formation (BIF) units in the Pickle Crow assemblage of the Pickle Lake Greenstone belt in the Uchi Lake Sub province of the Superior Craton of the Canadian Shield.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to Appendix A in ASX releases as indicated in this release as well as the current release for drill hole information for all reported drill holes for this JORC 2012 Table 1 and in accordance with ASX listing rule 5.7.2.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All drill hole intersections are reported above a lower cut-off grade of 0.5g/t Gold or 1g/t as indicated, with no upper cut off grade has been applied. A maximum of 1m internal waste was allowed. Tabulated results are presented in previous ASX announcements as indicated in the body of this release and in Appendix A of this release) Metal equivalent values are not used
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement 	 All intersections reported in the body of this release are down hole The majority of the drill holes are drilled as close to orthogonal to the plane of the mineralised lodes as possible. A number of drill holes have intersected the mineralisation at high angles. Only down hole lengths are reported.

Criteria	JORC Code explanation	Commentary
	to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps and sections are included in the body of this release a deemed appropriate by the competent person.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Any significant higher-grade zones in historical drilling quoted in this release have been reported in previous ASX announcements as highlighted in the body of this release as well as Appendix A of this release) All results above 0.5g/t lower cut-off or 1g/t quoted in this release have been reported in previous ASX announcements as indicated in the body of this release as well as Appendix A of this release)
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Appropriate plans are included in the body of this release.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Auteco Minerals Limited is currently conducting drill testing of additional lodes as well as step out and infill drilling of existing lodes to further enhance the resources quoted in this release. More information is presented in the body of this report. Diagrams in the main body of this release show areas of possible resource extension on existing lodes. The company continues to identify and assess multiple other target areas within the property boundary for additional resources.