

3 March 2017

LOS DOMOS SILVER-GOLD PROJECT HIGH GRADE ASSAY RESULTS

Equus Mining Limited ('Equus') (ASX: EQE) is pleased to announce the discovery of high grade silvergold mineralisation at the Company's Los Domos project.

Equus has rights to 100% of the Los Domos project which has not been systematically explored nor drill tested. Field work is ongoing with further assay results to follow.

Highlights

- Reconnaissance mapping and geochemical sampling has delineated multiple structural corridors hosting silver-gold bearing quartz veins and hydrothermal breccias at Los Domos.
- Surface sampling has extended the mineralised strike length of the T1 Structure Prospect from 160m to 430m with assay results (AgEq = silver equivalent) including the following:

LD00344 - 0.33m @ **613 g/t AgEq** (428 g/t Ag & 2.81 g/t Au) LD00347 - 0.40m @ **618 g/t AgEq** (386 g/t Ag & 3.52 g/t Au) LD00339 - 0.78m @ **527 g/t AgEq** (370 g/t Ag & 2.38 g/t Au) LD00338 - 0.60m @ **520 g/t AgEq** (325 g/t Ag & 2.96 g/t Au) LD00356 - 1.40m @ **409 g/t AgEq** (254 g/t Ag & 2.35 g/t Au) LD00359 - 0.20m @ **358 g/t AgEq** (251 g/t Ag & 1.63 g/t Au) LD00345 - 0.50m @ **269 g/t AgEq** (183 g/t Ag & 1.31 g/t Au) LD00349 - 0.40m @ **223 g/t AgEq** (135 g/t Ag & 1.34 g/t Au) LD00354 - 0.45m @ **199 g/t AgEq** (130 g/t Ag & 1.04 g/t Au) LD00354 - 1.20m @ **184 g/t AgEq** (144 g/t Ag & 0.61 g/t Au) LD00363 - 1.20m @ **182 g/t AgEq** (134 g/t Ag & 1.18 g/t Au) LD00348 - 0.90m @ **174 g/t AgEq** (130 g/t Ag & 0.58 g/t Au)

• Surface sampling has also defined the T2 Structure Prospect mineralised strike length to be at least 250m with assay results including the following:

LD00217 - 0.80m @ **412 g/t AgEq** (201 g/t Ag & 3.21 g/t Au) LD00262 - 1.00m @ **179 g/t AgEq** (106 g/t Ag & 1.11 g/t Au) LD00232 - 0.80m @ **175 g/t AgEq** (122 g/t Ag & 0.81 g/t Au) LD00225 - 0.25m @ **117 g/t AgEq** (56 g/t Ag & 0.92 g/t Au) LD00214 - 0.85m @ **112 g/t AgEq** (60 g/t Ag & 0.79 g/t Au) LD00263 - 0.80m @ **110 g/t AgEq** (59 g/t Ag & 0.78 g/t Au) LD00215 - 1.00m @ **101 g/t AgEq** (31 g/t Ag & 1.06 g/t Au)

 Los Domos gold-silver project is well located, 10km south of the township of Chile Chico and adjacent to the Cerro Bayo gold-silver mine which is currently producing around 2 Mozpa of silver and 20 Kozpa gold¹. With an altitude range of 800m to 1200m and a dry, moderate climate, Los Domos is able to be operated year round.

¹source: http://www.mandalayresources.com/wp-content/uploads/2013/09/Cerro_Bayo_Operating_Statistics_Q4_2016.pdf Equus Mining Limited ABN 44 065 212 679

Level 2, 66 Hunter Street Sydney NSW 2000 Australia

Los Domos Gold-Silver Project

Equus Mining Limited (ASX: EQE) has rights to 100% of the Los Domos gold-silver project. See Map 1 for the project's location and the announcement dated 25 October 2016 for further details. The project area is located 15km southeast of the operating Cerro Bayo gold-silver mine and treatment plant which is owned by Mandalay Resources and is currently producing around 2 Mozpa of silver and 20 Kozpa gold. Reserves as of December 2016 were 8.9 Moz of silver and 72 Koz gold. (Source: http://www.mandalayresources.com/reserves-and-resources/)

Map 1. Los Domos Gold-Silver Project Location

Previous mapping and rock chip sampling throughout the Los Domos Project area has delineated multiple structural corridors hosting chalcedonic - saccaroidal quartz veins and hydrothermal breccias. Apart from reconnaissance style mapping and sampling, these newly discovered structural corridors have never received any modern systematic exploration and hence have never been drill tested. Previous vein mapping and sample results have shown typical vertical precious metal, pathfinder element and quartz texture zonation:

- High grade gold and silver grades are reported predominantly in saccaroidal veins which outcrop at lower altitudes throughout the Los Domos Project area typically below 1100m. See areas T1 and T7SE in Map 2.
- Areas where both relatively higher antinomy and arsenic and intermittent grade gold and silver grades have been recorded typically occur between 1100m and 1200m. See areas T2 and the newly discovered T8 area in Map 2.
- Areas where relatively higher antinomy and arsenic and other pathfinder element values are reported with only anomalous precious metal values are typically in veins at higher altitude above 1200m. See areas T3, T4, T5, T6 and T7NW.

Understanding the vertical metal zonation within the epithermal vein system at Los Domos is key to guiding future exploration including drill testing (see announcement dated on 25 October 2016 for further discussion). Increased recognition of geochemical, vein quartz texture and alteration zonation of epithermal Au-Ag systems is delivering the next generation of discoveries of concealed deposits, such as those of Cerro Bayo (Mandalay) and Cerro Negro (Goldcorp).

Map 2. Los Domos Gold-Silver Geochemical Sampling Results

T1 Structure Prospect

Field mapping and sampling to better define known gold-silver epithermal mineralisation at the T1 Structure Prospect commenced in January 2017. Veins returning high grade Au and Ag occur within a 22m wide structural corridor. Assay results from sampling which is limited to outcrop has extended the mineralised strike length from 160m to 430m (see Section 1) include the following:

```
LD00344 - 0.33m @ 613 g/t AgEq (428 g/t Ag & 2.81 g/t Au )
LD00347 - 0.40m @ 618 g/t AgEq (386 g/t Ag & 3.52 g/t Au)
LD00339 - 0.78m @ 527 g/t AgEq (370 g/t Ag & 2.38 g/t Au)
LD00338 - 0.60m @ 520 g/t AgEq (325 g/t Ag & 2.96 g/t Au)
LD00356 - 1.40m @ 409 g/t AgEq (254 g/t Ag & 2.35 g/t Au)
LD00359 - 0.20m @ 358 g/t AgEq (251 g/t Ag & 1.63 g/t Au)
LD00345 - 0.50m @ 269 g/t AgEq (183 g/t Ag & 1.31 g/t Au)
LD00349 - 0.40m @ 223 g/t AgEq (135 g/t Ag & 1.34 g/t Au)
LD00333 - 1.00m @ 201 g/t AgEq (149 g/t Ag & 0.79 g/t Au)
LD00354 - 0.45m @ 199 g/t AgEq (130 g/t Ag & 1.04 g/t Au)
LD00334 - 1.20m @ 184 g/t AgEq (144 g/t Ag & 0.61 g/t Au)
LD00363 - 1.20m @ 182 g/t AgEq (104 g/t Ag & 1.18 g/t Au)
LD00348 - 0.90m @ 174 g/t AgEq (134 g/t Ag & 0.58 g/t Au)
LD00351 - 1.50m @ 150 g/t AgEq (110 g/t Ag & 0.60 g/t Au)
LD00355 - 0.50m @ 98 g/t AgEq (64 g/t Ag & 0.52 g/t Au)
LD00365 - 0.50m @ 96 g/t AgEq (49 g/t Ag & 0.71 g/t Au)
LD00350 - 0.70m @ 87 g/t AgEq (61 g/t Ag & 0.39 g/t Au)
LD00367 - 0.22m @ 52 g/t AgEq (16 g/t Ag & 0.54 g/t Au)
```

Previous chip samples include:

```
LD00013 - 0.40m @ 7339 g/t AgEq (1996 g/t Ag & 81.10 g/t Au)
LD00007 - 0.40m @ 3665 g/t AgEq (326 g/t Ag & 50.68 g/t Au)
LD00035 - 0.40m @ 2383 g/t AgEq (227 g/t Ag & 32.73 g/t Au)
LD00081 - 0.40m @ 1714 g/t AgEq (1340 g/t Ag & 5.67 g/t Au)
LD00009 - 1.00m @ 502 g/t AgEq (179 g/t Ag & 4.91 g/t Au)
LD00025 - 1.00m @ 102 g/t AgEq (97 g/t Ag & 0.07 g/t Au)
```

Strong Ag and Au mineralisation with comparatively low As, Sb and Hg values indicates that the surface expression of the T1 Structure Prospect is within the epithermal precious metal deposition zone. Vein mapping and sampling results to date from Los Domos indicate vertical precious metal, pathfinder element and quartz texture zonation typical of epithermal systems. The zonation at Los Domos demonstrates that precious metal mineralization is generally better developed at lower topographic levels throughout the project area, indicating enhanced Au-Ag depositional levels of the paleo-epithermal system and vein development in favourable host stratigraphy. The T1 Structure Prospect is interpreted to be northeast limb of a large scale graben structure.

Silver Equivalent Calculation Formula (AgEq)

$$AgEq(g/t) = Ag(g/t) + Au(g/t) \times \frac{Price \ per \ 1 \ Au(g) \times Au \ Recovery \ (\%)}{Price \ per \ 1 \ Ag(g) \times Ag \ Recovery \ (\%)}$$

ie Ag:Au = 68:1

Silver Equivalent Calculation Assumptions

Gold Price:	US\$1244 per ounce	US\$40 per gram	The metallurgical recoveries for Au and Ag are based on the recoveries being
Silver Price:	US\$18.35 per ounce	US59c per gram	achieved by a neighbouring Cerro Bayo mine which is operating in the same
2016 Gold Recovery*:	84.93%		geologic setting as the Los Domos project. It is EQE's opinion that all the
2016 Silver Recovery*:	87.40%		potential to be recovered and sold.

*Source: http://www.mandalayresources.com/wp-content/uploads/2013/09/Cerro Bayo Operating Statistics Q4 2016.pd

Section 1. Longitudinal Section of T1, T2, and T3 Prospects Showing Vertical Epithermal Zonation

T2 Structure Prospect

Field mapping and sampling to define known gold-silver epithermal mineralisation at the T2 Structure also commenced in January 2017. Chalcedonic silica flooded-crackle breccias with pyrite and high grade Au and Ag quartz veining occur within a 30m wide structural corridor. Assay results from sampling which is limited to outcrop has defined the T2 Structure Prospect mineralised strike length to be at least 250m (see Section 1) include the following:

LD00217 - 0.80m @ **412 g/t AgEq** (201 g/t Ag & 3.21 g/t Au) LD00262 - 1.00m @ **179 g/t AgEq** (106 g/t Ag & 1.11 g/t Au) LD00232 - 0.80m @ **175 g/t AgEq** (122 g/t Ag & 0.81 g/t Au) LD00225 - 0.25m @ **117 g/t AgEq** (56 g/t Ag & 0.92 g/t Au) LD00214 - 0.85m @ **112 g/t AgEq** (60 g/t Ag & 0.79 g/t Au) LD00263 - 0.80m @ **110 g/t AgEq** (59 g/t Ag & 0.78 g/t Au) LD00215 - 1.00m @ **101 g/t AgEq** (31 g/t Ag & 1.06 g/t Au) LD00260 - 1.30m @ **93 g/t AgEq** (51 g/t Ag & 0.64 g/t Au) LD00208 - 1.00m @ **93 g/t AgEq** (15 g/t Ag & 0.57 g/t Au) LD00330 - 1.50m @ **84 g/t AgEq** (37 g/t Ag & 0.34g/t Au) LD00253 - 0.25m @ **63 g/t AgEq** (28 g/t Ag & 0.53 g/t Au) LD00208 - 1.00m @ **93 g/t AgEq** (15 g/t Ag & 1.18 g/t Au)

Previous chip samples include:

LD00008 - 0.70m @ **1580 g/t AgEq** (449 g/t Ag & 17.16 g/t Au) LD00049 - 0.30m @ **62 g/t AgEq** (40 g/t Ag & 0.33 g/t Au)

Comparatively high As and Hg values coinciding with strong Ag and Au mineralisation indicates that the surface expression of the T2 Structure Prospect is at the transitional epithermal level and potentially just above the epithermal precious metal depositional zone. The T2 Structure Prospect is interpreted to be northeast limb of a large scale graben structure.

T8 Structure Prospect

Initial field mapping and sampling to define known gold-silver epithermal mineralisation at the T8 Structure Prospect also commenced in January 2017. Intense quartz veining with Au and Ag mineralisation occurs within a 70m wide structural corridor. Results to date include:

LD00279 - 0.50m @ **430 g/t AgEq** (149 g/t Ag & 4.27 g/t Au) LD00280 - 0.60m @ **163 g/t AgEq** (45 g/t Ag & 1.79 g/t Au) LD00274 - 1.00m @ **146 g/t AgEq** (17 g/t Ag & 1.96 g/t Au) LD00276 - 1.00m @ **28 g/t AgEq** (18 g/t Ag & 0.15 g/t Au)

High As and Hg values coinciding with Ag and Au mineralisation is indicative that the surface expression of the T8 Structure Prospect is at the transitional epithermal level and potential just above the epithermal precious metal depositional zone.

For further information, please contact:

Ted Leschke – Managing Director Ph: +61 2 9300 3366 Email: tleschke@equusmining.com **Website:** www.equusmining.com

Pjnxxxx

⁽ⁱ⁾All the material assumptions underpinning exploration results for samples numbers LD00001 to LD00102 are outlined in Table 1 and Appendix 1 in the initial public report for the Los Domos Gold-Silver project (see ASX release dated 25 October 2016) and continue to apply and have not materially changed.

^(II)All the material assumptions underpinning exploration results for samples numbers LD00103 to LD00205 are outlined in Table 1 and Appendix 1 in the December 2016 Quarterly Activities Report (see ASX release dated 31 January 2017) continue to apply and have not materially changed.

COMPETENT PERSON'S STATEMENT:

The information in this report that relates to Exploration Results for the Los Domos Gold-Silver project is based on information compiled by Damien Koerber. Mr Koerber is a geological consultant to the Company. Mr Koerber is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Koerber has a beneficial interest as shareholder and Director of Terrane Minerals SpA ('vendor') in Los Domos Gold-Silver project and consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1 LOS DOMOS EXPLORATION PROGRAM EQUUS MINING LIMITED A. DIAMOND SAW CHANNEL SAMPLING

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 <u>Diamond Saw Channel Sampling</u> Sawn Channel samples were collected of quartz veins and zones of silicification, within Jurassic age Ibanez Formation rhyolite ignimbrite by a qualified geologist. Sample locations were surveyed with a handheld GPS using Coordinate Projection System SAD69 UTM Zone 19S. Representative channel samples of 2-3Kg weight were taken across the strike of the outcrop over various width intervals except where noted. Intervals were cut at right angles to geological strike except where noted. <i>Limited analysing of hand samples was conducted by a handheld XRF instrument prior to despatch of samples for conventional laboratory analysis.</i>
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling was carried out in this sampling programme
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling was carried out in this sampling programme
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Sawn Channel samples were geologically logged by a qualified geologist. The orientation of the associated mineralised structures was logged by a qualified geologist.
Sub-sampling techniques and sample preparation	 If core, whether cut or Rock Chip and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample 	 Sawn Channel samples were a minimum width of 30cm and approximate sample support of half core NQ from diamond drilling, ie sample diameter of 56mm, being a half core sample of that.

Criteria	JORC Code explanation	Commentary
	 preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 <u>Diamond Saw Channel Sampling</u> Samples were stored in a secure location and transported to the ALS laboratory in in Santiago for sample preparation of fine crush, riffle split and pulverizing of 1kg to 85% < 75µm under laboratory code Prep-31 Pulps were analysed by ALS Santiago using method code Au-ICP21, ME-MS41, Ag-OG46 (for Ag values > 100 g/t Ag) and Zn-AA62 y Pb-AA62 for Zn and Pb values over 1% respectively Alternate blanks and certified standards were submitted within each laboratory batch at a ratio of 1:15 (i.e. 65%) for which acceptable levels of accuracy were reported.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 <u>Diamond Saw Channel Sampling</u> Laboratory CSV files are merged with GPS Location data files using unique sample numbers as the key. No adjustments were made to assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 <u>Diamond Saw Channel Sampling</u> Samples are located using handheld GPS receivers. Coordinate Projection System SAD69 UTM Zone 19S The topographic control, using handheld GPS, was adequate for the survey.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 <u>Rock Chip Channel Sampling</u> Results will not be used for resource estimation prior to any supporting drilling being carried out. Compositing of assay results where applicable on contiguous samples has been applied on a weighted average basis.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 <u>Rock Chip Channel Sampling</u> Representative rock chip samples of 2-3Kg weight were taken perpendicular to the strike of the vein outcrop over 0.2m to 1 metre intervals except where noted.
Sample security	The measures taken to ensure sample security.	 Samples were dispatched and transported by a registered courier to ALS Minerals & SGS Chile laboratories in Santiago by a qualified geologist and were not left unattended at any time.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the data management system have been carried out.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Equus Mining Limited holds the rights to acquire 100% of Los Domos PROJECT which consists of exploration licences Electrum 1 to 11, exploration claim application Electrum 12 and mining licenses Pedregoso 7 1-30, Pedregoso 1 1-30 and Honda 20 1-20. Through an agreement, Terrane Minerals SpA will transfer all its LOS DOMOS PROJECT assets into a new JV company (51% Equus, 49% Terrane) for Equus funding a programme of systematic surface sampling and 2,000m of drilling. Post the initial exploration programme Equus has a one-year option to acquire the remaining 49% of the JV company by issuing Terrane A\$450k in shares at a fixed share price based on the market at the time of agreement execution. Vendor shares will be escrowed for 1 year. The laws of Chile relating to exploration and mining have various requirements. As the exploration advances, specific filings and environmental or other studies may be required. There are ongoing requirements under Chilean mining laws that will be required at each stage of advancement. Those filings and studies are maintained and updated as required by Equus Mining's environmental and permit advisors specifically engaged for such purposes.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 All sampling to date has been done by Damien Koerber who is a qualified geologist with 20 years of experience in Latin America and is a Member of the Australian Institute of Geoscientists
Geology	Deposit type, geological setting and style of mineralisation.	 The Cerro Bayo District hosts veins and breccias containing gold and silver mineralization. The deposits show multiple stages of mineralization and display open-space filling and banding, typical of low-sulphidation epithermal style mineralization. Mineralogy is complex and is associated with mineralization and alteration assemblages that suggest at least three stages of precious metal deposition.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 No drilling was carried out in this sampling programme. The work carried out is a rock channel sampling programme Sample locations were surveyed with a handheld GPS using Coordinate Projection System SAD69 UTM Zone 19S. Please refer to Appendix 1 for relevant information. In due course collar coordinates of these trenches will be surveyed by a differential GPS however to date surveying has been conducted by a handheld Garmin GPS using grid system SAD69 UTM Zone 19S. Azimuths and dips of the Sawn trenches were surveyed by a Brunton compass.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Neither equivalent, aggregate or upper or lower cut-off grades were used in any tables or summations of the data.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All sample intervals were taken perpendicular to the strike of the vein outcrop
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 The location and results received for Diamond Saw Channel samples are displayed in the attached maps and/or Tables.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Results for all samples collected in this program are displayed on the attached maps and/or Tables.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No metallurgical or bulk density tests were conducted at the project.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further work is dependent on management review of the existing data.

	East	North		Vein	o. 1		•			-	_		~1		
Sample	SAD69	SAD70	Altitude	Width	Strike	Dip	Au	Ag	As	Sb	Zn	Cu	Pb	Hg	Mo
Number	H19	H19	(m)	(m)	(x°)	(-x °)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
LD00206	288756	4828070	1164	1	120	85	0.08	6.15	192	3.63	190	5.9	1180	1.51	1.06
LD00207	288756	4828070	1164	1	120	85	0.02	1.82	115	2.2	68	3.4	688	0.52	1.3
LD00208	288758	4828066	1160	1	125	60	1.18	15	230	6.93	206	7.8	1700	1.41	1.93
LD00210	288759	4828067	1160	1	125	60	0.33	3.53	436	4.44	118	2.7	68.9	0.09	0.82
LD00211	288758	4828065	1151	0.85	125	60	0.32	14.6	1010	8.32	109	10.1	2100	2.02	2.01
LD00212	288758	4828066	1151	1.15	150	60	0.09	5.3	441	5.27	60	5.6	694	0.18	1.55
LD00213	288759	4828067	1151	1	150	60	0.20	12.15	519	6.8	115	6.4	1765	2.16	5.84
LD00214	288760	4828063	1151	0.85	150	60	0.79	60.4	573	18.95	587	7.2	1340	2.07	2.25
LD00215	288758	4828064	1151	1	135	60	1.06	30.8	567	14.25	97	9.4	7940	1.05	2.68
LD00216	288745	4828078	1134	1	140	70	0.05	1.41	324	4.97	75	8.3	40.4	0.12	1.94
LD00217	288746	4828079	1134	0.8	140	70	3.21	201	220	8.42	54	7.2	167	0.83	4.3
LD00218	288746	4828079	1134	1	320	70	0.01	0.74	51.6	1.48	10	2.3	35.7	0.32	1.09
LD00219	288673	4828189	1141	0.8	310	80	0.02	1.61	89.1	4.21	58	7.2	88.1	0.12	1.56
LD00220	288673	4828190	1141	0.8	310	80	0.05	4.86	137.5	9.38	34	13.9	359	0.23	2.63
LD00221	288674	4828190	1140	0.8	310	80	0.02	2.29	71.9	12.4	21	11.2	382	0.12	1.85
LD00222	288674	4828191	1140	0.7	310	80	0.05	7.48	164.5	103.5	63	26.2	1050	0.56	15.65
LD00223	288654	4828226	1072	1	135	78	0.12	8.05	99.8	1.78	32	1.3	23.6	0.11	1.04
LD00224	288652	4828227	1069	0.9	135	78	0.02	1.55	66.8	2.41	62	1.7	15.5	0.12	1.06
LD00225	288648	4828230	1066	0.25	135	78	0.92	56.4	55.5	6.18	21	8.1	14.8	0.66	2.75
LD00226	288648	4828231	1066	0.6	135	78	0.01	1.1	53.3	0.79	5	2.5	10.3	0.03	1.14
LD00228	288371	4828546	985	1	125	65	0.02	1.24	66.5	1.33	4	2.7	22.6	0.07	1.79
LD00229	288371	4828545	985	0.25	125	65	0.02	1.32	50.7	7.35	6	3.3	18.6	0.66	1.26
LD00230	288372	4828544	985	1	125	65	0.02	1.56	63.6	6.71	8	2.6	107.5	0.57	1.99
LD00231	288372	4828543	985	1	125	65	0.01	0.7	47.6	2.63	4	1.8	18.8	0.39	1.94
LD00232	288325	4828527	1007	0.8	150	73	0.81	122	52.5	3.14	37	5.3	12.1	0.31	2.22
LD00233	288325	4828526	1007	1	150	73	0.01	1.56	34.3	0.47	98	1.5	7.5	0.06	1.15

Appendix 1 – Los Domos Sample Assays

	East	North		Vein											
Sample	SAD69	SAD70	Altitude	Width	Strike	Dip	Au	Ag	As	Sb	Zn	Cu	Pb	Hg	Мо
Number	H19	H19	(m)	(m)	(x°)	(-x °)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
LD00234	288893	4824682	1059	0.5	145	75	0.05	2.46	195	1.87	86	9.9	301	0.17	6.17
LD00235	288897	4824674	1049	0.4	145	76	0.40	18.85	361	12.5	646	34.8	2260	0.79	5.12
LD00236	288945	4824687	1170	0.5	295	65	0.00	0.02	6.4	0.39	2	1.7	6.1	0.03	2.07
LD00237	288933	4827903	1185	1.1	125	85	0.00	0.38	25.5	0.74	13	2.2	17.6	0.22	0.83
LD00238	288933	4827904	1185	1.3	125	85	0.00	0.33	28.2	0.72	42	2.6	14.5	0.07	0.47
LD00239	288933	4827905	1185	1.17	125	85	0.01	0.34	36.3	0.51	11	1.9	17.1	0.08	0.52
LD00240	288932	4827905	1185	0.5	125	85	0.03	1.06	134	0.98	8	2	15.4	0.05	1.53
LD00241	288931	4827906	1185	1	125	85	0.02	0.74	64.5	0.67	5	1.9	13.7	0.06	1.18
LD00242	288930	4827906	1185	0.4	125	85	0.00	0.5	30.7	0.65	7	1.7	13.5	0.11	0.45
LD00243	288930	4827912	1188	1	285	75	0.00	0.15	25.8	0.85	15	2.2	10.5	0.06	0.34
LD00244	288930	4827911	1188	0.46	285	75	0.01	0.48	86.4	1.45	5	3.4	24.3	0.07	0.97
LD00245	288930	4827910	1188	0.9	285	75	0.01	0.31	67	0.78	8	3.4	8.5	0.05	0.49
LD00246	288935	4827935	1172	0.92	125	60	0.01	1.02	23.1	0.93	11	0.8	27	0.15	4.06
LD00247	288934	4827935	1172	0.9	125	60	0.10	2.68	29.3	1.11	10	1.7	26.5	0.33	5.18
LD00248	288933	4827935	1172	1	125	60	0.08	1.23	24.9	0.85	25	1.9	32.1	0.1	1.79
LD00250	288852	4828124	1165	0.9	305	90	0.00	0.49	24.3	0.57	30	1.3	34.4	0.05	0.52
LD00251	288853	4828125	1165	0.45	305	90	0.02	2.49	29	0.67	17	1.4	284	0.05	1.19
LD00252	228854	4828125	1165	0.45	305	90	0.08	2.84	47.8	0.81	11	1.6	384	0.11	0.85
LD00253	288756	4828070	1164	0.25	150	85	0.52	27.7	346	9.03	38	17.3	3450	1.78	2.03
LD00254	288761	4828068	1165	1.5	135	60	0.13	6.47	346	16.5	650	10.9	1685	1.03	3.12
LD00255	288762	4828069	1165	0.35	135	60	0.03	2.75	124.5	6.55	362	4.6	253	0.55	1.37
LD00256	288759	4828079	1161	0.95	138	65	0.00	0.25	17.1	0.87	47	2.2	26.9	0.11	0.41
LD00257	288759	4828080	1161	1.6	138	65	0.33	12.2	370	10.25	18	5.3	1555	1.38	2.21
LD00258	288759	4828081	1161	0.9	138	65	0.20	11.9	633	12.25	183	5.2	705	0.84	1.66
LD00259	288758	4828081	1162	1	138	65	0.28	14.35	794	8.15	192	2.7	1525	0.59	2.51
LD00260	288758	4828081	1162	1.3	112	80	0.64	50.8	828	21.5	106	13.5	4600	3.77	3.48
LD00261	288756	4828079	1161	1.34	112	80	0.18	11.15	485	5.15	349	7.2	1285	0.24	1.55
LD00262	288768	4828084	1163	1	112	80	1.11	106	466	9.8	120	12.7	5000	3.17	1.56
LD00263	288769	4828085	1166	0.8	112	80	0.78	59	378	7.32	195	5.8	3530	1.74	1.24

	East	North		Vein											
Sample	SAD69	SAD70	Altitude	Width	Strike	Dip	Au	Ag	As	Sb	Zn	Cu	Pb	Hg	Мо
Number	H19	H19	(m)	(m)	(x°)	(-x °)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
LD00264	288770	4828086	1167	0.9	112	80	0.15	3.8	362	6.17	46	3.9	199.5	0.18	0.93
LD00266	288760	4828086	1163	0.9	138	80	0.04	7.64	103.5	8.9	106	6.9	428	1.39	38.3
LD00267	288759	4828086	1162	0.9	138	80	0.04	3.81	80.2	3.07	63	5	178.5	0.54	9.72
LD00268	288728	4828125	1155	0.9	123	61	0.03	4.07	116	6.08	32	5.9	219	0.17	1.72
LD00269	288728	4828125	1156	0.2	123	61	0.06	13.8	162.5	9.63	7	6.4	310	0.17	7.5
LD00270	288726	4828125	1153	1	123	61	0.04	1.92	115.5	3.93	6	6.8	255	0.15	2.05
LD00271	288725	4828125	1152	1	123	61	0.01	1.46	65.9	2.64	17	2.9	54.2	0.15	0.75
LD00272	288711	4828144	1155	0.75	123	61	0.03	2.65	81.8	4.28	8	4	62.2	0.16	1.59
LD00273	288711	4828145	1156	1	123	61	0.03	2.4	87	5.65	5	3.9	41.8	0.11	1.33
LD00274	289679	4825167	1126	1	120	45	1.96	17.2	47.9	4.14	5	2.5	155.5	0.16	3.99
LD00275	289679	4825168	1126	1	120	45	0.34	14	94.9	2.44	13	6	669	0.09	14.5
LD00276	289680	4825169	1125	1	120	45	0.15	18.15	87.2	3.35	29	7.1	1040	0.1	8.05
LD00277	289680	4825170	1125	1	120	45	0.09	5.53	29.6	1.81	31	3.9	309	0.05	6.73
LD00278	289681	4825171	1124	1	120	45	0.11	2.67	55.5	1.83	20	4.2	399	0.04	17.4
LD00279	289691	4825178	1137	0.5	120	73	4.27	149	115.5	6.52	24	16.3	1020	0.68	11.4
LD00280	289691	4825179	1138	0.6	120	73	1.79	44.6	106	6.33	73	35.6	2340	0.31	11.4
LD00282	289665	4825327	1216	1	145	70	0.03	1.91	191.5	5.11	95	3.2	45	0.11	4.51
LD00283	289665	4825326	1216	1	145	70	0.02	0.53	109.5	4.53	25	1.3	17.6	0.06	2.66
LD00284	289664	4825325	1215	1	145	70	0.02	0.78	208	9.52	17	2	13.4	0.17	3.47
LD00285	289664	4825324	1215	1	145	70	0.04	0.75	200	9.03	40	2	17.6	0.21	3.62
LD00286	289650	4825331	1193	0.7	320	90	0.03	0.84	179.5	4.8	41	0.9	15.8	0.12	3.7
LD00287	289649	4825330	1193	1.2	320	90	0.03	1.54	486	7.07	7	1.2	49.2	0.13	14.4
LD00288	288715	4828147	1154	0.6	123	61	0.08	6.46	183.5	4.03	13	11.3	481	0.13	6.72
LD00289	288716	4828147	1154	1.1	123	61	0.05	5.14	130.5	5.77	53	7.7	786	0.16	8.93
LD00290	288707	4828169	1161	1	135	75	0.05	5.73	130.5	5.2	40	8.9	716	0.49	4.93
LD00291	288707	4828169	1160	1	135	75	0.02	2.84	136	10.85	53	9.2	166	0.22	4.38
LD00292	288706	4828168	1159	1	135	75	0.09	8.61	196.5	16.35	66	24.1	1190	0.55	9.47
LD00293	288706	4828168	1158	1	135	75	0.16	13.05	250	16.5	161	34.9	1920	0.34	24
LD00294	288705	4828167	1157	1	135	75	0.10	11.4	213	12.05	129	28.5	1640	0.43	13.15

	East	North		Vein											
Sample	SAD69	SAD70	Altitude	Width	Strike	Dip	Au	Ag	As	Sb	Zn	Cu	Pb	Hg	Мо
Number	H19	H19	(m)	(m)	(x°)	(-x °)	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm
LD00295	288705	4828167	1156	0.9	135	75	0.14	17.25	196	11.75	142	16	876	0.57	6.37
LD00296	288704	4828166	1155	1	135	75	0.04	4.67	112.5	8.02	148	10.5	550	0.26	5.86
LD00297	288704	4828166	1154	1.2	135	75	0.05	5.49	107.5	2.66	52	7	682	0.15	8.64
LD00298	288689	4828185	1139		130	65	0.02	0.76	34.9	0.64	38	1.9	16.7	0.07	1.2
LD00299	288689	4828185	1139	1	130	65	0.32	9.52	321	2.85	26	11.9	746	0.31	2.14
LD00300	288688	4828186	1139	1.3	130	65	0.04	2.34	90.7	2.9	63	6.8	210	0.09	3.53
LD00301	288688	4828186	1138	1.2	130	65	0.02	1.2	72.3	1.6	24	10.6	70.3	0.05	0.86
LD00302	288687	4828187	1138	1.3	130	65	0.02	2	141.5	2.3	31	4.7	161.5	0.14	1.71
LD00304	288676	4828183	1137	0.9	125	65	0.02	1.64	124	3.37	25	3.4	20.6	0.24	0.85
LD00305	288676	4828184	1137	1.1	125	65	0.01	2.4	209	4.68	64	3.7	25.3	0.2	0.9
LD00306	288676	4828185	1138	1	125	65	0.01	2.54	258	14.7	23	5.1	25.9	0.56	0.69
LD00307	288676	4828186	1138	1.15	125	65	0.00	0.86	66	2.07	19	3.7	10.9	0.11	0.76
LD00308	288676	4828187	1139	1	125	65	0.01	0.83	80.9	1.24	8	8.3	9.2	0.06	0.68
LD00309	288676	4828188	1139	0.95	125	65	0.00	0.6	72	1.18	18	8	6.3	0.04	0.67
LD00310	288676	4828189	1140	0.95	125	65	0.01	0.69	99	1.94	38	3	8.4	0.06	0.6
LD00311	288675	4828190	1140	1	125	65	0.01	0.56	63.2	1.81	17	2.9	7.2	0.07	0.76
LD00312	288675	4828191	1141	1.1	125	65	0.00	0.74	90.6	2.57	24	5.5	11.1	0.08	0.64
LD00313	288675	4828192	1141	1	125	65	0.01	1.05	77.7	3.08	16	1.8	13.9	0.24	0.93
LD00314	288675	4828193	1142	0.7	125	65	0.01	0.74	83.3	3.12	7	4.1	36.9	0.05	1.41
LD00315	288675	4828194	1142	1.1	125	65	0.01	2.21	134	6.03	65	3.3	45.4	0.32	0.8
LD00316	288675	4828195	1143	0.93	125	65	0.01	0.73	67.5	1.48	91	2	12.1	0.08	0.77
LD00317	288675	4828196	1143	0.93	125	65	0.01	0.73	76.8	1.4	48	2.7	16.8	0.11	0.92
LD00318	288676	4828197	1144	0.76	125	65	0.01	0.37	33.5	0.72	11	1.9	10.9	0.06	0.55
LD00319	288676	4828198	1144	1.1	125	65	0.00	0.51	55.8	0.47	5	2.1	10	0.05	0.65
LD00320	288676	4828199	1145	0.93	125	65	0.01	0.52	130.5	1.95	5	3.9	10.6	0.05	0.85
LD00321	288677	4828200	1145	0.92	125	65	0.01	0.97	83.2	5.78	20	2.9	13.7	0.23	1.06
LD00322	288677	4828201	1146	1	125	65	0.01	0.77	48.3	2.95	7	3.5	43.5	0.32	0.95
LD00323	288678	4828203	1148	0.84	125	65	0.02	1.2	49.4	5.28	31	6.8	287	0.18	3.25
LD00325	288647	4828228	1115	1	108	90	0.37	36.5	111.5	2.47	33	5.6	386	0.22	1.9

	East	North		Vein											
Sample	SAD69	SAD70	Altitude	Width	Strike	Dip	Au	Ag	As	Sb	Zn	Cu	Pb	Hg	Мо
Number	H19	H19	(m)	(m)	(x°)	(-x °)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
LD00326	288646	4828229	1115	0.8	108	90	0.18	12.7	88.1	1.6	9	4.1	231	0.09	1.76
LD00327	288645	4828230	1115	0.9	108	90	0.08	7.71	106.5	1.26	7	3.3	206	0.08	1.57
LD00328	288637	4828220	1113	0.7	122	68	0.22	24.9	78.8	1.99	6	2.6	121	0.31	2.62
LD00329	288647	4828218	1118	0.75	122	68	0.04	3.15	87.3	0.87	62	3.1	160.5	0.08	1.08
LD00330	288665	4828221	1122	1.5	136	88	0.57	46.1	93.9	1.52	36	5.2	85.7	0.37	2.86
LD00331	288641	4828257	1131	1.6	125	90	0.04	3.75	112.5	3.34	68	6.9	82.1	0.2	1.39
LD00332	288590	4828234	1136	0.75	318	85	0.07	1.72	99.8	1.92	16	2.9	18.3	0.21	1.14
LD00333	287989	4829067	1030	1	118	66	0.79	149	33.9	4.73	136	1.6	8.2	0.17	2.14
LD00334	287987	4829067	1032	1.2	118	66	0.61	144	203	10.75	7	3.6	16	0.19	2.19
LD00335	287918	4829091	1065	1.8	120	70	0.24	17.8	67.2	2.61	7	3	37	0.05	1.44
LD00336	287916	4829091	1065	0.45	120	70	0.18	25.4	80.2	2.4	4	2.2	45.4	0.04	3.37
LD00337	287915	4829091	1065	1	120	70	0.11	3.87	71.3	1.03	4	2.6	19.6	0.01	1.5
LD00338	287969	4829046	1056	0.8	121	85	2.96	325	70.2	14.75	7	2.6	27.9	0.33	2.13
LD00339	287964	4829049	1060	0.78	121	85	2.38	370	77.2	11.6	7	4.5	30.7	0.38	1.39
LD00340	287963	4829051	1063	1	121	85	0.07	3.89	60.9	2.5	8	1.1	13.6	0.08	0.63
LD00341	287962	4829050	1063	0.3	121	85	0.16	8.54	102	5.88	5	1.1	14.3	0.11	1.08
LD00342	287962	4829050	1063	0.45	121	85	0.30	22.8	98	3.27	3	1.3	10.3	0.11	2.66
LD00344	287956	4829055	1069	0.33	113	88	2.81	428	47.3	11.6	2	3.9	19.7	0.9	2.62
LD00345	287955	4829054	1068	0.5	113	88	1.31	183	77.6	7.08	17	4	28.5	0.27	3.83
LD00346	287955	4829053	1068	1.4	113	88	0.24	55.1	209	11.15	13	2.6	22.5	0.18	5.1
LD00347	287963	4829056	1068	0.4	130	85	3.52	386	46.1	10.8	10	3	19.5	0.21	2.35
LD00348	287995	4829021	1045	0.9	110	79	0.58	134	182.5	10	5	6.2	141.5	0.22	40.3
LD00349	287997	4829022	1046	0.4	110	79	1.34	135	110.5	10.35	34	2	43.9	0.35	4.63
LD00350	287997	4829022	1046	0.7	110	79	0.39	61.1	119	3.37	13	3.4	18.3	0.1	21.9
LD00351	288013	4829017	1026	1.5	117	75	0.60	110	69.7	4.15	19	2.8	18.3	0.19	6.37
LD00353	288013	4829016	1027	0.5	110	70	0.55	68.8	60.1	4.35	12	1.8	18.5	0.18	3.55
LD00354	288012	4829007	1029	0.45	110	70	1.04	130	61.8	3.69	7	1.6	26.9	0.3	2.68
LD00355	288014	4829007	1027	0.85	110	70	0.52	64.2	53	5.4	8	5.1	19	0.37	2.86
LD00356	288022	4829001	1024	1.4	110	70	2.35	254	18.5	9.11	49	2.3	27.6	0.37	2.1

	East	North		Vein											
Sample	SAD69	SAD70	Altitude	Width	Strike	Dip	Au	Ag	As	Sb	Zn	Cu	Pb	Hg	Мо
Number	H19	H19	(m)	(m)	(x°)	(-x °)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm
LD00357	288022	4829002	1023	0.58	110	70	0.27	33.8	110	7.83	13	4.2	91.9	1.89	3.2
LD00358	288067	4828955	1006	0.65	100	85	0.22	43.5	108	3.84	54	2.1	69.7	0.34	8.8
LD00359	288068	4828946	1001	0.2	119	80	1.63	251	85.3	6.09	41	2.6	31.3	0.25	8
LD00360	288068	4828947	1001	0.85	119	80	0.16	36.9	127	4.03	31	1.9	33.9	0.29	4.79
LD00361	288133	4828900	993	0.55	115	80	0.31	16.95	120	2.34	29	2.1	29.6	0.13	13.15
LD00362	288129	4828898	992	0.55	110	75	0.12	4.86	34.4	1.21	23	2.1	19.8	0.09	2.54
LD00363	288128	4828898	992	1.2	110	75	1.18	104	75.1	3.51	83	2.3	29.4	0.17	17
LD00365	288132	4828901	993	0.5	115	80	0.71	48.8	84.2	2.33	21	2.3	38.7	0.16	18.6
LD00366	288046	4828837	1056	0.5	128	69	0.03	2.59	58.5	3.38	25	1.2	11.4	0.18	1.62
LD00367	288012	4828850	1061	0.22	134	82	0.54	16.45	151	5.76	8	2.1	30.2	0.23	2.47
LD00368	288015	4828843	1061	0.28	134	82	0.09	16.45	108.5	2.19	10	1.2	49.5	0.1	1.32
LD00369	289652	4825343	1197	1.1	314	85	0.01	1	78.5	3.39	11	0.9	16.3	0.14	3.81
LD00370	289652	4825344	1197	0.3	314	85	0.03	1.58	383	6.39	5	1.5	35.4	0.07	10.6
LD00371	289652	4825345	1197	0.9	314	85	0.02	1.19	102.5	4.56	11	1.4	11.3	0.08	3.98
LD00372	289652	4825346	1197	0.75	314	85	0.01	0.65	98.7	4.19	7	1.1	16.1	0.02	4.32
LD00373	289665	4825260	1210	0.6	133	70	0.02	1.19	100.5	2.43	8	1.5	13.1	0.1	3.97
LD00374	289664	4825259	1210	0.9	133	70	0.01	0.83	76.5	1.56	6	1.3	11.4	0.07	3.14
LD00375	289663	4825258	1209	0.95	133	70	0.01	1.14	85.3	1.01	4	1.5	29.1	0.02	3.93
LD00376	289662	4825257	1209	0.95	133	70	0.01	1.03	91.4	0.99	3	1.2	35.7	0.02	4.07
LD00377	289663	4825239	1190	0.7	144	56	0.11	3.08	66.1	1.9	2	1.5	41.8	0.07	4.02
LD00378	289664	4825238	1190	1.1	144	56	0.22	2.77	69.2	1.6	2	1	22.8	0.08	2.81
LD00379	289665	4825237	1190	1	144	56	0.14	4.74	85.1	2.18	3	1.4	51.4	0.07	2.56
LD00380	289666	4825236	1190	0.6	144	56	0.59	39.9	29.9	3.76	3	2.6	40.8	0.4	2.98
LD00381	289662	4825215	1170	1	135	50	0.08	1.19	153.5	4.54	11	2	26.1	0.05	2.76
LD00382	288923	4827867	1188	1.2	145	62	0.00	0.24	14.5	0.57	2	1.3	7.6	0.04	1.88