

Ref: /BSX/609/BSX0110

Blackstone to Explore Advanced Nickel Sulfide Project in a Premier Nickel District

Highlights

- Blackstone enters a binding term sheet for option to acquire a 90% interest in the Ta Khoa Nickel Project in Vietnam;
- Blackstone believes the Ta Khoa acquisition will substantially enhance the Company's battery mineral focused asset base, which already includes the BC Cobalt Project;
- The Ta Khoa Project includes the Ban Phuc nickel mine which successfully operated as a mechanised underground mine from 2013 to 2016 and is currently on care and maintenance;
- Existing modern infrastructure built to Australian Standards includes a 450ktpa concentrator located within a premier nickel sulfide district;
- The acquisition includes 150km² land package hosting more than 25 advanced stage massive sulfide vein (MSV) targets (see Figure 9) and many large disseminated sulfide (DSS) targets including the unmined Ban Phuc DSS where historic intersections include (Refer to Table One for full results):

BP04-68 74.0m @ 1.02% Ni & 0.20% Cu from 73.0m

Incl. **51.0m @ 1.19% Ni & 0.24% Cu** from 91.0m

LK46 90.2m @ 1.10% Ni from 140.2m

Incl. **54.2m @ 1.50% Ni** from 162.9m

BP14-03 71.2m @ 0.98% Ni & 0.18% Cu from 90.5m

 Blackstone to investigate the potential to develop downstream processing infrastructure in Vietnam to produce a downstream nickel and cobalt product to supply Asia's growing lithium ion battery industry;

Blackstone Mineral's Managing Director Scott Williamson commented;

"This is an exciting opportunity for Blackstone to acquire a 90% interest in a project that has a history of profitable nickel production even during low nickel prices. Blackstone will be the first company to explore Ta Khoa for both MSV and DSS nickel sulfide deposits all the while investigating downstream processing opportunities to meet the demands of the growing Asian lithium ion battery sector."

BLACKSTONE FAST FACTS

Shares on Issue 112.2m Share Price \$0.064 Market Cap \$7.18m ASX Code **BSX**

BOARD & MANAGEMENT

Non-Exec Chairman Hamish Halliday

Managing Director Scott Williamson

Technical Director Andrew Radonjic

Non-Exec Directors
Stephen Parsons
Michael Konnert

Joint Company SecretariesMichael Naylor
Jamie Byrde

ADVANCING THE FOLLOWING PROJECTS

Ta Khoa Nickel Project Son La, Vietnam

BC Cobalt Project British Columbia, Canada

Cartier Cobalt-Nickel Project Quebec, Canada

Gold and Nickel Projects Western Australia

- Silver Swan South
- Middle Creek
- Red Gate

REGISTERED OFFICE

Blackstone Minerals Limited ABN 96 614 534 226 Suite 3, Level 3, 24 Outram Street, West Perth, WA, 6005

T: +61 8 9425 5217 F: +61 8 6500 9982

E: admin@blackstoneminerals.com.au

Blackstone Minerals Limited **(ASX code: BSX)** is pleased to announce the Company has entered into a binding term sheet for the exclusive option to acquire a 90% interest in the Ta Khoa Nickel Project. The Ta Khoa Nickel Project is located 160km west of Hanoi (see Figure 1) in the Son La Province of Vietnam and includes an existing modern nickel mine built to Australian Standards, which is currently under care and maintenance. The Ban Phuc nickel mine successfully operated as a mechanised underground nickel mine from 2013 to 2016.

Previous project owners invested more than US\$136m in capital and generated US\$213m in revenue¹ during a 3.5-year period of falling nickel prices. The project was placed into care and maintenance in mid-2016 during some of the lowest nickel prices in the past 10 years. Existing infrastructure associated with the project includes an internationally-designed 450ktpa processing plant connected to local hydro grid power with a fully-permitted tailings facility and a modern 250-person camp.

Binding Option Deal Terms

Blackstone Minerals Limited has entered into a 12-month exclusive binding option agreement to purchase AMR Nickel Limited's 90% interest in the Ta Khoa Project based on the following terms:

- Quarterly option payments to AMR Nickel Limited of US\$100,000 to be spent by AMR Nickel Limited in accordance with an Approved Expenditure Budget (this payment excludes all exploration and feasibility study costs which will be incurred by and at the discretion of Blackstone Minerals).
- Exercise of the Option by issuing A\$1,000,000 of Ordinary Fully Paid Shares in Blackstone Minerals Limited issued at a deemed issue price based on the VWAP for the 30 trading days immediately preceding the date of the exercise notice. Consideration shares under the Option Agreement will be subject to shareholder approval under Listing Rule 7.1, however approval will not be sought from shareholders until the Option is exercised by Blackstone at a later date.
- Blackstone may extend the option period to 24 months by spending a minimum of A\$1,000,000 on exploration activities within the first 12 months of the option agreement.

Blackstone Minerals will liaise with the ASX regarding its compliance with Listing Rule 11.1.2 in relation to the transaction, however based on Blackstone's assessment of the scale of the transaction, we believe the acquisition will not require shareholder approval under Listing Rule 11.1.2.

Ta Khoa Nickel Project - Next Steps

Previous project owners focused mining and exploration efforts primarily on the Massive Sulfide Vein (MSV) at Ban Phuc while Blackstone will now look to explore both Massive Sulfide Vein (MSV) targets and Disseminated Sulfide (DSS) targets throughout the entire Ta Khoa Project. Blackstone will conduct further geophysics on the MSV and DSS deposits and follow up with significant drilling campaigns. Blackstone will aim to deliver a maiden resource on the Disseminated Sulfide (DSS) at Ban Phuc over the coming months, and investigate the potential to restart the Ban Phuc concentrator through focused exploration on both MSV and DSS deposits.

Blackstone will commence metallurgical testing on the Ban Phuc Disseminated orebody with an aim to develop a flow sheet for a product suitable for the Lithium Ion battery industry. Blackstone will investigate the potential to develop downstream processing infrastructure in Vietnam to produce a downstream nickel and cobalt product to supply Asia's growing lithium ion battery industry.

¹ Refer to Footnote and References for further information.

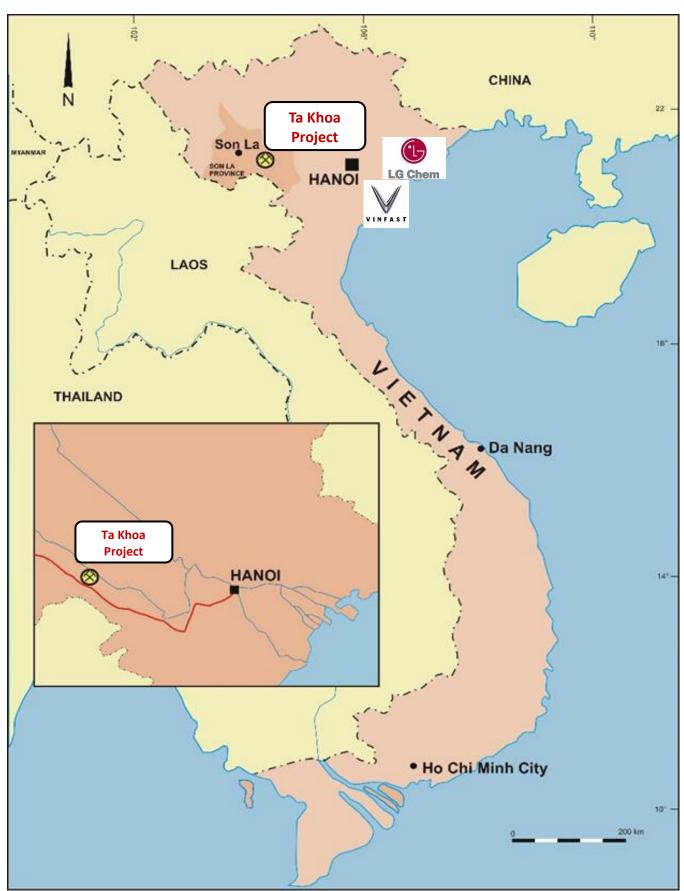


Figure 1 Ta Khoa Project Location, Vietnam

History

The Ban Phuc deposit was first discovered in 1945 and subsequent early exploration work conducted by Vietnamese geologists in the mid-1950s and early 1960s was initially focused on copper. AMR Nickel Limited was established in 1993 and commenced modern exploration at Ban Phuc in 1996. The licence area, prior to 1993, was entirely owned and administered by the Vietnamese government. Asian Mineral Resources Limited listed on the TSX-V in April 2004 and completed a diamond drilling program soon after, aiming to define a mineral resource at Ban Phuc.

The first phase of mining commenced in 2008 but global market conditions saw this soon cease. Construction recommenced in 2012 and the mine was bought into full-scale production during 2013 and completed in mid-2016. Previous exploration and mining almost entirely focused on the high-grade Massive Sulfide Vein (MSV) with $\sim 80\%$ of all drilling to date into Ban Phuc. In 2016 when the Ban Phuc Nickel mine was placed into care and maintenance, a total of ~ 381 holes had been drilled for $\sim 61,894$ m (with ~ 310 holes for $\sim 49,743$ m into Ban Phuc) (Refer to table one and Appendix 1 for drill results).

Existing Modern Infrastructure

The existing modern infrastructure at Ban Phuc remains in good condition, in readiness for an improved nickel price. The infrastructure includes an internationally-designed 450ktpa processing facility (see Figure 3) connected to local hydro grid power, and a fully-permitted tailings facility (see Figure 6) with excess capacity and expansion options. Other modern infrastructure includes a mechanised underground mine (see Figure 2) with established workshops, fabrication and maintenance facilities (see Figure 7), an internationally certified laboratory (see Figure 5) and a 250-person camp (see Figure 4).

Downstream Nickel Processing

Previous owners of the Ban Phuc nickel mine completed an extensive engineering study for a downstream nickel smelter which allowed a reduction in tariffs from 20% to 5%. Metallurgical test work indicated favourable metallurgical characteristics for downstream processing with relatively low capital requirements. Blackstone believes Vietnam is an ideal location to establish downstream processing infrastructure to deliver nickel and cobalt sulfide feed into Asia's growing Lithium Ion battery industry. Blackstone will investigate the potential to develop downstream processing infrastructure to produce nickel and cobalt products for the Lithium Ion battery sector.

Vietnamese Mining Industry

Vietnam has an established mining industry with 22 open cut mines and 23 underground mines throughout the country. The government is focused on tax reform and improving the operating environment to entice foreign investment into the mining industry. In July 2018, the Prime Minister approved the Vietnamese Mining Master Plan (2020-2035) which specifically identifies the Ban Phuc Nickel mine as a project of national significance which eliminated key permitting and approval obstacles. The government recently halved the Mining Licence Grant Fee (MLGF) for new nickel mines and recently announced a new-generation Foreign Direct Investment (FDI) attraction and orientation strategy for 2018-2030. Through the Trans-Pacific Partnership (TPP), the government has committed to eliminating existing export taxes in Vietnam. These initiatives all point to an improved operating environment for multinational mining companies investing in Vietnam.

M I N E R A L S

Figure 2 Modern mechanised underground mine at Ban Phuc on care and maintenance

Figure 3 Internationally-designed 450ktpa processing plant on care and maintenance

Figure 4 Modern 250-person camp

M I N E R A L S

Figure 5 Internationally certified laboratory

Figure 6 Fully permitted internationally-designed tailings facility

Figure 7 Mine store with significant critical spare inventory

Geology

The Ta Khoa Nickel Project is located within the northwest to southeast-trending Song Da Rift zone of northern Vietnam. The Song Da Rift is a major crustal suture zone which forms part of a greater system of deep continental rifting. This major structure continues north into China where it is associated with a series of comparable magmatic Ni-Cu-PGE deposits e.g. Baimazhai, Qingquanshan, Limahe and Yangliuping (see Figure 8).

The Song Da Rift zone has a tectonic and structural setting analogous to major Ni-Cu deposits such as Norilsk (Russia) and Jinchuan (China). The project lies entirely within the Ta Khoa anticline which is a domal feature within the Song Da Rift Zone. The geological setting and the 25 advanced stage massive sulfide vein (MSV) targets combined with a number of broader disseminated sulfide targets indicates significant potential exists for multiple Ni-Cu-Co-PGE deposits within the Ta Khoa Nickel Project.

A number of types of mineralisation are recognised in the intrusive and surrounding metamorphic rocks throughout the Ta Khoa Project:

- Massive sulfide type mineralisation (MSV);
- Disseminated sulfide type mineralisation surrounding the MSV;
- Low grade disseminated sulfides in dunite (DSS); and
- Oxidised type mineralisation.

Most Ni-Cu-Co mineralisation, with or without platinum group elements (PGEs), is both spatially and temporally associated with ultramafic intrusions including:

- Veins of high-grade massive Ni-Cu-Co (±PGE) sulfide in metasedimentary wall rocks adjacent to ultramafic intrusions, with locally developed low-grade disseminated coppernickel mineralisation marginal to the MSV; and
- Disseminated low-grade nickel or nickel-copper mineralisation (DSS) in basin-shaped cumulate layers, often near the base and walls of ultramafic intrusions.

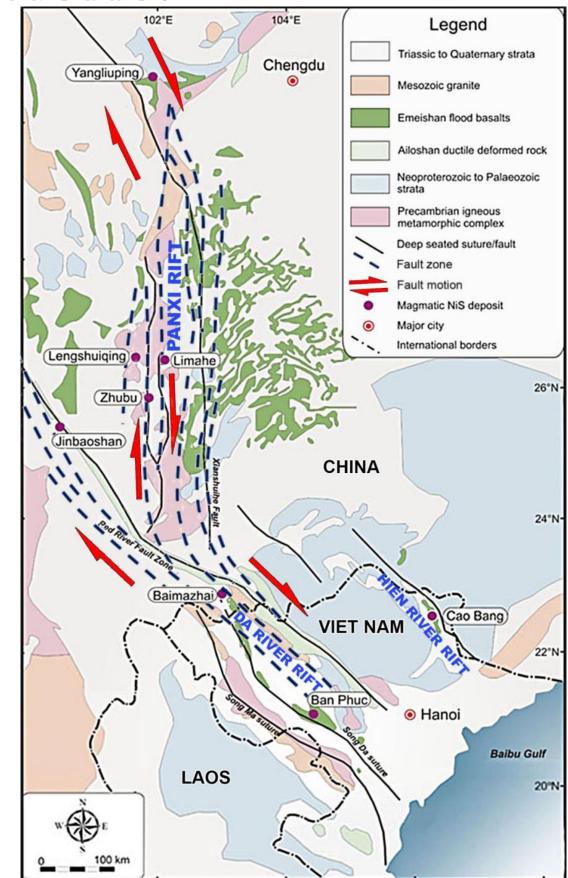


Figure 8 Ta Khoa Nickel Project is located within a significant magmatic nickel sulfide district

(Source: A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the ~260 Ma Emeishan large igneous province, SW China and northern Vietnam, Christina Yan Wang, Bo Wei, Mei-Fu Zhou, Dinh Huu Minh, Liang Qi, operating mines ore reserves)

Massive Sulfide Vein (MSV)

The massive sulfide vein (MSV), constituting the recently-mined Ban Phuc underground resource, is a body of Ni-Cu-Co-PGE sulfide considered to be magmatic in origin rather than a hydrothermal vein. The vein is 640m in length and continues to at least 450m below surface with an average width of 1.3m. Country rocks are hornfelsed Ban Phuc Horizon calcareous sediments and tremolite-altered ultramafics. Quartz vein material typically brecciated and infilled with remobilised sulfide is also present within the host shear. More than 25 mapped Massive Sulfide Vein (MSV) targets (see Figure 9) exist throughout the project with only minimal drilling by previous owners outside of the main Ban Phuc MSV deposit.

Significant historic intersections of the massive sulfide vein (MSV) at Ban Phuc include (refer to table one for drilling results):

BP04-63	2.02m @ 4.64% Ni, 3.59% Cu & 0.15% Co from 258.7m
BP13-06	2.25m @ 3.88% Ni, 1.59% Cu & 0.12% Co from 322.9m
LK03	2.50m @ 3.98% Ni & 0.96% Cu from 167.9m
LK11	2.05m @ 4.33% Ni & 1.14% Cu from 189.7m
BP301-18	9.2m @ 4.15% Ni, 1.33% Cu & 0.13% Co from 48.3m Incl. 4.9m @ 6.49% Ni, 1.19% Cu & 0.20% Co

Significant historic drilling and trenching results from unmined massive sulfide vein (MSV) targets at Ta Khoa include (see Figure 9 and refer to table one and two for drilling and trenching results):

Suoi Phang	1.0m @ 5.96% Ni, 3.53% Cu, 0.02% Co & 0.2g/t PGE; 1.0m @ 5.98% Ni, 0.24% Cu, 0.19% Co & 0.17g/t PGE; 2.1m @ 4.19% Ni, 0.36% Cu & 0.14% Co.
Kingsnake	1.6m @ 3.27% Ni, 1.30% Cu, 0.11% Co & 2.22g/t PGE; 1.7m @ 3.30% Ni, 1.02% Cu, 0.11% Co & 2.16g/t PGE; 0.8m @ 3.08% Ni, 1.59% Cu, 0.17% Co.
Ban Chang	1.6m @ 2.19% Ni & 1.54% Cu; 1.0m @ 2.65% Ni & 1.04% Cu; 1.7m @ 1.89% Ni & 0.91% Cu.
Ban Khang	2.5m @ 1.76% Ni, 0.25% Cu & 0.19% Co; 2.6m @ 1.59% Ni, 0.71% Cu & 0.08% Co; 1.8m @ 1.51% Ni, 0.35% Cu & 0.17% Co.
Ban Mong	0.5m @ 6.11% Ni, 0.11% Cu & 0.2% Co 0.5m @ 4.56% Ni, 0.15% Cu & 0.15% Co 0.5m @ 4.61% Ni, 1.20% Cu, 0.13% Co & 4.33g/t PGE

M I N E R A L S

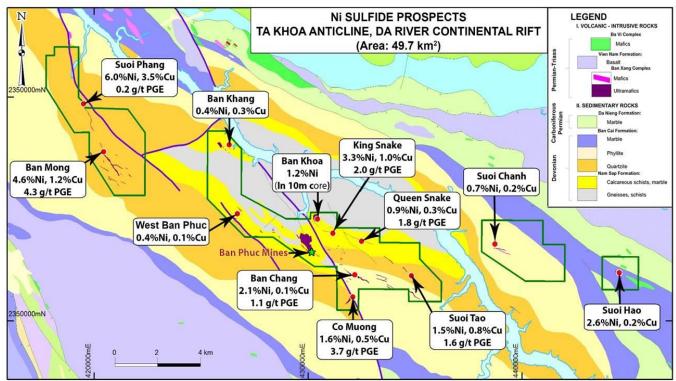


Figure 9: Ta Khoa dome geology prospective for multiple magmatic nickel sulfide deposits (refer to Table two for trenching results)

Disseminated Sulfide (DSS)

Considerable potential exists within the Project for unmined bulk-tonnage, lower-grade deposits of disseminated sulfides within ultramafic intrusions. Regional exploration in the Ta Khoa corridor has identified an extensive system of mafic-ultramafic intrusives, a remarkable number of which have associated Ni-Cu massive or disseminated sulfide mineralisation. Bulk-tonnage disseminated sulfide targets exist at Ban Phuc, Ban Khang, Ban Chang and Ban Khoa.

Significant historic intersections of unmined disseminated sulfide (DSS) at Ban Phuc include (see Figure 10 and refer to table one for drill results):

BP04-68	74.0m @ 1.02% Ni & 0.20% Cu from 73.0m Incl. 51.0m @ 1.19% Ni & 0.24% Cu from 91.0m
BP9706	71.3m @ 0.94% Ni & 0.13% Cu from 122.0m Incl. 32.0m @ 1.54% Ni & 0.26% Cu from 130.0m
LK46	90.2m @ 1.10% Ni from 140.2m Incl. 54.2m @ 1.50% Ni from 162.9m
LK50	83.0m @ 1.12% Ni from 96.5m Incl. 60.3m @ 1.35% Ni from 117.1m
BP14-03	71.2m @ 0.98% Ni & 0.18% Cu from 90.5m

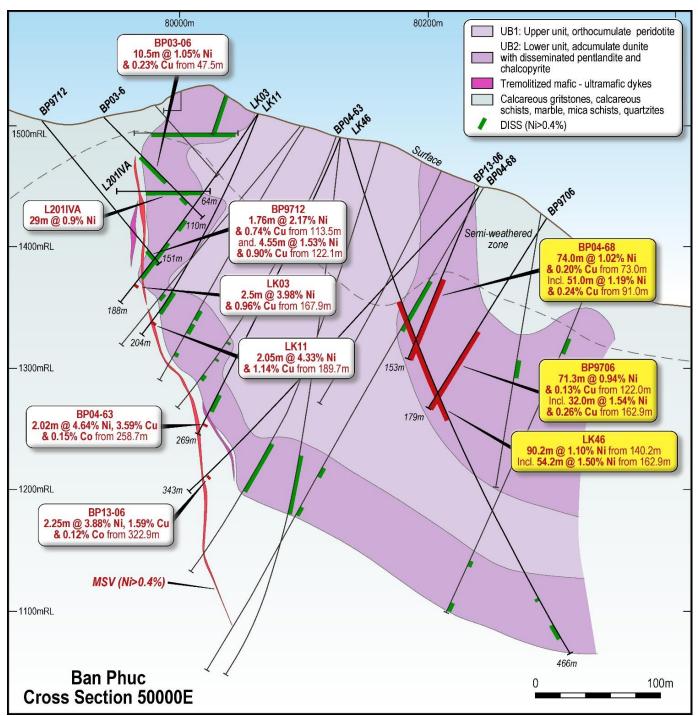


Figure 10 Ban Phuc disseminated sulfide (DSS). Refer to Table One for table of drill results.

Yours sincerely

Scott Williamson Managing Director T: +61 8 9425 5217

About Blackstone

Blackstone Minerals Limited **(ASX code: BSX)** is actively exploring the Ta Khoa Nickel Project in Northern Vietnam. The Ta Khoa Project includes the Ban Phuc nickel mine which operated as a mechanised underground mine from 2013 to 2016. The Ta Khoa Nickel Project has existing modern infrastructure built to Australian Standards including a 450ktpa processing plant located within a premier nickel sulfide district. Blackstone owns a large land holding within the BC Cobalt Project with 48 km of untested strike potential of highly prospective geology analogous to the world class Bou-Azzer primary Cobalt district in Morocco. Blackstone is exploring for nickel and gold in the Eastern Goldfields and gold in the Pilbara region of Western Australia. Blackstone has a board and management team with a proven track record of mineral discovery and corporate success.

Competent Person Statement

The information in this report that relates to Exploration Results and Exploration Targets is based on information compiled by Mr Andrew Radonjic, a full-time employee of the company and who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Andrew Radonjic has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Andrew Radonjic consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Footnote and References

¹The Reference to Financial Results obtained from Asian Mineral Resources Limited Annual Financial Statements 2013-2016. The published financial statements can be found at http://asianmineralres.com/en/investors/financial-documents/

Table One

Ta Khoa Nickel Project | TaKhoa drill intersections >0.5% nickel cut-off

Prospect	Hole	East m UTM	North m UTM	Elevation m	Azimuth UTM	Dip	End of	From m	To m	Length m	Ni %	Cu %
		VN2000	VN2000	UTM VN2000	VN2000		hole m					
Ban Phuc DSS	BP03-1	481952.4	2343644.9	543.9	23	-55	120	34.74	80.96	46.22	0.54	0.12
Ban Phuc DSS	BP03-2	481975.5	2343635.3	534.8	23	-50	84	19.24	77.44	58.2	0.54	0.16
Ban Phuc DSS	BP03-3	482056.7	2343634.6	516.5	23	-50	70	0	47.95	47.95	0.54	0.08
Ban Phuc DSS	BP03-4	481998	2343624.4	519	23	-50	80	12.43	79.78	67.35	0.53	0.08
Ban Phuc DSS	BP03-5	482047.4	2343612.1	502.9	23	-45	90	3.5	90	86.5	0.61	0.11
Ban Phuc DSS	BP03-7	481965.4	2343744.1	481.5	198	-43	144.2	0.51	15	14.49	0.57	0.06
Ban Phuc DSS	BP03-9	481898.9	2343776.8	467.8	203	-45	143	3.64	64.9	61.26	0.66	0.12
Ban Phuc DSS	BP04-11	482004	2343703.6	505.8	203	-42	146.6	26.74	101	74.26	0.53	0.14
Ban Phuc DSS	BP04-14	481911	2343608.4	520.7	22	-44	136.2	40.28	87.8	47.52	0.62	0.1
Ban Phuc DSS	BP04-23	481715.6	2343988.7	340.3	203	-50	140	0	70.7	70.7	0.57	0.08
Ban Phuc MSV	BP04-63	482055.3	2343763.6	488.6	201	-67	269	258.7	260.72	2.02	4.64	3.59
Ban Phuc DSS	BP04-64	481851.5	2343925.7	395	154	-87	181.5	103.2	157.2	54	0.58	0.06
Ban Phuc DSS	BP04-67	481868.9	2343901.8	396.7	195	-83	182.7	63.6	176.1	112.5	0.63	0.06
Ban Phuc DSS	BP04-68	482097.6	2343866.6	449.2	195	-68	153	8.26	153	144.74	0.66	0.11
Ban Phuc DSS	BP04-68	included						74	147	73	1.02	0.2
Ban Phuc DSS	BP04-68	included						91	142	51	1.19	0.24
Ban Phuc DSS	BP07-06	482038.2	2343656.3	525.7	142	-57	171	0	111.3	111.32	0.54	0.19
Ban Phuc DSS	BP08-09	482035.4	2343702.1	508.3	140	-52	206.9	71.29	162.4	91.13	0.94	0.15
Ban Phuc DSS	BP08-12	482080.9	2343647.9	513.9	230	-44	140.4	3.7	84	80.3	0.95	0.43
Ban Phuc DSS	BP08-13	481903.5	2343682.3	499.8	22	-45	82	29.4	54.19	24.79	0.61	0.13
Ban Phuc DSS	BP08-15	482081.2	2343648.1	513.8	231	-58	154.8	3.32	112	108.63	0.71	0.21
Ban Phuc DSS	BP08-16	482027	2343628.1	513.7	22	-45	64.7	0.76	56.6	55.84	1.11	0.2
Ban Phuc DSS	BP08-18	482081.3	2343648.1	513.5	231	-67	180.8	2.81	154.2	151.41	0.79	0.14
Ban Phuc DSS	BP08-20	482016	2343679.2	524.2	138	-55	212.2	0.78	161.6	160.77	0.7	0.16
Ban Phuc MSV	BP13-06	482098.1	2343867.6	449.2	200	-49	342.8	322.9	325.15	2.25	3.88	1.59
Ban Phuc DSS	BP14-01	481762.1	2344102.7	375.7	201	-58	427.1	78.93	147.7	68.77	0.86	0.09
Ban Phuc DSS	BP14-03	481891.4	2343883	402.6	200	-76	408	69.38	177.45	108.07	0.85	0.15
Ban Phuc DSS	BP14-03	included						90.5	161.7	71.2	0.98	0.18

Prospect	Hole	East m UTM VN2000	North m UTM VN2000	Elevation m UTM VN2000	Azimuth UTM VN2000	Dip	End of hole m	From m	To m	Length m	Ni %	Cu %
Ban Phuc DSS	BP14-04	481822.2	2343985.5	392.1	201	-72	400.5	75.44	128.7	53.29	1.14	0.15
Ban Phuc DSS	BP14-06	482099.3	2343870.6	449	200	-60	455.6	14.93	135.4	120.45	0.5	0.04
Ban Phuc DSS	BP202-02	482015.3	2343632.1	446.8	202	40	48	0	27.62	27.62	0.7	0.16
Ban Phuc DSS	BP202-09	482029.5	2343633.9	447	202	38	48.3	0	35.95	35.95	0.67	0.19
Ban Phuc DSS	BP202-10	482029.5	2343633.8	446.5	202	21	40.8	0	27.69	27.69	0.55	0.13
Ban Phuc DSS	BP202-11	482029.4	2343633.8	445.6	202	-5	45	0	24.89	24.89	0.52	0.11
Ban Phuc DSS	BP202-17	482039.7	2343626.4	447.9	202	46	39	0	28.52	28.52	0.84	0.26
Ban Phuc DSS	BP202-18	482039.7	2343625.9	446.8	202	29	45	0	19.6	19.6	0.89	0.43
Ban Phuc DSS	BP202-20	482039.8	2343626.3	444.7	202	-23	46	0	21.67	21.67	0.73	0.3
Ban Phuc DSS	BP202-21	482040.1	2343627.1	444.3	202	-46	45	0	28.52	28.52	0.66	0.21
Ban Phuc DSS	BP202-25	482053.5	2343626.4	446.9	202	38	41.5	0	23.97	23.97	0.64	0.24
Ban Phuc DSS	BP202-26	482053.4	2343626.3	446.1	202	20	44.7	0	19.09	19.09	0.6	0.24
Ban Phuc DSS	BP202-28	482053.3	2343626.1	444.7	202	-23	49.8	0	18.65	18.65	0.54	0.21
Ban Phuc MSV	BP301-18	481833.8	2343717	392.8	22	-80	70.3	48.3	57.5	9.2	4.15	1.33
Ban Phuc MSV	BP301-18	included						48.3	53.2	4.9	6.49	1.19
Ban Phuc DSS	BP9607	482040.2	2343594.9	488.1	23	-45	110.1	20.04	110.1	90.06	1.02	0.15
Ban Phuc DSS	BP9706	482118.3	2343914.5	419.7	192	-59	207.7	130	162	32	1.54	0.26
Ban Phuc DSS	BP9707	482100.7	2343744.4	473.5	199	-69	150	83.62	182.6	98.97	0.75	0.1
Ban Phuc DSS	G20	482016.7	2343641.7	532.1	22	-90	19.8	3	19.8	16.8	0.7	0.35
Ban Phuc DSS	G20N	482016.7	2343641.7	512.3	203	0	14.5	0	13	13	1.75	0.69
Ban Phuc DSS	G35	481887.7	2343734.9	485.3	22	-90	15	1.3	15	13.7	0.55	0.1
Ban Phuc DSS	G50	482137.5	2343835.7	445.1	22	-90	17.4	0.3	17.4	17.1	0.72	0.07
Ban Phuc DSS	G60	482122.4	2343822.6	456.4	22	-90	8	0.26	8	7.74	0.87	-999
Ban Phuc DSS	H22	482031.3	2343601.4	496	23	0	68.6	10.96	68.6	57.64	0.7	0.25
Ban Phuc DSS	H23	481971.9	2343604.6	504	23	0	68.2	32.42	68.2	35.78	0.78	0.45
Ban Phuc DSS	L102	482116.1	2343624	492.3	295	0	50.8	24.02	50.8	26.78	0.55	0.09
Ban Phuc DSS	L102IC	482074	2343616.7	493.4	292	0	44.8	8.53	44.85	36.32	0.82	0.09
Ban Phuc DSS	L103IA	482019.4	2343607.7	493.8	23	0	53.9	0.65	53.9	53.25	1.06	0.3
Ban Phuc DSS	L103IIA	481998.6	2343623.7	493.4	24	0	70	0	70	70	1.01	0.24
Ban Phuc DSS	L103IIIA	481976.4	2343633.4	493.6	23	0	33	0	33	33	0.64	0.13

Prospect	Hole	East m UTM	North m UTM	Elevation m	Azimuth UTM	Dip	End of	From m	To m	Length m	Ni %	Cu %
		VN2000	VN2000	UTM VN2000	VN2000		hole m					
Ban Phuc DSS	L11	481939	2343745.6	474.7	202	0	50	21.29	50	28.71	0.57	0.07
Ban Phuc DSS	L201IVA	481992.1	2343609	446.4	22	0	64	12.2	64	51.8	0.71	0.17
Ban Phuc DSS	L202IVA	482047.1	2343609.7	444.2	24	0	69.4	0.24	65.03	64.79	0.75	0.16
Ban Phuc MSV	LK03	482031.9	2343699.5					167.9	170.4	2.5	3.98	na
Ban Phuc MSV	LK11	482033.1	2343701					189.7	191.75	2.05	4.33	1.14
Ban Phuc DSS	LK28	481703.4	2344223.5	341.8	203	-70	125.9	58.31	114.9	56.54	0.51	0.05
Ban Phuc DSS	LK40	481622.3	2344291.3	310.3	293	-65	63.8	7.35	58.04	50.69	0.53	0.02
Ban Phuc DSS	LK43	481835.4	2344281.8	346.4	203	-90	141.3	68.81	137.2	68.39	0.57	0.09
Ban Phuc DSS	LK46	482066.4	2343764.1	493.4	23	-75	466.1	140.2	230.4	90.2	1.1	na
Ban Phuc DSS	LK46	included						162.9	217.1	54.2	1.5	na
Ban Phuc DSS	LK50	481900.4	2343904.2	416.9	203	-70	376	80.59	211.3	130.71	0.87	0.07
Ban Phuc DSS	LK50	included						96.5	179.5	83	1.12	na
Ban Phuc DSS	LK50	included						117.1	177.4	60.3	1.35	na
Ban Phuc DSS	LK52	481970.7	2344089.8	399.9	23	-70	270.8	150.9	262.7	111.85	0.54	0.07
Ban Chang	BCLK2	484043.1	2342533.6	631.9	22	-68	125.82	58.2	59.2	1	2.7	1
Ban Chang	BCLK4	484079	2342621.2	676.4	202	-60	134.2	62.9	64.6	1.7	1.9	0.9
Ban Chang	BCLK4	484079	2342621.2	676.4	202	-60	134.2	64.6	65.8	1.2	0.7	1.9
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	60.4	61.7	1.3	0.5	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	63	64.9	1.9	0.5	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	82.1	83.1	1	0.5	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	174.6	175.6	1	0.6	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	175.6	176.6	1	0.8	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	176.6	177.6	1	0.8	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	177.6	178.6	1	1.1	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	178.6	179.6	1	1.3	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	179.6	180.6	1	1.3	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	180.6	181.6	1	1.1	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	181.6	182.6	1	1	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	182.6	183.6	1	1.4	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	183.6	184.6	1	1.1	-999

Prospect	Hole	East m UTM	North m UTM	Elevation m	Azimuth UTM	Dip	End of	From m	To m	Length m	Ni %	Cu %
		VN2000	VN2000	UTM VN2000	VN2000		hole m					
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	184.6	185.6	1	1.1	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	185.6	186.6	1	1.1	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	186.6	187.6	1	1.1	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	187.6	188.6	1	1	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	188.6	189.6	1	0.7	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	191.6	192.6	1	0.6	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	192.6	193.6	1	0.6	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	193.6	194.6	1	0.5	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	195.6	196.8	1.2	0.7	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	199.2	200.4	1.2	0.8	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	200.4	201.6	1.2	0.9	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	201.6	202.9	1.2	1	-999
Ban Khoa	BK02	482298.9	2345165.4	312.9	22	-90	219.42	205.3	206.5	1.2	0.5	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	199.6	200.4	0.8	0.5	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	201.4	202.4	1	0.5	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	202.4	203.1	0.8	0.6	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	203.8	204.8	1.1	0.8	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	204.8	205.9	1.1	0.9	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	205.9	206.6	0.8	1.1	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	206.6	207.6	0.9	1.2	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	207.6	208.3	0.8	1.6	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	208.3	209.3	1	0.8	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	209.6	210.5	0.9	0.7	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	213.4	214.4	1	0.5	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	216.3	217.8	1.6	0.6	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	217.8	219.4	1.6	1.1	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	219.4	220.4	1	1	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	226.9	227.7	0.8	0.5	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	229.8	230.6	0.8	0.5	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	231.6	232.6	1	0.5	-999

Prospect	Hole	East m UTM	North m UTM	Elevation m	Azimuth UTM	Dip	End of	From m	To m	Length m	Ni %	Cu %
		VN2000	VN2000	UTM VN2000	VN2000		hole m					
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	232.6	233.4	0.8	0.5	0.1
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	235.9	236.5	0.6	0.6	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	237.5	238.4	0.9	0.5	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	243.6	244.7	1.1	0.5	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	244.7	245.6	0.9	0.5	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	245.6	246.7	1.1	0.9	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	246.7	248	1.3	0.6	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	248	249	1	0.7	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	249	250.4	1.4	0.8	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	250.4	251.9	1.5	0.8	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	251.9	252.6	0.8	0.7	-999
Ban Khoa	BK03	482402.8	2345133.5	350.7	22	-90	273.53	252.6	254	1.4	0.6	-999
Ban Khoa	BK03D	482383.1	2345132.7	336.7	202	-90	299.84	259.7	260.9	1.2	0.5	-999
Ban Khoa	BK04	482438.7	2345216.4	346.9	22	-90	163.1	83.6	85	1.4	0.5	-999
Ban Khoa	BK04	482438.7	2345216.4	346.9	22	-90	163.1	91.5	92.3	0.8	0.5	-999
Ban Khoa	BK04	482438.7	2345216.4	346.9	22	-90	163.1	99	100	1	0.5	-999
Ban Khoa	BK04	482438.7	2345216.4	346.9	22	-90	163.1	119.4	120.4	1	0.5	-0.1
Ban Khoa	BK04	482438.7	2345216.4	346.9	22	-90	163.1	122.4	123.4	1	0.5	-0.1
Ban Khoa	BK04	482438.7	2345216.4	346.9	22	-90	163.1	131.9	132.3	0.4	0.7	0.1
Ban Khoa	BK04	482438.7	2345216.4	346.9	22	-90	163.1	132.3	133.7	1.4	0.7	-999
Ban Khoa	BK04	482438.7	2345216.4	346.9	22	-90	163.1	133.7	134	0.3	0.5	-999
Ban Khoa	BK04	482438.7	2345216.4	346.9	22	-90	163.1	134	135.1	1.1	0.5	-999
Ban Khoa	BK05	482340.1	2345255.9	290.7	22	-90	100.8	35.9	36.9	1	0.5	-999
Ban Khoa	BK05	482340.1	2345255.9	290.7	22	-90	100.8	36.9	38.3	1.4	0.6	-999
Ban Khoa	BK05	482340.1	2345255.9	290.7	22	-90	100.8	38.3	39.3	1	0.5	-999
Ban Khoa	BK05	482340.1	2345255.9	290.7	22	-90	100.8	74.3	75.3	0.9	0.8	-999
Ban Khoa	BK05	482340.1	2345255.9	290.7	22	-90	100.8	98	98.6	0.6	1	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	60.1	61	0.9	0.7	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	61	62.5	1.5	0.9	-999
Ban Khoa	ВК06	482257.9	2345074.4	253.6	22	-90	120.02	62.5	63.8	1.3	0.5	-999

Prospect	Hole	East m UTM	North m UTM	Elevation m	Azimuth UTM	Dip	End of	From m	To m	Length m	Ni %	Cu %
		VN2000	VN2000	UTM VN2000	VN2000		hole m					
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	63.8	64.3	0.5	0.5	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	66	66.8	0.8	0.5	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	66.8	67.5	0.7	0.5	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	67.5	68.3	0.8	0.5	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	68.3	69.3	1.1	0.5	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	69.3	69.8	0.5	0.5	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	69.8	70.8	0.9	0.5	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	72.5	73.7	1.2	0.8	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	73.7	75.2	1.5	0.7	-999
Ban Khoa	BK06	482257.9	2345074.4	253.6	22	-90	120.02	80.3	81.2	0.9	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	86.6	87.3	0.8	0.8	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	136.8	137.7	0.9	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	137.7	138.9	1.2	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	144.1	144.9	0.8	0.6	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	144.9	145.9	1	0.6	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	145.9	146.6	0.8	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	151.3	152.3	1	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	152.3	153.3	0.9	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	161.2	162	0.8	0.6	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	164.3	165.4	1.1	0.6	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	170.1	170.9	0.8	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	182.3	183.3	1	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	184.3	185.3	1	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	185.3	186.3	1	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	192.8	193.2	0.4	0.6	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	194.2	195.2	1	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	216.9	217.9	1.1	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	219.1	220.3	1.3	0.6	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	220.3	221.2	0.9	0.5	-999
Ban Khoa	BK07	482349	2345035.3	275.6	22	-90	238.8	226.3	227.5	1.2	0.5	-999

Prospect	Hole	East m UTM	North m UTM	Elevation m	Azimuth UTM	Dip	End of	From m	To m	Length m	Ni %	Cu %
		VN2000	VN2000	UTM VN2000	VN2000		hole m					
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	114.7	115.6	0.9	0.9	-99
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	119.1	120	0.9	0.5	-99
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	120	121.3	1.3	1	-99
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	121.3	122.6	1.3	1.1	-99
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	122.6	123.2	0.6	1.4	-99
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	123.2	124.3	1.2	0.9	-99
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	124.3	125.2	0.9	1.2	-99
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	125.2	126.1	0.9	1.6	-99
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	126.1	127.7	1.6	0.8	-99
Ban Khoa	BK08	482349.2	2345036.2	276.1	22	-75	133.2	127.7	129.4	1.7	0.8	-99
Ban Khoa	BK09	482320	2345210.7	304.2	22	-90	212.69	113.2	113.9	0.7	0.6	-99
Ban Khoa	BK09	482320	2345210.7	304.2	22	-90	212.69	113.9	115.2	1.3	0.5	-99
Ban Khoa	BK09	482320	2345210.7	304.2	22	-90	212.69	168.6	169.6	1	0.5	-99
Ban Mong	BM09-01	472541	2347581.1	334.3	59	-45	32.1	9.9	10.1	0.2	3.3	0.
Ban Mong	BM09-02	472521.1	2347555.8	360.3	50	-55	64.3	28.9	29.1	0.3	0.8	0.
Ban Mong	BM09-02	472521.1	2347555.8	360.3	50	-55	64.3	55.4	55.7	0.3	0.5	0
Kingsnake	BP00-01	482971.5	2344458.3	239.1	22	-65	280.9	90.2	91	0.8	3.5	1.
Kingsnake	BP00-01	482971.5	2344458.3	239.1	22	-65	280.9	91	92	0.9	3.1	0.
Queensnake	BP00-04	483804.1	2344350.7	546.1	30	-60	162.2	123.1	123.4	0.3	1.3	0.
Kingsnake	BP00-11	482685.7	2344510.5	171	22	-55	150.21	57.2	57.6	0.4	2.2	1.
Kingsnake	BP01-12	482645	2344407.9	235.4	21	-70	353.2	233	233.3	0.3	2	0.
Kingsnake	BP01-12	482645	2344407.9	235.4	21	-70	353.2	249.1	249.4	0.4	3	1.
Kingsnake	BP01-12	482645	2344407.9	235.4	21	-70	353.2	249.4	250.2	0.8	0.5	0
Queensnake	BP01-16	483924.8	2344112.3	617.7	20	-70	477.3	334.7	335.3	0.6	1.4	0.
Queensnake	BP01-18	483602.9	2344383	506	20	-65	287.8	178.5	178.6	0.1	1	0
Kingsnake	BP05-01	482901.5	2344443.5	228.8	22	-47	129.5	96	97	1	0.5	0
Kingsnake	BP05-01	482901.5	2344443.5	228.8	22	-47	129.5	99.9	100.3	0.3	3.4	1
Kingsnake	BP05-02	482848.1	2344445	220.9	22	-53	136.6	120.3	120.4	0.1	3.5	1
Kingsnake	BP05-03	482901.3	2344442.9	228.8	22	-66	158	137.6	138	0.4	2.6	0
Kingsnake	BP05-03	482901.3	2344442.9	228.8	22	-66	158	138	138.1	0.1	0.8	1

Prospect	Hole	East m UTM VN2000	North m UTM VN2000	Elevation m UTM VN2000	Azimuth UTM VN2000	Dip	End of hole m	From m	To m	Length m	Ni %	Cu %
Kingsnake	BPN07-01	483099.1	2344465.5	235.4	22	-50	122.05	26.9	27.3	0.5	3.3	1
Kingsnake	BPN07-02	482774.8	2344729.9	235.4	2	-30	48.75	19.9	20.1	0.2	2.4	0.8
UG Ban Phuc	BPUG15-05	481947.7	2343655.4	149.1	30.26	-38	106.6	73.3	74.1	0.8	4.8	0.5
UG Ban Phuc	BPUG15-05	481947.7	2343655.4	149.1	30.26	-38	106.6	74.5	74.8	0.3	6.3	1.4
UG Ban Phuc	BPUG15-05	481947.7	2343655.4	149.1	30.26	-38	106.6	75.6	75.8	0.2	1.3	0.5
UG Ban Phuc	BPUG15-05	481947.7	2343655.4	149.1	30.26	-38	106.6	80.5	81	0.5	0.6	0.4
Suoi Hao	HN00-01	496514.5	2342538	982.8	13	-55	244.4	79.4	79.6	0.2	2.7	0.2
Suoi Hao	HN00-01	496514.5	2342538	982.8	13	-55	244.4	79.6	80	0.4	0.6	0.2
Suoi Hao	HN00-01	496514.5	2342538	982.8	13	-55	244.4	80	80.9	0.9	0.7	0.2
Suoi Tao	ST07-01	486825.1	2342372.9	441.5	57	-56	79.4	45.3	46.5	1.2	0.8	0.7
Suoi Tao	ST07-01	486825.1	2342372.9	441.5	57	-56	79.4	46.5	48	1.5	0.9	0.8
Suoi Tao	ST07-01	486825.1	2342372.9	441.5	57	-56	79.4	48	49	1	0.9	0.4
Suoi Tao	ST08-02	486752.1	2342521	451.4	62.21	-69	96.55	21	22	1	0.6	0.4
Suoi Tao	ST08-02	486752.1	2342521	451.4	62.21	-69	96.55	23	24.1	1.1	0.6	0.3

Table Two

Ta Khoa Nickel Project | Trench and Chips Intersections (see Collars in Table Three)

		l -							6 1
Prospect	Trench	From m	To m	Length m	Sample	Ni %	Cu %	Co %	Sample type
Ban Khoa	BKH1	0	1	1	BKH81	0.46	na	na	Trench
Ban Khoa	BKH1	1	2	1	BKH82	0.58	na	na	Trench
Ban Khoa	BKH1	3	4	1	BKH83	0.75	na	na	Trench
Ban Khoa	BKH1	5	6	1	BKH96	0.85	na	na	Trench
Ban Khoa	BKH1	7.4	8.4	1	BKH85	0.52	na	na	Trench
Ban Khoa	BKH1	8.4	9.1	0.7	BKH86	0.84	na	na	Trench
Ban Khoa	BKH12	0.7	1.4	0.7	BKH647	0.46	<0.01	na	Trench
Ban Khoa	BKH12	1.4	2.4	1	BKH646	0.4	<0.01	na	Trench
Ban Khoa	BKH12	2.4	3.4	1	BKH645	0.5	<0.01	na	Trench
Ban Khoa	BKH12	6	6.7	0.7	BKH643	0.49	<0.01	na	Trench
Ban Khoa	BKH12	6.7	7.4	0.7	BKH642	0.54	<0.01	na	Trench
Ban Khoa	BKH12	7.4	8.4	1	BKH641	0.55	<0.01	na	Trench
Ban Khoa	BKH12	8.4	9.4	1	BKH640	0.51	<0.01	na	Trench
Ban Khoa	BKH12	9.4	10.4	1	BKH639	0.49	<0.01	na	Trench
Ban Khoa	BKH12	10.4	11.4	1	BKH638	0.43	<0.01	na	Trench
Ban Khoa	BKH12	13	14	1	BKH637	0.85	<0.01	na	Trench
Ban Khoa	BKH12	14	15	1	BKH636	0.92	<0.01	na	Trench
Ban Khoa	BKH12	15	16	1	BKH635	1.09	<0.01		Trench
Ban Khoa	BKH12	16	17	1	BKH473	1.25	<0.01	na	Trench
Ban Khoa	BKH12	17	18	1	BKH474	0.99	<0.01	na	Trench
Ban Khoa	BKH12	18	18.9	0.9	BKH475	0.83	<0.01	na	Trench
Ban Khoa	BKH12	18.9	19.5	0.9	BKH476	0.83	<0.01	na na	Trench
Ban Khoa	BKH5	0	19.5	1	BKH105	0.72	na	na	Trench
Ban Khoa	BKH5	1	2	1	BKH106	0.72	na	na	Trench
Ban Khoa	BKH5	2	3	1	BKH107	1.02	na	na	Trench
Ban Khoa	BKH5	5.5	6.5	1	BKH108	1.11	0.05	na	Trench
Ban Khoa	BKH5	8	9	1	BKH110	0.96	na	na	Trench
Ban Khoa	ВКН9	4	5	1	BKH236	0.47	0.06	na	Trench
Ban Khoa	BKL170	94.8	95.8	1	BKL1024	0.46	0.00	na	Trench
Ban Khoa	BKL170	97.8	98.8	1	BKL132	0.40	0.02	na	Trench
Ban Khoa	BKL170	102.8	103.8	1	BKL137	0.41	0.41	na	Trench
Ban Khoa	BKL170	103.8	104.8	1	BKL137	0.41	0.09		Trench
King Snake	KSH1	0.4	104.8	0.6	506902	0.47	0.03	na 0.04	Trench
King Snake	KSH3	1.6	2.3	0.7	506904	0.83	0.77	0.04	Trench
	KSH4		1.9	0.7	506905	3.08	1.59	0.02	Trench
King Snake	KSH5	1.1 4.6	5	0.8	506903	0.86	0.34	0.17	
King Snake	KSH5	5	5.5	0.4		0.58		0.04	Trench Trench
King Snake	KSH10	4.4	5.5	0.5	506949 506954	0.58	0.33 1.97	0.02	Trench
King Snake	BCH108A	14.2	14.9	0.6	BC7284	0.43			Trench
Ban Chang	BCH108A BCH109		39.5			0.44	0.19	na	
Ban Chang	-	38.5		1	BC7298		0.18	na	Trench
Ban Chang	BCH109	39.5	40.5	1 2	BC7299	0.46	0.36	na	Trench
Ban Chang	BCH109	40.5	41.7	1.2	BC7300	0.56	0.26	na	Trench
Ban Chang	BCH110	20	21.3	1.3	BC7377	0.4	0.07	na	Trench
Ban Chang	BCH110	21.3	22.3	1	BC7378	0.43	0.23	na	Trench
Ban Chang	BCH110	35.2	36.2	1	BC7385	0.59	0.34	na	Trench
Ban Chang	BCH110	36.2	37.2	1	BC7386	0.46	0.27	na	Trench
Ban Chang	BCH110	37.2	38.2	1	BC7387	0.8	0.73	na	Trench
Ban Chang	BCH110	38.2	39.2	1	BC7388	0.41	0.32	na	Trench

		From							Sample
Prospect	Trench	m	To m	Length m	Sample	Ni %	Cu %	Co %	type
Ban Chang	BCH111	4.1	5.1	1	BC10053	0.4	0.3	na	Trench
Ban Chang	BCH111	15.4	16.4	1	BC7474	0.5	0.31	na	Trench
Ban Chang	BCH111	16.4	17.4	1	BC7473	0.6	0.05	na	Trench
Ban Chang	BCH111	20	21	1	BC7470	0.5	0.37	na	Trench
Ban Chang	BCH112	40.5	41.5	1	BC7412	0.45	0.14	na	Trench
Ban Chang	BCH112	53.9	54.9	1	BC7422	0.43	0.27	na	Trench
Ban Chang	BCH112	54.9	55.9	1	BC7423	0.61	0.35	na	Trench
Ban Chang	BCH112	65.4	66.4	1	BC7437	0.44	0.14	na	Trench
Ban Chang	BCH118	25.4	25.8	0.4	BC8146	0.53	0.01	na	Trench
Ban Chang	BCH120	22.5	23.5	1	BC10001	0.81	0.02	na	Trench
Ban Chang	BCL12-2	13.9	14.9	1	BC8169	0.59	0.25	na	Trench
Ban Chang	BCL12-2	14.9	16.1	1.2	BC8171	0.82	0.26	na	Trench
Ban Chang	BCL12-2	16.1	16.4	0.3	BC8173	1.02	0.24	na	Trench
Ban Chang	BCL12-2	16.4	17.1	0.7	BC8175	1.09	0.46	na	Trench
Ban Chang	BCL12-IA	14	14.9	0.9	BC7398	0.7	0.63	na	Trench
Ban Chang	BCL12-IA	14.9	15.7	0.8	BC7399	0.58	0.77	na	Trench
Ban Chang	BCL12-IB	6.2	7.2	1	BC7477	0.42	0.63	na	Trench
Ban Chang	BCL12-IB	7.5	8.1	0.6	BC7479	0.56	1.14	na	Trench
Ban Chang	BCL13	9.5	10.2	0.7	506829	0.52	0.88	0.04	Trench
Ban Chang	BCL13	23.5	25	1.5	506840	0.4	0.13	0.02	Trench
Ban Chang	BCL13	32.5	34	1.5	506846	0.43	0.39	0.03	Trench
Ban Chang	BCL13-28_29	1	1.6	0.6	506853	0.94	0.99	0.06	Trench
Ban Chang	BCL13-28_29	0	1	1	506854	0.58	0.73	0.03	Trench
Ban Chang	BCL13-30	0	1.5	1.5	506855	0.96	0.66	0.08	Trench
Ban Chang	BCL13-31	0	1.6	1.6	506856	2.19	1.54	0.19	Trench
Ban Chang	BCL13-32	0	1.6	1.6	506857	0.65	0.42	0.03	Trench
Ban Chang	BCL13-33_34	0	0.3	0.3	506858	0.66	0.46	0.03	Trench
Ban Chang	BCL13-33_34	0.3	1.6	1.3	506859	0.47	0.27	0.02	Trench
Ban Chang	BCL13-35	0	1.6	1.6	506860	0.62	0.54	0.03	Trench
Ban Chang	BCL13-36_37	0.6	1.6	1	506862	0.41	0.47	0.02	Trench
Ban Chang	BCL13-38_39	1	1.6	0.6	506865	0.52	0.34	0.03	Trench
Ban Chang	BCL13-40_41	1	1.6	0.6	506867	0.58	0.49	0.03	Trench
Ban Chang	BCL13-42_43	1	1.6	0.6	506869	0.53	0.44	0.03	Trench
Ban Chang	BCL13-46_47	0	1	1	506872	0.61	0.51	0.04	Trench
Ban Chang	BCH02	0.6	1.2	0.6	508432	0.43	0.59	0.03	Trench
Ban Chang	BCH02	6.6	6.8	0.2	508441	0.45	0.34	0.03	Trench
Ban Chang	BCH04	17.8	19.3	1.5	508106	0.59	0.53	0.03	Trench
Ban Chang	BCH04	17.3	17.8	0.5	508108	0.95	0.36	0.04	Trench
Ban Chang	BCH04	15.8	17.3	1.5	508109	0.64	0.31	0.03	Trench
Ban Chang	BCH04	12.8	13.8	1	508112	0.54	0.26	0.03	Trench
Ban Chang	BCH04	10.8	12.8	2	508113	0.72	0.26	0.04	Trench
Ban Chang	BCH04	5.2	6	0.8	508115	0.44	0.19	0.02	Trench
Ban Chang	BCH06	21.7	23.1	1.4	508130	0.85	0.24	0.06	Trench
Ban Chang	BCH06	27.5	28.5	1	508135	1.77	0.27	0.15	Trench
Ban Chang	BCH06	28.5	30.5	2	508137	0.46	0.34	0.02	Trench
Ban Chang	BCH06	56.7	57.7	1	508158	0.57	0.34	0.05	Trench
Ban Chang	BCH07	46.5	47	0.5	508196	0.54	0.42	0.05	Trench
Ban Chang	BCH07	49.5	50	0.5	508197	0.68	0.5	0.05	Trench
Ban Chang	BCH07	50	51	1	508198	0.61	0.46	0.04	Trench
Ban Chang	BCH07	51	52	1	508199	0.51	0.4	0.04	Trench
Ban Chang	BCH07	52	52.6	0.6	508201	0.42	0.39	0.03	Trench

		From							Sample
Prospect	Trench	m	To m	Length m	Sample	Ni %	Cu %	Co %	type
Ban Chang	BCH07	62.6	63.6	1	508213	0.42	0.2	0.04	Trench
Ban Chang	BCH07	65.9	66.9	1	508215	0.63	0.37	0.02	Trench
Ban Chang	BCH07	68.6	69.4	0.8	508219	1.08	0.27	0.12	Trench
Ban Chang	BCH07	69.4	70.1	0.7	508220	0.49	0.27	0.04	Trench
Ban Chang	BCH07-N1	1	2	1	508202	0.52	0.36	0.03	Trench
Ban Chang	BCH12-1	0	1	1	508303	0.42	0.65	0.03	Trench
Ban Chang	BCH05-1	7.6	8.2	0.6	508324	0.66	0.6	0.04	Trench
Ban Mong	ВМН09	2.3	2.4	0.1	508891	3.24	0.37	0.1	Trench
Ban Mong	ВМН09	8.2	8.3	0.2	508895	5.24	0.23	0.22	Trench
Ban Mong	BMH12	5.2	5.4	0.2	508856	0.55	13.6	0.02	Trench
Suoi Phang	H_SP01	1	1.4	0.4	499539	3.25	0.37	0.1	Trench
Suoi Phang	H_SP02	6.3	7.9	1.6	499538	1.6	0.49	0.08	Trench
Suoi Phang	H_SP01	7.9	9.7	1.8	499546	0.46	0.19	0.02	Trench
Suoi Phang	H_SP01	9.9	11.7	1.8	499545	0.76	1.7	0.03	Trench
Suoi Phang	H SP01A	0	0.7	0.7	499558	1.21	0.41	0.04	Trench
Suoi Phang	H_SP02A	0	1	1	499536	5.96	3.53	0.2	Trench
Suoi Phang	H_SP02	2.8	3.9	1.1	499552	2.89	0.5	0.07	Trench
Suoi Phang	H SP02	3.9	4.5	0.6	499553	10.4	0.16	0.52	Trench
Suoi Phang	H_SP02	4.5	5.5	1	499537	5.98	0.24	0.19	Trench
Suoi Phang	H_SP02	7.1	8.1	1	499555	0.52	0.34	0.02	Trench
Suoi Phang	H_SP02	8.1	9	0.9	499556	1.49	0.34	0.02	Trench
Suoi Phang	SPH01	5.6	6.8	1.2	508576	0.4	0.32	0.07	Trench
		1					0.13	0.01	
Suoi Phang	SPH01	6.8	7.6	0.8	508577	1.45			Trench
Suoi Phang	SPH01	7.6	8.7	1.1	508578	0.44	0.19	0.01	Trench
Suoi Phang	SPH05	9	10	1	508609	0.4	0.1	0.02	Trench
Suoi Phang	SPH08	12.3	13.5	1.2	508616	0.45	0.03	0.02	Trench
Suoi Phang	SPH11	7.3	8.2	0.9	508634	0.44	0.34	0.02	Trench
Suoi Phang	SPH11	9	10.2	1.2	508636	0.78	0.78	0.03	Trench
Suoi Phang	SPH11	11.8	12.2	0.4	508640	0.54	0.14	0.02	Trench
Suoi Phang	SPH13-1	4.2	4.6	0.4	508648	0.5	5.12	0.03	Trench
Suoi Phang	SPH15	2.1	3.1	1	508656	0.8	0.24	0.03	Trench
Suoi Phang	SPH15	18.7	19.2	0.5	508653	0.66	0.22	0.02	Trench
Suoi Phang	SPH16	2.2	2.2	0	508669	0.63	0.07	0.03	Trench
Suoi Phang	SPH16	2.8	3	0.2	508670	0.49	0.04	0.02	Trench
Suoi Phang	SPH19A	0	1	1	508688	3.97	0.4	0.13	Trench
Suoi Phang	SPH19A	1	2.1	1.1	508689	4.41	0.31	0.15	Trench
Suoi Phang	SPH19A	2.1	3	0.9	508690	1.21	1.18	0.05	Trench
Suoi Phang	SPH19A	7	7.7	0.7	508694	0.57	1.99	0.08	Trench
Suoi Phang	SPH19A	7.7	8.2	0.7	508696	0.37	0.48	0.02	Trench
Suoi Phang	SPH19A	8.2	9.5	1.3	508697	0.44	1.99	0.02	Trench
Ban Khang	BKhH01-K2	16.7	16.9	0.2	508531	0.48	0.53	0.02	Trench
Ban Khang	BKhH01-K3	1.1	1.4	0.2	508534	0.85	0.53	0.03	Trench
Ban Khang	BKhH04	36.8	37.9	1.1	508466	0.42	1.23	0.03	Trench
Ban Khang	BKhH04	37.9	38.9	1	508467	0.56	0.41	0.03	Trench
Ban Khang	BKhH04	38.9	40	1.1	508468	0.45	0.33	0.02	Trench
_	1	!	-		508469	0.49	0.22	0.04	Trench

		From							Sample
Prospect	Trench	m	To m	Length m	Sample	Ni %	Cu %	Co %	type
Ban Khang	BKhH16	47.6	48.6	1	508583	0.44	0.1	0.02	Trench
King Snake	KSO1	0.52	0.99	0.47	506903	0.63	4.44	0.04	Outcrop
King Snake	KSO2	3.51	4.01	0.5	M2/18/9/2013	2.82	0.62	na	Outcrop
King Snake	KSO3	0	2.94	2.94	506910	0.25	0.09	0.01	Outcrop
King Snake	KSO3	2.94	4.54	1.6	506909	3.27	1.3	0.11	Outcrop
King Snake	KSO4	0.8	1.3	0.5	508319	0.09	0.18	<0.01	Outcrop
King Snake	KSO4	1.3	1.7	0.4	508321	0.07	0.16	<0.01	Outcrop
King Snake	KSO4	1.9	2.9	1	508322	0.29	0.25	0.01	Outcrop
King Snake	KSO4	2.9	3.4	0.5	508323	0.35	0.19	0.01	Outcrop
Ban Mong	BMOC01	1	1.1	0.1	508706	1.71	0.8	0.07	Outcrop
Ban Mong	BMOC01	9.1	11.1	2	508707	0.1	0.01	0.01	Outcrop
Ban Mong	BMOC01	11.1	13.1	2	508708	0.05	0.01	<0.01	Outcrop
Ban Mong	BMOC02	1.2	1.7	0.5	508709	0.07	0.01	0.01	Outcrop
Ban Mong	вмос02	2.4	2.9	0.5	508710	0.03	0.01	<0.01	Outcrop
Ban Mong	вмос02	3.7	5.9	2.2	508711	0.04	0.01	<0.01	Outcrop
Ban Mong	вмос03	1.3	3.3	2	508712	0.15	0.03	0.01	Outcrop
Ban Mong	ВМОС03	3.3	5.3	2	508713	0.22	0.04	0.01	Outcrop
Ban Mong	вмос03	5.3	7.3	2	508714	0.17	0.03	0.01	Outcrop
Ban Mong	вмос03	7.3	9.3	2	508715	0.11	0.04	0.01	Outcrop
Ban Mong	ВМОС03	9.3	11.3	2	508716	0.18	0.2	0.01	Outcrop
Ban Mong	вмос03	11.3	13.3	2	508718	0.19	0.06	0.01	Outcrop
Ban Mong	вмос03	13.3	15.3	2	508719	0.31	0.25	0.01	Outcrop
Ban Mong	BMOC03	15.3	17.3	2	508720	0.14	0.08	0.01	Outcrop
Ban Mong	BMOC03	17.3	19.3	2	508721	0.15	0.05	0.01	Outcrop
Ban Mong	BMOC03	19.3	21.3	2	508722	0.13	0.01	0.01	Outcrop
Ban Mong	BMOC03	21.3	24.3	3	508723	0.05	0.01	<0.01	Outcrop
Ban Mong	BMOC04	13.8	15.1	1.3	508724	0.21	0.18	0.01	
Ban Mong	BMOC04	15.1	17.1	2	508725	0.21	0.18	<0.01	Outcrop
	BMOC04	17.1	19.1	2	508726	0.14	0.02	0.01	Outcrop
Ban Mong	BMOC04								Outcrop
Ban Mong	+	19.1	21.1	2	508728	0.14	0.01	0.01	Outcrop
Ban Mong	BMOC04	21.1	23.1	2	508729	0.15	0.03	0.01	Outcrop
Ban Mong	BMOC04	23.1	25.1	2	508731	0.16	0.01	0.01	Outcrop
Ban Mong	BMOC04	25.1	27.1	2	508732	0.22	0.05	0.02	Outcrop
Ban Mong	BMOC04	27.1	29.1	2	508733	0.18	0.03	0.01	Outcrop
Ban Mong	BMOC04	29.1	31.1	2	508734	0.15	0.04	0.01	Outcrop
Ban Mong	BMOC04	31.1	33.1	2	508735	0.15	0.05	0.01	Outcrop
Ban Mong	BMOC04	33.1	35.1	2	508736	0.16	0.19	0.01	Outcrop
Ban Mong	BMOC04	35.1	37.1	2	508737	0.12	0.01	0.01	Outcrop
Ban Mong	BMOC04	37.1	39.1	2	508738	0.12	0.02	0.01	Outcrop
Ban Mong	BMOC04	39.1	41.1	2	508739	0.15	0.07	0.01	Outcrop
Ban Mong	BMOC04	41.1	43.1	2	508740	0.1	0.09	0.01	Outcrop
Ban Mong	BMOC04	43.1	45.1	2	508741	0.15	0.04	0.01	Outcrop
Ban Mong	BMOC04	45.1	47.1	2	508743	0.11	0.02	0.01	Outcrop
Ban Mong	BMOC04	47.1	49.1	2	508744	0.12	0.03	0.01	Outcrop
Ban Mong	BMOC05	1	3	2	508745	0.07	0.01	0.01	Outcrop
Ban Mong	вмосо5	3.54	5.54	2	508746	0.06	0.01	0.01	Outcrop
Ban Mong	вмосо5	5.54	8.04	2.5	508747	<0.01	0.01	<0.01	Outcrop
Ban Mong	вмосо5	8.04	9.04	1	508748	0.06	0.02	0.01	Outcrop
Ban Mong	BMOC05	9.04	11.04	2	508749	0.03	0.01	<0.01	Outcrop
Ban Mong	BMOC08	2.57	4.57	2	508783	0.09	0.01	0.01	Outcrop
Ban Mong	вмосо8	4.57	6.07	1.5	508784	0.18	0.42	0.01	Outcrop

M I N E R A L S

		From							Sample
Prospect	Trench	m	To m	Length m	Sample	Ni %	Cu %	Co %	type
Ban Mong	вмосо8	6.07	8.07	2	508785	0.16	0.06	0.01	Outcrop
Ban Mong	вмосо8	8.07	10.07	2	508786	0.21	0.09	0.01	Outcrop
Ban Mong	вмосо8	10.07	12.07	2	508787	0.16	0.08	0.01	Outcrop
Ban Mong	BMOC08	12.07	14.07	2	508789	0.13	0.05	0.01	Outcrop
Ban Mong	вмосо8	14.07	16.07	2	508790	0.09	0.01	0.01	Outcrop
Ban Mong	BMOC10	2.36	2.51	0.15	508793	3.99	0.07	0.16	Outcrop
Ban Mong	BMOC10	2.51	2.86	0.35	508794	0.33	0.3	0.01	Outcrop
Ban Mong	BMOC10	2.86	4.56	1.7	508795	0.13	0.03	0.01	Outcrop
Ban Mong	BMOC10	4.56	6.56	2	508796	0.13	0.02	0.01	Outcrop
Ban Mong	BMOC10	6.56	8.56	2	508797	0.15	0.07	0.01	Outcrop
Ban Mong	BMOC10	8.56	10.56	2	508798	0.14	0.01	0.01	Outcrop
Ban Mong	BMOC10	10.56	12.56	2	508799	0.15	0.03	0.01	Outcrop
Ban Mong	BMOC10	12.56	14.56	2	508800	0.15	0.04	0.01	Outcrop
Ban Mong	BMOC11	2.25	2.35	0.1	508802	0.27	0.01	0.01	Outcrop
Ban Mong	BMOC11	11.3	11.8	0.5	508804	6.11	0.11	0.2	Outcrop
Ban Mong	BMOC11	11.8	12.3	0.5	508805	1.28	1.26	0.25	Outcrop
Ban Mong	BMOC12	1.57	3.07	1.5	508806	0.13	0.06	0.01	Outcrop
Ban Mong	BMOC12	5.76	7.76	2	508807	0.1	0.01	0.01	Outcrop
Ban Mong	BMOC12	13.35	14.35	1	508808	0.18	0.14	0.01	Outcrop
Ban Mong	BMOC12	21.38	21.88	0.5	508809	4.56	0.15	0.15	Outcrop
Ban Mong	BMOC12	23.15	25.15	2	508810	0.09	0.01	0.01	Outcrop
Ban Mong	BMOC12	25.15	27.15	2	508811	0.07	0.01	0.01	Outcrop
Ban Mong	BMOC12	27.15	29.05	1.9	508812	0.08	0.01	0.01	Outcrop
Ban Mong	BMOC12	31.8	33.8	2	508813	0.1	0.01	0.01	Outcrop
Ban Mong	BMOC12	33.8	35.8	2	508814	0.11	0.01	0.01	Outcrop
Ban Mong	BMOC12	35.8	37.8	2	508815	0.08	0.01	0.01	Outcrop

Appendix One

JORC Code, 2012 Edition | 'Table 1' Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections).

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g.: cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g.: 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g.: submarine nodules) may warrant disclosure of detailed information. 	 All drilling reported here was by diamond coring conducted by the Vietnamese Geological Survey (1959-1963), Asian Mineral Resources and Falconbridge (1996-2018). The size and method of cutting of the Vietnamese Geological Survey diamond drill core is not known. Subsequent explorers used a core saw to cut fresh core, and knife to cut weathered core. ¼ or ½ core sample was collected for assay The trenching and outcrop sampling reported here was conducted by Asian Mineral Resources and Falconbridge (1996-2018). There is no information on trench or outcrop sampling methods. For a more complete discussion of sampling techniques see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Drilling techniques	Drill type (e.g.: core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g.: core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The early diamond core drilling (1959 to 1963) by the Vietnamese Geological Survey has been lost but the results have been transcribed and tabulated by previous explorers. All recent drilling (1996 to 2015) by Asian Mineral Resources and Falconbridge was also diamond coring conducted by a branch of the Vietnamese geological survey and was mainly of NQ2 and HQ2 diameters. Drill core was not orientated. For a more complete discussion of drilling techniques see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	There is no information on drill core recoveries although observation of Asian Mineral Resources and Falconbridge (1996-2018) suggests recoveries in the fresh zone were generally excellent. Tor a more complete discussion of drilling techniques see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 There is no information on logging methods used by the Vietnamese Geological Survey during the 1959-1963 period. More recent core (1996-2018) was marked up, logged, photographed and commonly geotechnically logged by a suitably qualified geologist. Trenches were logged by a suitably qualified geologist. For a more complete discussion of logging techniques see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	There is no information on sampling methods used by the Vietnamese Geological Survey during the 1959- 1963 period.

Criteria	JORC Code explanation	Commentary
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 There is no information on sampling method and preparation of the trench sampling Core from the 1996-2018 period was half or quarter core sampled by core saw (fresh) or knife (for soft weathered core). The assay samples were of appropriate size for the style of mineralisation and core diameters. There is no information regarding duplicate sampling. For a more complete discussion of sampling techniques see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 There is no information regarding the assay methods used by the Vietnamese Geological Survey during the 1959-1963 period. Assaying of the 1996-2018 drilling and trench samples was conducted by commercial assay laboratories including BSE/Analabs, Hanoi, Intertek Genalysis, Perth WA and an SGS laboratory at the Ban Phuc Mine site. Check assaying was various conducted at Acme Analytical Laboratories, Vancouver, Chemex Labs Ltd, Vancouver, and Lakefield Research Laboratory, Canada. Blanks and grade appropriate standards were used in the 1996-2018 period work and results considered most generally acceptable. For a more complete discussion of assay techniques and quality control analysis see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 A check assay programme of the Vietnamese Geological Survey sampling and assaying was conducted in 1989 Later drilling by Asian Mineral Resources close (essentially twins) to the Vietnamese Geological Survey returned acceptably similar intersections Asian Mineral Resources and Falconbridge conducted internal check sampling and assay programmes. No significant issues were identified as documented and discussed in DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Two local coordinate systems were used in the Ta Khoa concession, plus the VN2000 (104.5) is the National grid coordinate system (used for government reporting and other site-based applications such as exploration) and UTM Zone 48N WGS84. All tabulated locational information in this announcement is in VN2000 or UTM Zone 48N WGS84. For a more complete discussion of survey control and techniques see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution, is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Generally, only visibly mineralized core or trench samples were sampled for assay, and the assays agree with the observed massive, net textured and disseminated sulfide mineralisation. The most widely observed sulfides being pyrrhotite, pentlandite and chalcopyrite, typical of magmatic nickel – copper sulfide systems. For a more complete discussion of the exploration data and spacing see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from

E R A L S M

Criteria	JORC Code explanation	Commentary
		System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited. • Drilling hole intersection density ranges from c. 25 x 25 m to >100 x 100 m within the Ban Phuc intrusion and associated massive sulfide vein with higher density of drilling associated with the massive sulfide vein. Drilling of Ban Khang, Ban Chang, Ban Khoa, King Snake, Queen Snake, Suoi Phang, Suoi Hao and Suoi Tao prospects ranges from c. 50 m to >200 m reflecting their immature – reconnaissance exploration status. • Blackstone Minerals considers more data verification, modelling and potentially drilling is required to define mineral resources.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Local grids orientated parallel to the identified mineralisation were established at all prospects and most of the drilling is orientated well with respect to identified mineralisation orientations. With the exception of the King Snake prospect where topographic constraints led to some holes being drilled at a low angle to the mineralisation. For a more complete discussion of the exploration data and spacing see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Sample security	The measures taken to ensure sample security.	There is no information regarding sample security during the Vietnamese Geological Survey work period 1959-1963. Independent consultant BM Geological Services considers that the sampling preparation, security and analytical procedures during the 1996-2016 period meets industry standard. For a more complete discussion see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Independent consultant BM Geological Services reviewed the Ta Khoa exploration sampling techniques and data for previous project owners Asian Mineral Resources and consider that the sampling preparation, security and analytical procedures meet industry standard. See DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The 150 km² Ta Khoa Concession is covered by the Foreign Investment Licence, 522 G/P, which Ban Phuc Nickel Mines Joint Venture Enterprise (BPNMJVE) was granted on January 29th 1993. BPNM now operates under the current Investment Certificate No. 241022000033 which was originally granted July 30th 2007 by the Son La People's Committee. The Investment Certificate indicates a Project area of 150km² without specifying land for exploration, exploitation, processing plant etc and creates an overall legal protection for the Company with respect to the 150km², i.e., no other investor can apply for investment in this land area (YKVN, 2016). An

Criteria	Explanation	Commentary
		Exploration Licence issued by the Ministry of Natural Resources and Environment covering c. 34.8 km ² within the Ta Khoa Concession is currently in force.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The copper and nickel mineralisation at Ban Phuc was likely recognised during the French colonial era, and anecdotal evidence suggests the Japanese were active in the area between 1940 and 1945. The first significant work on the deposits was by the Vietnamese Geological Survey in the 1959-1963 period. The next significant activity was the Asian Mineral Resources period spanning 1996-2018, including the BanPhuc massive sulfide vein mining period 2013 to 2016. The project, plant and infrastructure has been on care and maintenance since 2016.
Geology	Deposit type, geological setting and style of mineralisation.	The late Permian Ta Khoa nickel-copper-sulfide deposits and prospects are excellent examples of the globally well-known and economically exploited magmatic nickel – copper sulfide deposits. The identified nickel and copper sulfide mineralisation within the project include disseminated, net texture and massive sulfide types. The disseminated and net textured mineralisation occurs within dunite adcumulate intrusions, while the massive sulfide veins typically occur in the adjacent metasedimentary wallrocks and usually associated with narrow tremolite replaced pyroxenite dykes. For more detail of the deposit and regional geology see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited. A summary of the geology of the Ban Phuc intrusion can be found in Wang et al 2018, A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the ~260 Ma Emeishan large igneous province, SW China and northern Vietnam, Journal of Asian Earth Sciences 154.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Drill hole and trench locations and significant intersections have been compiled in the tables accompanying this release. For further details see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Composited assay results included in the accompanying tables were aggregated on a length weighted basis and top cuts were not considered necessary or applied. Some significantly higher grade intervals have been reported as included intervals Metal equivalents are not used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	The tabulated thicknesses are downhole, not true thicknesses. Mineralisation widths and lengths range from near true width to significantly apparent depending on location of holes within the intrusive

Criteria	Explanation	Commentary
	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	complexes, and reader is referred to the sections included in this report for an example of the relationship between downhole and true thicknesses
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate exploration plans and tables with locational information are included in this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced, to avoid misleading reporting of Exploration Results.	Generally, only visibly mineralised core and trench samples were assayed. Because of the very large amount of historic work spanning c. 50 years only drill intersections >0.5 % Ni have been tabulated, and only significantly mineralised trenches are reported. For a more detailed documentation of drilling and exploration data see DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Appropriate exploration plans are included in the body of this release. For more detail relating to previous mining and exploration activities see Asian Mineral Resources stock exchange reports available from www.sedar.com and also DB Mapleson and BA Grguric N43-101 Technical Report on the Ta Khoa (Ni Cu Co PGE) Prospects Son La Province, Vietnam available from System for Electronic Document Analysis and Retrieval (www.sedar.com) for Asian Minerals Resources Limited.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Blackstone Minerals proposes to conduct further geological mapping, geochemical sampling and geophysics to better define the geometry and extent of the identified mineralisation. Appropriate exploration target plans are included in the body of this release.

Table Three

Ta Khoa Nickel Project | Trench Collars

Prospect	Trench	East m UTM VN2000	North m UTM VN2000	Elevation m UTM VN2000	Azimuth UTM VN2000	End of trench m	Sample type
Ban Chang	BCH01	484456.6	2342501.5	715	210.3	8.7	trench
Ban Chang	BCH02	484504.5	2342489.7	725.4	202.3	20.36	trench
Ban Chang	ВСН03	484458.8	2342552.1	690.2	202.3	17.38	trench
Ban Chang	BCH04	484021.5	2342560	636.3	22.3	32.18	trench
Ban Chang	BCH05	484415.7	2342531.4	687.6	202.3	12.47	trench
Ban Chang	BCH05-1	484410.5	2342521.8	692.1	22.3	10.47	trench
Ban Chang	ВСН06	483901	2342603.8	632.2	22.3	64.82	trench
Ban Chang	BCH07	483861.5	2342636.6	633.4	22.3	74.7	trench
Ban Chang	BCH07-N1	483878.6	2342678.5	634.6	22.3	4.5	trench
Ban Chang	ВСН08	483823.3	2342707.2	615.6	22.3	31.6	trench
Ban Chang	ВСН09	484106	2342561.7	672.1	22.3	21.04	trench
Ban Chang	BCH10	484226.9	2342505.4	683.6	22.3	47.91	trench
Ban Chang	BCH102	483867.2	2342618.7	632.7	48	84	trench
Ban Chang	BCH108A	483747.4	2342749.6	566.3	60	23.3	trench
Ban Chang	BCH108B	483773.5	2342768	558.9	34	19.5	trench
Ban Chang	BCH109	483771.1	2342706.4	599.5	45	75.7	trench
Ban Chang	BCH11	484261.3	2342482.5	683	22.3	73.16	trench
Ban Chang	BCH110	484046.3	2342548.4	640.1	24	51	trench
Ban Chang	BCH111	483965.8	2342607.8	651.9	202	60	trench
Ban Chang	BCH11-1	484262.3	2342484.8	681.9	22.3	0.4	trench
Ban Chang	BCH112	484233.5	2342474.7	682.5	380	105.7	trench
Ban Chang	BCH11-2	484263.5	2342487.8	682.4	22.3	0.7	trench
Ban Chang	BCH113	484171.6	2342587	678	202	65.3	trench
Ban Chang	BCH11-3	484273.4	2342511.9	674.7	22.3	0	trench
Ban Chang	BCH114	483828.1	2342682.5	622.8	45	37.5	trench
Ban Chang	BCH11-4	484274.5	2342514.8	674.6	22.3	0	trench
Ban Chang	BCH115	484375.3	2342495.9	694.6	204	70	trench
Ban Chang	BCH11-5	484275.8	2342518	673.5	22.3	0	trench
Ban Chang	BCH116	484296.2	2342508.9	663.1	190	77.5	trench
Ban Chang	BCH11-6	484276.6	2342519.8	671.7	22.3	0	trench
Ban Chang	BCH117	484627.1	2342370.4	732.3	203	45.7	trench
Ban Chang	BCH11-7	484278.6	2342524.8	668.9	22.3	0	trench
Ban Chang	BCH118	484566.2	2342350.9	745.5	23	35.5	trench
Ban Chang	BCH11-8	484280.9	2342530.3	666.3	22.3	0	trench
Ban Chang	BCH119	484523.7	2342399.2	735.1	198	60	trench
Ban Chang	BCH12	484423.7	2342493.9	708.6	22.3	18.2	trench
Ban Chang	BCH120	484438.9	2342418.1	707.3	201	80	trench
Ban Chang	BCH121	484213.6	2342563.7	674.5	195	58	trench
Ban Chang	BCH12-1	484427.9	2342504.1	703.1	22.3	2.4	trench
Ban Chang	BCH12-2	484428.6	2342505.9	703.2	22.3	1	trench

Prospect	Trench	East m UTM VN2000	North m UTM VN2000	Elevation m UTM VN2000	Azimuth UTM VN2000	End of trench m	Sample type
Ban Chang	BCH123	483882.8	2342412.2	569.5	201	48.2	trench
Ban Chang	BCH124A	483710.7	2342532.6	546.8	198	13.7	trench
Ban Chang	BCH124B	483703.1	2342512.6	545.4	200	23.8	trench
Ban Chang	BCH13	484518.8	2342468.6	729.2	22.3	30	trench
Ban Chang	BCH13-1	484521.2	2342474.6	723.4	22.3	3.1	trench
Ban Chang	BCH14	484357.4	2342462.8	684	22.3	40	trench
Ban Chang	BCH14-1	484367.5	2342487.5	688.9	22.3	2	trench
Ban Chang	BCH15	484545.2	2342455	723.5	22.3	9.7	trench
Ban Chang	BCH15-1	484545.5	2342455.7	720	22.3	1	trench
Ban Chang	BCH15-2	484546.5	2342458	718.7	22.3	0.5	trench
Ban Chang	BCH15-3	484547	2342459.4	717.8	22.3	1	trench
Ban Chang	BCH15-4	484547.5	2342460.6	716.5	22.3	0.5	trench
Ban Chang	BCH16	484774.1	2342485.1	744.5	22.3	65.7	trench
Ban Chang	BCH17	484968.3	2342432.4	784.4	22.3	59.65	trench
Ban Chang	BCH17-1	484968.9	2342433.8	786.9	22.3	0.3	trench
Ban Chang	BCH17-2	484969.1	2342434.2	787.4	22.3	0.3	trench
Ban Chang	BCH17-3	484971.8	2342440.8	791.4	22.3	0.9	trench
Ban Chang	BCH17-4	484974.5	2342447.4	794.6	22.3	0.8	trench
Ban Chang	BCH17-5	484974.4	2342447.2	790	22.3	3.72	trench
Ban Chang	BCH17-6	484986.5	2342476.8	803.7	22.3	0.5	trench
Ban Chang	BCH18	484319.5	2342548.8	646.8	22.3	26.19	trench
Ban Chang	BCH18-1	484315.3	2342549.1	644.5	22.3	29.99	trench
Ban Chang	BCH19	484368.1	2342525.3	679.6	22.3	13.99	trench
Ban Chang	BCH20	467306.5	2300895	669.4	22.3	7.88	trench
Ban Chang	BCH21	484300	2342518.8	662.4	22.3	24	trench
Ban Chang	BCL12	483754	2342755.8	564.7	125	43.7	trench
Ban Chang	BCL12-2	483773.8	2342742	564.7	202	20.5	trench
Ban Chang	BCL12-IA	483757.2	2342752.8	564.7	190	18	trench
Ban Chang	BCL12-IB	483755.2	2342737.8	564.7	120	8.9	trench
Ban Chang	BCL12N1	483757.6	2342754	565.7	215	1.5	trench
Ban Chang	BCL12N2	483760.1	2342752.2	565.7	215	1.6	trench
Ban Chang	BCL12N7	483774.8	2342742.8	565.7	215	1.5	trench
Ban Chang	BCL13	484048.2	2342552.1	641.5	20.8	42	trench
Ban Chang	BCL13-1	484062.3	2342587.4	640.4	104.7	37.92	trench
Ban Chang	BCL13-1A	484085.2	2342577.6	640.5	214.8	35.41	trench
Ban Chang	BCL13-27	484064.2	2342587.4	642.1	202.3	1.6	trench
Ban Chang	BCL13- 28_29	484065.8	2342587.1	641.8	193.3	1.6	trench
Ban Chang	BCL13-30	484068.1	2342586.5	641.8	195.3	1.5	trench
Ban Chang	BCL13-31	484070	2342586.1	641.8	195.3	1.6	trench
Ban Chang	BCL13-32	484071.9	2342585.6	641.8	193.3	1.6	trench
Ban Chang	BCL13- 33_34	484073.7	2342585.3	641.9	193.8	1.6	trench
Ban Chang	BCL13-35	484075.7	2342584.8	642	194.3	1.6	trench

Prospect	Trench	East m UTM VN2000	North m UTM VN2000	Elevation m UTM VN2000	Azimuth UTM VN2000	End of trench m	Sample type
Ban Chang	BCL13-	484078.2	2342584.2	642.6	210.3	1.6	trench
Ban Chang	36_37 BCL13-	484080	2342583.5	642.2	206.3	1.6	trench
Dan Chang	38_39	404000	2542505.5	042.2	200.5	1.0	trenen
Ban Chang	BCL13-	484081.7	2342582.5	642	211.3	1.6	trench
Ban Chang	40_41 BCL13-	484083.4	2342581.3	642.2	215.3	1.6	trench
Dali Chang	42_43	404005.4	2342381.3	042.2	213.3	1.0	trencii
Ban Chang	BCL13-	484085.1	2342580	642.3	218.3	1.6	trench
Pan Chang	44_45 BCL13-	484086.6	2342578.9	642.5	217.0	2	trench
Ban Chang	46_47	404000.0	2342378.9	042.3	217.8	2	trencii
Ban Chang	BCL13-	484088.3	2342577.6	642.6	218.3	1.6	trench
Dan Chang	48_49	404000 0	2242576 5	642.4	215.2	1.6	tronch
Ban Chang	BCL13- 50 51	484089.9	2342576.5	642.4	215.3	1.6	trench
Ban Chang	BCL13-	484091.6	2342575.3	642.7	217.8	1.6	trench
Dan Chang	52_53	494002.1	2242574.2	642	216.9	1.6	tronch
Ban Chang	BCL13-54	484093.1	2342574.2	642	216.8	1.6	trench
Ban Chang	BCL13-55	484094.8	2342572.9	642.7	215.8	1.6	trench
Ban Chang	BCL13-56	484084.7	2342578.2	642.3	194.3	2	trench
Ban Khang	BKhH01	477828.3	2348265.6	231	22.3	46.31	trench
Ban Khang	BKhH01-K2	477844.3	2348304	280.9	22.3	38.6	trench
Ban Khang	BKhH01-K3	477848.7	2348319.4	286.1	325	31.9	trench
Ban Khang	BKhH02	477838.4	2348243.3	238.3	22.3	32.91	trench
Ban Khang	BKhH02-K2	477859	2348294.4	265.4	22.3	25.4	trench
Ban Khang	BKhH03	477755.8	2348314.2	323	22.3	41.07	trench
Ban Khang	BKhH04	477799.7	2348281.3	280.8	22.3	44.32	trench
Ban Khang	BKhH04-Ore	477809.8	2348310.8	301	22.3	7.79	trench
Ban Khang	BKhH05	477736	2348390.5	312.9	22.3	72.31	trench
Ban Khang	BKhH06	478122	2348123.7	263.3	22.3	25.34	trench
Ban Khang	BKhH06-K2	478096.9	2348085	291.4	22.3	24.66	trench
Ban Khang	BKhH07	478147.4	2348097.6	259.3	22.3	19.1	trench
Ban Khang	BKhH07-K2	478155.3	2348117	258	22.3	13	trench
Ban Khang	BKhH07-K4	478136.6	2348035.3	257.9	11.3	66.44	trench
Ban Khang	BKhH08	478184.8	2348020.8	210.3	22.3	10.4	trench
Ban Khang	BKhH09	478325.1	2348007.8	200.2	208	72.25	trench
Ban Khang	BKhH10	477777.6	2348298	299.7	22.3	47.49	trench
Ban Khang	BKhH11	477899.6	2348261.5	219.9	22.3	30.3	trench
Ban Khang	BKhH12	477928.6	2348241.6	189.8	350	22.22	trench
Ban Khang	BKhH13	477839.1	2348375.2	312.6	22.3	39.83	trench
Ban Khang	BKhH14	477862.2	2348366.8	290.9	292	34.25	trench
Ban Khang	BKhH15	477814.6	2348432.3	315.6	22.3	24.93	trench
Ban Khang	BKhH16	477675	2348424.2	287.1	22.3	50.33	trench
					9		
Ban Khang	BKhH17	477815.2	2348309.8	298.7	_	18.07	trench
Ban Khang	BKhH18	477797.9	2348298.7	293.6	22	20.95	trench
Ban Khang	BKhH19	477825.7	2348318.2	300	5	8.37	trench
Ban Khang	BKhH20	477833.8	2348321.3	297.7	328.5	10.25	trench

Prospect	Trench	East m UTM VN2000	North m UTM VN2000	Elevation m UTM VN2000	Azimuth UTM VN2000	End of trench m	Sample type
Ban Khang	BKhH21	477885.4	2348280.9	239.8	22	8.36	trench
Ban Khang	BKhH21-1	477886.7	2348284.2	241	22	0.5	trench
Ban Khang	BKhH22	477908.7	2348237.4	198.8	47	24.5	trench
Ban Khang	BKhH23	478291.5	2347902.5	195.1	18	14.68	trench
Ban Khang	BKhH24	477878.7	2348306.7	258.5	22	17.13	trench
Ban Khang	BKhH25	477890	2348270.2	231.5	25	15.23	trench
Ban Khang	BKhH26	478177.3	2348054.3	235	20.7	25.39	trench
Ban Khang	BKhH26-1	478161.6	2348045	242.5	15	31.89	trench
Ban Khang	BKhH27	478210.4	2347958.9	193.1	2.5	20.93	trench
Ban Khang	BKhH28	478223.9	2347973.1	181.5	15.2	14.73	trench
Ban Khang	BKhH29	478040	2348138	232	40	71.18	trench
Ban Khang	BKhH30	478083	2348112	273	30	37.47	trench
Ban Khang	BKhH31	478047	2348158	223	40	66.3	trench
Ban Khang	BKhH31-K2	478097.3	2348193.6	200	35	57.52	trench
Ban Khang	BKhH32	477679	2348376	322	22	19.11	trench
Ban Khang	BKhH33	477652	2348379	317	22	17.06	trench
Ban Khang	BKhH34	478195	2347983	210	20	35.18	trench
Ban Mong	BMH01	472809.8	2347276.7	432	52	20.65	Trench
Ban Mong	BMH02	473056.7	2347047.7	508.5	55	8.33	Trench
Ban Mong	ВМН03	473103.9	2347074.6	533.3	45	43.85	Trench
Ban Mong	BMH04	473102.1	2346934.5	495.6	50	3.6	Trench
Ban Mong	BMH05	472787.8	2347298.3	434.1	56	23.3	Trench
Ban Mong	ВМН06	473066	2346977.1	503	50	13	Trench
Ban Mong	BMH07	472235.8	2348013.4	257.2	120	16.03	Trench
Ban Mong	BMH08	472666.7	2347420	391.7	45	22.22	Trench
Ban Mong	ВМН09	472539	2347557.2	359.7	45	53.83	Trench
Ban Mong	BMH10	472399.4	2347790.6	278.6	85	34.17	Trench
Ban Mong	BMH11	472371.7	2347832.4	270.7	25	29.08	Trench
Ban Mong	BMH12	472358.3	2347881	264.3	50	19.32	Trench
Ban Mong	BMH13	472222	2348080.4	255.8	100	21.06	Trench
Ban Mong	BMH14	473649.4	2346570.3	645.8	180	12.9	Trench
Ban Mong	BMH15	472218.4	2348100.2	258.3	50	10.36	Trench
Ban Mong	BMH16	472885	2347852	605	60	12.53	Trench
Ban Mong	BMH17	472787	2347954.9	577	60	9.09	Trench
Ban Mong	BMH18	472673	2347750	486	60	12.5	Trench
Ban Mong	BMOC01	472875.6	2347227	425.3	200	13.9	Ocrop
Ban Mong	BMOC02	472858.1	2347247.7	422.6	226	7.2	Ocrop
Ban Mong	ВМОС03	472753.8	2347358.1	410.8	250	25	Ocrop
Ban Mong	BMOC04	472618.4	2347527.4	358.9	222	49.9	Ocrop
Ban Mong	BMOC05	472275.6	2347958.9	252.8	220	12.24	Ocrop
Ban Mong	BMOC08	472338.8	2347925.6	263.3	240	17.7	Ocrop
Ban Mong	BMOC10	472450.5	2347746.4	289.5	240	20.64	Ocrop
Ban Mong	BMOC11	472481.3	2347696.7	298.5	250	16.02	Ocrop

Prospect	Trench	East m UTM VN2000	North m UTM VN2000	Elevation m UTM VN2000	Azimuth UTM VN2000	End of trench m	Sample type
Ban Mong	BMOC12	472558.8	2347607.4	329	206	43	Ocrop
King Snake	KSH1	483214.8	2344464.2	265.3	22.3	2.1	trench
King Snake	KSH10	483130.4	2344470.3	247.2	22.3	6.2	trench
King Snake	KSH11	483236.9	2344466.8	273.6	22.3	15	trench
King Snake	KSH12	483260.6	2344458.5	270.5	22.3	10	trench
King Snake	KSH13	483263.8	2344467.3	282.7	22.3	17.5	trench
King Snake	KSH14	483282.3	2344449.8	279.7	22.3	7	trench
King Snake	KSH2	482903.3	2344517.6	202.3	22.3	2.6	trench
King Snake	KSH3	483177.7	2344464.8	260.8	22.3	2.5	trench
King Snake	KSH4	482856.4	2344527.5	198.2	22.3	5	trench
King Snake	KSH5	482801.1	2344540.1	192	22.3	6	trench
King Snake	KSH6	482749.5	2344526.5	183.7	22.3	18.38	trench
King Snake	KSH7	482695.1	2344531.5	177	22.3	10	trench
King Snake	KSH8	482938.8	2344517.1	205.6	22.3	4	trench
King Snake	KSH9	482672.3	2344560.1	163.9	351	20.3	trench
King Snake	KSO1	483208	2344466.4	269.8	22.3	1.25	trench
King Snake	KSO2	483097.8	2344478.2	241.9	22.3	4.01	trench
King Snake	KSO3	483009.8	2344494.9	213.9	22.3	4.54	trench
King Snake	KSO4	482908	2344517	0	0	3.4	trench
Suoi Phang	H_SP01	471399	2350126.1	197.6	55	13.47	Trench
Suoi Phang	H_SP01A	471399.4	2350126.3	196.9	55	0.7	Trench
Suoi Phang	H_SP02	471413	2350090	215.4	60	10.9	Trench
Suoi Phang	H_SP02A	471414.9	2350091.1	213.3	60	1	Trench
Suoi Phang	SPH01	471494.4	2349941	272.6	64	14.99	Trench
Suoi Phang	SPH01M2	471497	2349942.4	273.1	64	1	Trench
Suoi Phang	SPH02	471503.2	2349912.9	265.2	44	48.1	Trench
Suoi Phang	SPH03	471418.6	2350023.9	265	44	25	Trench
Suoi Phang	SPH04	471619.4	2349810.8	267.3	60	22.37	Trench
Suoi Phang	SPH05	471562.7	2349775.1	313.9	44	15.54	Trench
Suoi Phang	SPH06	471467.6	2349966.9	304.7	44	15.93	Trench
Suoi Phang	SPH07	471339.3	2350298	161	35	20.26	Trench
Suoi Phang	SPH08	471376.4	2350174.1	176.2	55	20.61	Trench
Suoi Phang	SPH09	471753.6	2349425.3	241	37	8.53	Trench
Suoi Phang	SPH10	471320.2	2350342.2	157	40	33.78	Trench
Suoi Phang	SPH11	471382	2350152	182.7	80	15.84	Trench
Suoi Phang	SPH12	471354.7	2350210.6	152.8	45	24.2	Trench
Suoi Phang	SPH13	471415.3	2350065.4	235.7	60	16.04	Trench
Suoi Phang	SPH13-1	471416.4	2350075	229.5	44	8.44	Trench
Suoi Phang	SPH13-2	471412.6	2350069.9	231.9	45	39.39	Trench
Suoi Phang	SPH14	471293.8	2350202.7	172.2	48	5.19	Trench
Suoi Phang	SPH15	471391.8	2350114.5	206.3	45	19.75	Trench
Suoi Phang	SPH16	471366.7	2350139	197.3	34	25.16	Trench
Suoi Phang	SPH17	471296.8	2350417.5	198.8	45	55.88	Trench

M I N E R A L S

Prospect	Trench	East m UTM VN2000	North m UTM VN2000	Elevation m UTM VN2000	Azimuth UTM VN2000	End of trench m	Sample type
Suoi Phang	SPH18	471308.9	2350373.9	179.4	48	37.07	Trench
Suoi Phang	SPH19	471413	2350087.6	222	50	4.13	Trench
Suoi Phang	SPH19A	471414.2	2350088.5	218.6	50	19.5	Trench
Suoi Phang	SPOc-01	471401	2350112.4	207.4	74	6.93	Outcrop
Suoi Phang	SPOc-02	471399.4	2350113	203.6	56.3	3.6	Outcrop
Ban Khoa	BKH1	482337.7	2344993.6	274.7	199	13.5	Trench
Ban Khoa	BKH10	482318.6	2345332	248.3	202	16.5	Trench
Ban Khoa	BKH11	482198.7	2345062.5	233	203	41	Trench
Ban Khoa	BKH12	482287	2345010.9	238.1	201	22.5	Trench
Ban Khoa	BKH13	482434.6	2345139	369.1	229	8.5	Trench
Ban Khoa	BKH2	482162.1	2345122.5	229.1	195	11.5	Trench
Ban Khoa	вкн3	482255.4	2345315.5	246.5	15	26	Trench
Ban Khoa	BKH4	482279.5	2345111.8	279.4	204	10	Trench
Ban Khoa	BKH5	482237.6	2345020.5	220	214	13.5	Trench
Ban Khoa	вкн6	482377.6	2345318.1	268.4	194	44.1	Trench
Ban Khoa	BKH7	482268.2	2345178.9	290	281	11.2	Trench
Ban Khoa	BKH8	482162.4	2345215.6	225.3	281	22	Trench
Ban Khoa	ВКН9	482351.2	2345020.6	281.5	110	36	Trench
Ban Khoa	BKL170	482269.3	2345353.6	218.1	0	127.8	Trench