

5 June 2018

FURTHER HIGH-GRADE DRILL RESULTS FROM T7 TARGET, LOS DOMOS PROJECT

Equus Mining Limited ('Equus') (ASX: EQE) is pleased to announce high-grade drill results from recent drilling at the T7 Target located at EQE's Los Domos epithermal project. This includes drill hole LDD-035 which has returned the most significant intercept, with high grade assay results, of all holes drilled to date at Los Domos.

High-Grade Drill Results from T7 Target

• High-grade drill results have been received for recently completed drill holes at the T7 Target located at the EQE's Los Domos epithermal project. These include:

 LDD-035 intercepted down hole 44.00m @ 5.37 g/t AuEq or 8.54% PbEq Including 23.30m @ 9.03 g/t AuEq or 14.37% PbEq Including 12.95m @ 12.6 g/t AuEq or 20.05% PbEq Including 9.70m @ 15.06g/t AuEq or 23.96% PbEq
 LDD-033 intercepted down hole 7.40m @ 5.36 g/t AuEq or 8.53% PbEq Including 2.35m @ 14.54g/t AuEq or 23.14% PbEq
 LDD-030 intercepted down hole 2.70m @ 4.24 g/t AuEq or 6.75% PbEq

- See T7 Target long section in Figure 1 and intercept assay detail in Table 1. Assay results are awaited from drill holes LDD-034, 36, 37, 38, 39 and recently completed 40.
- The T7 Target structure hosts a polymetallic multiphase, Intermediate Sulphidation epithermal style of mineralisation with significant values of Au, Ag, Pb, Zn and, in more recent drill holes, Cu. Preliminary interpretations of metal zonation from the more recent results suggest that a Au and Zn rich mineralization phase is becoming increasingly dominate to the northwest and at depth along the T7 Target structure in favourable, more competent lithologies.
- Assay results to date have intercepted mineralisation where either Au or Pb is the dominant metal by value. This, together with flotation tests previously carried out, allows assays to be reported in both Au and Pb equivalents so as to simply demonstrate overall metal values. See Figure 1 and Table 1.
- The T7 Target structure is a major west-northwest trending, steeply north east dipping fault structure that has been mapped over an approximate strike length of 1,000m. Drilling to date has defined mineralisation over a strike length of 600m and an average true width of approximately 7.9m for all main intercepts to date with the deepest intercept being >200m below surface. The average weighted grade to date of the main intercepts in all T7 drill holes is 5.39g/t AuEq. The T7 Target structure remains open along strike in both directions, and particularly at depth and potentially down plunge towards both the south-east and north-west.
- The broad dimensions of the mineralisation outlined to date at Los Domos is becoming increasingly analogous to a number of other well known, large epithermal deposits such as the La Blanca epithermal vein deposit (Palmarejo project, Mexico). See Figures 2 and 3. Very high grade intervals intercepted both in LDD-001 and LDD-035 indicate that partial "direct-shipping" mineralisation could be a possible operational scenario. See Table 2.

Figure 1. Long section of T7 Target with interpreted true widths and Au and Pb equivalent grades

Figure 2. Long Section of T7 Target, Los Domos project – preliminary Au equivalent grade x m distribution

Source: Bolnisi Gold NL - 2005 Annual General Meeting Presentation

Table 1. T7 Target Drill Intercepts

Hole, Channel ID	From m	To m	Intercept m	True Width m	AuEq ^(x) g/t	PbEq ^(x) %	Au g/t	Ag g/t	Pb %	Zn %	Cu %
7A	0.00	6.00	6.00	6.00	5.36	8.53	2.52	123	1.32	0.08	
7B	0.00	7.70	7.70	7.70	3.32	5.28	1.18	42	2.21	0.11	
7C	0.00	7.00	7.00	7.00	3.02	4.81	0.82	18	1.40	1.26	
LDD-001	35.20	54.14	18.94	18.29	11.38	18.11	0.48	117	9.65	3.62	
incl.	45.75	54.14	8.39	8.10	23.49	37.37	0.71	248	20.72	7.07	
LDD-003	68.00	76.45	8.45	7.94	2.70	4.29	0.32	15	1.18	1.68	
incl.	68.00	69.25	1.25	1.17	14.52	23.10	0.28	81	7.63	9.88	
	138.75	140.05	1.30	1.22	3.03	3.03	0.62	11	0.26	1.14	
LDD-009	5.45	6.85	1.40	1.35	1.89	3.01	0.56	12	1.20	0.47	es
	47.50	54.60	7.10	6.86	1.29	2.06	0.49	9	0.45	0.47	grad
incl.	50.75	52.25	1.50	1.45	2.61	4.15	0.75	13	1.31	1.01	cu f
LDD-010	9.00	9.60	0.60	0.52	2.24	3.56	0.19	16	1.58	0.98	ant
	25.20	26.30	1.10	0.95	1.30	2.07	0.69	9	0.56	0.14	nific
	29.60	31.35	1.75	1.52	1.19	1.90	0.30	7	0.94	0.23	sig
	45.25	49.15	3.90	3.38	2.77	4.41	1.42	15	0.57	0.92	No
LDD-011	75.90	78.80	2.90	2.80	1.21	1.93	0.26	7	0.58	0.58	
	85.00	86.60	1.60	1.55	0.74	1.18	0.12	6	0.38	0.35	
	89.90	97.35	7.45	7.20	1.06	1.68	0.11	12	0.68	0.39	
incl.	93.60	97.35	3.75	3.62	1.57	2.51	0.11	19	1.17	0.51	
LDD-012	104.20	110.00	5.80	5.60	2.96	4.72	0.09	21	0.54	2.67	
incl.	104.20	106.90	2.70	2.61	5.42	8.62	0.12	36	0.82	5.10	
	116.00	117.45	1.45	1.40	2.35	3.74	1.04	12	0.17	1.22	
	128.90	130.25	1.35	1.30	2.36	3.75	2.14	6	0.07	0.10	
LDD-028	237.65	242.50	4.85	3.55	0.70	1.12	0.35	6	0.20	0.15	0.03
LDD-029	324.09	345.60	21.51	15.21	1.30	2.07	0.45	14	0.39	0.48	0.11
incl.	340.45	345.00	4.55	3.22	3.30	5.24	1.85	35	0.72	0.54	0.34
incl.	342.50	344.40	1.90	1.34	5.17	8.23	3.37	45	0.81	0.70	0.57
LDD-030	24.90	27.60	2.70	1.91	4.24	6.75	1.96	44	0.69	1.39	0.57
	68.70	70.15	1.45	1.03	1.86	6.75	1.16	18	0.42	0.19	0.05
	91.55	93.20	1.65	1.17	2.35	6.75	1.20	10	0.13	1.10	0.11
	130.65	135.50	4.85	3.43	1.70	2.71	0.84	9	0.33	0.61	0.06
incl.	133.25	135.50	2.25	1.59	2.55	4.05	1.25	15	0.59	0.83	0.10
LDD-031	113.10	115.40	2.30	1.63	16.03	25.50	15.62	18	0.02	0.13	0.09
incl.	113.10	114.40	1.30	0.92	28.13	44.75	27.42	32	0.04	0.21	0.15
	123.10	123.90	0.80	0.57	4.69	7.47	1.01	37	1.26	2.80	0.13
	144.45	145.45	1.55	1.10	1.63	2.60	0.33	11	0.27	1.16	0.13
			La	boratory ass	ays outstar	nding for in	tervening i	ntervals			
LDD-032	39.10	46.00	6.90	4.88	7.83	12.47	0.54	53	4.30	4.62	0.13
incl.	42.70	45.40	2.70	1.91	19.44	30.94	1.32	132	10.71	11.42	0.32
LDD-033	48.50	55.90	7.40	5.23	5.36	8.53	0.28	38	1.44	4.33	0.14
	50.55	52.90	2.35	1.66	14.54	23.14	0.67	104	3.85	11.87	0.35
LDD-034	400 75			La	boratory as	says outst	anding	65		0.05	0.00
LDD-035	130.75	1/4./5	44.00	31.11	5.37	8.54	1.02	65	1.40	2.95	0.20
incl.	151.45	1/4./5	23.30	16.48	9.03	14.37	1.49	109	2.41	5.22	0.27
inci.	151.45	164.40	12.95	9.16	12.60	20.05	2.18	157	3.49	6.95	0.29
	151.45	161.15	9.70	6.86	15.06	23.96	2.58	181	4.15	8.48	0.34
				La	boratory as	says outst	anding				
				La	boratory as	says outst	anung				
				La	boratory as	says outet	anding				
				La	boratory as	says outst	anung				
				La		boing dist	anung				
LDD-041					currently	being drill	ea				

 $^{(X)}$ Shaded cells highlight most appropriate metal equivalent measure based on dominant metal by value

^(X) Metal equivalent figures do not incorporate copper values as flotation recovery tests have not as yet been performed for copper minerals

Table 2. Drill Holes LDD-001 and LDD-035 Very High Grade Intervals

Drill Hole	LDD-001									
From m	To m	Intercept m	AuEq ^(x) g/t	PbEq ^(x) %	Au g/t	Ag g/t	Pb %	Zn %	Cu %	
45.75	46.67	0.92	16.65	26.50	2.45	178	12.6 4.21			
46.67	46.98	0.31	4.25	6.77	0.22	19	3.23	2.06		
46.98	47.75	0.77	12.86	20.47	0.92	59	6.15	8.65		
47.75	48.31	0.56	8.81	14.02	1.09	66	3.87	5.14	es	
48.31	49.01	0.70	25.59	40.71	0.59	111	26.9	7.67	rad	
49.01	49.60	0.59	4.16	6.61	0.19	25	1.41	3.25	ß ng	
49.60	50.35	0.75	8.98	14.28	0.31	30	4.24	6.69	t	
50.35	51.00	0.65	21.06	33.51	0.71	114	18.45	8.42	ia	
51.00	51.61	0.61	62.90	100.09	0.17	1010	69.33	3.92	gnił	
51.61	52.38	0.77	51.23	81.52	0.22	692	45.07	14.25	o si	
52.38	52.67	0.29	29.69	47.24	0.46	348	22.98	11.25	ž	
52.67	53.14	0.47	45.45	72.32	0.29	444	44.22	12.55		
53.14	54.14	1.00	17.01	27.06	0.55	185	15.05	4.94		
45.75	54.14	8.39	23.49	37.37	0.71	248	20.72	7.07		
Drill Hole	I DD-035									
From	То	Intercept	AuEq ^(x)	PbEq ^(x)	Au	Ag	Pb	Zn	Cu	
m	m	m	g/t	%	g/t	g/t	%	%	%	
151.45	152.45	1.00	4.34	6.91	3.37	40	0.09	0.35	0.73	
152.45	153.15	0.70	19.22	30.58	9.61	243	4.99	3.20	1.00	
153.15	153.75	0.60	14.39	22.90	1.67	157	3.84	9.48	0.19	
153.75	154.75	1.00	20.23	32.19	2.35	202	4.31	14.50	0.23	
154.75	155.75	1.00	19.60	31.19	1.97	222	3.75	14.25	0.24	
155.75	156.75	1.00	17.72	28.20	2.59	246	5.68	9.30	0.34	
156.75	157.70	0.95	18.73	29.80	2.14	204	5.04	12.35	0.23	
157.70	158.05	0.35	10.11	16.08	1.63	156	2.66	5.26	0.24	
158.05	161.15	3.10	13.15	20.93	1.44	173	4.82	7.21	0.22	
151.45	161.15	9.70	15.06	23.96	2.58	181	4.15	8.48	0.34	

(x) Gold and Lead Equivalent Calculation Formulae & Assumptions – Intermediate Sulphidation Epithermal

 $\frac{Price \, per \, 1 \, Pb(\%) \times Pb \, Recovery(\%)}{Price \, per \, 1 \, Pb(\%)} \quad PbEq(\%) = Pb(\%) + Au(g/t) \times \frac{Price \, per \, 1 \, Pb(\%) \times Pb \, Recovery(\%)}{Price \, per \, 1 \, Pb(\%) \times Pb \, Recovery(\%)}$ Price per 1 $Ag(g) \times Ag Recovery (%)$ + Ag(g/t) x Price per 1 Pb(%) x Pb Recovery (%) Price per 1 Zn(%) x Zn Recovery (%) + Zn(%) x Price per 1 Pb(%) x Pb Recovery (%)

 $AuEq(g/t) = Au(g/t) + Pb(\%) \times \frac{Price per 1 Fu(0) \times Fuerery(\%)}{Price per 1 Au(g/t) \times Au Recovery(\%)}$ Price per 1 Ag(g) x Ag Recovery (%) + Ag(g/t) xPrice per 1 Au(g/t)x Au Recovery (%) Price per 1 Zn(%) x Zn Recovery (%) + Zn(%) x Price per 1 Au(g/t) x Au Recovery (%)

Metal	Price *	Recovery	
Gold	US\$1244 per ounce	93.2%	Metallurgical recoveries are based on initial metallurgical tests as
Silver	US\$18.35 per ounce	99.6%	outlined in a report titled Initial Metallurgical Tests Show Potential for High Recoveries and Grades of Silver. Lead and Zinc in Concentrates
Lead	US\$2350 per tonne	99.7%	(see ASX release dated 7 August 2017). It is EQE's opinion that all the
Zinc	US\$3100 per tonne	99.4%	elements included in the metal equivalents calculation have a
Recovery Recovery Recovery Recovery Recovery *Metal pr	weighted 1 Au g/t : 1 Ag weighted 1 Au g/t : 1 Pb? weighted 1 Au g/t : 1 Zn? weighted 1 Pb% : 1 Ag g/ weighted 1 Pb% : 1 Au g/ weighted 1 Pb% : 1 Zn% ices are of July 2017	g/t price ratio = 1 : 63.4 % price ratio = 1 : 1.59 % price ratio = 1 : 1.12 /t price ratio = 1 : 39.9 /t price ratio = 1 : 0.63 price ratio = 1 : 0.76	across the T7 Target structure shows differing dominant metal bearing zone. The varying distribution of the different dominant metals is interpreted to be both a function of the differing vertical depth within the epithermal system and differing time phases of mineralisation emplacement. As such, management have opted to report results on both an Au and Pb equivalent basis as those two metals are currently the most dominant at the T7 target in accordance with JORC reporting standards. If subsequent drilling intersects mineralization whereby a new dominant metal emerges for a target, equivalent metal reporting will change to reflect that new dominant metal.

Figure 4. Plan map showing multiple epithermal vein structures at Los Domos

For further information, please contact:

Ted Leschke Managing Director +61 2 9300 3366 tleschke@equusmining.com

Cameron Peacock Investor Relations and Business Development +61 439 908 732 cpeacock@equusmining.com

Website: www.equusmining.com

About Equus Mining and the Los Domos Precious and Base Metal Project

Equus Mining Limited (Equus, ASX: EQE) the rights to acquire 100% of the Los Domos gold-silver project located in the XI Region of Chile from Terrane Minerals SpA under a staged earn-in agreement. With the completion of an initial 1,000m drill programme Terrane is now to transfer the Los Domos project assets into a Joint Venture (JV) Company in which Equus will hold an initial 51% (previously the requirement was 2000m). Equus then has a two-year option period to buy the remaining 49% interest in the JV Company by issuing Terrane \$450,000 worth of Ordinary Shares at an issue price of 1.2c

The Los Domos gold-silver project is well located 15km south of the township of Chile Chico and adjacent to the Cerro Bayo gold-silver mine. See Figure 5. This mine was until recently producing approximately 2 Mozpa of silver and 20 Kozpa gold or approximately two thirds nominal flotation plant capacity of 500ktpa throughput, however production has been suspended indefinitely and force majeure declared following a mine flooding event in June 2017 ^(ix). With an altitude range of 800m to 1,200m and a dry, moderate climate, the Los Domos Project is generally able to be explored year-round.

pjn9420

(i) All the material assumptions underpinning exploration results for sample numbers LD00001 to LD00102 are outlined in Table 1 and Appendix 1 in the initial public report titled Los Domos Gold-Silver project (see ASX release dated 25 October 2016) and continue to apply and have not materially changed.

(ii) All the material assumptions underpinning exploration results for sample numbers LD00103 to LD00205 are outlined in Table 1 and Appendix 1 in the December 2016 Quarterly Activities Report (see ASX release dated 31 January 2017) continue to apply and have not materially changed.

(iii) All the material assumptions underpinning exploration results for sample numbers LD00206 to LD00382 are outlined in Table 1 and Appendix 1 in the report titled Los Domos Gold-Silver Project High Grade Assay Results (see ASX release dated 3 March 2017) continue to apply and have not materially changed.

(iv) All the material assumptions underpinning exploration results for sample numbers LD00283 to LD00400 are outlined in Table 1 and Appendix 1 in the report titled Los Domos Gold-Silver Project Yields Further High-Grade Assay Results (see ASX release dated 31 March 2017) continue to apply and have not materially changed.

(v) All the material assumptions underpinning exploration results for sample numbers LDD0001 to LDD00050 are outlined in Table 1 in the report titled Significant High-Grade Assays From Shallow Depth Intercept In First Drill Hole At Los Domos Gold-Silver Project (see ASX release dated 12 July 2017) continue to apply and have not materially changed.

(vi)Metallurgical recoveries for Intermediate Sulphidation epithermal mineralisation are based on initial metallurgical tests as outlined in a report titled Initial Metallurgical Tests Show Potential for High Recoveries and Grades of Silver, Lead and Zinc in Concentrates (see ASX release dated 7 August 2017).

(vii) All the material assumptions underpinning exploration results for sample numbers LDD0051 to LDD00572 are outlined in Table 1 in the report titled First Phase Drilling Confirms Potential For Large Scale Intermediate Sulphidation Mineralised System At Los Domos Precious And Base Metal Project (see ASX release dated 10 October 2017) continue to apply and have not materially changed.

(viii) All the material assumptions underpinning exploration results for sample numbers LDD0620 to LDD00789 are outlined in Table 1 in the report titled 400M Mineralised Structure Defined at T7 Target and Commencement of 7,500M Phase 2 Drill Programme at Los Domos Project (see ASX release dated 20 November 2017) continue to apply and have not materially changed.

(ix) All the material assumptions underpinning exploration results for sample numbers LDD0791 to LDD01251 are outlined in Table 1 in the report titled Significant Drill Defined Extensions of Ag, Pb, Zn, Au Mineralisation at T7 Target, Los Domos Project (see ASX release dated 16 April 2018) continue to apply and have not materially changed.

(x) Gold and Lead Equivalent Calculation Formulae & Assumptions – Intermediate Sulphidation Epithermal

$A_{11}E_{\alpha}(\alpha/t) = A_{11}(\alpha/t)$	- Db/0/)	Price per 1 Pb(%) x Pb Recovery (%)
Aueq(g/t) - Au(g/t)	+ PD(%)	^x Price per 1 Au(g/t)x Au Recovery (%)
	$+ \Lambda \alpha (\alpha / t)$	Price per 1 Ag(g) x Ag Recovery (%)
	+ Ag(g/ l)	* Price per 1 Au(g/t)x Au Recovery (%)
	+ Zn(%) +Au(g/t)	Price per 1 Zn(%) x Zn Recovery (%)
		^x Price per 1 Au(g/t)x Au Recovery (%)
DhEq(0/) = Dh(0/)		<u>Price per 1 Au(g) x Au Recovery (%)</u>
PDEQ(%) = PD(%)		X Price per 1 Pb(%) x Pb Recovery (%)
	$\pm \Lambda \sigma (\sigma / t)$	Price per 1 Ag(g) x Ag Recovery (%)
	+ Ag(g/ l)	* Price per 1 Pb(%) x Pb Recovery (%)
	1 70(0/)	Price per 1 Zn(%) x Zn Recovery (%)
	+ 211(%)	* Price per 1 Pb(%) x Pb Recovery (%)

Metal	Price *	Recovery	
Gold	US\$1244 per ounce	93.2%	Metallurgical recoveries are based on initial metallurgical tests as
Silver	US\$18.35 per ounce	99.6%	High Recoveries and Grades of Silver, Lead and Zinc in Concentrates
Lead	US\$2350 per tonne	99.7%	(see ASX release dated 7 August 2017). It is EQE's opinion that all the
Zinc	US\$3100 per tonne	99.4%	elements included in the metal equivalents calculation have a reasonable notential to be recovered and sold. Drilling intercents
Recovery Recovery Recovery Recovery Recovery Recovery *Metal pr	weighted 1 Au g/t : 1 Ag weighted 1 Au g/t : 1 Pb? weighted 1 Au g/t : 1 Zn? weighted 1 Pb% : 1 Ag g/ weighted 1 Pb% : 1 Au g/ weighted 1 Pb% : 1 Zn% ices are of July 2017	g/t price ratio = 1 : 63.4 % price ratio = 1 : 1.59 % price ratio = 1 : 1.12 t price ratio = 1 : 39.9 t price ratio = 1 : 0.63 price ratio = 1 : 0.76	across the T7 Target structure shows differing dominant metal bearing zone. The varying distribution of the different dominant metals is interpreted to be both a function of the differing vertical depth within the epithermal system and differing time phases of mineralisation emplacement. As such, management have opted to report results on both an Au and Pb equivalent basis as those two metals are currently the most dominant at the T7 target in accordance with JORC reporting standards. If subsequent drilling intersects mineralization whereby a new dominant metal emerges for a target, equivalent metal reporting will change to reflect that new dominant metal.

(xi) www.mandalayresources.com

(xii) All the material assumptions underpinning exploration results for sample numbers LDD01447 to LDD01585 and LDD01630 to LDD01687 are outlined in Table 1 in the report titled Significant Drill Results from T7 Target, Los Domos Project (see ASX release dated 10 May 2018) continue to apply and have not materially changed.

COMPETENT PERSON'S STATEMENT:

The information in this report that relates to Exploration Results for the Los Domos Gold-Silver project is based on information compiled by Damien Koerber. Mr Koerber is a geological consultant to the Company. Mr Koerber is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Koerber has a beneficial interest as shareholder and Director of Terrane Minerals SpA ('vendor') in Los Domos Gold-Silver project and consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1 LOS DOMOS EXPLORATION PROGRAM EQUUS MINING LIMITED A. DIAMOND DRILLING & SURFACE SAMPLING

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond Drilling Sampling Industry standard diamond drilling is used to obtain continuous core samples. Continuous core sampling ensures high sampling representation. All HQ (63.5 mm diameter) and NQ (47.6 mm diameter) core sample depths are recorded according to depths maintained by the project geologist's technician. These depths are determined by a combination of cross checking of driller recorded depths and the geologists own recorded depths which takes into account core loss and gain. All core samples are placed in secure industry standard core storage trays and transported to a secure logging and core cutting facility in Chile Chico. Core sampling and logging by a qualified geologist is targeting Au-Ag and base metal bearing quartz veins, breccias and zones of silicification, which are known to host gold-silver and base metal mineralisation, within rhyolite ignimbrite of the Jurassic age Ibanez Formation. Surface Sampling Sawn Channel samples were collected of quartz veins and zones of silicification, within Jurassic age Ibanez Formation thyolite ignimbrite by a qualified geologist. Sample locations were surveyed with a handheld GPS using Coordinate Projection System SAD69 UTM Zone 19S. Representative channel samples of 2-3Kg weight were taken across the strike of the outcrop over various width intervals except where noted. Intervals were cut at right angles to geological strike except where noted. Limited analysing of hand samples was conducted by a handheld XRF instrument prior to despatch of samples for conventional laboratory analysis. Hand-held XRF Handheld XRF analysis was conducted with an Olympus Vanta M Model X-Ray Fluorescence Geochemical Analyzer instrument at generally 10 cm intervals on diamond core. For individual veins or samples that are specifically reported, several readings are taken to establish an average. Investors sh
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 <u>Diamond Drilling Sampling</u> All holes are cored in their entirety from the base of surface regolith cover and HQ (63.5 mm diameter) coring is conducted to hole completion. Diamond drilling size may be reduced to NQ (47.6 mm diameter) in the case that broken ground is encountered.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 <u>Diamond Drilling Sampling</u> Each core hole drill interval is reviewed for linear core recovery based on measured recovered intervals from drilled intervals from which percentage recoveries are calculated.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and 	 <u>Diamond Drilling Sampling</u> All diamond drill core is geologically logged, marked up and photographed by a qualified geologist. All geological and geotechnical observations including lithology and alteration, mineralisation type, orientation of mineralised

Criteria	JORC Code explanation	Commentary
	 metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 structures with respect to the core axis, recoveries and RQD are recorded. <u>Surface Sampling</u> Sawn Channel samples were geologically logged by a qualified geologist. The orientation of the associated mineralised structures was logged by a qualified geologist.
Sub-sampling techniques and sample preparation	 If core, whether cut or Rock Chip and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 <u>Diamond Drilling Sampling</u> Mineralised core and adjacent intervals core are sampled at intervals ranging from a minimum 0.3m interval to maximum 1m based on geological boundaries, defined by a qualified geologist. Assaying is undertaken on representative, diamond saw cut ½ core portions of HQ core (63.5 mm diameter) and NQ (47.6 mm diameter) core. <u>Surface Sampling</u> Sawn Channel samples were a minimum width of 30cm and approximate sample support of half core NQ from diamond drilling, ie sample diameter of 56mm, being a half core sample of that. <u>Hand-held XRF</u> Readings were taken with a handheld Olympus Vanta M Model X-Ray Fluorescence Geochemical Analyzer instrument at generally 10 cm intervals on material representative of that sample interval. Where high grade Ag and or base metal readings were recorded, three readings were taken at each point and averaged.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples are stored in a secure location and transported to the ALS laboratory in Santiago via a certified courier for sample preparation initially comprising weighing, fine crush, riffle split and pulverizing of 1kg to 85% < 75µm under laboratory code Prep-31. Pulps are generally analysed for Au, Ag and trace and base elements using method code Au-ICP21, ME-MS41 For high grade sample intervals, Au-AA25 (for Au values up to 100 g/t), Ag-OG46 (for Ag values > 100 g/t Ag) and Zn-AA62 (up to 30%), Pb-AA62 (up to 20%) and Cu-AA62 for Zn, Pb and Cu values over 1% respectively or analysis method code Zn-OG62 (up to 30%) and Pb-OG62 (up to 20%) is implemented. For Pb values (over 20% to 100%), the analysis method code Pb-VOL70 is implemented. Alternate blanks and certified standards for Au and Ag are submitted within each laboratory batch at a ratio of 1:15 (i.e. 6.5%) for which QA/QC revision is conducted on each batch. Readings were taken with a handheld Olympus Vanta M Model X-Ray Fluorescence Geochemical Analyzer over two 20 second intervals. Calibration is carried out at the start of the sampling procedure each time the machine is turned on and appropriate standards are used every 25th sample. Elements analysed include: Ag, As, Se, Ca, K, S, Sb, Sn, Cd, Sr, Rb, Pb, Zn, Hg, W, Cu, Ni, Co, V, Ti, Fe, Mn, P, Cr, Mo, U and Ta.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 <u>Diamond Drilling Sampling</u> For drill core sample data, laboratory CSV result files are merged with downhole geological logs and unique sample numbers. No adjustments were made to the assay data. <u>Surface Sampling</u> For rock chip sample data, laboratory CSV result files are merged with GPS Location data files using unique sample numbers. No adjustments were made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 <u>Diamond Drilling Sampling</u> Drill hole collar position are currently located using handheld GPS receivers and will be subsequently more accurately surveyed by a qualified surveyor at a later date using a differential GPS system. Coordinate Projection System SAD69 UTM Zone 19S. All holes are surveyed for downhole deviation using a Gyroscope downhole survey tool at the completion of each hole. <u>Surface Sampling</u> Samples are located using handheld GPS receivers.

Criteria	JORC Code explanation	Commentary
		 Coordinate Projection System SAD69 UTM Zone 19S The topographic control, using handheld GPS, was adequate for the survey.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 <u>Diamond Drilling Sampling</u> Results will not be used for resource estimation prior to any supporting drilling being carried out. Compositing of assay results where applicable on contiguous samples has been applied on a weighted average basis. <u>Surface Sampling</u> Results will not be used for resource estimation prior to any supporting drilling being carried out. Compositing of assay results where applicable on contiguous samples has been applied on a weighted average basis. <u>Hand-held XRF</u> Readings were taken with a handheld Olympus Vanta M Model X-Ray Fluorescence Geochemical Analyzer instrument at generally 10 cm intervals and are used for semi-quantitative analysis only.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 <u>Diamond Drilling Sampling</u> Drilling is designed to intersect host mineralised structures as perpendicular to the strike and dip as practically feasible. In the initial stages of drill testing of targets, scout drilling is in some cases required to establish the geometries of the target host mineralised structures <u>Surface Sampling</u> Representative rock chip samples of 2-3Kg weight were taken perpendicular to the strike of the vein outcrop over 0.2m to 1 metre intervals except where noted.
Sample security	The measures taken to ensure sample security.	• Samples are numbered and packaged under the supervision of a qualified geologist and held in a secure locked facility and are not left unattended at any time. Samples are dispatched and transported by a registered courier to ALS Minerals in Santiago.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews of the data management system have been carried out.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 Equus Mining Limited holds the rights to acquire the Los Domos Project which consists of 100% of exploration licences Electrum 1A to 7A, 8 to 11 and 12A, and 75% of mining licenses Pedregoso 7 1-30, Pedregoso 1 1-30 and Honda 20 1-20 with the possibility of acquisition of 90% of the respective claims after drilling an additional 2,500m.
	park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	 Inrough an agreement, Terrane Minerals SpA is to transfer all its Los Domos Project assets into a new JV company (51% Equus, 49% Terrane) for Equus funding a programme of systematic surface sampling and 1,000m of drilling – this has been achieved. Post the initial exploration programme Equus has a two-year option to acquire the remaining 49% of the JV company by issuing Terrane A\$450k in shares at a fixed share price based on the market at the time of agreement execution. Vendor shares will be escrowed for 1 year.
		 The laws of Chile relating to exploration and mining have various requirements. As the exploration advances, specific filings and environmental or other studies may be required. There are ongoing requirements under Chilean mining laws that will be required at each stage of advancement. Those filings and studies are maintained and updated as required by Equus Mining's environmental and permit advisors specifically engaged for such

Criteria	JORC Code explanation	Commentary								
		purposes.								
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 All sampling to date has been supervised by Damien Koerber who is a qualified geologist with 20 years of experience in Latin America and is a Member of the Australian Institute of Geoscientists. 								
Geology	Deposit type, geological setting and style of mineralisation.	 The Cerro Bayo-Los Domos District hosts epithermal veins and breccias containing gold and silver mineralization. The deposits show multiple stages of mineralization and display open-space filling and banding, typical of low-sulphidation epithermal style mineralization. Mineralogy is complex and is associated with mineralization and alteration assemblages that suggest at least three stages of precious metal deposition. Exploration model types of both Low Sulphidation (e.g. Cerro Negro, Santa Cruz, Argentina) and Intermediate Sulphidation deposits (San Jose and Cerro Moro, Santa Cruz, Argentina and Juanacipio, Mexico) are being targeted at Los Domos. 								
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	 <u>Diamond</u> Drill ho be more 	Drilling Sampling le collar positions are c e accurately surveyed	letermined by a qualif	d by a Garmi fied surveyo	n GPS using r at a later dat	the grid s e.	system S	AD69 UTM	Zone 19S and will
	 elevation or RL (Reduced Level – elevation above sea levation grateries) of the drill lede getter 	11-1-10	-		Easting	Northing	RL	Dip	Azimuth	Total Depth
	 o dip and azimuth of the hole 	Hole ID	Tenement	Area	(SAD 69	Zone19S)	(m)	-x°	x°	(m)
	 down hole length and interception depth hole length. 	LDD-001	Electrum 7A	T7	289386	4824385	851	45	238	210.25
	 If the exclusion of this information is justified on the basis 	LDD-002	Pedrogoso 7 1-30	T5	288481	4826117	1199	50	280	182.55
	not detract from the understanding of the report, the	LDD-003	Electrum 7A	T7	289474	4824369	854	50	270	240.40
	Competent Person should clearly explain why this is the case.	LDD-004	Electrum 5A	T2	288692	4828003	1159	45	50	80.70
		LDD-005	Electrum 5A	T2	288633	4828170	1130	50	45	80.35
		LDD-006	Electrum 5A	T2	288701	4828102	1162	50	45	60.10
		LDD-007	Electrum 5A	T2	288784	4827986	1163	60	45	101.45
		LDD-008	Electrum 5A	Т2	288692	4828003	1159	60	45	148.85
		LDD-009	Electrum 7A	T7	289386	4824385	851	45	180	68.70
		LDD-010	Electrum 7A	T7	289386	4824385	851	60	210	101.40
		LDD-011	Electrum 7A	T7	289474	4824369	854	45	230	123.30
		LDD-012	Electrum 7A	T7	289474	4824369	854	45	190	156.20
		LDD-013	Pedrogoso 7 1-30	T5	288540	4826114	1188	55	270	400.60
		LDD-014	Electrum 4A	T1	287832	4829072	1096	45	40	105.00
		LDD-015	Electrum 4A	T1	287892	4829052	1090	50	40	101.70
		LDD-016	Pedrogoso 7 1-30	T5	288210	4826053	1220	55	81	293.90
		LDD-017	Pedrogoso 7 1-30	T5	288210	4826053	1220	55	60	302.25
		LDD-018	Electrum 4A	T1	287892	4829052	1090	65	40	143.55

Criteria	JORC Code explanation	Commentary								
		LDD-019	Electrum 4A	T1	287832	4829072	1096	65	40	140.60
		LDD-020	Electrum 4A	T1	287892	4829052	1090	75	40	155.55
		LDD-021	Electrum 4A	T1	287775	4828998	1127	54	40	250.15
		LDD-022	Electrum 4A	T4	287485	4828436	1166	55	230	198.00
		LDD-023	Electrum 4A	T10	287619	4828424	1167	45	345	203.30
		LDD-024	Electrum 5A	Т2	288658	4828066	1145	70	45	186.70
		LDD-025	Electrum 7A	Т9	289411	4825723	1212	60	225	179.60
		LDD-026	Electrum 7A	Т8	289550	4825266	1190	55	110	263.70
		LDD-027	Electrum 7A	Т8	289550	4825266	1190	65	110	244.50
		LDD-028	Electrum 7A	T7	289066	4824686	1140	73	215	376.25
		LDD-029	Electrum 7A	T7	289066	4824686	1140	75	170	382.85
		LDD-030	Electrum 7A	Τ7	289386	4824385	851	45	270	155.50
		LDD-031	Electrum 7A	Τ7	289386	4824385	851	45	285	157.00
		LDD-032	Electrum 7A	Τ7	289305	4824357	888	45	30	150.00
		LDD-033	Electrum 7A	Τ7	289305	4824357	888	45	0	104.00
		LDD-034	Electrum 7A	Τ7	289474	4824369	854	55	165	227.30
		LDD-035	Electrum 7A	Τ7	289305	4824357	888	45	330	195.10
		LDD-036	Electrum 7A	Τ7	289305	4824357	888	60	40	145.05
		LDD-037	Electrum 7A	Τ7	289305	4824357	888	55	330	401.60
		LDD-038	Electrum 7A	Τ7	289305	4824357	888	55	0	105.50
		LDD-039	Electrum 7A	Τ7	289305	4824357	888	65	345	307.30
		LDD-040	Electrum 7A	T7	289305	4824357	888	55	323	207.60
		LDD-041	Electrum 7A	T7	289305	4824357	888	70	60	Drilling
		Surface S Sample 19S. P survey grid sy compa	ampling e locations were survey lease refer to Appendix ed by a differential GPS stem SAD69 UTM Zond ss. ole and Surface Sampli	red with a 1 for rele 3 however e 19S. Azi ng assays	handheld Gi vant informa to date surv muths and c are show in	PS using Coo tition. In due c veying has be lips of the sav Appendix I w	rdinate P ourse col en condu vn trench /hen repc	rojectior lar coord icted by es were orted for	n System SA dinates of th a handheld surveyed by the first time	LD69 UTM Zone ese trenches will be Garmin GPS using y a Brunton

Criteria	JORC Code explanation	Commentar	У				
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Neith Aggreavera Metal Gold and L AuEq(g/t) = PbEq(%) = 	er equivalent or upper or l egated averages of sample ige calculations. equivalent values were c Lead Equivalent Calcul Au(g/t) + Pb(%) $\times \frac{Price}{Price}$ + Ag(g/t) $\times \frac{Price}{Price}$ + Zn(%) $\times \frac{Price}{Price}$ Pb(%) + Au(g/t) $\times \frac{Price}{Price}$ + Ag(g/t) $\times \frac{Price}{Price}$ + Ag(g/t) $\times \frac{Price}{Price}$ + Zn(%) $\times \frac{Price}{Price}$	ower cut-off grades are us ed core assays are weights alculated as follows: ation Formulae & Assur- per 1 Pb(%) x Pb Recovery per 1 Au(g/t)x Au Recovery per 1 Au(g/t)x Au Recovery per 1 Au(g/t)x Au Recovery per 1 Au(g/t)x Au Recovery per 1 Au(g) x Au Recovery per 1 Ab(g) x Ab Recovery per 1 Ab(g) x Ab Recovery per 1 Pb(%) x Pb Recovery per 1 Pb(%) x Pb Recovery per 1 Pb(%) x Pb Recovery	ed in any tables or summations of the data. ed according to the core length as per normal weighted mptions – Intermediate Sulphidation Epithermal (%) (%) (%) (%) (%) (%) (%) (%)		
		Metal	Price *	Recovery			
		Gold	US\$1244 per ounce	93.2%	Metallurgical recoveries are based on initial		
		Silver	US\$18.35 per ounce	99.6%	Metallurgical tests as outlined in a report titled Initial Metallurgical Tests Show Potential for High		
		Lead	US\$2350 per tonne	99.7%	Recoveries and Grades of Silver, Lead and Zinc in		
		Zinc	US\$3100 per tonne	99.4%	Concentrates (see ASX release dated 7 August 2017).		
		Recovery Recovery Recovery Recovery Recovery *Metal pr	weighted 1 Au g/t : 1 Ag g weighted 1 Au g/t : 1 Pb weighted 1 Au g/t : 1 Zn% weighted 1 Pb% : 1 Ag g/ weighted 1 Pb% : 1 Au g/ weighted 1 Pb% : 1 Zn% p ices are of July 2017	g/t price ratio = 1 : 63.4 6 price ratio = 1 : 1.59 6 price ratio = 1 : 1.12 t price ratio = 1 : 39.9 t price ratio = 1 : 0.63 price ratio = 1 : 0.76	the metal equivalents calculation have a reasonable potential to be recovered and sold. Drilling intercepts across the T7 Target structure shows differing dominant metal bearing zone. The varying distribution of the different dominant metals is interpreted to be both a function of the differing vertical depth within the epithermal system and differing time phases of mineralisation emplacement. As such, management have opted to report results on both an Au and Pb equivalent basis as those two metals are currently the most dominant at the T7 target in accordance with JORC reporting standards. If subsequent drilling intersects mineralization whereby a new dominant metal emerges for a target, equivalent metal reporting will change to reflect that new dominant metal.		

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 <u>Diamond Drilling Sampling</u> Intercepts quoted for all drill holes relate only to down hole intervals at this stage and further drilling will be required to determine the true widths of mineralization. <u>Surface Sampling</u> All sample intervals over vein outcrop were taken perpendicular to the strike of the vein outcrop
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 <u>Diamond Drilling Sampling</u> The location and visual results received in diamond drilling are displayed in the attached maps and/or tables. <u>Surface Sampling</u> The location and results received for surface samples are displayed in the attached maps and/or Tables.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Results for samples with material assay values are displayed on the attached maps and/or tables. In most cases the barren country rocks either side of a mineralise intervals were also sampled to establish mineralization boundaries.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Metallurgical recoveries tests were conducted on coarse reject samples from LDD-001 and are outlined in a report titled Initial Metallurgical Tests Show Potential for High Recoveries and Grades of Silver, Lead and Zinc in Concentrates (see ASX release dated 7 August 2017).
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further work is dependent on management review of the existing data and pending assays.

Appendix 1 -	- Assay Resu	ılts										
Sample	Drill Hole	From	То	Width	Au	Ag	Zn	Pb	As	SB	Cu	Мо
Number	Number	m	m	m	g/t	g/t	ppm	ppm	ppm	ppm	ppm	ppm
LDD1586	LDD-030	23.90	24.90	1.00	0.086	5.42	1050	2060	360	205.0	1230	0.83
LDD1587	LDD-030	24.90	25.90	1.00	0.171	13.05	1830	10050	351	187.5	887	0.85
LDD1589	LDD-030	25.90	26.80	0.90	1.455	69.20	20600	4890	4,090	2270.0	14330	2.42
LDD1590	LDD-030	26.80	27.60	0.80	4.760	54.20	21600	5300	2,360	1670.0	6930	2.00
LDD1591	LDD-030	27.60	28.30	0.70	0.334	9.98	1930	237	857	299.0	1285	1.14
LDD1592	LDD-030	28.30	29.30	1.00	0.111	5.22	825	234	462	126.0	528	1.24
LDD1593	LDD-030	29.30	30.30	1.00	0.180	6.30	2720	1260	426	129.0	448	2.34
LDD1594	LDD-030	30.30	31.30	1.00	0.021	0.65	85	79	91	7.8	35	0.91
LDD1595	LDD-030	43.60	44.50	0.90	0.033	1.22	76	53	95	37.2	143	1.23
LDD1596	LDD-030	44.50	44.85	0.35	0.258	6.89	9580	3700	776	33.0	211	3.94
LDD1597	LDD-030	44.85	45.80	0.95	0.044	0.68	168	90	207	5.4	17	2.10
LDD1598	LDD-030	45.80	46.20	0.40	0.082	1.49	1260	771	141	16.5	65	2.08
LDD1599	LDD-030	46.20	47.20	1.00	0.026	0.66	99	48	75	7.6	21	1.01
LDD1600	LDD-030	47.20	48.10	0.90	0.017	0.62	81	60	82	9.0	29	1.25
LDD1601	LDD-030	48.10	49.00	0.90	0.059	2.37	379	375	190	82.2	402	1.36
LDD1602	LDD-030	49.00	49.45	0.45	0.222	17.05	5970	1415	856	566.0	2850	2.75
LDD1603	LDD-030	49.45	50.45	1.00	0.018	0.33	83	36	70	2.5	11	0.93
LDD1604	LDD-030	67.70	68.70	1.00	0.105	2.50	845	502	129	24.0	65	3.61
LDD1605	LDD-030	68.70	69.25	0.55	1.025	12.80	5000	2970	319	145.5	460	6.52
LDD1606	LDD-030	69.25	70.15	0.90	1.245	20.60	1	4880	398	170.5	511	6.83
LDD1607	LDD-030	70.15	71.15	1.00	0.168	2.14	348	647	170	14.3	75	1.00
LDD1609	LDD-030	71.15	72.15	1.00	0.167	2.30	974	295	193	27.3	132	2.76
LDD1610	LDD-030	72.15	73.15	1.00	0.102	1.24	214	333	93	9.3	48	1.07
LDD1611	LDD-030	73.15	74.15	1.00	0.129	1.77	180	191	196	13.7	65	0.98
LDD1612	LDD-030	74.15	75.15	1.00	0.147	0.77	105	28	182	3.6	10	0.73
LDD1613	LDD-030	75.15	76.15	1.00	0.129	0.86	145	25	134	5.5	17	0.63
LDD1614	LDD-030	90.55	91.55	1.00	0.081	0.85	651	34	81	14.5	101	0.79
LDD1615	LDD-030	91.55	92.20	0.65	2.310	14.15	26600	3030	522	160.5	1245	1.36
LDD1616	LDD-030	92.20	93.20	1.00	0.482	7.03	891	222	444	180.0	1015	1.80

LDD1617	LDD-030	93.20	94.20	1.00	0.281	2.12	292	189	242	42.3	258	1.39
LDD1618	LDD-030	129.65	130.65	1.00	0.030	0.20	290	10	25	1.3	8	1.35
LDD1619	LDD-030	130.65	131.65	1.00	0.836	4.56	1710	741	186	25.6	401	1.19
LDD1620	LDD-030	131.65	132.50	0.85	0.271	3.11	2230	1155	196	11.7	154	0.94
LDD1621	LDD-030	132.50	133.25	0.75	0.256	6.65	9570	1460	201	12.5	226	3.02
LDD1622	LDD-030	133.25	133.90	0.65	1.525	13.30	1180	1660	779	98.4	1385	3.57
LDD1623	LDD-030	133.90	134.55	0.65	1.195	13.30	5140	3670	774	131.5	933	2.17
LDD1624	LDD-030	134.55	135.50	0.95	1.110	17.30	15350	10300	617	101.0	686	6.59
LDD1625	LDD-030	135.50	136.50	1.00	0.045	0.62	372	111	37	2.7	21	1.85
LDD1626	LDD-030	136.50	137.40	0.90	0.011	0.18	85	14	24	0.6	5	1.01
LDD1627	LDD-030	137.40	138.20	0.80	0.022	0.21	108	23	36	1.1	6	0.99
LDD1629	LDD-030	138.20	138.90	0.70	0.046	0.30	145	31	39	1.6	21	1.10
LDD1699	LDD-033	7.00	7.60	0.60	0.228	3.92	6410	1040	853	12.7	78	10.75
LDD1700	LDD-033	7.60	8.30	0.70	0.231	4.11	912	382	567	65.8	293	3.89
LDD1701	LDD-033	8.30	9.30	1.00	0.009	0.37	170	19	72	1.6	6	1.64
LDD1702	LDD-033	22.35	23.35	1.00	0.063	0.36	177	18	74	1.7	5	1.48
LDD1703	LDD-033	23.35	24.60	1.25	0.054	0.52	172	15	98	2.3	10	1.72
LDD1704	LDD-033	24.60	27.20	2.60	0.013	0.47	71	10	54	1.1	6	2.56
LDD1705	LDD-033	27.20	28.20	1.00	0.007	0.28	74	7	48	0.6	4	1.24
LDD1706	LDD-033	28.20	29.20	1.00	0.047	1.73	145	87	88	13.9	75	1.27
LDD1707	LDD-033	29.20	30.20	1.00	0.037	0.59	158	82	61	2.8	14	1.49
LDD1709	LDD-033	30.20	31.20	1.00	0.036	0.89	160	50	61	3.5	25	2.05
LDD1710	LDD-033	31.20	32.30	1.10	0.012	0.47	76	24	50	2.1	13	1.22
LDD1711	LDD-033	32.30	33.20	0.90	0.003	0.17	46	21	40	0.6	4	1.47
LDD1712	LDD-033	33.20	34.20	1.00	0.023	0.33	89	13	50	1.2	8	1.61
LDD1713	LDD-033	34.20	35.50	1.30	0.264	2.44	182	184	276	23.9	121	1.71
LDD1714	LDD-033	47.50	48.50	1.00	0.053	3.56	176	142	114	46.3	156	2.54
LDD1715	LDD-033	48.50	48.90	0.40	0.326	21.00	12200	4090	394	274.0	1000	5.54
LDD1716	LDD-033	48.90	49.90	1.00	0.070	1.94	397	170	113	34.6	127	1.53
LDD1717	LDD-033	49.90	50.55	0.65	0.255	11.80	6600	2300	271	102.0	386	3.32
LDD1718	LDD-033	50.55	51.00	0.45	0.139	65.30	120000	14500	560	670.0	2760	18.05
LDD1719	LDD-033	51.00	51.35	0.35	0.225	90.50	300000	47100	431	471.0	3070	14.35

LDD1720	LDD-033	51.35	51.70	0.35	0.742	111.00	62100	30200	510	794.0	2530	12.55
LDD1721	LDD-033	51.70	52.20	0.50	2.120	132.00	60600	19900	475	347.0	1510	27.60
LDD1722	LDD-033	52.20	52.90	0.70	0.168	113.00	96900	67100	1,300	2070.0	6090	32.20
LDD1723	LDD-033	52.90	53.90	1.00	0.019	1.21	920	393	48	10.9	39	3.27
LDD1724	LDD-033	53.90	54.90	1.00	0.015	1.38	544	166	35	10.7	47	2.88
LDD1725	LDD-033	54.90	55.90	1.00	0.059	16.80	30400	12250	223	279.0	1120	34.70
LDD1726	LDD-033	55.90	56.75	0.85	0.009	3.50	3460	1660	104	69.0	350	44.20
LDD1727	LDD-033	56.75	57.75	1.00	0.008	1.38	1060	673	94	21.3	107	3.09
LDD1729	LDD-033	70.00	71.00	1.00	0.019	0.51	486	168	55	3.9	18	1.64
LDD1730	LDD-033	71.00	71.40	0.40	0.022	1.11	956	760	44	10.9	51	5.88
LDD1731	LDD-033	71.40	72.40	1.00	0.009	0.22	117	32	34	1.8	7	1.37
LDD1732	LDD-012	116.00	116.75	0.75	1.660	17.55	9330	2470	1,630	45.3	183	8.90
LDD1733	LDD-012	116.75	117.05	0.30	0.269	1.99	127	91	567	11.3	8	2.89
LDD1734	LDD-012	117.05	117.45	0.40	0.472	10.30	26500	1320	1,485	47.6	175	14.75
LDD1735	LDD-012	117.45	118.45	1.00	0.149	1.68	411	178	427	9.9	8	2.16
LDD1736	LDD-012	118.45	119.20	0.75	0.201	3.38	1230	725	709	19.4	26	1.39
LDD1737	LDD-012	119.20	119.90	0.70	0.411	4.99	1420	703	1,230	39.8	44	1.82
LDD1738	LDD-012	119.90	120.70	0.80	0.441	12.95	6230	4540	1,020	48.6	154	2.46
LDD1739	LDD-012	120.70	121.30	0.60	0.210	2.58	714	295	392	14.7	35	22.90
LDD1740	LDD-012	121.30	122.45	1.15	0.225	4.25	4740	533	489	35.7	109	8.18
LDD1741	LDD-012	122.45	123.50	1.05	0.482	11.00	4190	8170	600	35.1	89	3.34
LDD1742	LDD-012	123.50	124.50	1.00	0.333	1.91	190	83	368	10.4	18	1.02
LDD1743	LDD-012	124.50	125.40	0.90	0.489	2.11	171	114	413	13.1	16	1.33
LDD1744	LDD-012	125.40	126.55	1.15	0.732	2.79	117	165	643	18.6	18	2.46
LDD1745	LDD-012	126.55	127.15	0.60	0.351	1.22	183	63	259	8.2	15	1.69
LDD1746	LDD-012	127.15	127.90	0.75	0.472	3.22	304	53	326	70.9	434	2.37
LDD1747	LDD-012	127.90	128.90	1.00	0.687	1.30	131	83	174	12.8	49	2.64
LDD1749	LDD-012	128.90	129.90	1.00	2.180	4.54	542	425	612	35.2	173	2.66
LDD1750	LDD-012	129.90	130.25	0.35	2.010	11.25	2120	1510	1,465	135.5	569	66.80
LDD1751	LDD-012	130.25	131.25	1.00	0.153	1.22	281	56	231	7.6	21	6.14
LDD1769	LDD-035	26.30	27.30	1.00	0.036	1.91	1770	2820	45	7.2	35	1.42
LDD1770	LDD-035	27.30	28.30	1.00	0.068	2.36	568	984	123	22.0	111	1.80

LDD1771	LDD-035	28.30	29.35	1.05	0.069	12.90	4200	11450	171	138.5	537	1.58
LDD1772	LDD-035	29.35	30.30	0.95	0.063	3.77	2740	3740	74	14.8	88	1.32
LDD1773	LDD-035	94.20	95.35	1.15	0.116	1.26	1450	341	112	4.3	32	1.87
LDD1774	LDD-035	95.35	96.10	0.75	0.408	4.90	4880	2560	342	28.2	155	4.69
LDD1775	LDD-035	96.10	97.20	1.10	0.161	1.64	2440	1350	135	7.4	62	2.84
LDD1776	LDD-035	107.50	108.65	1.15	0.245	4.24	4930	3530	144	40.0	247	2.36
LDD1777	LDD-035	108.65	109.65	1.00	0.182	1.83	3270	1175	65	6.4	75	2.00
LDD1778	LDD-035	109.65	110.65	1.00	0.062	1.00	630	140	66	8.9	35	3.40
LDD1779	LDD-035	127.30	128.00	0.70	0.072	3.53	3840	643	123	44.5	221	1.25
LDD1780	LDD-035	128.00	129.00	1.00	0.064	2.25	968	302	97	36.1	132	1.50
LDD1781	LDD-035	129.00	129.90	0.90	0.053	1.36	2510	637	71	9.0	61	1.18
LDD1782	LDD-035	129.90	130.75	0.85	0.308	4.96	3480	474	360	64.5	300	1.64
LDD1783	LDD-035	130.75	131.60	0.85	0.519	20.70	7120	3430	703	381.0	1330	1.53
LDD1784	LDD-035	131.60	132.70	1.10	0.128	6.52	960	1205	245	137.0	523	1.39
LDD1785	LDD-035	132.70	133.80	1.10	0.135	5.51	821	349	259	93.8	637	1.18
LDD1786	LDD-035	133.80	134.60	0.80	0.659	18.25	3350	1055	758	383.0	2090	1.27
LDD1787	LDD-035	134.60	135.90	1.30	0.031	0.51	219	144	43	4.3	22	1.59
LDD1789	LDD-035	135.90	136.90	1.00	0.075	1.13	265	28	84	11.6	53	1.07
LDD1790	LDD-035	136.90	137.90	1.00	0.092	1.68	297	468	107	23.1	131	1.05
LDD1791	LDD-035	137.90	138.90	1.00	0.107	2.42	766	1245	116	24.6	176	1.74
LDD1792	LDD-035	138.90	139.90	1.00	0.328	11.50	1560	1545	273	44.5	249	2.08
LDD1793	LDD-035	139.90	140.75	0.85	0.158	2.00	936	405	122	14.7	92	2.05
LDD1794	LDD-035	140.75	141.65	0.90	0.242	10.90	1280	707	369	125.5	681	2.45
LDD1795	LDD-035	141.65	142.65	1.00	1.105	61.10	6390	1920	1,920	1055.0	4940	2.16
LDD1796	LDD-035	142.65	143.60	0.95	0.339	17.60	3730	1605	505	397.0	1480	2.89
LDD1797	LDD-035	143.60	144.60	1.00	0.597	18.65	3820	2060	511	413.0	1590	2.30
LDD1798	LDD-035	144.60	145.60	1.00	0.327	6.83	1050	723	253	114.5	452	2.11
LDD1799	LDD-035	145.60	146.55	0.95	0.372	21.30	3380	3840	424	397.0	1830	4.08
LDD1800	LDD-035	146.55	147.60	1.05	3.050	83.50	34500	30500	1,140	1065.0	3960	3.36
LDD1801	LDD-035	147.60	148.50	0.90	0.473	28.60	8950	2810	629	578.0	2660	2.89
LDD1802	LDD-035	148.50	149.45	0.95	0.250	8.66	1860	497	413	217.0	1020	1.57
LDD1803	LDD-035	149.45	150.45	1.00	0.576	14.45	2060	587	562	329.0	2110	1.70

LDD1804	LDD-035	150.45	151.45	1.00	0.633	10.05	832	643	894	203.0	1380	2.00
LDD1805	LDD-035	151.45	152.45	1.00	3.370	39.70	3470	907	2,360	1200.0	7320	3.57
LDD1806	LDD-035	152.45	153.15	0.70	9.610	243.00	32000	49900	5,860	3660.0	10000	7.03
LDD1807	LDD-035	153.15	153.75	0.60	1.665	157.00	94800	38400	115	333.0	1910	9.34
LDD1809	LDD-035	153.75	154.75	1.00	2.350	202.00	145000	43100	122	372.0	2340	13.90
LDD1810	LDD-035	154.75	155.75	1.00	1.970	222.00	142500	37500	169	513.0	2420	18.65
LDD1811	LDD-035	155.75	156.75	1.00	2.590	246.00	93000	56800	489	1095.0	3380	16.70
LDD1812	LDD-035	156.75	157.70	0.95	2.140	204.00	123500	50400	173	540.0	2330	16.00
LDD1813	LDD-035	157.70	158.05	0.35	1.630	156.00	52600	26600	375	752.0	2360	10.50
LDD1814	LDD-035	158.05	161.15	3.10	1.435	173.00	72100	48200	274	715.0	2180	13.00
LDD1815	LDD-035	161.15	164.40	3.25	0.988	85.70	24000	14900	252	532.0	1380	7.02
LDD1816	LDD-035	164.40	166.40	2.00	0.971	28.60	5450	3970	184	273.0	801	3.88
LDD1817	LDD-035	166.40	169.40	3.00	0.463	85.10	64700	18600	310	614.0	2470	10.15
LDD1818	LDD-035	169.40	171.60	2.20	0.163	29.40	28100	3290	733	801.0	3010	9.90
LDD1819	LDD-035	171.60	173.40	1.80	1.160	46.50	20500	6820	1,165	1165.0	4510	6.00
LDD1820	LDD-035	173.40	174.75	1.35	0.486	25.70	8550	20300	241	183.5	671	7.03
LDD1821	LDD-035	174.75	175.75	1.00	0.020	0.56	298	71	32	2.4	12	3.09
LDD1822	LDD-035	175.75	176.50	0.75	0.012	0.47	166	28	34	2.3	11	2.39
LDD1823	LDD-035	176.50	177.10	0.60	0.007	0.32	131	28	30	0.7	4	2.35
LDD1824	LDD-035	177.10	178.10	1.00	0.043	3.91	458	93	77	33.7	137	4.10
LDD1825	LDD-035	178.10	179.00	0.90	0.028	0.38	130	15	56	0.5	4	4.99
LDD1826	LDD-035	179.00	180.10	1.10	0.016	0.36	203	10	26	0.5	4	2.61
LDD1827	LDD-035	180.10	181.20	1.10	0.012	0.55	149	9	20	2.1	17	1.51
LDD1829	LDD-035	181.20	181.90	0.70	0.015	0.51	172	12	33	1.8	11	1.79
LDD1830	LDD-035	181.90	182.90	1.00	0.001	0.06	73	6	12	0.3	2	0.91