

Further high-grade results at Mia

15 December 2020

Highlights

• Phase 2 drilling at **Mia** (14 holes for 1485m) returns further high-grade mineralisation, including the highest silver grades at the project to date. Results include

0	DDH-MI20-030:	11.2m at 4.2gpt Au, 535gpt Ag from 51m, including
		1.1m at 21gpt Au, 3119gpt Ag from 59.1m
0	DDH-MI20-034:	9m at 11gpt Au, 814gpt Ag from 44m, including

- This drilling extends high-grade mineralisation 25m to the east and is open at depth and down-plunge to the west.
- An orientation Electrical Tomography (ET) geophysical survey was completed at **Mia** and has identified a **strong chargeability anomaly (34mV.V)** north of current drilling potentially associated with a **second parallel structure and structural feeder zone**.
- A deeper diamond hole (total depth 200m) is underway to test the target.
- Phase 2 of drilling at **Florencia** (14 holes for 1502m) has been completed. The program was designed to test three mineralised structures including follow up of hole DRC-FL20-016 which returned **3m at 8.2gpt Au**, **26gpt Ag** from 60m.
- Follow up rock chip sampling (n=11) at **Emilia Este** has returned exceptional high-grade gold and silver results of **up to 82gpt Au and 1444gpt Ag** over an 80m strike.
- Two scout diamond holes totaling 187 metres have been completed at **Emilia Este**.
- A **significant number of gold and silver assay results remain outstanding** at Mia (6 holes), Florencia (14 holes) and Emilia (2 holes) with additional results due before Christmas.

E2 Metals Limited

ABN: 34 116 865 546 ASX Code: E2M

Issued Capital

149.7M fully paid ordinary shares

Directors / Secretary

Melanie Leydin Chair & Company Secretary

> Todd Williams Managing Director

Alastair Morrison Non-Executive Director Address

Level 4, 100 Albert Road South Melbourne VIC 3205 P: +61 3 9692 7222 F: +61 3 9077 9233 E: <u>info@e2metals.com.au</u>

Managing Director Todd Williams states

Drilling at Mia continues to deliver shallow high-grade gold and silver mineralisation, with the current batch of results returning the highest silver grades at the Project to date. We are encouraged by the results of the expanded sample program at Emilia Este which is evolving as an exciting new discovery. The recent high-resolution Electrical Tomography geophysical survey at Mia has proven effective in resolving the highgrade Lara Vein at Mia and highlights the potential for additional shoots on parallel structures, which is common in these systems.

E2 Metals (**E2 or the Company**) is pleased to provide the following exploration update for the Conserrat project (Figure 1) located in the Santa Cruz province of Argentina. Conserrat is host to a new greenfields gold and silver discovery centered 25 kilometers along trend from AngloGold Ashanti's Cerro Vanguardia mine (historical and current reserves 8.9Moz Au, 137Moz Ag).

Figure 1: Conserrat Project

Table 1: Mia, Florencia, Patricia and Emilia Este drill hole collarsCoordinates stated in WGS84 UTM 19S

Prospect	Hole	Easting (mE)	Northing (mN)	RL (m)	Dip (°)	Azimuth (°)	Depth (m)
Mia	DDH-MI20-030	535019	4645901	302	-60	180	101.4
	DDH-MI20-031	534994	4645900	302	-60	180	101
	DDH-MI20-033	534970	4645900	303	-60	180	141.6
	DDH-MI20-034	535044	4645900	301	-60	180	101
	DDH-MI20-038	534996	4645951	301	-60	180	150
	DDH-MI20-040	535045	4645950	299	-60	180	150
	DDH-MI20-047	534914	4645948	299	-60	180	146
	DDH-MI20-049	534818	4645896	307	-60	180	98
	DRC-MI20-039	535044	4645871	303	-60	180	72
	DRC-MI20-041	534969	4645874	305	-60	180	56
	DRC-MI20-042	534993	4645870	307	-60	180	65
	DRC-MI20-043	534815	4645901	306	-60	180	78
	DDH-MI20-036	535019	4645926	298	-60	180	125
	DDH-MI20-044	534912	4645901	305	-60	180	100
Patricia	DRC-PA20-028	534033	4646487	305	-60	217	92
	DRC-PA20-029	534194	4646490	298	-60	217	96
	DRC-PA20-032	534176	4646469	301	-60	217	120
	DRC-PA20-035	534096	4646446	307	-60	217	84
	DRC-PA20-037	534156	4646517	300	-60	217	54
Florencia	DRC-FL20-045	533331	4647196	307	-60	200	102
	DRC-FL20-046	533319	4647159	306	-60	200	100
	DRC-FL20-048	533256	4647273	307	-60	200	100
	DRC-FL20-050	533440	4647190	309	-60	200	100
	DDH-FL20-051	533380	4647336	305	-60	200	110
	DRC-FL20-053	533495	4647340	307	-60	200	78
	DRC-FL20-054	533481	4647301	306	-60	200	102
	DDH-FL20-055	533333	4647329	303	-60	200	122
	DRC-FL20-056	533469	4647266	306	-60	200	100
	DDH-FL20-057	533355	4647260	305	-60	200	140
	DRC-FL20-059	533593	4647319	307	-60	200	108
	DRC-FL20-060	533593	4647318	307	-60	200	118
	DRC-FL20-061	533577	4647274	313	-60	200	120
	DRC-FL20-063	533561	4647234	308	-60	200	102
Emilia Este	DDH-EE20-060	535596	4650522	298	-60	75	66.7
	DDH-EE20-062	535595	4650466	286	-60	63	120

Mia

Phase 2 drilling at the recently announced **Mia** discovery (*see ASX announcement 28 October 2020*, *Exceptional gold and silver results from Mia*) has been completed and comprised an additional 10 diamond holes for 1214m and 4 RC holes for 271m. Holes were initially drilled on a 25 by 50m grid to establish the plunge of high-grade mineralisation within the **Lara Vein**.

Gold and silver assay results for 8 holes have been received and 6 holes remain outstanding. Drill holes locations are provided in Table 1 and shown in Figure 2.

Significant new results from the high-grade Lara Vein shoot include:

DDH-MI20-030: 24.4m at 2.2gpt Au, 281gpt Ag from 41m, including

11.2m at 4.2gpt Au, 535gpt Ag 51m, including

1.1m at 21gpt Au, 3119gpt Ag from 59.1m

DDH-MI20-034: 1m at 3gpt Au, 6gpt Ag from 22.5m

4m at 0.19gpt Au, 42gpt Ag from 28m

9m at 11gpt Au, 814gpt Ag from 44m, including

3.4m at 28gpt Au, 1843gpt Ag from 49.1m

DDH-MI20-036: 12.9m at 0.41gpt Au, 125gpt Ag from 79m, including

4m at 0.69gpt Au, 318gpt Ag from 85m

High-grade gold and silver mineralisation is associated with a 2 to 10m wide vein and vein breccia complex with local banded and carbonate replacement textures (Figure 3) within a shallow northdipping east-west fault. The highest grades correlate to the intersection of subvertical hanging wall splits and oblique northwest structure(s).

This drilling extends the limits of high-grade mineralisation 25m east of previously reported hole DRC-MI20-012 that returned **18m at 47gpt Au**, **208gpt Ag from 47m**.

Mineralisation is open at depth and has an apparent shallow westerly plunge (see Figure 4). Gold and silver assay results for four 50m step-out holes are still outstanding and will help to confirm the plunge.

Three shallow RC drill holes were drilled to test the shallow up-dip extension of the **Lara Vein**. The three holes intercepted wide zones of low-grade mineralisation in the hanging wall, confirming the structural controls on high-grade mineralisation. Gold and silver assay results include:

DRC-MI20-039: 50m at 0.26gpt Au, 29gpt Ag from 1m, including

9m at 0.53gpt Au, 81gpt Ag from 3m

- DRC-MI20-041: 21m at 0.31gpt Au, 31gpt Ag from 35m
- **DRC-MI20-042:** 39m at 0.31gpt Au, 24gpt Ag from 26m

Figure 2: Mia Prospect drill holes and gold silver results (Datum WGS UTM19S) Note to simplify map labels prefix "MI20" has been removed from collar IDs

Figure 3: (above) core samples from the Lara Vein and hole DDH-MI20-034 and (below) close up of vein textures

E2

Figure 4: Mia long section (Datum WGS UTM19S) Note to simplify map labels prefix "MI20" has been removed from collar IDs

An Electrical Tomography (ET) survey was completed at the prospect to resolve the signature of the Lara Vein in resistivity and chargeability data. Modelled inversions for line 5015E show the **Lara Vein to be associated with a discrete resistivity anomaly** (Figure 5) confirming the effectiveness of the technique for locating blind veins elsewhere in the project.

Importantly, the ET data shows the **Lara Vein** to be linked to a larger chargeability feature (34mV.V) offset 125m to the north (Figure 5). **The chargeability feature is interpreted as a zone of intense epithermal clay and sulphide (pyrite) alteration along a second parallel structure potentially representing a feeder zone and separate target.** A deeper diamond hole (total depth 200m) is underway to test both the chargeable anomaly and the intersection of the interpreted feeder structure with the down-dip projection of the **Lara Vein**.

Figure 5: Electrical Tomography modelled inversions of chargeability (above) and resistivity (below)

Patricia

An additional 5 RC holes for 446m have been completed at the **Patricia** prospect (Figure 6). **Patricia** is located 1.2km northwest of **Mia** and was prioritised for scout RC drilling based on the presence of high-grade epithermal vein boulders at surface similar to Mia (see ASX announcement, 17 February 2020, New Patricia Vein Extends Mia trend to 1.2km).

Holes were drilled on three northeast orientated fences spaced 50 to 75m apart.

Preliminary interpretation from the first holes at Patricia was that the high-grade epithermal vein boulders were displaced approximately 50m northwards from the potential source located under younger tertiary basalt cover.

Hole DRC-PA20-028 was collared on the basalt and intercepted wide zones of low-grade mineralisation including a discrete interval of 1m at 0.35gpt Au, 195gpt Ag from 74m. This is interpreted to be a second parallel structure 40m south of previously reported hole DRC-PA20-007 that returned 1m at 0.3gpt Au, 174gpt Ag from 95m. **Both mineralised structures are open to the west**.

Following the success at Mia, an Electrical Tomography survey is underway at Patricia to accelerate exploration and define possible 'vein-like' resistivity targets under the basalt cover.

Figure 6: Patricia prospect drill holes and interpreted mineralised trends (Datum WGS UTM19S)Note Note prefix to simplify map labels "PA20" has been removed from collar IDs

8

Florencia

Phase 2 drilling at **Florencia** has also been completed and comprised 3 diamond holes for 372m and 11 RC holes for 1130m. The drill program was designed to test three mineralised structures defined by recent drilling and trenching (*see ASX announcement, Florencia returns promising drill results, 9 November* 2020).

Previously reported key mineralised intercepts that were followed up by this program include:

DRC-FL20-016: 3m at 8.2gpt Au, 26gpt Ag from 60mDRC-FL20-019: 17m at 1.3gpt Au, 10gpt Ag from 87m

The program was largely reconnaissance and comprised a series of RC holes on fences spaced 100m apart and traversing the three mineralised structures perpendicular to strike on north-northeast orientated lines.

This work was augmented by three diamond holes completed down-dip and along strike from known mineralisation to better define the geological and structural controls on mineralisation at Florencia.

Geological interpretation is ongoing and final gold and silver assay results are expected towards the end of December.

Figure 7: Looking east, view of RC and Diamond drilling at the Florencia prospect

Emilia Este

METALS

Emilia Este is a new surface vein discovery located 4.6km north of Mia on a separate mineralised trend (see ASX announcement 9 November 2020, Florencia delivers promising drill results)

Follow-up sampling at the **Emilia Este** vein has returned **further high-grade gold and silver mineralisation at surface with up to 82gpt Au and 1444gpt Ag in rock chip samples** (n=11). Rock chip geochemical assay results are provided in Table 2 and shown in Figure 8.

This is in addition to previous reported surface rock chip values of up to 3.1gpt Au and 2468gpt Ag.

Gold and silver mineralisation is associated with a north-northwest orientated vein breccia that has been traced in outcrop over 80m strike, potentially representing a high-grade dilatant 'link' structure between segments of a northwest orientated fault corridor.

Key new rock chip results include:

- 82 gpt Au, 290gpt Ag
- 2.3gpt Au, 985gpt Ag
- 1.1gpt Au, 1444gpt Ag

Two shallow diamond drill holes for 187m meters have been completed at the Emilia Este prospect. Both holes intercepted oxidized veins and vein breccias with a high modal percent (up to 15%) of pyrite and black sulphides interpreted to be silver-sulphosalts.

Gold and silver assay results are expected in the first week of January.

Table 2: Rock Chip Gold and Silver Results

 Coordinates stated in Latitude Longitude WGS84

Prospect	Sample	Latitude	Longitude	Au (gpt)	Ag (gpt)
Emilia East	20508	-48.2974	-68.5195	2.60	264
	20509	-48.2973	-68.5196	1.63	324
	20510	-48.2977	-68.5211	0.03	3.65
	20511	-48.2981	-68.5212	0.19	4.07
	20512	-48.2977	-68.5193	82	290
	20513	-48.2977	-68.5193	2.30	985
	20514	-48.2977	-68.5193	1.09	1444
	20515	-48.2977	-68.5193	1.59	245
	20516	-48.2973	-68.5197	0.92	7.27
	20517	-48.2972	-68.5198	0.70	9.88
	20518	-48.2972	-68.5196	0.16	22

Figure 8: Emilia Este prospect with previous and new rock chip results and drill holes (Datum WGS UTM19S) Note simplify map labels prefix "EE20" has been removed from collar IDs

Figure 9: Looking south, view of the high-grade Emilia Este vein with up to 82gpt Au, 2468gpt Ag

2 METALS

Other Prospects

A further 5 RC holes and 6 diamond holes for 1535m have been completed at other prospects (Ro, Veta Blanca and Emilia, see Table 3). No significant assay results were received from these holes. However, programs at these prospects are incomplete as a result of drill rigs being relocated to prioritise drilling at **Mia** and **Florencia**. The RC rig is currently at **Ro** and diamond drilling at **Veta Blanca** and **Emilia** will recommence early next year subject to results from the current drill program.

Table 3: Veta Blanca, Ro and Emilia drill hole collarsCoordinates stated in WGS84 UTM 19S

Prospect	Hole	Easting (mE)	Northing (mN)	RL (m)	Dip (°)	Azimuth (°)	Depth (m)
Veta Blanca	DDH-VB20-020	534010	4650499	256	-60	37	239
	DDH-VB20-023	534042	4650532	263	-60	37	182.2
	DDH-VB20-025	533979	4650552	258	-60	37	130
	DRC-VB20-026	533943	4650605	256	-60	37	89
	DRC-VB20-027	533961	4650527	255	-60	37	74
Ro	DDH-RO20-005	533472	4648560	306	-60	217	101.1
	DDH-RO20-009	533553	4648503	306	-60	217	225.1
	DDH-RO20-017	533386	4648615	306.1	-60	217	219
Emilia	DRC-EM20-021	534885	4650851	252	-60	37	92
	DRC-EM20-022	534914	4650876	247	-60	37	94
	DRC-EM20-024	535003	4650820	253	-60	37	90

For enquiries please contact:

Todd Williams Managing Director

M: +61422225211

This announcement is authorised for release to the market by the Board of Directors of E2 Metals Limited.

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DDH-MI20-030	0	1.5	1.5	13561	0.02	0
DDH-MI20-030	1.5	3	1.5	13562	0.01	0
DDH-MI20-030	3	4	1	13563	0	0
DDH-MI20-030	4	5	1	13564	0.02	0
DDH-MI20-030	5	6	1	13565	0.05	0
DDH-MI20-030	6	7	1	13566	0	0
DDH-MI20-030	7	8	1	13567	0	0
DDH-MI20-030	8	9	1	13568	0	0
DDH-MI20-030	9	10	1	13569	0.01	0
DDH-MI20-030	10	11	1	13570	0	0
DDH-MI20-030	11	12	1	13571	0	2.48
DDH-MI20-030	12	13	1	13572	0	0
DDH-MI20-030	13	14	1	13573	0	2.39
DDH-MI20-030	14	15	1	13574	0	2.1
DDH-MI20-030	15	16	1	13576	0	0
DDH-MI20-030	16	17	1	13577	0	2.14
DDH-MI20-030	17	18	1	13578	0.02	5.12
DDH-MI20-030	18	19	1	13579	0.01	3.49
DDH-MI20-030	19	20	1	13581	0.02	0
DDH-MI20-030	20	21	1	13582	0.04	2.43
DDH-MI20-030	21	22	1	13583	0.03	0
DDH-MI20-030	22	23	1	13584	0.03	0
DDH-MI20-030	23	24	1	13585	0.04	0
DDH-MI20-030	24	25	1	13586	0.06	0
DDH-MI20-030	25	26	1	13587	0.03	0
DDH-MI20-030	26	26.5	0.5	13588	0.05	2.08
DDH-MI20-030	26.5	27	0.5	13589	0.02	0
DDH-MI20-030	27	28	1	13590	0.02	12.16
DDH-MI20-030	28	29	1	13591	0.03	19.81
DDH-MI20-030	29	29.7	0.7	13592	0.02	0
DDH-MI20-030	29.7	30.2	0.5	13593	0.08	6.72
DDH-MI20-030	30.2	31	0.8	13594	0.01	0
DDH-MI20-030	31	32	1	13595	0.01	3.26
DDH-MI20-030	32	33	1	13596	0.08	3.12
DDH-MI20-030	33	34	1	13597	0.06	2.56
DDH-MI20-030	34	35	1	13598	0.1	2.41
DDH-MI20-030	35	36	1	13599	0.05	5.35
DDH-MI20-030	36	38	2	13601	0.06	4.12
DDH-MI20-030	38	39	1	13602	0.03	4.19
DDH-MI20-030	39	40	1	13603	0.07	9.62
DDH-MI20-030	40	41	1	13604	0.03	12.87
DDH-MI20-030	41	42	1	13605	0.07	36.39
DDH-MI20-030	42	43	1	13606	0.1	71.9
DDH-MI20-030	43	44	1	13607	0.03	14.99
DDH-MI20-030	44	45	1	13608	0.09	21.78

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DDH-MI20-030	45	45.85	0.85	13609	0.14	14.67
DDH-MI20-030	45.85	47	1.15	13610	0.33	184.99
DDH-MI20-030	47	48	1	13611	0.38	85.07
DDH-MI20-030	48	49	1	13612	0.25	26.46
DDH-MI20-030	49	51	2	13613	0.15	41.93
DDH-MI20-030	51	52	1	13614	1.35	393.13
DDH-MI20-030	52	53	1	13615	0.19	296.49
DDH-MI20-030	53	53.5	0.5	13616	2.73	308.4
DDH-MI20-030	53.5	54.5	1	13617	0.13	39.28
DDH-MI20-030	54.5	56	1.5	13618	0.09	61.09
DDH-MI20-030	56	57	1	13619	0.11	27.65
DDH-MI20-030	57	58	1	13621	0.33	428.9
DDH-MI20-030	58	58.5	0.5	13622	0.26	62.1
DDH-MI20-030	58.5	59.1	0.6	13623	8.16	863.29
DDH-MI20-030	59.1	60.2	1.1	13624	21.29	3118.72
DDH-MI20-030	60.2	61.25	1.05	13626	0.83	51.1
DDH-MI20-030	61.25	62.25	1	13627	14.54	549.15
DDH-MI20-030	62.25	63	0.75	13628	0.85	143.03
DDH-MI20-030	63	64	1	13629	1.61	117.19
DDH-MI20-030	64	65.4	1.4	13630	1.36	35.02
DDH-MI20-030	65.4	66.35	0.95	13631	0.22	11.35
DDH-MI20-030	66.35	67	0.65	13632	0.24	13.1
DDH-MI20-030	67	68	1	13633	0.27	4.53
DDH-MI20-030	68	69	1	13634	0.31	9.27
DDH-MI20-030	69	70	1	13635	0.1	8.45
DDH-MI20-030	70	71	1	13636	0.18	11.17
DDH-MI20-030	71	72	1	13637	0.09	42.94
DDH-MI20-030	72	73	1	13638	0.25	6.98
DDH-MI20-030	73	74	1	13639	0.32	21.24
DDH-MI20-030	74	75	1	13641	0.36	2.38
DDH-MI20-030	75	76	1	13642	0.13	3.16
DDH-MI20-030	76	77	1	13643	0.15	4.29
DDH-MI20-030	77	78	1	13644	0.26	3.95
DDH-MI20-030	78	79	1	13645	0.1	0
DDH-MI20-030	79	80	1	13646	0.11	180.31
DDH-MI20-030	80	81	1	13647	0.06	2.55
DDH-MI20-030	81	82	1	13648	0.06	4.39
DDH-MI20-030	82	83	1	13649	0.05	5.18
DDH-MI20-030	83	84	- 1	13651	0.08	5.17
DDH-MI20-030	84	85	1	13652	0.07	3.05
DDH-MI20-030	85	87	2	13653	0.16	2.78
DDH-MI20-030	87	89	2	13654	0.10	0
DDH-MI20-030	89	91	2	13655	0.25	4.71
DDH-MI20-030	91	92	1	13656	0.06	2.62
DDH-MI20-030	92	93	1	13657	0.07	0
	72	75	1	10057	0.07	0

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DDH-MI20-030	93	94	1	13658	0.52	3.85
DDH-MI20-030	94	96	2	13659	0.22	0
DDH-MI20-030	96	97.5	1.5	13661	0.14	0
DDH-MI20-030	97.5	98.2	0.7	13662	0.76	2.53
DDH-MI20-030	98.2	99	0.8	13663	0.26	0
DDH-MI20-030	99	100	1	13664	0.05	0
DDH-MI20-030	100	101.45	1.45	13665	0.19	0
DDH-MI20-034	0	2	2	13811	0	0
DDH-MI20-034	2	4	2	13812	0	0
DDH-MI20-034	4	6	2	13813	0	0
DDH-MI20-034	6	8	2	13814	0	0
DDH-MI20-034	8	10	2	13815	0	0
DDH-MI20-034	10	12	2	13816	0.01	0
DDH-MI20-034	12	14	2	13817	0	3.22
DDH-MI20-034	14	16	2	13818	0	0
DDH-MI20-034	16	18	2	13819	0.04	4.2
DDH-MI20-034	18	20	2	13821	0.02	5.42
DDH-MI20-034	20	22	2	13822	0.03	5.79
DDH-MI20-034	22	22.5	0.5	13823	0.02	4.45
DDH-MI20-034	22.5	23.5	1	13824	3.01	5.73
DDH-MI20-034	23.5	24	0.5	13826	0.06	7.57
DDH-MI20-034	24	25	1	13827	0.07	6.36
DDH-MI20-034	25	26	1	13828	0.01	8.36
DDH-MI20-034	26	27	1	13829	0.02	9.41
DDH-MI20-034	27	28	1	13830	0.19	2.94
DDH-MI20-034	28	29	1	13831	0.25	20.85
DDH-MI20-034	29	30	1	13832	0.18	19.45
DDH-MI20-034	30	32	2	13833	0.16	64.54
DDH-MI20-034	32	34	2	13834	0.12	15.04
DDH-MI20-034	34	36	2	13835	0.11	13.77
DDH-MI20-034	36	38	2	13836	0.1	6.15
DDH-MI20-034	38	40	2	13837	0.26	11.27
DDH-MI20-034	40	42	2	13838	0.13	11.11
DDH-MI20-034	42	44	2	13839	0.14	21.56
DDH-MI20-034	44	46	2	13841	1.38	385.29
DDH-MI20-034	46	48	2	13842	0.2	12.54
DDH-MI20-034	48	49.1	1.1	13843	0.07	11.27
DDH-MI20-034	49.1	50.38	1.28	13844	0.94	1034.75
DDH-MI20-034	50.38	51.1	0.72	13845	71.35	1495.05
DDH-MI20-034	51.1	52	0.9	13846	37.3	2010.76
DDH-MI20-034	52	52.53	0.53	13847	18.91	3982.35
DDH-MI20-034	52.53	53	0.47	13848	0.17	417.55
DDH-MI20-034	53	54	1	13849	0.13	16.01
DDH-MI20-034	54	56	2	13851	0.22	10.66
DDH-MI20-034	56	58	2	13852	0.04	14.45

2 Metals Limited • www.e2metals.com.au

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DDH-MI20-034	58	60	2	13853	0.03	2.4
DDH-MI20-034	60	61	1	13854	0.02	6.46
DDH-MI20-034	61	62	1	13855	0.07	28.46
DDH-MI20-034	62	62.6	0.6	13856	0.08	10.46
DDH-MI20-034	62.6	63.5	0.9	13857	0.05	9.49
DDH-MI20-034	63.5	64.5	1	13858	0.08	4.68
DDH-MI20-034	64.5	66	1.5	13859	0.15	2.43
DDH-MI20-034	66	67	1	13861	0.15	4.25
DDH-MI20-034	67	68	1	13862	0.33	8.88
DDH-MI20-034	68	70	2	13863	0.14	6.53
DDH-MI20-034	70	72	2	13864	0.11	2.34
DDH-MI20-034	72	74	2	13865	0.2	2.79
DDH-MI20-034	74	76	2	13866	0.07	0
DDH-MI20-034	76	78	2	13867	0.15	2.53
DDH-MI20-034	78	80	2	13868	0.2	2.55
DDH-MI20-034	80	82	2	13869	0.17	0
DDH-MI20-034	82	84	2	13870	0.16	4.76
DDH-MI20-034	84	86	2	13871	0.05	0
DDH-MI20-034	86	88	2	13872	0.23	6.82
DDH-MI20-034	88	90	2	13873	0.23	6.63
DDH-MI20-034	90	92	2	13874	0.1	2.55
DDH-MI20-034	92	93	1	13876	0.09	28.76
DDH-MI20-034	93	94	1	13877	0.18	6.8
DDH-MI20-034	94	95	1	13878	0.42	0
DDH-MI20-034	95	96	1	13879	0.05	13.81
DDH-MI20-034	96	97	1	13881	0.07	0
DDH-MI20-034	97	98	1	13882	0.11	2.12
DDH-MI20-034	98	99	1	13883	0.08	5.76
DDH-MI20-034	99	100	1	13884	0.08	8.23
DDH-MI20-034	100	101	1	13885	0.13	0
DDH-MI20-036	0	2	2	13886	0	0
DDH-MI20-036	2	4	2	13887	0	0
DDH-MI20-036	4	6	2	13888	0.19	0
DDH-MI20-036	6	8	2	13889	0	0
DDH-MI20-036	8	10	2	13890	0	0
DDH-MI20-036	10	12	2	13891	0.02	0
DDH-MI20-036	12	14	2	13892	0	0
DDH-MI20-036	14	16	2	13893	0	0
DDH-MI20-036	16	18	2	13894	0	0
DDH-MI20-036	18	20	2	13895	0	0
DDH-MI20-036	20	22	2	13896	0	0
DDH-MI20-036	22	24	2	13897	0	0
DDH-MI20-036	24	26	2	13898	0	0
DDH-MI20-036	26	28	2	13899	0	0
DDH-MI20-036	28	30	2	13901	0	0

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DDH-MI20-036	30	32	2	13902	0	0
DDH-MI20-036	32	34	2	13903	0	0
DDH-MI20-036	34	36	2	13904	0	0
DDH-MI20-036	36	38	2	13905	0	0
DDH-MI20-036	38	40	2	13906	0	0
DDH-MI20-036	40	42	2	13907	0	0
DDH-MI20-036	42	44	2	13908	0	0
DDH-MI20-036	44	46	2	13909	0	0
DDH-MI20-036	46	48	2	13910	0.01	0
DDH-MI20-036	48	50	2	13911	0	0
DDH-MI20-036	50	52	2	13912	0	0
DDH-MI20-036	52	54	2	13913	0.01	0
DDH-MI20-036	54	56	2	13914	0.02	0
DDH-MI20-036	56	58	2	13915	0	0
DDH-MI20-036	58	60	2	13916	0.02	0
DDH-MI20-036	60	62	2	13917	0.03	0
DDH-MI20-036	62	64	2	13918	0.03	0
DDH-MI20-036	64	66	2	13919	0.07	0
DDH-MI20-036	66	68	2	13921	0.08	0
DDH-MI20-036	68	70	2	13922	0.03	0
DDH-MI20-036	70	70.84	0.84	13923	0.03	23.08
DDH-MI20-036	70.84	71.8	0.96	13924	0.03	14.2
DDH-MI20-036	71.8	72.7	0.9	13926	0.01	3.83
DDH-MI20-036	72.7	73.5	0.8	13927	0.1	0
DDH-MI20-036	73.5	74	0.5	13928	0	9.39
DDH-MI20-036	74	75	1	13929	0.03	11.04
DDH-MI20-036	75	76	1	13930	0.05	55.72
DDH-MI20-036	76	77	1	13931	0.02	0
DDH-MI20-036	77	78	1	13932	0.03	0
DDH-MI20-036	78	79	1	13933	0.02	5.08
DDH-MI20-036	79	80	1	13934	0.19	29.44
DDH-MI20-036	80	81	1	13935	0.04	45.52
DDH-MI20-036	81	82	1	13936	0.02	4.5
DDH-MI20-036	82	83	1	13937	0.02	9.33
DDH-MI20-036	83	83.8	0.8	13938	0.07	42.65
DDH-MI20-036	83.8	85	1.2	13939	1.07	53.33
DDH-MI20-036	85	86.1	1.1	13941	1.31	651.31
DDH-MI20-036	86.1	86.9	0.8	13942	0.4	117.47
DDH-MI20-036	86.9	88	1.1	13943	0.54	258.09
DDH-MI20-036	88	89	1	13944	0.4	179.55
DDH-MI20-036	89	89.85	0.85	13945	0.11	7.33
DDH-MI20-036	89.85	90.7	0.85	13946	0.52	32.53
DDH-MI20-036	90.7	91.42	0.72	13947	0.34	141.4
DDH-MI20-036	91.42	91.87	0.45	13948	0.39	35.78
DDH-MI20-036	91.87	92.4	0.53	13949	0.22	10.82

2 Metals Limited • www.e2metals.com.au

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DDH-MI20-036	92.4	93.3	0.9	13951	0.11	12.26
DDH-MI20-036	93.3	94	0.7	13952	0.03	0
DDH-MI20-036	94	94.5	0.5	13953	0.14	3.52
DDH-MI20-036	94.5	95	0.5	13954	0.09	0
DDH-MI20-036	95	96	1	13955	0.13	26.12
DDH-MI20-036	96	97	1	13956	0.22	57.91
DDH-MI20-036	97	98	1	13957	0.18	37.74
DDH-MI20-036	98	99	1	13958	0.1	25.26
DDH-MI20-036	99	99.85	0.85	13959	0.07	2.31
DDH-MI20-036	99.85	100.9	1.05	13961	0.2	5.73
DDH-MI20-036	100.9	102	1.1	13962	0.18	3.9
DDH-MI20-036	102	103	1	13963	0.13	4.34
DDH-MI20-036	103	104	1	13964	0.15	32.65
DDH-MI20-036	104	105	1	13965	0.05	5.73
DDH-MI20-036	105	106	1	13966	0.16	8.04
DDH-MI20-036	106	107	1	13967	0.12	9.14
DDH-MI20-036	107	108	1	13968	0.1	5.35
DDH-MI20-036	108	109	1	13969	0.19	6.02
DDH-MI20-036	109	110.8	1.8	13970	0.07	7.39
DDH-MI20-036	110.8	112	1.2	13971	0.16	50.11
DDH-MI20-036	112	114	2	13972	0.21	0
DDH-MI20-036	114	116	2	13973	0.19	0
DDH-MI20-036	116	117.2	1.2	13974	0.19	2.61
DDH-MI20-036	117.2	119	1.8	13976	0.05	0
DDH-MI20-036	119	121	2	13977	0.05	2.32
DDH-MI20-036	121	123	2	13978	0.42	5.37
DDH-MI20-036	123	125	2	13979	0.26	6.04
DRC-MI20-039	0	1	1	17286	0.04	0
DRC-MI20-039	1	2	1	17287	0.1	12.18
DRC-MI20-039	2	3	1	17288	0.16	18.35
DRC-MI20-039	3	4	1	17289	0.37	36.5
DRC-MI20-039	4	5	1	17290	0.41	13.58
DRC-MI20-039	5	6	1	17291	0.28	14.69
DRC-MI20-039	6	7	1	17292	0.28	23.71
DRC-MI20-039	7	8	1	17293	0.13	46.04
DRC-MI20-039	8	9	1	17294	0.65	265.95
DRC-MI20-039	9	10	1	17295	1.1	186.68
DRC-MI20-039	10	11	1	17296	1.31	91.61
DRC-MI20-039	11	12	1	17297	0.23	51
DRC-MI20-039	12	13	1	17298	0.05	12.72
DRC-MI20-039	13	14	1	17299	0.23	9.74
DRC-MI20-039	14	15	1	17301	0.09	15.4
DRC-MI20-039	15	16	1	17302	0.05	12.76
DRC-MI20-039	16	17	1	17303	0.16	17.23
DRC-MI20-039	17	18	1	17304	0.12	14.21

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DRC-MI20-039	18	19	1	17305	0.29	13.02
DRC-MI20-039	19	20	1	17306	0.19	5.66
DRC-MI20-039	20	21	1	17307	0.22	6.24
DRC-MI20-039	21	22	1	17308	0.16	11.25
DRC-MI20-039	22	23	1	17309	0.22	10.73
DRC-MI20-039	23	24	1	17310	1.35	33.93
DRC-MI20-039	24	25	1	17311	0.25	16.52
DRC-MI20-039	25	26	1	17312	0.12	13.53
DRC-MI20-039	26	27	1	17313	0.19	11.23
DRC-MI20-039	27	28	1	17314	0.48	15.58
DRC-MI20-039	28	29	1	17315	0.64	7.91
DRC-MI20-039	29	30	1	17316	0.38	36.51
DRC-MI20-039	30	31	1	17317	0.03	17.87
DRC-MI20-039	31	32	1	17318	0.13	15.66
DRC-MI20-039	32	33	1	17319	0.08	4.46
DRC-MI20-039	33	34	1	17321	0.09	2.73
DRC-MI20-039	34	35	1	17322	0.17	6
DRC-MI20-039	35	36	1	17323	0.19	4.7
DRC-MI20-039	36	37	1	17324	0.04	4.07
DRC-MI20-039	37	38	1	17326	0.06	10.43
DRC-MI20-039	38	39	1	17327	0.05	3.25
DRC-MI20-039	39	40	1	17328	0.29	227.3
DRC-MI20-039	40	41	1	17329	0.14	73.23
DRC-MI20-039	41	42	1	17330	0.05	18.49
DRC-MI20-039	42	43	1	17331	0.05	5.48
DRC-MI20-039	43	44	1	17332	0.05	6.98
DRC-MI20-039	44	45	1	17333	0.1	2.02
DRC-MI20-039	45	46	1	17334	0.09	4.52
DRC-MI20-039	46	47	1	17335	0.31	3.62
DRC-MI20-039	47	48	1	17336	0.15	3.84
DRC-MI20-039	48	49	1	17337	0.1	0
DRC-MI20-039	49	50	1	17338	0.21	10.2
DRC-MI20-039	50	51	1	17339	0.46	20.34
DRC-MI20-039	51	52	1	17341	0.13	0
DRC-MI20-039	52	53	1	17342	0.07	0
DRC-MI20-039	53	54	1	17343	0.11	0
DRC-MI20-039	54	55	1	17344	0.11	0
DRC-MI20-039	55	56	1	17345	0.09	3.05
DRC-MI20-039	56	57	1	17346	0.14	6.03
DRC-MI20-039	57	58	1	17347	0.36	0
DRC-MI20-039	58	59	1	17348	0.28	2.35
DRC-MI20-039	59	60	1	17349	0.29	0
DRC-MI20-039	60	61	1	17351	0.12	0
DRC-MI20-039	61	62	1	17352	0.05	0
DRC-MI20-039	62	63	1	17353	0.03	2.34

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DRC-MI20-039	63	64	1	17354	0.03	0
DRC-MI20-039	64	65	1	17355	0.06	0
DRC-MI20-039	65	66	1	17356	0.12	0
DRC-MI20-039	66	67	1	17357	0.06	2.46
DRC-MI20-039	67	68	1	17358	0.05	0
DRC-MI20-039	68	69	1	17359	0.07	4.38
DRC-MI20-039	69	70	1	17361	0.13	8.64
DRC-MI20-039	70	71	1	17362	0.1	4.2
DRC-MI20-039	71	72	1	17363	0.13	0
DRC-MI20-041	0	1	1	17364	0.1	0
DRC-MI20-041	1	2	1	17365	0.09	0
DRC-MI20-041	2	3	1	17366	0.05	2.49
DRC-MI20-041	3	4	1	17367	0.15	3.37
DRC-MI20-041	4	5	1	17368	0.09	3.07
DRC-MI20-041	5	6	1	17369	0.1	0
DRC-MI20-041	6	7	1	17370	0.05	3.28
DRC-MI20-041	7	8	1	17371	0.06	0
DRC-MI20-041	8	9	1	17372	0.02	3.41
DRC-MI20-041	9	10	1	17373	0.03	2.28
DRC-MI20-041	10	11	1	17374	0.05	4.92
DRC-MI20-041	11	12	1	17376	0.02	4.46
DRC-MI20-041	12	13	1	17377	0.04	3.06
DRC-MI20-041	13	14	1	17378	0.13	2.94
DRC-MI20-041	14	15	1	17379	0.08	4.29
DRC-MI20-041	15	16	1	17381	0.07	5.11
DRC-MI20-041	16	17	1	17382	0	3.87
DRC-MI20-041	17	18	1	17383	0.35	12.76
DRC-MI20-041	18	19	1	17384	0.11	4.04
DRC-MI20-041	19	20	1	17385	0.16	9.6
DRC-MI20-041	20	21	1	17386	0.06	6.8
DRC-MI20-041	21	22	1	17387	0.06	4.99
DRC-MI20-041	22	23	1	17388	0.19	5.35
DRC-MI20-041	23	24	1	17389	0.09	4.21
DRC-MI20-041	24	25	1	17390	0.16	2.7
DRC-MI20-041	25	26	1	17391	0.02	2.64
DRC-MI20-041	26	27	1	17392	0.03	2.27
DRC-MI20-041	27	28	1	17393	0.05	7.84
DRC-MI20-041	28	29	1	17394	0.03	6.71
DRC-MI20-041	29	30	1	17395	0.14	12.65
DRC-MI20-041	30	31	1	17396	0.06	10.84
DRC-MI20-041	31	32	1	17397	0.08	20.7
DRC-MI20-041	32	33	1	17398	0.21	8.77
DRC-MI20-041	33	34	1	17399	0.07	25.81
DRC-MI20-041	34	35	1	17401	0.11	19.91
DRC-MI20-041	35	36	1	17402	0.13	34.68

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DRC-MI20-041	36	37	1	17403	0.17	11.44
DRC-MI20-041	37	38	1	17404	0.3	28.89
DRC-MI20-041	38	39	1	17405	0.24	7.31
DRC-MI20-041	39	40	1	17406	0.4	26.84
DRC-MI20-041	40	41	1	17407	0.47	43.12
DRC-MI20-041	41	42	1	17408	0.35	10.96
DRC-MI20-041	42	43	1	17409	0.18	16.51
DRC-MI20-041	43	44	1	17410	0.37	134.59
DRC-MI20-041	44	45	1	17411	0.12	22.35
DRC-MI20-041	45	46	1	17412	0.07	12.64
DRC-MI20-041	46	47	1	17413	0.1	22.38
DRC-MI20-041	47	48	1	17414	0.17	13.36
DRC-MI20-041	48	49	1	17415	0.63	27.7
DRC-MI20-041	49	50	1	17416	1.32	19.67
DRC-MI20-041	50	51	1	17417	0.2	7.6
DRC-MI20-041	51	52	1	17418	0.19	11.69
DRC-MI20-041	52	53	1	17419	0.24	28.57
DRC-MI20-041	53	54	1	17421	0.3	31.92
DRC-MI20-041	54	55	1	17422	0.26	101.81
DRC-MI20-041	55	56	1	17423	0.23	28.8
DRC-MI20-042	0	1	1	17424	0.13	5.76
DRC-MI20-042	1	2	1	17426	0.27	3.93
DRC-MI20-042	2	3	1	17427	0.04	3.35
DRC-MI20-042	3	4	1	17428	0.26	0
DRC-MI20-042	4	5	1	17429	0.35	3.11
DRC-MI20-042	5	6	1	17430	0.14	2.12
DRC-MI20-042	6	7	1	17431	0.13	5.91
DRC-MI20-042	7	8	1	17432	0.16	0
DRC-MI20-042	8	9	1	17433	0.08	4.87
DRC-MI20-042	9	10	1	17434	0.22	0
DRC-MI20-042	10	11	1	17435	0.12	3.29
DRC-MI20-042	11	12	1	17436	0.16	5.73
DRC-MI20-042	12	13	1	17437	0.04	0
DRC-MI20-042	13	14	1	17438	0.11	5.49
DRC-MI20-042	14	15	1	17439	0.09	6.26
DRC-MI20-042	15	16	1	17441	0.19	3.58
DRC-MI20-042	16	17	1	17442	0.4	4.72
DRC-MI20-042	17	18	1	17443	0.17	4.54
DRC-MI20-042	18	19	1	17444	0.1	9.21
DRC-MI20-042	19	20	1	17445	0.14	9.59
DRC-MI20-042	20	21	1	17446	0.11	8.4
DRC-MI20-042	21	22	1	17447	0.12	8.59
DRC-MI20-042	22	23	1	17448	0.16	8.09
DRC-MI20-042	23	24	1	17449	0.29	7.4
DRC-MI20-042	24	25	1	17451	0.16	7.47

DRC-MI20-042 25 26 1 17452 0.15 3.84 DRC-MI20-042 26 27 1 17453 1.06 6.04 DRC-MI20-042 28 29 1 17454 0.36 6.01 DRC-MI20-042 29 30 1 17455 0.31 3.05 DRC-MI20-042 31 32 1 17457 0.34 3.84 DRC-MI20-042 32 33 1 17457 0.24 3.84 DRC-MI20-042 34 35 1 17461 0.16 8.31 DRC-MI20-042 36 37 1 17464 0.76 8.33 DRC-MI20-042 38 39 1 17465 0.22 1125 DRC-MI20-042 38 39 1 17464 0.16 8.31 DRC-MI20-042 40 41 1 17467 0.15 3.023 DRC-MI20-042 40 41 17471 0.4<	Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DRC-MI20-042 27 28 1 17454 0.36 6.01 DRC-MI20-042 29 30 1 17455 0.31 5.09 DRC-MI20-042 29 30 1 17457 0.34 3384 DRC-MI20-042 31 32 1 17459 0.2 1283 DRC-MI20-042 33 34 1 17459 0.2 1283 DRC-MI20-042 35 36 1 17463 0.2 1415 DRC-MI20-042 35 36 1 17464 0.76 8.33 DRC-MI20-042 38 39 1 17465 0.22 1125 DRC-MI20-042 39 40 1 17467 0.15 3023 DRC-MI20-042 41 42 1 17467 0.13 2317 DRC-MI20-042 43 44 1 17470 0.13 2317 DRC-MI20-042 44 47 1 17477	DRC-MI20-042	25	26	1	17452	0.15	3.84
DRC-MI20-042 28 29 1 17455 0.31 5.09 DRC-MI20-042 29 30 1 17456 0.45 11.77 DRC-MI20-042 30 31 1 17458 0.33 33.84 DRC-MI20-042 32 33 1 17459 0.2 12.83 DRC-MI20-042 33 34 1 17461 0.16 8.33 DRC-MI20-042 35 36 1 17464 0.76 8.33 DRC-MI20-042 36 37 1 17464 0.76 8.33 DRC-MI20-042 39 40 1 17465 0.22 11.25 DRC-MI20-042 40 41 1 17464 0.79 22.07 DRC-MI20-042 40 41 1 17470 0.13 23.17 DRC-MI20-042 44 45 1 17472 0.39 2.46 DRC-MI20-042 44 45 1 1747	DRC-MI20-042	26	27	1	17453	1.06	5.04
DRC-MI20-042 29 30 1 17456 0.45 11.77 DRC-MI20-042 30 31 1 17457 0.34 3384 DRC-MI20-042 32 33 1 17459 0.2 1283 DRC-MI20-042 33 34 1 17461 0.16 8.31 DRC-MI20-042 35 36 1 17462 0.27 1125 DRC-MI20-042 35 36 1 17463 0.22 1125 DRC-MI20-042 37 38 1 17464 0.19 1386 DRC-MI20-042 39 40 1 17467 0.15 3023 DRC-MI20-042 41 42 1 17469 0.29 2207 DRC-MI20-042 43 44 1 17470 0.13 2317 DRC-MI20-042 44 45 1 17470 0.39 3246 DRC-MI20-042 45 46 1 17477 <td>DRC-MI20-042</td> <td>27</td> <td>28</td> <td>1</td> <td>17454</td> <td>0.36</td> <td>6.01</td>	DRC-MI20-042	27	28	1	17454	0.36	6.01
DRC-MI20-042 30 31 1 17457 0.34 3384 DRC-MI20-042 31 32 1 17458 0.3 1058 DRC-MI20-042 32 33 1 17451 0.16 8.31 DRC-MI20-042 34 35 1 17462 0.27 11.25 DRC-MI20-042 36 37 1 17464 0.76 8.33 DRC-MI20-042 37 38 1 17465 0.22 11.25 DRC-MI20-042 37 38 1 17464 0.15 30.23 DRC-MI20-042 39 40 1 17467 0.15 30.23 DRC-MI20-042 41 42 1 17467 0.13 23.17 DRC-MI20-042 41 42 1 17470 0.13 23.17 DRC-MI20-042 43 44 1 17471 0.44 71.8 DRC-MI20-042 45 1 17473 0	DRC-MI20-042	28	29	1	17455	0.31	5.09
DRC-MI20-042 31 32 1 17458 0.3 1058 DRC-MI20-042 32 33 1 17459 0.2 1283 DRC-MI20-042 33 34 1 17464 0.27 1125 DRC-MI20-042 35 36 1 17464 0.76 8.33 DRC-MI20-042 36 37 1 17464 0.76 8.33 DRC-MI20-042 38 39 1 17465 0.22 1125 DRC-MI20-042 39 40 1 17467 0.15 3023 DRC-MI20-042 41 42 1 17469 0.29 2207 DRC-MI20-042 43 44 1 17470 0.13 2317 DRC-MI20-042 43 44 1 17471 0.46 5557 DRC-MI20-042 45 46 1 17473 0.41 77.99 DRC-MI20-042 47 8 1 17476	DRC-MI20-042	29	30	1	17456	0.45	11.77
DRC-MI20-042 32 33 1 17459 0.2 1283 DRC-MI20-042 33 34 1 17461 0.16 8.31 DRC-MI20-042 35 36 1 17463 0.2 14155 DRC-MI20-042 36 37 1 17464 0.76 8.33 DRC-MI20-042 38 39 1 17466 0.19 1386 DRC-MI20-042 38 39 1 17466 0.19 1386 DRC-MI20-042 40 41 1 17467 0.13 2317 DRC-MI20-042 41 42 1 17470 0.13 2317 DRC-MI20-042 43 44 1 17471 0.44 5557 DRC-MI20-042 45 46 1 17473 0.41 71.8 DRC-MI20-042 46 47 1 17474 0.21 77.99 DRC-MI20-042 46 47 1 17474 <td>DRC-MI20-042</td> <td>30</td> <td>31</td> <td>1</td> <td>17457</td> <td>0.34</td> <td>33.84</td>	DRC-MI20-042	30	31	1	17457	0.34	33.84
DRC-MI20-042 33 34 1 17461 0.16 8.31 DRC-MI20-042 34 35 1 17462 0.27 11.25 DRC-MI20-042 36 37 1 17463 0.22 14.15 DRC-MI20-042 36 37 1 17464 0.16 8.33 DRC-MI20-042 38 39 1 17466 0.19 13.86 DRC-MI20-042 39 40 1 17467 0.15 30.23 DRC-MI20-042 41 42 1 17469 0.29 22.07 DRC-MI20-042 42 43 1 17470 0.13 23.17 DRC-MI20-042 43 44 1 17471 0.46 55.57 DRC-MI20-042 45 46 1 17473 0.41 71.8 DRC-MI20-042 46 47 1 17476 0.15 58.29 DRC-MI20-042 51 52 1 1	DRC-MI20-042	31	32	1	17458	0.3	10.58
DRC-Mi20-042 34 35 1 17462 0.27 11.25 DRC-Mi20-042 35 36 1 17463 0.2 14.15 DRC-Mi20-042 36 37 1 17464 0.76 8.33 DRC-Mi20-042 38 39 1 17466 0.19 13.86 DRC-Mi20-042 39 40 1 17467 0.15 30.23 DRC-Mi20-042 40 41 1 17468 1.85 68.13 DRC-Mi20-042 41 42 1 17470 0.13 23.17 DRC-Mi20-042 43 44 1 17471 0.46 55.57 DRC-Mi20-042 44 45 1 17471 0.43 77.99 DRC-Mi20-042 46 47 1 17477 0.17 23.29 DRC-Mi20-042 48 49 1 17477 0.17 23.29 DRC-Mi20-042 51 52 1	DRC-MI20-042	32	33	1	17459	0.2	12.83
DRC-Mi20-042 35 36 1 17463 0.2 14.15 DRC-Mi20-042 36 37 1 17464 0.76 8.33 DRC-Mi20-042 37 38 1 17465 0.22 1125 DRC-Mi20-042 39 40 1 17467 0.15 3023 DRC-Mi20-042 40 41 1 17468 185 68.13 DRC-Mi20-042 42 43 1 17470 0.13 23.17 DRC-Mi20-042 42 43 1 17471 0.46 55.57 DRC-Mi20-042 44 45 1 17473 0.41 71.8 DRC-Mi20-042 45 46 1 17473 0.41 71.8 DRC-Mi20-042 46 47 1 17474 0.21 77.99 DRC-Mi20-042 46 47 1 17477 0.17 23.29 DRC-Mi20-042 50 51 1 17478	DRC-MI20-042	33	34	1	17461	0.16	8.31
DRC-MI20-042 36 37 1 17464 0.76 8.33 DRC-MI20-042 37 38 1 17465 0.22 11.25 DRC-MI20-042 39 40 1 17467 0.15 30.23 DRC-MI20-042 40 41 1 17467 0.29 22.07 DRC-MI20-042 42 43 1 17470 0.13 23.17 DRC-MI20-042 42 43 1 17471 0.46 55.57 DRC-MI20-042 44 45 1 17472 0.39 32.46 DRC-MI20-042 45 46 1 17473 0.41 71.8 DRC-MI20-042 45 46 1 17474 0.21 77.99 DRC-MI20-042 47 48 1 17476 0.18 45.36 DRC-MI20-042 50 51 1 17478 0.15 5.862 DRC-MI20-042 52 53 1	DRC-MI20-042	34	35	1	17462	0.27	11.25
DRC-MI20-042 37 38 1 17465 0.22 1125 DRC-MI20-042 38 39 1 17466 0.19 13.86 DRC-MI20-042 39 40 1 17467 0.15 30.23 DRC-MI20-042 40 41 1 17469 0.29 2207 DRC-MI20-042 42 43 1 17470 0.13 23.17 DRC-MI20-042 42 43 1 17470 0.46 55.57 DRC-MI20-042 44 45 1 17471 0.46 55.57 DRC-MI20-042 44 45 1 17473 0.41 71.8 DRC-MI20-042 46 47 1 17474 0.11 77.99 DRC-MI20-042 48 49 1 17477 0.17 23.29 DRC-MI20-042 50 51 1 17481 0.2 4.62 DRC-MI20-042 55 56 1 174	DRC-MI20-042	35	36	1	17463	0.2	14.15
DRC-MI20-042 38 39 1 17466 0.19 13.86 DRC-MI20-042 39 40 1 17467 0.15 30.23 DRC-MI20-042 40 41 1 17469 0.29 22.07 DRC-MI20-042 42 43 1 17470 0.13 23.17 DRC-MI20-042 43 44 1 17471 0.46 55.57 DRC-MI20-042 44 45 1 17472 0.39 32.46 DRC-MI20-042 45 46 1 17473 0.41 71.8 DRC-MI20-042 45 46 1 17473 0.41 71.8 DRC-MI20-042 47 48 1 17476 0.18 45.36 DRC-MI20-042 49 50 1 17478 0.15 58.82 DRC-MI20-042 51 52 1 17481 0.2 34.36 DRC-MI20-042 55 56 1 1	DRC-MI20-042	36	37	1	17464	0.76	8.33
DRC-MI20-04239401174670.1530.23DRC-MI20-04240411174681.8568.13DRC-MI20-04241421174690.2922.07DRC-MI20-04242431174700.1323.17DRC-MI20-04243441174710.4655.57DRC-MI20-04243441174720.3932.46DRC-MI20-04245461174730.4171.8DRC-MI20-04246471174740.2177.99DRC-MI20-04248491174770.1723.29DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174780.1558.82DRC-MI20-04250511174810.24.62DRC-MI20-04253541174810.24.62DRC-MI20-04255561174840.112.79DRC-MI20-04255561174840.112.79DRC-MI20-04256571174860.5942.7DRC-MI20-04258591174880.155.86DRC-MI20-04256571174840.1124.55DRC-MI20-04258591174890.085.86DRC-MI20-04256571174840.155.8	DRC-MI20-042	37	38	1	17465	0.22	11.25
DRC-MI20-04240411174681.8568.13DRC-MI20-04241421174690.2922.07DRC-MI20-04242431174700.1323.17DRC-MI20-04243441174710.4655.57DRC-MI20-04244451174720.3932.46DRC-MI20-04245461174730.4171.8DRC-MI20-04246471174740.1345.66DRC-MI20-04247481174760.1845.66DRC-MI20-04249501174770.1723.29DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174780.138.43DRC-MI20-04250511174810.24.62DRC-MI20-04253541174810.23.63DRC-MI20-04255561174830.138.43DRC-MI20-04255561174840.112.79DRC-MI20-04257581174840.112.79DRC-MI20-04257581174840.155.86DRC-MI20-04257581174840.155.86DRC-MI20-04257581174890.085.86DRC-MI20-04259601174910.1125.55	DRC-MI20-042	38	39	1	17466	0.19	13.86
DRC-MI20-04241421174690.2922.07DRC-MI20-04242431174700.1323.17DRC-MI20-04243441174710.4655.57DRC-MI20-04244451174720.3932.46DRC-MI20-04245461174730.4171.8DRC-MI20-04246471174740.2177.99DRC-MI20-0424748491174760.1845.36DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174790.1410.32DRC-MI20-04250511174810.24.62DRC-MI20-04251521174810.24.62DRC-MI20-04251521174830.138.43DRC-MI20-04254551174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04256571174860.594.27DRC-MI20-04258591174870.2910.28DRC-MI20-04259601174890.085.08DRC-MI20-04264651174910.1125.05DRC-MI20-04263641174930.173.72DRC-MI20-04263641174930.17 </td <td>DRC-MI20-042</td> <td>39</td> <td>40</td> <td>1</td> <td>17467</td> <td>0.15</td> <td>30.23</td>	DRC-MI20-042	39	40	1	17467	0.15	30.23
DRC-MI20-04242431174700.1323.17DRC-MI20-04243441174710.4655.57DRC-MI20-04244451174720.3932.46DRC-MI20-04245461174730.4171.8DRC-MI20-04246471174740.2177.99DRC-MI20-04247481174760.1845.36DRC-MI20-04249501174770.1723.29DRC-MI20-04249501174780.1558.22DRC-MI20-04250511174780.1558.20DRC-MI20-04250511174780.246.2DRC-MI20-04251521174810.246.2DRC-MI20-04253541174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04256571174860.5942.7DRC-MI20-04256571174860.5942.7DRC-MI20-04259601174890.085.08DRC-MI20-04261621174910.112.45DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174930.1730.8	DRC-MI20-042	40	41	1	17468	1.85	68.13
DRC-MI20-04243441174710.4655.57DRC-MI20-04244451174720.3932.46DRC-MI20-04245461174730.4171.8DRC-MI20-04246471174740.2177.99DRC-MI20-04247481174760.1845.36DRC-MI20-0424748491174770.1723.29DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174780.1410.32DRC-MI20-04250511174810.24.62DRC-MI20-04252531174810.24.62DRC-MI20-04254551174810.112.79DRC-MI20-04255561174840.112.79DRC-MI20-04255561174850.234.36DRC-MI20-04255561174860.5942.7DRC-MI20-04258591174880.155.86DRC-MI20-04258591174880.155.86DRC-MI20-04260611174910.1124.55DRC-MI20-04262631174910.1125.05DRC-MI20-04264651174910.133.72DRC-MI20-04263641174910.18 <td>DRC-MI20-042</td> <td>41</td> <td>42</td> <td>1</td> <td>17469</td> <td>0.29</td> <td>22.07</td>	DRC-MI20-042	41	42	1	17469	0.29	22.07
DRC-MI20-04244451174720.3932.46DRC-MI20-04245461174730.4171.8DRC-MI20-04246471174740.2177.99DRC-MI20-04247481174760.1845.36DRC-MI20-0424748491174770.1723.29DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174790.1410.32DRC-MI20-04252531174810.24.62DRC-MI20-04252531174820.235.33DRC-MI20-04252531174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04255561174840.112.79DRC-MI20-04255561174840.112.79DRC-MI20-04257581174840.155.86DRC-MI20-04259601174870.2910.28DRC-MI20-04259601174890.085.08DRC-MI20-04264651174910.1125.05DRC-MI20-04264651174910.1125.05DRC-MI20-04264651174940.1859.43DRC-MI20-04264651174910.11<	DRC-MI20-042	42	43	1	17470	0.13	23.17
DRC-MI20-04245461174730.4171.8DRC-MI20-04246471174740.2177.99DRC-MI20-04247481174760.1845.36DRC-MI20-04248491174770.1723.29DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174790.1410.32DRC-MI20-04251521174810.24.62DRC-MI20-04253541174830.138.43DRC-MI20-04253541174830.138.43DRC-MI20-04255561174840.112.79DRC-MI20-04255561174850.234.36DRC-MI20-04255561174850.234.36DRC-MI20-04256571174860.5942.7DRC-MI20-04258591174870.035.86DRC-MI20-04259601174900.1124.55DRC-MI20-04261621174910.1125.5DRC-MI20-04262631174920.133.72DRC-MI20-04264651174910.1124.55DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174940.1859.43	DRC-MI20-042	43	44	1	17471	0.46	55.57
DRC-MI20-04246471174740.2177.99DRC-MI20-04247481174760.1845.36DRC-MI20-04248491174770.1723.29DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174790.1410.32DRC-MI20-04251521174810.24.62DRC-MI20-04252531174820.235.33DRC-MI20-04253541174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04256571174860.5942.71DRC-MI20-04256571174860.5942.71DRC-MI20-04258591174870.2910.28DRC-MI20-04259601174870.0910.24DRC-MI20-04261621174910.1125.05DRC-MI20-04263641174910.1125.05DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174940.1859.43DRC-MI20-04263641174940.1859.43DRC-MI20-04263641174940.1859.43DRC-MI20-04263641174940.18 <t< td=""><td>DRC-MI20-042</td><td>44</td><td>45</td><td>1</td><td>17472</td><td>0.39</td><td>32.46</td></t<>	DRC-MI20-042	44	45	1	17472	0.39	32.46
DRC-MI20-04247481174760.1845.36DRC-MI20-04248491174770.1723.29DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174790.1410.32DRC-MI20-04250511174810.24.62DRC-MI20-04252531174820.235.33DRC-MI20-04253541174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04254551174840.112.79DRC-MI20-04256571174840.112.79DRC-MI20-04256571174840.155.86DRC-MI20-04258591174850.2910.28DRC-MI20-04259601174870.2910.28DRC-MI20-04261621174900.1125.05DRC-MI20-04262631174910.1125.05DRC-MI20-04264651174940.1859.43DRC-MI20-04263641174940.1859.43DRC-MI20-04263641174940.1859.43DRC-MI20-04263641174940.1859.43DRC-MI20-04264651174940.185	DRC-MI20-042	45	46	1	17473	0.41	71.8
DRC-MI20-04248491174770.1723.29DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174790.1410.32DRC-MI20-04251521174810.24.62DRC-MI20-04252531174820.235.33DRC-MI20-04253541174830.138.43DRC-MI20-04253541174840.112.79DRC-MI20-04255561174850.234.36DRC-MI20-04255561174860.5942.7DRC-MI20-04257581174870.2910.28DRC-MI20-04257581174880.155.86DRC-MI20-04259601174890.085.08DRC-MI20-04261621174910.1125.05DRC-MI20-04262631174910.1125.05DRC-MI20-04264651174940.1859.43DRC-MI20-04264651174940.1859.43DRC-MI20-04264651174940.1859.43DRC-MI20-04264651174940.1859.43DRC-MI20-04264651174940.1859.43DRC-PA20-028011167850.030 <td>DRC-MI20-042</td> <td>46</td> <td>47</td> <td>1</td> <td>17474</td> <td>0.21</td> <td>77.99</td>	DRC-MI20-042	46	47	1	17474	0.21	77.99
DRC-MI20-04249501174780.1558.82DRC-MI20-04250511174790.1410.32DRC-MI20-04251521174810.24.62DRC-MI20-04252531174820.235.33DRC-MI20-04253541174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04255561174850.234.36DRC-MI20-04255561174860.5942.7DRC-MI20-04256571174860.5942.7DRC-MI20-04256571174860.5942.7DRC-MI20-04258591174870.2910.28DRC-MI20-04259601174890.085.08DRC-MI20-04261621174900.112.45DRC-MI20-04262631174910.112.505DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174940.1859.43DRC-MI20-04263641167840.050DRC-MI20-04263641174930.1730.87DRC-MI20-0426364651174940.18<	DRC-MI20-042	47	48	1	17476	0.18	45.36
DRC-MI20-04250511174790.1410.32DRC-MI20-04251521174810.24.62DRC-MI20-04252531174820.235.33DRC-MI20-04253541174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04255561174850.234.36DRC-MI20-04255561174850.234.36DRC-MI20-04256571174860.5942.7DRC-MI20-04257581174870.2910.28DRC-MI20-04259601174890.085.08DRC-MI20-04261621174900.11245DRC-MI20-04261621174910.1125.05DRC-MI20-04263641174930.1730.87DRC-MI20-04262631174940.1859.43DRC-MI20-04264651174940.1859.43DRC-MI20-04264651174940.1859.43DRC-PA20-028011167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	48	49	1	17477	0.17	23.29
DRC-MI20-04251521174810.24.62DRC-MI20-04252531174820.235.33DRC-MI20-04253541174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04255561174850.234.36DRC-MI20-04255561174860.5942.7DRC-MI20-04256571174860.5942.7DRC-MI20-04257581174870.2910.28DRC-MI20-04257581174880.155.86DRC-MI20-04259601174890.085.08DRC-MI20-04261621174910.112455DRC-MI20-04261621174910.1125.05DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174940.1859.43DRC-MI20-04264651174940.1859.43DRC-MI20-04264651167840.050DRC-PA20-028121167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	49	50	1	17478	0.15	58.82
DRC-MI20-04252531174820.235.33DRC-MI20-04253541174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04255561174850.234.36DRC-MI20-04255561174860.5942.7DRC-MI20-04256571174860.5942.7DRC-MI20-04257581174870.2910.28DRC-MI20-04258591174890.085.08DRC-MI20-04259601174890.085.08DRC-MI20-04261621174910.11245DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174940.1859.43DRC-MI20-04264651174940.1859.43DRC-PA20-028011167840.050DRC-PA20-0281231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	50	51	1	17479	0.14	10.32
DRC-MI20-04253541174830.138.43DRC-MI20-04254551174840.112.79DRC-MI20-04255561174850.234.36DRC-MI20-04256571174860.5942.7DRC-MI20-04257581174870.2910.28DRC-MI20-0425758591174880.155.86DRC-MI20-04259601174890.085.08DRC-MI20-04260611174900.11245DRC-MI20-04262631174910.1125.05DRC-MI20-04262631174920.133.72DRC-MI20-04264651174940.1859.43DRC-MI20-04264651167840.050DRC-PA20-028121167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	51	52	1	17481	0.2	4.62
DRC-MI20-04254551174840.112.79DRC-MI20-04255561174850.234.36DRC-MI20-04256571174860.5942.7DRC-MI20-04257581174870.2910.28DRC-MI20-04258591174880.15586DRC-MI20-04259601174890.085.08DRC-MI20-04260611174900.11245DRC-MI20-04261621174910.1125.05DRC-MI20-04261621174920.133.72DRC-MI20-04263641174930.1730.87DRC-MI20-04264651174940.1859.43DRC-MI20-04264651167840.050DRC-PA20-028121167850.030DRC-PA20-028341167860.030DRC-PA20-028341167870.030	DRC-MI20-042	52	53	1	17482	0.23	5.33
DRC-MI20-04255561174850.234.36DRC-MI20-04256571174860.5942.7DRC-MI20-04257581174870.2910.28DRC-MI20-04258591174880.155.86DRC-MI20-04259601174890.085.08DRC-MI20-04260611174900.112.45DRC-MI20-04261621174910.1125.05DRC-MI20-04262631174920.133.72DRC-MI20-04264651174930.1730.87DRC-MI20-04264651174940.1859.43DRC-PA20-028011167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	53	54	1	17483	0.13	8.43
DRC-MI20-04256571174860.5942.7DRC-MI20-04257581174870.2910.28DRC-MI20-04258591174880.155.86DRC-MI20-04259601174890.085.08DRC-MI20-04260611174900.112.45DRC-MI20-04261621174910.1125.05DRC-MI20-04261621174920.133.72DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174930.1730.87DRC-MI20-04263641174940.1859.43DRC-PA20-028011167840.050DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	54	55	1	17484	0.1	12.79
DRC-MI20-04257581174870.2910.28DRC-MI20-04258591174880.155.86DRC-MI20-04259601174890.085.08DRC-MI20-04260611174900.112.45DRC-MI20-04261621174910.1125.05DRC-MI20-04262631174920.133.72DRC-MI20-04262631174930.1730.87DRC-MI20-04264651174940.1859.43DRC-PA20-028011167840.050DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	55	56	1	17485	0.2	34.36
DRC-MI20-04258591174880.155.86DRC-MI20-04259601174890.085.08DRC-MI20-04260611174900.112.45DRC-MI20-04261621174910.1125.05DRC-MI20-04262631174920.133.72DRC-MI20-04262631174930.1730.87DRC-MI20-04264651174940.1859.43DRC-PA20-028011167840.050DRC-PA20-0281231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	56	57	1	17486	0.59	42.7
DRC-MI20-04259601174890.085.08DRC-MI20-04260611174900.112.45DRC-MI20-04261621174910.1125.05DRC-MI20-04262631174920.133.72DRC-MI20-04263641174930.1730.87DRC-MI20-04264651174940.1859.43DRC-PA20-028011167840.050DRC-PA20-028121167850.030DRC-PA20-028341167870.030	DRC-MI20-042	57	58	1	17487	0.29	10.28
DRC-MI20-04260611174900.112.45DRC-MI20-04261621174910.1125.05DRC-MI20-04262631174920.133.72DRC-MI20-04263641174930.1730.87DRC-MI20-04264651174940.1859.43DRC-PA20-028011167840.050DRC-PA20-028121167850.030DRC-PA20-028341167870.030	DRC-MI20-042	58	59	1	17488	0.15	5.86
DRC-MI20-04261621174910.1125.05DRC-MI20-04262631174920.133.72DRC-MI20-04263641174930.1730.87DRC-MI20-04264651174940.1859.43DRC-PA20-028011167840.050DRC-PA20-028121167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	59	60	1	17489	0.08	5.08
DRC-MI20-04262631174920.133.72DRC-MI20-04263641174930.1730.87DRC-MI20-04264651174940.1859.43DRC-PA20-028011167840.050DRC-PA20-028121167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	60	61	1	17490	0.11	2.45
DRC-MI20-04263641174930.1730.87DRC-MI20-04264651174940.1859.43DRC-PA20-028011167840.050DRC-PA20-028121167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	61	62	1	17491	0.11	25.05
DRC-MI20-04264651174940.1859.43DRC-PA20-028011167840.050DRC-PA20-028121167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	62	63	1	17492	0.13	3.72
DRC-PA20-028011167840.050DRC-PA20-028121167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	63	64	1	17493	0.17	30.87
DRC-PA20-028121167850.030DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-MI20-042	64	65	1	17494	0.18	59.43
DRC-PA20-028231167860.030DRC-PA20-028341167870.030	DRC-PA20-028	0	1	1	16784	0.05	0
DRC-PA20-028 3 4 1 16787 0.03 0	DRC-PA20-028	1	2	1	16785	0.03	0
	DRC-PA20-028	2	3	1	16786	0.03	0
DRC-PA20-028 4 5 1 16788 0.08 0	DRC-PA20-028	3	4	1	16787	0.03	0
	DRC-PA20-028	4	5	1	16788	0.08	0

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DRC-PA20-028	5	6	1	16789	0.08	2.8
DRC-PA20-028	6	7	1	16790	0.03	0
DRC-PA20-028	7	8	1	16791	0.02	0
DRC-PA20-028	8	9	1	16792	0.01	0
DRC-PA20-028	9	10	1	16793	0.04	3.12
DRC-PA20-028	10	11	1	16794	0.01	2.09
DRC-PA20-028	11	12	1	16795	0.01	0
DRC-PA20-028	12	13	1	16796	0.01	0
DRC-PA20-028	13	14	1	16797	0	0
DRC-PA20-028	14	15	1	16798	0	0
DRC-PA20-028	15	16	1	16799	0	0
DRC-PA20-028	16	17	1	16801	0	2.36
DRC-PA20-028	17	18	1	16802	0.03	0
DRC-PA20-028	18	19	1	16803	0	5.76
DRC-PA20-028	19	20	1	16804	0.03	12.68
DRC-PA20-028	20	21	1	16805	0.01	5.14
DRC-PA20-028	21	22	1	16806	0	3.82
DRC-PA20-028	22	23	1	16807	0	2.56
DRC-PA20-028	23	24	1	16808	0	0
DRC-PA20-028	24	25	1	16809	0	0
DRC-PA20-028	25	26	1	16810	0	0
DRC-PA20-028	26	27	1	16811	0	0
DRC-PA20-028	27	28	1	16812	0	0
DRC-PA20-028	28	29	1	16813	0	0
DRC-PA20-028	29	30	1	16814	0	0
DRC-PA20-028	30	31	1	16815	0.01	0
DRC-PA20-028	31	32	1	16816	0	0
DRC-PA20-028	32	33	1	16817	0.04	0
DRC-PA20-028	33	34	1	16818	0.45	3.74
DRC-PA20-028	34	35	1	16819	0.34	7.25
DRC-PA20-028	35	36	1	16821	0.07	43.04
DRC-PA20-028	36	37	1	16822	0.08	7.63
DRC-PA20-028	37	38	1	16823	0.07	5.59
DRC-PA20-028	38	39	1	16824	0.12	9.21
DRC-PA20-028	39	40	1	16826	0.1	5.89
DRC-PA20-028	40	41	1	16827	0.06	0
DRC-PA20-028	41	42	1	16828	0.08	5.73
DRC-PA20-028	42	43	1	16829	0.13	4.03
DRC-PA20-028	43	44	1	16830	0.24	13.62
DRC-PA20-028	44	45	1	16831	0.48	29.66
DRC-PA20-028	45	46	1	16832	0.33	8.07
DRC-PA20-028	46	47	1	16833	0.09	6.4
DRC-PA20-028	47	48	1	16834	0.09	7.46
DRC-PA20-028	48	49	1	16835	0.13	12.91
DRC-PA20-028	49	50	1	16836	0.10	16.24
	77	50	1	10000	0.14	10.27

Hole ID	From	То	Interval	Sample	Au (gpt)	Ag (gpt)
DRC-PA20-028	50	51	1	16837	0.13	14.73
DRC-PA20-028	51	52	1	16838	0.08	9.02
DRC-PA20-028	52	53	1	16839	0.28	34.97
DRC-PA20-028	53	54	1	16841	0.07	16.22
DRC-PA20-028	54	55	1	16842	0.11	23.15
DRC-PA20-028	55	56	1	16843	0.1	27.62
DRC-PA20-028	56	57	1	16844	0.13	10.57
DRC-PA20-028	57	58	1	16845	0.09	8.53
DRC-PA20-028	58	59	1	16846	0.07	6.93
DRC-PA20-028	59	60	1	16847	0.07	4.56
DRC-PA20-028	60	61	1	16848	0.06	4.12
DRC-PA20-028	61	62	1	16849	0.06	10.54
DRC-PA20-028	62	63	1	16851	0.02	0
DRC-PA20-028	63	64	1	16852	0.03	3.79
DRC-PA20-028	64	65	1	16853	0.03	4.07
DRC-PA20-028	65	66	1	16854	0.04	2.76
DRC-PA20-028	66	67	1	16855	0	2.82
DRC-PA20-028	67	68	1	16856	0	2.08
DRC-PA20-028	68	69	1	16857	0.03	2.59
DRC-PA20-028	69	70	1	16858	0	0
DRC-PA20-028	70	71	1	16859	0.02	0
DRC-PA20-028	71	72	1	16861	0.03	0
DRC-PA20-028	72	73	1	16862	0.05	2.86
DRC-PA20-028	73	74	1	16863	0.04	9.57
DRC-PA20-028	74	75	1	16864	0.35	194.59
DRC-PA20-028	75	76	1	16865	0.27	20.92
DRC-PA20-028	76	77	1	16866	0.3	13.26
DRC-PA20-028	77	78	1	16867	0.12	6.71
DRC-PA20-028	78	79	1	16868	0.09	17.9
DRC-PA20-028	79	80	1	16869	0.31	3.11
DRC-PA20-028	80	81	1	16870	0.02	2.62
DRC-PA20-028	81	82	1	16871	0.01	3.58
DRC-PA20-028	82	83	1	16872	0.02	3.08
DRC-PA20-028	83	84	1	16873	0.04	0
DRC-PA20-028	84	85	1	16874	0.06	0
DRC-PA20-028	85	86	1	16876	0.04	2.23
DRC-PA20-028	86	87	1	16877	0.01	0
DRC-PA20-028	87	88	1	16878	0	0
DRC-PA20-028	88	89	1	16879	0	0
DRC-PA20-028	89	90	1	16881	0	0
DRC-PA20-028	90	91	1	16882	0	0
DRC-PA20-028	91	92	1	16883	0	0

Competent Person's Statement

METALS

Information in this report that relates to Exploration results and targets is based on, and fairly reflects, information compiled by E2 Metals Limited and Colin Brodie, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr. Brodie is a Senior Technical Advisor and consultant to E2 Metals Limited. Mr. Brodie has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Brodie consents to the inclusion of the data in the form and context in which it appears

Forward Looking Statement

Certain statements in this announcement constitute "forward-looking statements" or "forward looking information" within the meaning of applicable securities laws. Such statements involve known and unknown risks, uncertainties and other factors, which may cause actual results, performance or achievements of the Company, or industry results, to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements or information. Such statements can be identified by the use of words such as "may", "would", "could", "will", "intend", "expect", "believe", "plan", "anticipate", "estimate", "scheduled", "forecast", "predict" and other similar terminology, or state that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved. These statements reflect the Company's current expectations regarding future events, performance and results, and speak only as of the date of this announcement.

All such forward-looking information and statements are based on certain assumptions and analyses made by E2M's management in light of their experience and perception of historical trends, current conditions and expected future developments, as well as other factors management believe are appropriate in the circumstances. These statements, however, are subject to a variety of risks and uncertainties and other factors that could cause actual events or results to differ materially from those projected in the forward looking information or statements including, but not limited to, unexpected changes in laws, rules or regulations, or their enforcement by applicable authorities; the failure of parties to contracts to perform as agreed; changes in commodity prices; unexpected failure or inadequacy of infrastructure, or delays in the development of infrastructure, and the failure of exploration programs or other studies to deliver anticipated results or results that would justify and support continued studies, development or operations.

Readers are cautioned not to place undue reliance on forward-looking information or statements. Although the forward-looking statements contained in this announcement are based upon what management of the Company believes are reasonable assumptions, the Company cannot assure investors that actual results will be consistent with these forward-looking statements. These forward-looking statements are made as of the date of this announcement and are expressly qualified in their entirety by this cautionary statement. Subject to applicable securities laws, the Company does not assume any obligation to update or revise the forward-looking statements or circumstances occurring after the date of this announcement.

JORC Code Reporting Criteria Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. 	 Conserrat Rock Chip Sampling The rock chip samples reported in this announcement were collected by E2 Metals during January 2020. A total of 127 samples were collected from vein outcrop and representative float trains. Samples were analysed by ALS, Mendoza, Argentina. Samples were crushed to less than 2mm, split and pulverized to <75µm. Multi-element (48) data was by four acid digest and ICP-MS including trace mercury by ICP-MS. Au was by fire assay using a 50g sample with AA finish. Conserrat RC Drilling RC chips were collected using a Rifle John type splitter incorporated into the cyclone which split the sample into two portions of approximately 75% and 25%. About 95% of the samples were collected on a dry basis. When the sample is wet an Hydraulic Cone Splitter is used, which take out the excess of water, and splits two portion of the reject in 75% and 25%. Assay standards, blanks and duplicates were inserted into every 25 samples. Conserrat Diamond Drilling Representative half core samples were split from HQ diameter diamond drill core on site using rock saws The orientation of the cut line is defined from lithological, mineralization characteristics, with lengths no longer than 2 m and no less than 0.5 m. The orientation line ensures uniformity of core splitting wherever the core has been successfully oriented. Sample intervals are defined and subsequently checked by geologists, and sample tags are attached (stapled) to the wood core trays for every sample interval.

Criteria	JORC Code Explanation	Commentary
		 Assay standards, blanks and duplicates were inserted into every 12.5 samples average
Drilling Techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Conserrat RC Drilling The reverse circulation percussion (RC) method used in this program used a 5.5" (289mm) face sampling bit with a first phase of sample splitting into two portions of approximately 75% and 25% undertaken in the RC cyclone with outlets into two plastic (dry samples) or micro-porous cloth bags (wet samples). Conserrat Diamond Drilling The diamond drilling has HQ diameter with triple tube core recovery configuration.
Drill Sample Recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Conserrat RC Drilling Sample recovery was monitored by weighing sample bags on scales beside the drill rig. To make sure that chip sample recovery was maximized the outlets from the cyclone into the sample bags were carefully sealed. The cyclone and drill string were regularly cleaned by the drill operators using compressed air to prevent down hole contamination. There has not been any investigation into the relationship between sample recovery and grade. It is considered that there was not any preferential loss/gain of fine or coarse material. Conserrat Diamond Drilling Diamond drill core recoveries were assessed using the standard industry best practice which involves: Measuring core lengths with a tape measure. Removing the core from the split inner tube and placing it carefully in the core box. Assessing recovery against core block depth measurements. Measuring RQD, recording any measured core loss for each core run. All core was carefully placed in HQ sized core boxes and transported a short distance to a core processing area were logging and photography could be completed.

Criteria	JORC Code Explanation	Commentary
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Diamond core recoveries average 98% through all the meters drilled. Overall, core quality is good, with minimal core loss. Where there is localized faulting and or fracturing core recoveries decrease, however, this is a very small percentage of the mineralized intersections. Systematic geological logging was undertaken using a hand lens to closely examine the chips and cores. Data collected includes: Nature and extent of lithologies. Relationship between lithologies. Alteration extent, nature and intensity. Oxidation extent, mineralogy and intensity. Sulphide types and visually estimated percentage. Quartz vein, veinlets, breccia types and visually estimated percentage. Structures occurrence and attitude. Chips from crucial zones of interest are checked later, off site, by examination with a 10x binocular microscope.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Conserrat RC Drilling Both qualitative and quantitative data is collected, though quantitative data is based on visual estimates, as described above. All holes are logged from start to finish and were conducted on drill site. Conserrat Diamond Drilling All holes are logged from start to finish and were conducted on the core shack. Both qualitative and quantitative data is collected, using predefined logging codes for lithological, mineralogical, and physical characteristics. Cores are photographed after logging, with sample numbers marked in the boxes, before and after being cut and sampled.
	• The total length and percentage of the relevant intersections logged.	100% of all recovered chips and cores are logged.
Sub- Sampling Techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	Representative half core samples were split using rock saws.

Criteria	JORC Code Explanation	Commentary
and Sample Preparation		
	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Conserrat RC Drilling The small sample bags derived from the initial RC rig cyclone and riffle splitting reach a weight of 2.7-4Kg. Wet samples were split with a hydraulic cone splitter from the cyclone in bags with a micro-porous fabric, which allowed water to escape without loss of particulate material. The riffle splitter was cleaned with compressed air between samples to prevent sample contamination. The big bag with the original reject from the RC rig after the splitting have been stored for any future re-sampling needs. Conserrat Diamond Drilling The core intervals were marked, and the core was split with a rock saw. Half core samples were placed in plastic bags and tagged with a unique sample number. The other half of the core was returned to the core box and securely stored Laboratory In the Alex Stewart preparation laboratory facilities samples were dried and crushed until more than 80% is finer than 10 mesh size, then a 600g split is pulverized until 95% is finer than 106 microns. Certified Standard Reference materials and duplicate samples are inserted every 25 samples (RC) and every 12.5 samples (DDH) to assess the accuracy and reproducibility. Sample sizes are considered appropriate.
Quality of Assay Data and Laboratory Tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make 	 Conserrat Rock Chip Sampling Four acid digest and ICP-MS is the most robust analytical method for full digestion and qualitative analyses of multi-element concentrations. Duplicate samples were collected. Standard assay procedures performed by a reputable assay lab (Alex Stewart) were undertaken. Gold assays are by a 50g fire

Criteria	JORC Code Explanation	Commentary
	 and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 assay with an atomic absorption finish. Silver was read by gravimetry on microbalance. Conserrat RC and Diamond Drill Program No geophysical tools were used in the determination of the assay results. All assay results were generated by an independent third-party laboratory as described above. Certified reference material, blanks or duplicates were inserted at least every 25 samples. Standards are purchased from a Certified Reference material manufacture company – Ore Research and Exploration. Standards were purchased in foil lines packets of between 60g and 100g. Different reference materials were used to cover high grade, medium grade and low grader ranges of gold and silver. The standard names on the foil packages were erased before going into the pre-numbered sample bag and the standards are submitted to the lab blind.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The raw assay data forming significant intercepts are examined and discussed by at least two company personnel. No twinned holes have been used at this stage. Drill hole logging data has been collected in paper form in the field, with careful verification by several staff, particularly of the sample numbers and drill hole sample intervals and entered into Excel. This data is then transferred to MapInfo format. Assay data is provided by Alex Stewart in three formats, csv spreadsheets, Excel spreadsheets and signed pdf files. The csv files are used to merge the data into MapInfo files. Hard copy of this and other data is stored with the other drill hole data. Absolute values of the assay results are checked by comparing results of the quality control samples with the known values of the international standards and sterile samples which were inserted by the geologists into the sample sequence. Repeatability of assay results was verified by examining the results of duplicate samples inserted by the company and internal laboratory duplicate results included with the assay certificates.
Location of Data Points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, 	 Drill hole collars are located using Garmin hand-held GPS accurate to ±5m. All coordinates are based on UTM Zone 19S using a WGS84 datum.

Criteria	JORC Code Explanation	Commentary
	mine workings and other locations used in Mineral Resource estimation.Specification of the grid system used.Quality and adequacy of topographic control.	• Topographic control to date has used GPS data, which is adequate considering the small relief (<50m) in the area.
Data Spacing and Distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Conserrat is a new discovery and as a result the drill hole spacing is variable, with closer spacing on zones where surface sampling has given encouraging results (30-40m along strike) and some scout holes testing geophysical or conceptual targets hundreds of metres from the mapped veins. Not applicable as no Ore Resource or Reserve has been completed at Conserrat. No sample compositing has been applied.
Orientation of Data in Relation to Geological Structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• Drilling is orientated to cross the interpreted, steeply dipping mineralized veins at a high angle. No known bias has been introduced into the drilling orientation.
Sample Security	• The measures taken to ensure sample security.	• Chain of custody was managed by E2Metals. Samples were placed into taped polyethylene bags with sample numbers that provided no specific information on the location of the samples. Samples were transported from site to the Alex Stewart preparation lab in Puerto San Julian by E2Metals personnel and after preparation pulps were transported to Mendoza or Perito Moreno for final analysis using transport organized by Alex Stewart.
Audits or Reviews	• The results of any audits or reviews of sampling techniques and data.	No audit or review of the sampling regime at Conserrat has been undertaken.

Section 2 Reporting of Exploration

Criteria	JORC Code Explanation	Commentary
Mineral Tenement and Land Tenure Status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 E2 Metals Limited holds an 80% interest in the Conserrat Project through its ownership in local Argentine holding company Minera Los Domos SA. Conserrat Project titles Title ID 437.471/BVG/17
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	 Reconnaissance exploration by IAMGOLD During the early 2000s IAMGOLD collected 131 vein outcrop and float samples within the project area. Reconnaissance exploration by Circum Pacific Pty Ltd Between the period October 2017 to March 2018 Circum Pacific Pty Ltd collected 120 vein outcrop and float samples within the project area.
Geology	• Deposit type, geological setting and style of mineralisation.	 Santa Cruz Geology and Deposit Model Conserrat is located towards the central eastern margin of the extensive ~60,000 km.sq Deseado Massif geological province that stretches across southern Argentina into the Chilean southern Andes. This massif is made up of Jurassic volcanic and volcaniclastic rocks of the Chon Aike formation. Important precious metal deposits have been discovered in the province during the past 20 years. Gold and silver mineralisation is associated with Low Sulphidation (LS) Epithermal veins in northwesterly structures that were active at the time of mineralisation.

Criteria	JORC Code Explanation	Commentary
Drill Hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drill hole information is provided in Table 1.
Data Aggregation Methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No weighting averaging techniques, maximum and/or minimum grade truncations have been applied when reporting drill hole results.
Relationship Between Mineralisation Widths and intercept lengths.	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg "down hole length, true width not known"). 	It is not possible to measure the geometry of mineralised veins and/or structures in RC drill holes.

Criteria	JORC Code Explanation	Commentary
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Yes.
Balanced Reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Yes
Other Substantive Exploration Data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	There is no "other" exploration data to report
Further Work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Exploration drilling is ongoing

