18 April 2018

WIDESPREAD MINERALISATON CONFIRMED AT NEWLY ACQUIRED CERRO DIABLO PROJECT

Equus Mining Limited ('Equus') (ASX: EQE) is pleased to announce that first phase mapping and sampling has confirmed the occurrence of widespread mineralisation at the recently acquired Cerro Diablo precious and base metal project. Like EQE's Los Domos Project, the Cerro Diablo Project is strategically located near the Cerro Bayo mine and 1500 tonne per day mill/flotation plant infrastructure currently under care and maintenance.

Cerro Diablo First Phase Mapping and Sampling

- First phase mapping and sampling has confirmed the occurrence of widespread mineralisation at the recently acquired Cerro Diablo precious and base metal project. The top 20 surface samples taken to date are listed in Table 1.

Table 1. Cerro Diablo surface rock chip sample results-top 20 precious-base metal values

Sample Number ${ }^{1}$	$\begin{gathered} \text { Easting } \\ \text { SAD69 H18 } \end{gathered}$	$\begin{aligned} & \text { Northing } \\ & \text { SAD69 H18 } \end{aligned}$	Au g/t	Ag g/t	Cu \%	Zn \%	Pb \%
D10041	725,874	4,865,120	0.01	100.0	1.12	19.05	20.79
D10049	726,214	4,865,250	0.53	11.7	6.79	0.02	0.01
D00084	725,887	4,865,225	0.07	84.8	0.78	7.21	5.66
D00114	727,183	4,864,456	8.41	2.7	0.00	0.01	0.03
D00026	726,470	4,865,497	0.03	34.1	0.64	2.31	8.18
D00083	725,869	4,865,235	0.14	86.7	2.02	1.67	3.58
D10048	726,222	4,865,259	1.76	33.7	2.20	0.07	0.24
D00071	725,538	4,865,472	5.40	6.2	0.00	0.00	0.06
D00013	725,849	4,861,961	0.01	4.9	0.00	3.47	3.89
D00060	725,977	4,864,348	4.91	3.8	0.01	0.00	0.06
D10050	726,195	4,865,201	1.73	13.7	1.29	0.01	0.01
D10039	726,274	4,865,237	0.12	7.1	2.37	0.01	0.01
D00024	726,347	4,866,234	3.93	12.2	0.00	0.01	0.02
D00020	723,609	4,863,314	3.93	6.4	0.00	0.01	0.01
D00040	723,726	4,863,470	1.47	22.1	0.09	0.69	2.17
D10035	726,442	4,865,293	0.04	5.0	1.70	0.01	0.01
D10040	725,950	4,865,102	0.01	10.8	0.19	2.01	1.48
D00038	724,049	4,864,368	0.29	14.0	0.21	1.13	1.58
D00082	725,614	4,865,552	2.51	1.6	0.00	0.00	0.02
D00046	723,703	4,863,462	0.08	13.1	0.03	0.03	2.78
D00023	724,832	4,864,672	0.69	9.2	0.05	0.13	1.39
D10038	726,304	4,865,234	0.07	5.2	0.97	0.02	0.04
D10042	725,790	4,865,193	0.00	38.6	0.03	0.64	1.10

MIN I NG LIMITED
ABN 44065212679

- The Cerro Diablo project was secured via strategic open ground staking of an area of 4,554 hectares over historic mine workings and zones of extensive hydrothermally alteration during late 2017 and is located contiguous with Goldcorp's Estero Project. See Figures 1, 2 \& 3.
- Mineralisation at Cerro Diablo is interpreted to be largely structurally controlled intermediate sulphidation epithermal precious and base metal style mineralisation. The project area features extensive hydrothermal argillic alteration and hosts outcropping precious-base metal veins within Jurassic aged felsic domes and volcanics (See Photos $1 \& 2$). The project is interpreted to be located within a NNW trending structural corridor featuring dextral strike slip faulting which has resulted in preferentially orientated NNE dilational structures hosting precious and base metal mineralisation.
- Cerro Diablo has not received any modern-day exploration although historically, metallic mineral occurrences have been recorded. Individual veins have been recorded to extend over $+\mathbf{3 0 0} \mathrm{m}$ strike and are up to 10 m wide. There are two small historic mines located within the boundaries of the project called Mina Alón and Mina Las Cáscaras.
- Cerro Diablo is located in Chile's Region XI, some 40 kilometres north-northwest of the Company's flagship Los Domos project where a 2nd phase $7,500 \mathrm{~m}$ drill programme is in progress. See Figure2. Access to the Cerro Diablo project is via 10km of established roads and tracks from the township of Puerto Ibanez located on the north shore of Lake General Carrera across which mine concentrates were historically transported from the Cerro Bayo Mine to the export port facilities at Puerto Aysen.
- Field work including detailed mapping and rock chip sampling is continuing in preparation for scout drill hole targeting.

Photo 1. High grade copper mineralisation

Photo 2. High grade silver-lead mineralisation

${ }^{1}$ Disclosure Note: Analytical results samples D00001 - D00157 are considered to be historical and not in accordance with the JORC code. The qualitative reliability of the historical data is considered to be good following field verification by Company management. It is the Company's intention to continue to verify, wherever reasonably possible, the most significant historical data; however, there is a risk that the Company's confirmation work may produce results that substantially differ from the historical results.

M I N I N G LIM I TED
ABN 44065212679

Figure 1. Cerro Diablo project

M I N I N G LIM I TED
ABN 44065212679

Figure 2. Cerro Diablo project - areas of initial focus

MININGLIMITED

Figure 3. Regional map showing location of new Cerro Diablo Project

Cerro Diablo - located within a world class mineral province

- The Cerro Diablo precious and base metal project, like Los Domos, is located within the world class Deseado Massif mineral province. See Figure 4.
- This mineral province includes the Santa Cruz Province mining district in Argentina and the Cerro Bayo mine district in Chile, the latter of which is where EQE's projects are located, throughout which mineralisation is hosted by Jurassic age volcanic rocks.
- The Deseado Massive hosts large gold and silver deposits in Argentina including Cerro Vanguardia, Cerro Negro, San Jose \& Cerro Moro and has a current combined 29.8 Moz AuEq known resource endowment.
Figure 4. Cerro Diablo and Los Domos projects are both located within the Deseado Massif

Table 2. Deposits located within the Deseado Massif mineral province

	Gold Moz	Silver Moz	Gold Equiv. Moz
Cerro Vanguardia	8.0	100	9.5
Cerro Negro	6.7	50	7.4
San Jose (Huevos Verdes)	1.4	100	2.9
Cerro Morro	1.2	75	2.3
Cape Oeste-Cose	1.2	35	1.7
Manantial Espejo	0.8	60	1.7
Cerro Bayo	0.7	68	1.7
Joaquin	0.0	57	0.9
Las Calandrias	0.8	0	0.8
Martha	0.0	24	0.4
Virginia-Santa Rita	0.0	15	0.2
Don Nicolas	0.2	0	0.2
Lomada de Leiva	0.1	0	0.1

For further information, please contact:
Ted Leschke
Managing Director
+6129300 3366
tleschke@equusmining.com
Cameron Peacock
Investor Relations and Business Development
+61439908732
cpeacock@equusmining.com

Website: www.equusmining.com

About Equus Mining and the flagship Los Domos and Cerro Diablo Precious and Base Metal Projects

Equus Mining Limited (Equus, ASX: EQE) has acquired the rights to acquire 100\% of the Los Domos project located in the XI Region of Chile from Terrane Minerals SpA under a staged earn-in agreement. With the completion of an initial $1,000 \mathrm{~m}$ drill programme Terrane is now to transfer the Los Domos project assets into a Joint Venture (JV) Company in which Equus will hold an initial 51% (previously the requirement was 2,000m). Equus then has a two-year option period to buy the remaining 49% interest in the JV Company by issuing Terrane $\$ 450,000$ worth of Ordinary Shares at an issue price of 1.2c. The Cerro Diablo project consist of 4,554 hectares in exploration licences 100% held by EQE

The Los Domos gold-silver project is well located 15 km south of the township of Chile Chico and adjacent to the Cerro Bayo gold-silver mine. The Cerro Diablo project is located 25 kilometres north-northwest of the mine. See Figure 3. This mine was until recently producing approximately 2 Mozpa of silver and 20 Kozpa gold or approximately two thirds nominal flotation plant capacity of 500ktpa throughput, however production has been suspended indefinitely and force majeure declared following a mine flooding event in June 2017 (xi). With an altitude range of 800 m to $1,200 \mathrm{~m}$ and a dry, moderate climate, the Los Domos Project is able to be explored yearround. Cerro Diablo has a similar altitude range with slightly higher precipitation.
(a) www.mandalayresources.com
(i) All the material assumptions underpinning exploration results for historical samples D00001 - D00157 as outlined in Table 1 and Appendix 1 in the report titled Newly Acquired Cerro Diablo Project Augments Equus Mining's Strategy at Los Domos (see ASX release dated 19 February 2018) continue to apply and have not materially changed.

pjn9345

COMPETENT PERSON'S STATEMENT:

The information in this report that relates to Exploration Results for the Cerro Diablo precious and base metal project is based on information compiled by Jason Beckton. Mr Beckton is a geological consultant to the Company. Mr Beckton is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Beckton has a beneficial interest as shareholder of Equus Mining Limited and consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

JORC Code, 2012 Edition - Table 1 CERRO DIABLO EXPLORATION PROGRAM EQUUS MINING LIMITED

A. SURFACE SAMPLING

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Surface Sampling - Chip samples were collected of quartz veins and zones of silicification, within Jurassic age Ibanez Formation rhyolite ignimbrite by a qualified geologist. - Sample locations were surveyed with a handheld GPS using Coordinate Projection System SAD69 UTM Zone 19S. - Representative chip samples of $2-3 \mathrm{Kg}$ weight were taken across the strike of the outcrop over various width intervals except where noted. Samples are taken at angles to geological strike except where noted. - Limited analysing of hand samples was conducted by a handheld XRF instrument prior to despatch of samples for conventional laboratory analysis.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	- Not applicable
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- Not applicable
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.	Surface Sampling - Chip samples were geologically logged by a qualified geologist. - The orientation of the associated mineralised structures was logged by a qualified geologist.
Sub-sampling techniques and	- If core, whether cut or Rock Chip and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Surface Sampling Chip samples were a minimum width of 30 cm and approximate sample support of half core NQ from diamond drilling, ie sample diameter of 56 mm , being a half core sample of that.

sample
preparation

Quality of assay
 laboratory test

- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling
- Whether sample sizes are appropriate to the grain size of the material being sampled.
- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

Verification of \quad - The verification of significant intersections by either

sampling and independent or alternative company personnel.

assaying

- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

| Location of data
 points |
| :--- | :--- |
| |
| Data spacing
 and distribution |
| |
| |

Orientation of

 data in relation to geological structure- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation
- Specification of the grid system used.
- Quality and adequacy of topographic control.
- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- Whether sample compositing has been applied.
- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed have introduced a sampl
and reported if material.
- Samples are stored in a secure location and transported to the ALS laboratory in Santiago via a certified courier for sample preparation initially comprising weighing, fine crush, riffle split and pulverizing of 1 kg to $85 \%<75 \mu \mathrm{~m}$ under laboratory code Prep-31.
- Pulps are generally analysed for Au, Ag and trace and base elements using method code Au-ICP21, ME-MS4
- For high grade sample intervals, Au-AA25 (for Au values up to $100 \mathrm{~g} / \mathrm{t}$), Ag-OG46 (for Ag values $>100 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$) and Zn -AA62 (up to 30%) and $\mathrm{Pb}-\mathrm{AA} 62$ (up to 20%) for Zn and Pb values over 1% respectively or analysis method code Zn -OG62 (up to 30%) and Pb-OG62 (up to 20%) is implemented
- For Pb values (over 20% to 100%), the analysis method code $\mathrm{Pb}-\mathrm{VOL} 70$ is implemented.
- Alternate blanks and certified standards for Au and Ag are submitted within each laboratory batch at a ratio of 1:15 (i.e. 6.5%) for which QA/QC revision is conducted on each batch.

Surface Sampling

- For rock chip sample data, laboratory CSV result files are merged with GPS Location data files using unique sample numbers. No adjustments were made to the assay data.

Surface Sampling

- Samples are located using handheld GPS receivers.
- Coordinate Projection System SAD69 UTM Zone 19S
- The topographic control, using handheld GPS, was adequate for the survey.

Surface Sampling

- Results will not be used for resource estimation prior to any supporting drilling being carried out
- Compositing of assay results where applicable on contiguous samples has been applied on a weighted average basis

Surface Sampling

- Representative rock chip samples of $2-3 \mathrm{Kg}$ weight were taken perpendicular to the strike of the vein outcrop over 0.2 m to 1 metre intervals except where noted.

		facility and are not left unattended at any time. Samples are dispatched and transported by a registered courier to ALS Minerals in Santiago.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- No audits or reviews of the data management system have been carried out.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	- Equus Mining Limited holds exploration licences covering the Cerro Diablo project. - The laws of Chile relating to exploration and mining have various requirements. As the exploration advances, specific filings and environmental or other studies may be required. There are ongoing requirements under Chilean mining laws that will be required at each stage of advancement. Those filings and studies are maintained and updated as required by Equus Mining's environmental and permit advisors specifically engaged for such purposes.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- All sampling to date has been supervised by Damien Koerber who is a qualified geologist with 20 years of experience in Latin America and is a Member of the Australian Institute of Geoscientists.
Geology	- Deposit type, geological setting and style of mineralisation.	- Mineralisation at Cerro Diablo is interpreted to be largely structurally controlled intermediate sulphidation epithermal precious and base metal style mineralisation. The project area features extensive hydrothermal argillic alteration and hosts outcropping precious-base metal veins within Jurassic aged felsic domes and volcanics. The project is interpreted to be located within a NNW trending structural corridor featuring dextral strike slip faulting which has resulted in preferentially orientated NNE dilational structures hosting precious and base metal mineralisation. - The Cerro Bayo district hosts epithermal veins and breccias containing gold and silver as well as base metal mineralization. The deposits show multiple stages of mineralization and display open-space filling and banding, typical of low-sulphidation epithermal style mineralization. Mineralogy is complex and is associated with mineralization and alteration assemblages that suggest at least three stages of precious and base metal deposition. Exploration model types of both Low Sulphidation (e.g. Cerro Negro, Santa Cruz, Argentina) and Intermediate Sulphidation deposits (San Jose and Cerro Morro, Santa Cruz, Argentina and Juanacipio, Mexico) are being targeted at Cerro Diablo
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth	Surface Sampling Sample locations were surveyed with a handheld GPS using Coordinate Projection System SAD69 UTM Zone 19S. Please refer to Appendix 1 for relevant information. In due course sample locations may be surveyed by a differential GPS however to date surveying has been conducted by a handheld Garmin GPS using grid system SAD69 UTM Zone 19S. Azimuths and dips of the Sawn trenches were surveyed by a Brunton compass. - Surface Sampling assays are show in Appendix I when reported for the first time.

- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	- Neither equivalent or upper or lower cut-off grades are used in any tables or summations of the data. - Aggregated averages of sampled core assays are weighted according to the core length as per normal weighted average calculations.
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Surface Sampling All sample intervals over vein outcrop were taken perpendicular to the strike of the vein outcrop
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Surface Sampling The location and results received for surface samples are displayed in the attached maps and/or Tables.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- Results for samples with material assay values are displayed on the attached maps and/or tables. In most cases the barren country rocks either side of a mineralise intervals were also sampled to establish mineralization boundaries.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- Metallurgical recoveries tests are yet to be completed
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	- Further work is dependent on management review of the existing data and pending assays.

Appendix I - Assay Results

Sample Number	Easting SAD69 H19	$\begin{gathered} \text { North } \\ \text { SAD69 H19 } \end{gathered}$	In situ or float	Aug/t	Ag g/t	Cu \%	Zn \%	Pb \%
D10041	725,874	4,865,120	in situ	0.01	100.0	1.12	19.05	20.79
D10049	726,214	4,865,250	in situ	0.53	11.7	6.79	0.02	0.01
D00084	725,887	4,865,225	in situ	0.07	84.8	0.78	7.21	5.66
D00114	727,183	4,864,456	in situ	8.41	2.7	0.00	0.01	0.03
D00026	726,470	4,865,497	float	0.03	34.1	0.64	2.31	8.18
D00083	725,869	4,865,235	in situ	0.14	86.7	2.02	1.67	3.58
D10048	726,222	4,865,259	in situ	1.76	33.7	2.20	0.07	0.24
D00071	725,538	4,865,472	in situ	5.40	6.2	0.00	0.00	0.06
D00013	725,849	4,861,961	in situ	0.01	4.9	0.00	3.47	3.89
D00060	725,977	4,864,348	in situ	4.91	3.8	0.01	0.00	0.06
D10050	726,195	4,865,201	in situ	1.73	13.7	1.29	0.01	0.01
D10039	726,274	4,865,237	in situ	0.12	7.1	2.37	0.01	0.01
D00024	726,347	4,866,234	float	3.93	12.2	0.00	0.01	0.02
D00020	723,609	4,863,314	float	3.93	6.4	0.00	0.01	0.01
D00040	723,726	4,863,470	in situ	1.47	22.1	0.09	0.69	2.17
D10035	726,442	4,865,293	in situ	0.04	5.0	1.70	0.01	0.01
D10040	725,950	4,865,102	float	0.01	10.8	0.19	2.01	1.48
D00038	724,049	4,864,368	in situ	0.29	14.0	0.21	1.13	1.58
D00082	725,614	4,865,552	in situ	2.51	1.6	0.00	0.00	0.02
D00046	723,703	4,863,462	in situ	0.08	13.1	0.03	0.03	2.78
D00023	724,832	4,864,672	in situ	0.69	9.2	0.05	0.13	1.39
D10038	726,304	4,865,234	in situ	0.07	5.2	0.97	0.02	0.04
D10042	725,790	4,865,193	float	0.00	38.6	0.03	0.64	1.10
D00072	725,483	4,865,377	in situ	0.07	14.6	0.05	0.29	1.97
D00010	725,928	4,867,267	float	0.01	1.0	1.01	0.02	0.01
D00030	726,388	4,865,174	in situ	0.07	25.9	0.70	0.02	0.00
D00126	728,992	4,870,053	in situ	0.02	44.2	0.03	0.87	0.32
D00111	727,762	4,869,094	in situ	0.01	3.2	0.01	1.56	0.47
D00122	727,233	4,863,364	in situ	0.09	8.2	0.01	0.13	1.98
D00061	725,957	4,864,326	in situ	1.36	2.7	0.00	0.00	0.01
D00022	724,838	4,864,689	in situ	0.16	5.5	0.08	0.12	1.56
D00123	729,445	4,869,347	in situ	0.00	15.4	0.03	0.17	1.66
D00095	727,516	4,866,135	in situ	0.01	0.8	0.00	1.47	0.14
D00048	723,787	4,863,632	in situ	0.55	9.1	0.05	0.04	0.61
D00112	727,643	4,868,880	in situ	0.00	2.3	0.00	0.64	0.98
D00005	724,791	4,864,117	Float	0.13	5.1	0.03	0.26	1.07
D00074	725,516	4,865,273	in situ	0.09	32.7	0.17	0.02	0.20
D00102	727,396	4,866,424	in situ	0.06	3.6	0.01	0.21	1.16
D00045	723,678	4,863,423	in situ	0.38	17.6	0.04	0.01	0.22
D00033	723,866	4,862,922	in situ	0.13	12.2	0.01	0.17	0.65
D00077	725,321	4,863,405	in situ	0.28	23.4	0.09	0.01	0.05
D10067	726,352	4,865,875	in situ	0.07	12.9	0.30	0.02	0.05
D00039	724,059	4,864,381	in situ	0.06	41.2	0.03	0.00	0.03

D10036	726,419	4,865,280	in situ	0.04	2.5	0.40	0.00	0.00
D10046	726,247	4,865,295	in situ	0.01	26.4	0.20	0.01	0.01
D00070	725,544	4,865,498	float	0.36	4.1	0.02	0.01	0.35
D00043	723,669	4,863,412	in situ	0.32	13.2	0.01	0.01	0.19
D00047	723,720	4,863,493	in situ	0.08	5.7	0.03	0.05	0.69
D00053	725,745	4,864,809	in situ	0.59	2.0	0.01	0.01	0.01
D00002	726,480	4,868,274	in situ	0.01	25.4	0.09	0.00	0.11
D00081	726,637	4,863,702	in situ	0.01	8.6	0.12	0.01	0.42
D00094	727,517	4,866,134	in situ	0.03	3.1	0.00	0.24	0.55
D00037	724,051	4,864,373	in situ	0.07	23.5	0.07	0.01	0.06
D00007	726,022	4,863,091	Float	0.02	8.5	0.23	0.00	0.06
D00089	726,180	4,864,762	in situ	0.02	4.3	0.01	0.20	0.52
D10034	726,439	4,865,293	in situ	0.48	0.3	0.01	0.01	0.00
D10074	727,070	4,864,482	in situ	0.03	2.9	0.25	0.01	0.02
D00032	723,862	4,862,931	in situ	0.03	12.8	0.05	0.08	0.22
D00015	725,748	4,861,950	in situ	0.00	6.4	0.01	0.37	0.16
D00104	727,506	4,867,107	in situ	0.00	1.6	0.01	0.52	0.06
D00035	723,893	4,862,461	in situ	0.02	29.5	0.00	0.01	0.01
D10030	726,208	4,864,575	in situ	0.03	11.6	0.01	0.17	0.19
D10081	726,443	4,868,031	float	0.00	1.3	0.01	0.14	0.51
D10043	725,735	4,865,345	in situ	0.00	3.0	0.02	0.23	0.27
D00085	725,943	4,865,047	float	0.01	5.3	0.09	0.08	0.19
D10027	726,418	4,864,673	in situ	0.05	17.1	0.04	0.02	0.02
D00140	728,951	4,870,293	in situ	0.08	15.8	0.01	0.00	0.06
D00157	727,188	4,864,486	in situ	0.34	0.6	0.00	0.01	0.01
D10065	726,318	4,865,938	in situ	0.00	1.2	0.19	0.02	0.01
D10020	726,680	4,864,641	float	0.00	8.3	0.00	0.01	0.36
D10061	726,264	4,866,144	in situ	0.24	5.1	0.00	0.02	0.01
D00124	729,448	4,869,393	in situ	0.00	3.1	0.02	0.10	0.29
D10023	726,605	4,864,637	in situ	0.21	0.4	0.06	0.03	0.01
D00001	726,479	4,868,274	in situ	0.01	11.5	0.08	0.00	0.03
D00103	726,625	4,867,350	in situ	0.00	0.9	0.01	0.14	0.31
D00021	723,674	4,863,214	float	0.27	1.6	0.00	0.02	0.01
D00156	727,184	4,864,461	in situ	0.28	0.6	0.00	0.01	0.02
D10004	726,009	4,864,890	in situ	0.01	9.2	0.06	0.01	0.12
D00006	725,100	4,863,696	Float	0.07	3.4	0.02	0.00	0.27
D10085	726,443	4,868,031	in situ	0.03	3.1	0.14	0.00	0.00
D00062	726,005	4,864,429	in situ	0.10	2.4	0.01	0.00	0.25
D00066	726,073	4,864,489	in situ	0.11	3.3	0.01	0.02	0.14
D10006	726,059	4,864,399	in situ	0.07	6.9	0.02	0.01	0.10
D00044	723,672	4,863,406	in situ	0.12	3.3	0.01	0.04	0.06
D00093	726,458	4,864,983	in situ	0.19	1.5	0.01	0.00	0.00
D00154	727,184	4,864,376	in situ	0.21	0.7	0.00	0.01	0.01
D00086	726,130	4,865,074	in situ	0.10	3.4	0.01	0.03	0.06
D00009	726,663	4,863,450	Float	0.01	1.0	0.02	0.00	0.29
D00008	726,533	4,863,347	Float	0.04	2.2	0.02	0.00	0.20
D00113	727,543	4,867,568	in situ	0.00	0.9	0.00	0.08	0.23

D00107	727,874	4,869,590	in situ	0.02	1.6	0.01	0.02	0.23
D00092	726,364	4,864,861	in situ	0.18	0.5	0.00	0.01	0.00
D00073	725,486	4,865,339	in situ	0.05	2.0	0.01	0.02	0.14
D00127	729,151	4,870,204	in situ	0.01	9.3	0.01	0.00	0.04
D10066	726,329	4,865,931	in situ	0.05	5.6	0.02	0.02	0.02
D00027	726,449	4,865,306	in situ	0.04	2.7	0.06	0.01	0.00
D00058	726,024	4,864,447	in situ	0.13	1.8	0.01	0.00	0.01
D00012	726,197	4,866,883	float	0.13	2.2	0.01	0.00	0.00
D10053	725,859	4,865,810	in situ	0.03	1.6	0.01	0.05	0.12
D00078	726,559	4,863,584	in situ	0.02	2.4	0.01	0.00	0.17
D10047	726,240	4,865,256	in situ	0.08	0.7	0.05	0.01	0.00
D00056	725,949	4,864,627	in situ	0.03	6.7	0.01	0.01	0.03
D00076	725,013	4,864,566	in situ	0.03	3.4	0.04	0.00	0.02
D00143	728,943	4,870,294	in situ	0.01	4.4	0.02	0.03	0.06
D10068	726,352	4,865,875	in situ	0.01	2.4	0.06	0.02	0.01
D10052	725,889	4,865,904	in situ	0.01	2.2	0.02	0.01	0.12
D10017	726,565	4,864,618	in situ	0.03	1.6	0.05	0.01	0.01
D00063	726,112	4,864,513	in situ	0.02	4.0	0.01	0.01	0.07
D10012	726,219	4,864,529	in situ	0.02	2.8	0.03	0.02	0.02
D00057	726,024	4,864,506	in situ	0.01	4.8	0.00	0.00	0.08
D00108	727,878	4,869,584	in situ	0.02	1.1	0.01	0.01	0.14
D00145	728,938	4,870,298	in situ	0.00	0.8	0.01	0.02	0.16
D00025	726,462	4,865,507	float	0.07	1.2	0.02	0.01	0.01
D00064	726,055	4,864,506	in situ	0.02	3.9	0.00	0.00	0.07
D00147	728,934	4,870,299	in situ	0.02	2.7	0.02	0.00	0.04
D00016	725,636	4,862,043	in situ	0.05	3.2	0.01	0.01	0.01
D00106	727,873	4,869,590	in situ	0.06	1.9	0.00	0.01	0.04
D10014	726,285	4,864,547	float	0.00	0.3	0.00	0.13	0.01
D10056	725,633	4,865,723	in situ	0.02	0.9	0.01	0.02	0.10
D10032	726,512	4,865,519	in situ	0.02	1.1	0.04	0.01	0.00
D00068	726,142	4,864,539	in situ	0.02	3.0	0.00	0.01	0.06
D00079	726,615	4,863,668	in situ	0.02	2.1	0.01	0.00	0.06
D00011	726,172	4,866,899	float	0.04	2.0	0.02	0.00	0.00
D00031	726,352	4,865,170	in situ	0.02	1.5	0.04	0.01	0.00
D10055	725,826	4,865,683	in situ	0.00	0.9	0.03	0.01	0.03
D00138	729,572	4,870,308	in situ	0.00	4.3	0.01	0.00	0.01
D00135	729,768	4,870,072	in situ	0.02	2.6	0.00	0.02	0.03
D10007	726,097	4,864,432	in situ	0.00	1.1	0.01	0.06	0.02
D00128	729,150	4,870,207	in situ	0.00	4.4	0.00	0.01	0.02
D00141	728,948	4,870,290	in situ	0.01	2.5	0.01	0.01	0.03
D10009	726,173	4,864,524	in situ	0.01	2.9	0.01	0.01	0.01
D00059	725,950	4,864,379	float	0.01	1.3	0.01	0.00	0.05
D10057	725,600	4,865,928	in situ	0.00	0.4	0.01	0.02	0.08
D00049	725,165	4,866,751	in situ	0.00	1.3	0.00	0.06	0.02
D00148	730,729	4,877,351	in situ	0.01	3.2	0.01	0.00	0.01
D00075	725,631	4,864,904	in situ	0.02	2.2	0.02	0.01	0.01
D10031	726,512	4,865,519	in situ	0.00	1.3	0.01	0.02	0.05

D00065	726,039	4,864,446	in situ	0.01	3.0	0.01	0.01	0.01
D10022	726,610	4,864,624	in situ	0.00	2.0	0.02	0.01	0.01
D00110	727,887	4,869,527	in situ	0.00	1.1	0.00	0.01	0.09
D00052	725,736	4,864,800	in situ	0.05	2.2	0.00	0.00	0.00
D00136	729,770	4,870,170	in situ	0.00	3.1	0.01	0.01	0.01
D00018	724,906	4,861,980	in situ	0.00	3.6	0.01	0.01	0.01
D00055	725,971	4,864,656	in situ	0.02	2.3	0.00	0.01	0.02
D00087	726,168	4,865,102	in situ	0.01	2.3	0.01	0.01	0.01
D00153	727,183	4,864,386	in situ	0.05	0.7	0.00	0.01	0.01
D10011	726,207	4,864,536	float	0.04	1.4	0.00	0.01	0.01
D00067	726,132	4,864,527	in situ	0.02	2.2	0.00	0.00	0.02
D00054	725,772	4,864,779	in situ	0.03	2.7	0.00	0.00	0.00
D10062	726,200	4,866,085	in situ	0.03	0.5	0.00	0.03	0.02
D00098	727,264	4,865,501	in situ	0.01	0.8	0.00	0.02	0.04
D10028	726,207	4,864,640	float	0.03	1.3	0.00	0.01	0.01
D00069	725,525	4,865,516	in situ	0.01	1.3	0.01	0.01	0.02
D00132	729,301	4,871,084	in situ	0.03	1.9	0.00	0.00	0.01
D00125	728,992	4,870,052	in situ	0.01	1.0	0.01	0.01	0.04
D00146	728,936	4,870,298	in situ	0.00	2.1	0.01	0.00	0.02
D10008	726,159	4,864,519	in situ	0.00	1.0	0.00	0.04	0.02
D10002	726,225	4,865,202	in situ	0.00	0.9	0.00	0.04	0.02
D00014	725,831	4,861,840	in situ	0.00	0.0	0.00	0.05	0.02
D10079	726,426	4,868,077	in situ	0.00	1.4	0.02	0.01	0.02
D10082	726,443	4,868,031	in situ	0.00	0.5	0.02	0.00	0.01
D00134	729,569	4,870,282	in situ	0.02	1.8	0.00	0.00	0.01
D00152	727,184	4,864,356	in situ	0.03	1.2	0.00	0.00	0.01
D00155	727,183	4,864,456	in situ	0.04	0.0	0.00	0.01	0.01
D10084	726,443	4,868,031	in situ	0.00	0.3	0.00	0.05	0.01
D00042	722,769	4,862,836	in situ	0.01	1.8	0.00	0.01	0.01
D10071	726,360	4,865,765	in situ	0.00	1.2	0.02	0.01	0.00
D00088	726,192	4,865,089	in situ	0.01	1.6	0.00	0.00	0.01
D10021	726,646	4,864,649	in situ	0.00	0.5	0.02	0.01	0.00
D00129	729,151	4,870,207	in situ	0.01	1.9	0.00	0.00	0.01
D10003	726,187	4,865,148	in situ	0.00	1.4	0.00	0.02	0.01
D00041	722,718	4,862,807	in situ	0.00	2.0	0.00	0.01	0.01
D10069	726,297	4,865,825	in situ	0.00	1.1	0.01	0.00	0.01
D00150	729,592	4,870,281	in situ	0.01	1.5	0.00	0.00	0.00
D10037	726,355	4,865,257	in situ	0.01	0.4	0.02	0.00	0.00
D00133	729,261	4,871,064	in situ	0.01	1.7	0.00	0.00	0.00
D00130	729,209	4,870,289	in situ	0.01	1.3	0.00	0.00	0.01
D00109	727,886	4,869,525	in situ	0.00	1.2	0.00	0.00	0.03
D10075	727,068	4,864,473	in situ	0.02	0.8	0.00	0.00	0.00
D00004	726,488	4,868,094	in situ	0.01	1.3	0.01	0.00	0.01
D00091	726,320	4,864,879	in situ	0.01	1.8	0.00	0.00	0.00
D10064	726,322	4,865,929	in situ	0.01	0.4	0.01	0.00	0.00
D00119	727,428	4,862,478	in situ	0.01	1.4	0.00	0.01	0.01
D10001	726,221	4,865,207	in situ	0.00	1.4	0.00	0.01	0.01

D00034	723,800	4,862,496	in situ	0.01	1.2	0.00	0.01	0.00
D00099	727,232	4,865,452	in situ	0.01	0.5	0.00	0.01	0.03
D00051	725,709	4,864,798	in situ	0.03	0.5	0.00	0.00	0.00
D10077	726,463	4,868,027	in situ	0.01	0.9	0.00	0.00	0.01
D10054	725,874	4,865,866	in situ	0.01	0.6	0.00	0.01	0.01
D00029	726,383	4,865,201	in situ	0.01	1.0	0.00	0.01	0.00
D00144	728,942	4,870,296	in situ	0.00	1.4	0.00	0.00	0.01
D00149	729,602	4,870,292	in situ	0.00	1.5	0.00	0.00	0.00
D00101	727,308	4,866,139	in situ	0.00	0.6	0.00	0.01	0.02
D10029	726,160	4,864,624	in situ	0.01	1.1	0.00	0.00	0.00
D00137	729,765	4,870,171	in situ	0.01	0.9	0.01	0.00	0.00
D10005	726,025	4,864,408	in situ	0.00	1.2	0.00	0.01	0.00
D10045	726,262	4,865,295	in situ	0.01	0.2	0.00	0.01	0.01
D10078	726,454	4,868,032	float	0.00	0.8	0.01	0.00	0.01
D10033	726,509	4,865,516	float	0.01	0.2	0.01	0.01	0.00
D10080	726,402	4,868,109	in situ	0.00	0.2	0.01	0.01	0.01
D00050	725,693	4,864,799	in situ	0.01	0.6	0.00	0.01	0.00
D10010	726,196	4,864,540	in situ	0.00	0.5	0.00	0.02	0.00
D00090	726,272	4,864,816	in situ	0.01	0.5	0.00	0.01	0.01
D00003	726,501	4,868,185	in situ	0.00	0.7	0.01	0.00	0.00
D10044	726,273	4,865,261	in situ	0.00	0.5	0.00	0.01	0.01
D00142	728,945	4,870,291	in situ	0.01	0.5	0.00	0.00	0.01
D10083	726,443	4,868,031	in situ	0.00	0.3	0.01	0.00	0.01
D00036	724,236	4,862,241	in situ	0.01	0.6	0.00	0.01	0.00
D10019	726,673	4,864,641	in situ	0.00	0.3	0.00	0.01	0.00
D10060	726,238	4,866,003	in situ	0.00	0.2	0.00	0.01	0.01
D00028	726,388	4,865,208	in situ	0.01	0.0	0.01	0.00	0.00
D10024	726,506	4,865,522	in situ	0.00	0.6	0.00	0.01	0.00
D00120	727,447	4,862,509	in situ	0.00	0.9	0.00	0.00	0.00
D00117	726,907	4,864,165	in situ	0.01	0.0	0.00	0.00	0.00
D10013	726,259	4,864,532	in situ	0.00	0.1	0.00	0.01	0.00
D10059	726,160	4,865,931	in situ	0.00	0.4	0.00	0.00	0.00
D10058	725,672	4,865,916	in situ	0.00	0.2	0.00	0.00	0.01
D00118	726,908	4,864,166	in situ	0.01	0.0	0.00	0.00	0.00
D00115	726,835	4,864,175	in situ	0.01	0.0	0.00	0.00	0.01
D00151	727,146	4,864,444	in situ	0.01	0.0	0.00	0.00	0.00
D00080	726,619	4,863,646	in situ	0.00	0.0	0.00	0.00	0.00
D10063	726,200	4,866,042	in situ	0.00	0.2	0.00	0.00	0.00
D10016	726,504	4,864,609	in situ	0.01	0.0	0.00	0.00	0.00
D00105	727,207	4,867,704	in situ	0.00	0.0	0.00	0.01	0.00
D00097	727,427	4,865,556	in situ	0.00	0.0	0.00	0.01	0.00
D00096	727,330	4,865,719	in situ	0.00	0.0	0.00	0.01	0.00
D00100	727,296	4,865,381	in situ	0.00	0.0	0.00	0.01	0.00
D00139	726,521	4,867,137	in situ	0.00	0.0	0.00	0.00	0.00
D10025	726,469	4,864,568	in situ	0.00	0.1	0.00	0.00	0.00
D00131	729,126	4,870,613	in situ	0.00	0.0	0.00	0.00	0.01
D00017	725,267	4,861,955	float	0.00	0.0	0.00	0.00	0.01

D00019	724,119	4,861,860	float	0.00	0.0	0.00	0.00	0.00
D10072	726,355	4,865,703	in situ	0.00	0.1	0.00	0.00	0.00
D10018	726,681	4,864,649	float	0.00	0.1	0.00	0.00	0.00
D10073	726,379	4,865,650	float	0.00	0.0	0.00	0.00	0.00
D00121	727,759	4,862,900	in situ	0.00	0.0	0.00	0.00	0.00
D10015	726,450	4,864,539	in situ	0.00	0.0	0.00	0.00	0.00
D10070	726,307	4,865,815	in situ	0.00	0.0	0.00	0.00	0.00
D00116	726,859	4,864,196	in situ	0.00	0.0	0.00	0.00	0.00

