

POSITIVE DRILLING AND SURFACE EXPLORATION RESULTS AND RESOURCE REVIEW UPDATE AT CERRO BAYO MINE DISTRICT

Equus Mining Limited ('Equus') (ASX: EQE) is pleased to report initial drilling and new surface exploration results and advances in review of potentially remnant brownfield resources from the Cerro Bayo mine district in Region XI, Chile.

STRATEGY

Equus has implemented a dual track corporate strategy whereby exploration and the review of existing resources at Cerro Bayo are conducted in parallel.

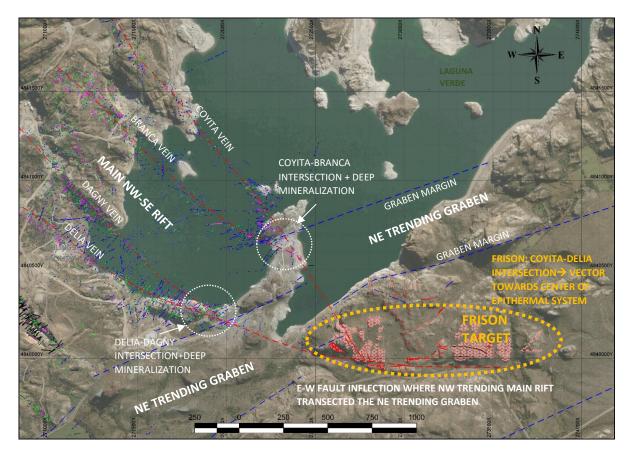
DRILLING

Initial exploration drilling at the Simmental and Frison Targets Drilling commenced in mid-December for which to date a total of 2 holes were drilled at Simmental (holes CBD001 and CDB003 totaling 194.75m) and 5 holes at Frison (holes CBD002 and CDB004 to CBD007 totaling 1264.1m) (hole coordinates provided in Table 1).

To date, all results have been received for the two Simmental holes and approximately 147 sample results (23% of total) have been received for the first 3 holes drilled in Frison (Appendix 1). Remaining results for the latter holes are expected by mid-February.

Brahman Prospect- Frison Target

The Frison Target occupies a favourable structural setting proximal to the intersection of district scale faults which are interpreted to act as major controls on mineralization throughout the Laguna Verde mine district (namely the Delia, Dagny, Branca and Coyita vein systems) (Figure 1).


The maiden drill holes at Frison comprising CBD002, CDB004 to CDB006 were positioned to target the upper near surface portions of the Frison Target structure to establish the down dip orientation and continuity of veining and brecciation along three, 150-250m spaced north south orientated sections, along an approximate 500m long portion of the 1.2km long, east-west trending host outcropping structure (Figure 2). Drill holes were also directed beneath zones of veining and brecciation highlighted by previous surface geochemical sampling which reported values up to 0.52 g/t Au and 22 g/t Ag Au (i). It should be emphasized that grades from the relatively shallow intercepts in these holes were expected to replicate the weakly anomalous to low grades, characteristic of the higher levels of the Delia Vein.

All these holes intersected broad intervals (45-90m wide) of phreatic hydrothermal brecciation and highlevel style, dominantly chalcedonic quartz epithermal veining (individual veins between 0.3-3m wide) along a large scale, steeply north dipping normal fault contact. This fault also acted as the conduit for the intrusion of large complex of pre-mineral age, faulted and brecciated rhyodacitic domes.

From results received to date, hole CBD002 reported the highest geochemical result from chalcedonic veining of 0.02 g/t Au, 19.4 g/t Ag between 126.4-126.75m. The relative topographic level of this interval is approximately 120m above the top of the mined Delia shoot, which sits approximately 750m along the interpreted strike extension of the Frison structure to the west-northwest (See Figures 1 & 2). Based on quartz type, clay type alteration and related pathfinder element geochemistry (Zn, Sb, As, Mo) of veining in hole CBD002, it is interpreted to represent lower grade veining that characteristically occurs at the upper epithermal levels above deeper, higher grade ore shoots throughout the Cerro Bayo mine district.

Figure 1. Brahman Prospect-Frison Target: Plan view showing structural setting in east-west trending inflection developed at intersection of northwest trending Delia-Dagny-Coyita-Branca Vein corridor and district scale northeast trending graben.

Drillhole CBD007 was collared approximately 100m to the north of holes CBD002 and CBD004 as a stepback hole designed to test:

- Veining at the intersection of the east-west trending Frison Structure and the host northwest trending fault to the mined Coyita mineralization approximately 750m to the north west, and
- Additional veining and deeper epithermal levels further towards the north, in the hanging wall of the host east-west trending Frison Fault.

Intersections of higher temperature, saccharoidal> chalcedonic veining and black silica matrix supported hydrothermal brecciation have been visually reported over a large interval of CBD007 an example of which is shown in Figure 3 and Photo 1.

Further drilling of deeper step-back holes is ongoing along the approximate 400m strike length of the Frison Target structure for which results are expected by the end of February.

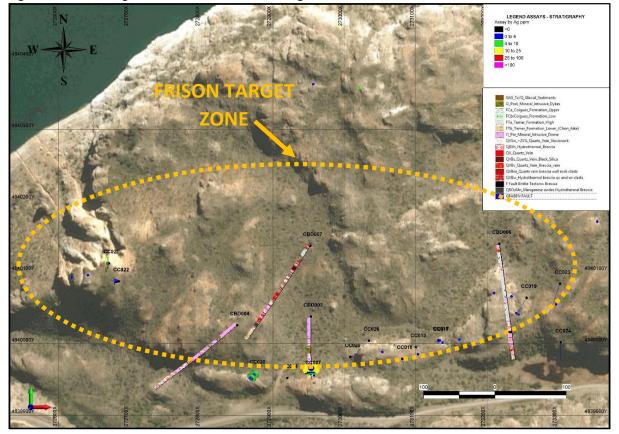
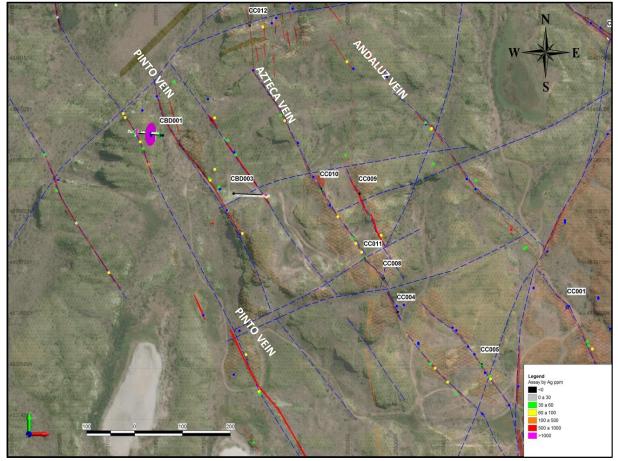


Figure 2. Frison Target- Drill hole locations and Ag results

Figure 3. Hole CBD002-CBD007 geological section with Ag downhole geochemistry (NB. Results pending for hole CBD007)

Photo 1. Hole CBD007: 65.05-77.15m interval: Saccharoidal to chalcedonic quartz veining with brecciated vein clasts cemented by black pyrite- Sb-Zn-As-Mo rich chalcedonic quartz



Simmental Prospect

Of the two, broadly 200m spaced holes completed at the Pinto vein system a high-grade Ag intercept was reported from a 0.3m wide high quartz vein from Hole CBD001 of 0.3m @ 0.79 g/t Au, 283 g/t Ag from 28.4-28.7m. This intercept occurs approximately 40m down dip below the previously reported high grade channel chip sample result of 221 g/t Au, 7,800 g/t Ag (i) and serves to show further potential for high grade mineralization to extend at depth and along strike, the latter of which has been mapped to extend over an approximate 1.2 km length. The other four principle vein structures at Simmental remain to be drill tested according to their priority within Equus's pipeline of targets throughout the Cerro Bayo district.

Figure 4. Simmental Prospect: Plan view showing drill locations at Pinto Vein target and Ag results from holes CBD001 and CBD003 and surface channel sampling.

Droughtmaster Prospect-Exploration Results

The Droughtmaster Prospect represents a newly generated target located approximately 12km to the southeast of the processing plant infrastructure and importantly, 3 km due south of the significant historical producing Cerro Bayo mine area (Figure 5). The prospect area occupies a highly prospective structural setting along the northwest -southeast mineralised corridor that hosts the historic Marcela Mine, approximately 2.5km to the northwest, comprising the intersection of two major structures which feature:

- an early stage, district scale north-south trending zone of dilation hosting large scale vein emplacement (up to 10m wide) and rhyolitic doming mapped over a +2km strike length
- a later stage series of north-west to west-northwest trending horst-graben fault controlled veins and vein breccias which have a collective strike length of approximately 3km and widths between 0.5-20m.

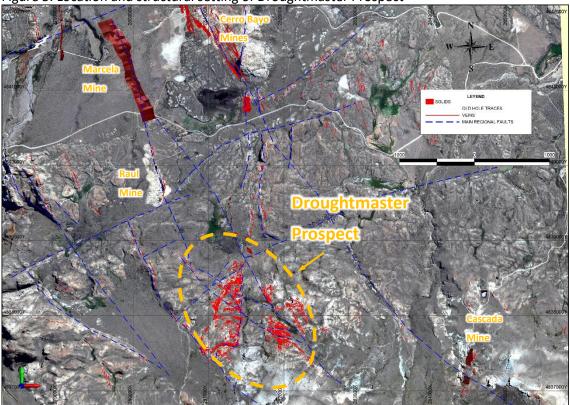


Figure 5. Location and structural setting of Droughtmaster Prospect

Detailed mapping and a total of 111 continuous channel and 66 rockchip samples were taken predominantly pertaining to the second stage of veining along 4 main vein trends including Breton, Belga, Splay 1-3 and Percheron (Figure 6).

From this sampling (for Channel Sampling results see Appendix 2 & Rockchip Results Appendix 3), high grade sample results include:

Breton Vein

- Composite Channel CC041: 2.8m @ 4.48 g/t Au, 543 g/t Ag
- Composite Channel CC042: 2.5m @ 3.06 g/t Au, 760.5 g/t Ag
- Selective sample 7326: 13.3 g/t Au, 1705 g/t Ag (taken over several 5cm wide sheeted veins over a 2m wide zone)

Belga Vein

- Composite Channel CC047: 0.9m @ 2.72 g/t Au, 467 g/t Ag
- Composite Channel CC048: 2m @ 1.97 g/t Au, 190.4 g/t Ag
- Channel sample 7495: 0.3m @ 0.7 g/t Au, 234 g/t Ag
- Composite Channel sample CC043: 1.1m @ 0.68 g/t Au, 178 g/t Ag
- Channel sample 7494: 1.5m @ 0.57 g/t Au, 234 g/t Ag
- Selective sample 7997: 2.38 g/t Au, 795 g/t Ag

Lime 0.4.8 g/t Au, 50.5 g/t Ag 2.5m @ 4.4.8 g/t Au, 53.2 g/t Ag 0.5m @ 2.72 g/t Au, 477 g/t Ag 1.1m @ 0.68 g/t Au, 178 g/t Ag

Figure 6. Droughtmaster Prospect- mapped veining (red) and summary Ag geochemical results

A 1,800m maiden drill program is planned for the Droughtmaster Prospect which will focus on testing of the Breton, Splay 1-3, Percheron and Belga vein trends.

RESOURCE REVIEW

Equus is implementing a dual track strategy comprising continued advancement of greenfields exploration throughout the highly prospective Cerro Bayo mine lease in parallel with re-evaluating existing resource potential within close proximity to the Cerro Bayo processing plant.

Equus will focus initial resource evaluation efforts around a series of historically mined shallow open pits within the Taitao Mine area which are located within 1.2Km of the Cerro Bayo plant. Equus is currently developing a 1st stage confirmatory drilling program to test some existing mineralised zones that occur in the immediate periphery of the historic shallow Taitao pits.

In addition, Equus has engaged an experienced external resource consultant to assist with assessing various internal Taitao mine development and expansion studies carried out by previous owners.

Based on Equus' early stage review, key features of the Taitao Mine area include:

- Significant peripheral and remnant gold and silver mineralization exists within the Taitao Mine area which is ideally located between 0.3 to 1.2km from the Cerro Bayo mineral processing infrastructure;
- Mineralization is characterized by a series of northwest trending subvertical to moderately
 easterly dipping banded veins, sheeted and stockwork veins and veinlets which overprint an
 earlier phase of north-south to north-northeast trending hydrothermal and tectonic
 breccias. The veining and brecciation is hosted in a large pervasively hydrothermally altered
 sequence of variably welded rhyolitic -dacitic tuff;
- The Taitao Mine area mineralization extends over a contiguous strike length of approximate 1.2km and varies in width generally between 0.5 to 5m for individual veins and to up to 50m for stockwork-breccia style of mineralization;
- Locally in the northeastern portion of the Taitao Mine area (denominated as the Northeast Stockwork zone), stockwork vein mineralization attains approximately 260m in width;
- Topography data indicates that the Taitao open pits were generally mined to depths of 35-45m;
- The Taitao Mine area was principally mined between 1995 and 2000 as five (5) semi-contiguous shallow open pits (Taitao, Porvenir, Breccia, OO, NE);
- During 1995 to 2000, USD gold and silver price averaged USD \$325/oz, and USD \$5.2/oz respectively;
- A large database of approximately 60,000m of surface and underground exploration tunnelbased drilling and channel sampling was compiled from the Taitao Mine area by Coeur Mining (the Cerro Bayo mine's original owner) between 1993-2003;
- During 2003-2006, Coeur Mining conducted several internal open pit expansion scoping studies on the Taitao Mine area;
- Mine production from the Taitao Mine area ceased in November 2000 due to the temporary suspension of processing operations (which extended to April 2002);
- No further significant mine production has occurred from the Taitao Mine area beyond November 2000;
- During the period of renewed operations by Coeur Mining between 2002-2008, mining was principally focused on newly discovered high-grade underground resources approximately 11km to the east of the plant in the Cerro Bayo area;
- Based on the historic data it is considered by Equus that significant potential remains for additional resources beneath and along strike of the existing mined areas.

Based on the historic data and particularly enhanced by the current metals prices, the directors of Equus are excited about the potential of the Taitao mine area and advancing confirmational drilling and near-term resource related studies, in parallel with drill testing of a pipeline of newly generated, highly prospective greenfield targets.

Corporate Update

Damien Koerber, the company's Chief Operating Officer, was appointed to the board at the Annual General Meeting on the 27th November 2019 (ii).

This announcement has been approved by the Managing Director John Braham.

For further information, please contact John Braham on (61-2) 9300 3366

Yours Sincerely,

John Braham Managing Director

pjn100250

COMPETENT PERSON'S STATEMENT:

The information in this report that relates to Exploration Results for the Cerro Bayo Project is based on information compiled by Damien Koerber. Mr Koerber is a fulltime employee to the Company. Mr Koerber is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Koerber has a beneficial interest as shareholder of Equus Mining Limited and consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

(i) All the material assumptions underpinning exploration results for sample numbers 7080 to 7100, 7176-7325, 7826-7949 are outlined in Appendix 1 in the initial public report titled Drilling to Commence at Cerro Bayo Mine District Exploration Targets (see ASX release dated 18 November 2019) and continue to apply and have not materially changed.

(ii) see ASX release dated 27 November 2019

JORC Code, 2012 Edition – Table 1 EQUUS MINING LIMITED CERRO BAYO EXPLORATION PROGRAM

A. DIAMOND DRILLING & SURFACE SAMPLING

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 <u>Diamond Drilling Sampling</u> Industry standard diamond drilling is used to obtain continuous core samples. Continuous core sampling ensures high sampling representation. All HQ (63.5 mm diameter) and NQ (47.6 mm diameter) core sample depths are recorded according to depths maintained by the project geologist's technician. These depths are determined by a combination of cross checking of driller recorded depths and the geologists own recorded depths which takes into account core loss. All core samples are placed in secure industry standard core storage trays and transported to a secure logging and core cutting facility onsite in the Cerro Bayo Mine facilities. Core sampling and logging by a qualified geologist is targeting Au-Ag and base metal bearing quartz veins, breccias and zones of silicification, which are known to host gold-silver and base metal mineralisation, within rhyolite ignimbrite of the Jurassic age Ibanez Formation. Surface Sampling Rock chip and continuous rockchip channel samples were collected by a qualified geologist of quartz veins, breccias and zones of silicification, all hosted within rhyolite ignimbrite of the Jurassic age, Ibanez Formation. Sample locations were surveyed with a handheld GPS using Coordinate Projection System SAD69 UTM Zone 19S. Representative chip samples of 2-3Kg weight were taken perpendicular to the strike of the outcrop over varying width intervals generally between 0.1-2.0m except where noted.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 <u>Diamond Drilling Sampling</u> All holes are cored in their entirety from the base of surface regolith cover and HQ (63.5 mm diameter) coring is conducted to hole completion. Diamond drilling size may be reduced to NQ (47.6 mm diameter) in the case that broken ground is encountered.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 <u>Diamond Drilling Sampling</u> Each core hole drill interval is reviewed for linear core recovery based on measured recovered intervals from drilled intervals from which percentage recoveries are calculated.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 <u>Diamond Drilling Sampling</u> All diamond drill core is geologically logged, marked up and photographed by a qualified geologist. All geological and geotechnical observations including lithology and alteration, mineralisation type, orientation of mineralised structures with respect to the core axis, recoveries, specific density and RQD are recorded. <u>Surface Sampling</u> Rock chip and continuous rockchip channel samples were

Criteria	JORC Code explanation	Commentary
		 geologically logged by a qualified geologist. The geology, mineralogy, nature and characteristics of mineralization and host rock geology, and orientation of the associated mineralised structures, was logged by a qualified geologist and subsequently entered into a geochemical database.
Sub- sampling techniques and sample preparation	 If core, whether cut or Rock Chip and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 <u>Diamond Drilling Sampling</u> Mineralised core and adjacent intervals core are sampled at intervals ranging from a minimum 0.3m interval to maximum 1m based on geological boundaries, defined by a qualified geologist. Assaying is undertaken on representative, diamond saw cut ½ core portions of HQ core (63.5 mm diameter) and NQ (47.6 mm diameter) core. <u>Surface Sampling</u> Rock chip and continuous rockchip channel samples were generally taken under dry conditions with a minimum and maximum sample width of 0.1m and 2.0m respectively.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples are stored in a secure location and transported to the ALS laboratory in Santiago via a certified courier. Sample preparation initially comprises weighing, fine crush, riffle split and pulverizing of 1kg to 85% < 75µm under laboratory code Prep-31. Pulps are generally initially analysed for Au, Ag and trace and base elements using method codes: Au-ICP21 (Au by fire assay and ICP-AES. 30 g nominal sample weight with lower and upper detection limit of 0.001 and 10 ppm Au respectively), ME-MS41 (Multi-Element Ultra Trace method whereby a 0.5g sample is digested in aqua regia and analyzed by ICP-MS + ICP-AES with lower and upper detection limit of 0.01 and 100 ppm Ag respectively) For high grade samples method codes include: Au-GRA21 (by fire assay and gravimetric finish 30 g nominal sample weight for Au values > 10 g/t up to 1,000 g/t Au), ME-OG46 Ore Grade Ag by Aqua Regia Digestion and ICP-AES (with lower and upper detection limit of 1 and 1500 ppm Ag respectively) and Ag-GRA21 (Ag by fire assay and gravimetric finish, 30 g nominal weight for ≥ 1500 g/t to 10,000 g/t Ag) Zn-AA62 (for >1% up to 30% Zn) Ph-AA62 (for >1% up to 30% Zn) Ph-AA62 (for >1% up to 30% Zn) Alternate certified blanks and standards for Au and Ag are submitted by Equus within each laboratory batch at a ratio of 1:20 (i.e. 5%) for which QA/QC revision is conducted on results from each batch.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 <u>Diamond Drilling Sampling</u> For drill core sample data, laboratory CSV result files are merged with downhole geological logs and unique sample numbers. No adjustments were made to the assay data. <u>Surface Sampling</u> For rock chip sample data, laboratory CSV result files are extracted from the secure ALS webtrieve online platform and

Criteria	JORC Code explanation	Commentary
	Discuss any adjustment to assay data.	 merged with geological and GPS location data files using unique sample numbers. No adjustments were made to the assay data. Reported geochemical results are compiled by the company's chief geologist, and verified by the Company's chief operating officer. Surface rockchip sample assays are shown in Appendix I as per when reported for the first time.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 <u>Diamond Drilling Sampling</u> Drill hole collar position are currently located using handheld GPS receivers and will be subsequently more accurately surveyed by a qualified surveyor at a later date using a differential GPS system. Coordinate Projection System SAD69 UTM Zone 19S. All holes are surveyed for downhole deviation using a Gyroscope downhole survey tool at the completion of each hole. <u>Surface Sampling</u> Samples are located in x, y and z coordinates using handheld GPS receivers. Coordinate Projection System SAD69 UTM Zone 19S The topographic control, using a handheld GPS, is considered adequate for the sampling program.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Diamond Drilling Sampling • Results will not be used for resource estimation prior to any supporting drilling being carried out. • Compositing of assay results where applicable on contiguous samples has been applied on a weighted average basis. Surface Sampling • Results will not be used for resource estimation prior to any supporting drilling being carried out. • Compositing of assay results where applicable on contiguous samples has been applied on a weighted average basis.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 <u>Diamond Drilling Sampling</u> Drilling is designed to intersect host mineralised structures as perpendicular to the strike and dip as practically feasible. In the initial stages of drill testing of targets, scout drilling is in some cases required to establish the geometries of the target host mineralised structures <u>Surface Sampling</u> Representative rock chip samples of 2-3Kg weight were taken perpendicular to the strike of the vein outcrop over 0.1m to 2 metre intervals except where noted.
Sample security	The measures taken to ensure sample security.	 Samples are numbered and packaged under the supervision of a qualified geologist and held in a secure locked facility and are not left unattended at any time. Samples are dispatched and transported by a registered courier via air to ALS Minerals in Santiago.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the data management system have been carried out.

Criteria	porting of Exploration Resu JORC Code explanation		Commen	tary							
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	loca inclumat suc part roya hist nati sett The at th with obta	dd O B ai • T re e re st st	quus Mining ocumentatior TCQB: MND ayo Project in quus Mining im of defining he laws of Cl equirements. nvironmental equirements of age of advar pdated as ree dvisors speci	with Man JF) for a 3 n Region X Limited is sufficient nile relating As the exp or other s under Chile cement. T quired by E	dalay Res year option (I, Souther funding ar resources g to explor oboration ar tudies may ean mining hose filing Equus Min	ources on to ac rn Chile ad mana to warr ration ar dvances y be req g laws th gs and s ing's en	Corpora quire Ma . Under aging ex ant exe nd minin s, specif juired. T nat will b tudies a vironme	ation (TSX: andalay's this agree ploration v cution of the g have va ic filings a there are co be required are maintai	MND, Cerro ment, vith the ne option. rious nd ungoing d at each ned and	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	-	Historic exploration was conducted by Compania Minera Cerro Bayo Ltda which included drilling and surface sampling and mapping.								
Geology	 Deposit type, geological setting and style of mineralisation. 		 The Cerro Bayo district hosts epithermal veins and breccias containing gold and silver as well as base metal mineralization. The deposits show multiple stages of mineralization and display open- space filling and banding, typical of low-sulphidation epithermal style mineralization. Mineralogy is complex and is associated with mineralization and alteration assemblages that suggest at least three stages of precious and base metal deposition. Exploration model types of both Low Sulphidation (e.g. Cerro Negro, Santa Cruz, Argentina) and Intermediate Sulphidation deposits (San Jose and Cerro Morro, Santa Cruz, Argentina and Juanacipio, Mexico) are being targeted throughout the Cerro Bayo district. 								
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	mat the a ta info hole	 <u>Diamond Drilling Sampling</u> Drill hole collar positions are determined by a Garmin GPS using the grid system SAD69 UTM Zone 19S and will be more accurately surveyed by a qualified surveyor at a later date. Frison-Simmental Drill Hole Collars 								
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill 	0	Hole ID	Target	East (SAD 69 Z	North	RL (m)	Dip -x°	Azimuth x°	Total Depth (m)	
	 o dip and azimuth of the hole o down bole length and 	0	CBD001	Simmental	268806	4839957	483.5	30	275	84.85	

CBD002

CBD003

CBD005

CBD004

Frison

Simmental

Frison

Frison

- down hole length and 0 interception depth
- hole length. 0 If the exclusion of this ٠ information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the

case.

4840140 420 CBD006 Frison 273217 60.5 4840137 CBD007 Frison 272952 409 58 Surface Sampling

272953

268954

273217

272850

Sample locations were surveyed with a handheld GPS using Coordinate Projection System SAD69 UTM Zone 19S. Composite sample channels were surveyed with collar, dip, azimuth and length whereby azimuths and dips of Composite chip channel samples were surveyed by a Brunton compass as per the table below. Individual channel and/or rockchip samples were surveyed with a point coordinate for which please refer to Appendix 1-Surface Sampling for relevant coordinate and elevation information. In due course sample locations may be surveyed by a differential GPS.

4840038

4839843

4840140

4840026

422.5

514

420

438

53

46

48

61

150.5

109.9

239.8

283.85

285.05

304.9

180

93

170

230

170

212

Criteria	JORC Code explanation	Commentary							
		Droughtmas	ter Comp		nel Sample	Collars			
		Target	Channel ID	East SAD69 H19	North SAD69 H19	RL	Azi	Dip	Lengti m
		PERCHERON	CC028	281711.8	4838320.7	810.00	40	10	20.00
		PERCHERON	CC029	281786.1	4838205.7	810.00	60	25	7.60
		PERCHERON	CC030	281819.7	4838157.6	799.63	80	10	4.10
		PERCHERON	CC031	281872.5	4838072.4	815.03	20	0	10.00
		PERCHERON	CC032	282034.3	4837930.2	843.82	350	5	8.20
		PERCHERON	CC033	282305.6	4837921.7	865.24	20	30	4.50
		PERCHERON	CC034	282562.0	4837800.0	905.98	25	5	2.20
		PERCHERON	CC035	282546.0	4837806.0	902.88	30	3	2.70
		PERCHERON	CC036	282404.3	4837855.1	856.49	25	-30	2.50
		PERCHERON	CC037	281480.0	4838622.5	688.26	290	0	2.30
		PERCHERON	CC038	281506.0	4839620.0	640.24	110	10	4.50
		SPLAY 1	CC039	281834.0	4837910.0	883.00	70	0	12.00
		SPLAY 1	CC040	282009.0	4837838.0	863.00	350	-5	3.10
		SPLAY 1	CC041	281294.0	4838341.0	807.00	220	5	2.80
		SPLAY 1	CC042	281341.0	4838305.0	817.00	230	3	2.50
		BELGA	CC043	281965.0	4837731.0	905.00	220	10	3.00
		BELGA	CC044	281958.0	4837732.0	909.00	200	0	2.40
		PERCHERON	CC045	281563.6	4838853.9	645.07	255	70	27.5
		PERCHERON	CC046	281286.6	4839552.6	608.63	70	0	7.20
		PERCHERON	CC047	281399.7	4838122.4	813.34	55	-55	2.20
		PERCHERON	CC048	281379.0	4838174.5	842.70	80	0	2.00
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 When it is the second se	reported for requivaler or summation	or the first tir nt or upper of tions of the ages of rock	or lower cut-o	off grades says are	s are us weight	sed in	any
Relationshi p between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Interce this sta widths <u>Surface S</u> All sam 	ige and fui of mineral Sampling	for all drill ther drilling ization.	holes relate o will be requi	red to de	termine	e the tr	ue

ABN 44 065 212 679

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 <u>Diamond Drilling Sampling</u> The location and visual results received in diamond drilling are displayed in the attached maps and/or tables. <u>Surface Sampling</u> The location and results received for surface samples are displayed in the attached maps and/or Tables.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Results for samples with material assay values are displayed on the attached maps and/or tables. In most cases the adjacent host bedrock to veining either side of an apparent mineralised interval was also sampled to establish mineralization boundaries.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Metallurgical recovery tests have not been conducted.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work including exploration drilling is planned to test zones beneath and along strike from both high grade and anomalous precious metal and pathfinder element surface geochemical results.

Appendix I – Drill Hole Assay Results

		Depth	Depth	Interval	Sample							
Target	Hole ID	From	То	Length	ID	Au g/t	Ag g/t	As_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
Simmental	CBD001	0.00	1.75	1.75	7526	0.07	0.90	87.1	12.5	378	1.77	4500
Simmental	CBD001	1.75	3.50	1.75	7527	0.06	1.10	97.1	7.27	1525	1.65	1590
Simmental	CBD001	3.50	4.50	1.00	7528	0.04	0.81	82.4	13.25	54.3	1.55	1310
Simmental	CBD001	4.50	5.20	0.70	7529	0.13	2.17	141	13.15	841	10.1	7560
Simmental	CBD001	5.20	5.95	0.75	7530	0.22	4.83	271	16.95	3220	28.8	1.015
Simmental	CBD001	5.95	7.25	1.30	7531	0.02	0.46	72.5	2.1	86.6	0.7	189
Simmental	CBD001	17.60	17.90	0.30	7532	0.24	1.16	66.4	8.39	39.3	1.62	838
Simmental	CBD001	24.40	25.20	0.80	7533	0.02	0.69	68.3	3.12	39.3	4.72	29
Simmental	CBD001	25.20	26.35	1.15	7534	0.02	0.51	92.6	1.97	25.5	0.97	16
Simmental	CBD001	26.35	27.30	0.95	7535	0.01	0.39	51	2.21	12.5	0.49	42
Simmental	CBD001	27.30	27.80	0.50	7536	0.01	0.40	49.8	3.18	12.9	0.46	27
Simmental	CBD001	27.80	28.10	0.30	7538	0.15	3.92	247	19.85	108.5	2.82	2780
Simmental	CBD001	28.10	28.40	0.30	7539	0.03	1.59	99.9	1.63	41.2	1.69	145
Simmental	CBD001	28.40	28.70	0.30	7541	0.79	283.00	1225	22.1	900	9.06	3640
Simmental	CBD001	28.70	29.00	0.30	7542	0.08	1.41	146	10.95	87.3	1.59	236
Simmental	CBD001	29.00	30.10	1.10	7543	0.02	0.65	68.8	1.79	41.8	0.76	98
Simmental	CBD001	65.20	66.20	1.00	7544	0.06	0.88	122.5	5.19	103	0.97	128
Simmental	CBD001	66.20	66.50	0.30	7545	0.52	6.50	579	19.85	1815	8.19	3590
Simmental	CBD001	66.50	67.00	0.50	7546	0.08	1.10	143.5	2.18	52.9	1.17	43
Simmental	CBD001	67.00	68.15	1.15	7547	0.03	0.45	82.1	1.21	20.5	0.71	53
Simmental	CBD001	68.15	68.60	0.45	7548	0.08	0.78	110.5	3.43	70.9	1.27	310
Simmental	CBD001	75.10	76.05	0.95	7549	0.03	1.18	81.1	1.87	491	2.35	1030
Simmental	CBD001	76.05	77.20	1.15	7550	0.08	0.56	75.9	1.85	174.5	0.71	48
Frison	CBD002	86.60	87.60	1.00	7619	0.00	0.03	3.5	0.27	16	0.17	213
Frison	CBD002	87.60	88.54	0.94	7620	0.01	0.43	31	0.89	183	3.66	162
Frison	CBD002	88.54	89.40	0.86	7621	0.01	0.12	16	0.49	16.7	0.25	111
Frison	CBD002	89.40	90.00	0.60	7622	0.01	0.35	69.9	0.35	32.9	1.64	258
Frison	CBD002	90.00	90.55	0.55	7623	0.01	1.10	28.6	1.16	807	1.65	809
Frison	CBD002	90.55	91.37	0.82	7624	0.01	0.16	23.3	1.3	163	0.85	381
Frison	CBD002	91.37	92.90	1.53	7626	0.01	0.64	44.9	1.59	5260	1.74	6570
Frison	CBD002	92.90	93.40	0.50	7627	0.01	0.82	68.2	1.51	2870	12.05	4520
Frison	CBD002	93.40	94.10	0.70	7628	0.00	0.14	24.8	0.75	245	0.95	441
Frison	CBD002	94.10	95.40	1.30	7629	0.00	0.08	30	0.53	61	0.54	175
Frison	CBD002	95.40	96.40	1.00	7630	0.01	0.14	31	0.72	66.4	0.92	162
Frison	CBD002	96.40	96.75	0.35	7631	0.00	0.07	11.8	0.76	52.6	0.12	87
Frison	CBD002	96.75	98.00	1.25	7632	0.01	0.09	19.9	1.89	31.9	0.17	109
Frison	CBD002	98.00	99.00	1.00	7633	0.00	0.16	14.7	1.63	295	0.38	1100
Frison	CBD002	99.00	99.70	0.70	7634	-0.001	0.05	3.3	0.27	36.5	0.06	113
Frison	CBD002	99.70	100.00	0.30	7635	0.00	0.24	14.8	0.95	1220	0.28	932
Frison	CBD002	100.00	101.50	1.50	7636	0.00	0.18	13.9	0.76	664	0.34	596
Frison	CBD002	101.50	102.90	1.40	7637	0.00	0.16	18.4	0.83	259	0.74	2580

Target	Hole ID	Depth From	Depth To	Interval Length	Sample ID	Au g/t	Ag g/t	As_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
Frison	CBD002	102.90	103.80	0.90	7638	0.00	0.29	16.1	1.07	1105	2.8	407
Frison	CBD002	103.80	105.20	1.40	7639	0.00	0.05	19.8	0.8	12.5	0.36	157
Frison	CBD002	105.20	106.70	1.50	7641	0.00	0.06	17.5	0.61	18.8	0.46	160
Frison	CBD002	106.70	108.20	1.50	7642	0.00	0.06	25.5	0.65	16.9	0.52	154
Frison	CBD002	108.20	109.50	1.30	7643	0.00	0.05	26.1	0.67	17.9	0.26	159
Frison	CBD002	109.50	110.85	1.35	7644	0.00	0.06	23.5	0.96	16.3	0.55	120
Frison	CBD002	110.85	111.90	1.05	7645	0.00	0.44	11.7	0.56	446	0.57	416
Frison	CBD002	111.90	112.78	0.88	7646	0.00	0.08	9.5	0.41	58.9	0.24	176
Frison	CBD002	112.78	114.00	1.22	7647	-0.001	0.33	5.9	0.6	465	0.16	242
Frison	CBD002	114.00	115.35	1.35	7648	0.00	0.23	17.3	0.7	1085	0.64	737
Frison	CBD002	115.35	115.80	0.45	7649	0.00	0.59	28.8	0.63	1420	1.79	506
Frison	CBD002	115.80	116.80	1.00	7650	0.00	0.39	48.1	0.99	3040	1.24	2190
Frison	CBD002	116.80	117.90	1.10	7651	0.00	0.05	15.1	0.28	16.8	0.26	153
Frison	CBD002	117.90	118.70	0.80	7652	0.01	0.36	26.2	1.71	405	1.82	419
Frison	CBD002	118.70	119.40	0.70	7653	0.01	0.13	61.4	2.18	76.3	6.44	88
Frison	CBD002	119.40	120.00	0.60	7654	0.01	0.08	36	2.84	26.5	3.06	77
Frison	CBD002	120.00	120.90	0.90	7655	0.01	0.1	43.7	3.74	30.8	2.54	96
Frison	CBD002	120.90	121.60	0.70	7656	0.01	0.22	60	4.46	467	2.42	500
Frison	CBD002	121.60	122.15	0.55	7657	0.03	0.85	160	3.02	5550	14.85	6490
Frison	CBD002	122.15	122.50	0.35	7658	0.01	0.42	91.4	0.9	1680	6.08	2190
Frison	CBD002	122.50	123.65	1.15	7659	0.02	0.4	99.1	20.8	163	2.53	288
Frison	CBD002	123.65	124.50	0.85	7660	0.02	0.64	103.5	10.45	266	3.27	204
Frison	CBD002	124.50	125.55	1.05	7661	0.02	2.9	129.5	14	1985	9.6	958
Frison	CBD002	125.55	126.40	0.85	7662	0.01	1.8	85.7	10.6	1870	5.96	1660
Frison	CBD002	126.40	126.75	0.35	7664	0.02	19.4	255	434	3550	27.8	1.305
Frison	CBD002	126.75	127.65	0.90	7666	0.01	2.16	90.3	169.5	386	3.88	7880
Frison	CBD002	127.65	128.15	0.50	7667	0.00	2.9	475	6.22	433	36.5	5950
Frison	CBD002	128.15	129.35	1.20	7668	0.00	1.37	67.1	7.96	414	12.55	518
Frison	CBD002	129.35	130.30	0.95	7669	-0.001	1.75	38.3	9.84	902	9.91	1290
Frison	CBD002	130.30	132.10	1.80	7670	-0.001	0.55	13	3.13	276	4.18	384
Frison	CBD002	132.10	132.55	0.45	7671	-0.001	0.73	9.5	39.3	262	2.01	893
Frison	CBD002	132.55	133.25	0.70	7672	-0.001	0.42	13.4	2.95	439	3.11	722
Frison	CBD002	133.25	134.30	1.05	7673	0.00	0.92	23.1	8.58	450	2.82	763
Frison	CBD002	134.30	134.80	0.50	7674	0.01	1.81	93.5	13.4	670	11.75	1320
Frison	CBD002	134.80	135.25	0.45	7675	-0.001	1.32	13.5	16.8	1230	1.9	842
Frison	CBD002	135.25	136.50	1.25	7676	-0.001	0.41	5.6	2.64	105.5	1.24	240
Frison	CBD002	136.50	137.80	1.30	7677	-0.001	0.15	2.5	0.51	56.2	0.51	156
Frison	CBD002	1.70	2.90	1.20	7551	-0.02	0.56	17.6	1.21	81.7	1.45	345
Frison	CBD002	2.90	4.00	1.10	7552	-0.02	0.41	17.1	0.55	23.4	0.72	179
Frison	CBD002	4.00	5.00	1.00	7553	-0.02	0.41	13.8	0.55	50.9	0.53	309
Frison	CBD002	5.00	5.65	0.65	7554	-0.02	1.06	17.8	3.28	36.1	0.42	309
Frison	CBD002	5.65	7.20	1.55	7555	-0.02	0.50	9	1.32	11	0.39	81

Target	Hole ID	Depth From	Depth To	Interval Length	Sample ID	Au g/t	Ag g/t	As_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
Frison	CBD002	7.20	8.40	1.20	7556	-0.02	0.49	9.1	1.96	15.6	0.31	58
Frison	CBD002	8.40	9.90	1.50	7557	-0.02	0.48	19.6	2.23	21.5	0.25	87
Frison	CBD002	9.90	10.82	0.92	7558	-0.02	0.21	10.5	0.65	10.6	0.2	131
Frison	CBD002	10.82	12.10	1.28	7559	-0.02	0.47	11.4	1.8	13.1	0.19	38
Frison	CBD002	12.10	13.56	1.46	7560	-0.02	0.33	13.8	1.24	10.4	0.71	135
Frison	CBD002	13.56	15.00	1.44	7561	-0.02	0.39	7.9	0.51	9.1	0.44	168
Frison	CBD002	15.00	16.50	1.50	7562	-0.02	0.60	9.1	1.18	13	0.22	72
Frison	CBD002	16.50	17.30	0.80	7563	-0.02	0.72	9	1.28	20.3	1.11	73
Frison	CBD002	17.30	18.90	1.60	7564	-0.02	0.46	8.1	1.05	32.7	2.19	81
Frison	CBD002	18.90	20.40	1.50	7565	-0.02	0.45	8.8	0.93	10.8	0.76	135
Frison	CBD002	20.40	21.90	1.50	7566	-0.02	0.43	13.7	0.46	10.4	2.52	169
Frison	CBD002	21.90	23.15	1.25	7567	-0.02	0.31	19.5	0.33	5.8	1.45	124
Frison	CBD002	23.15	24.50	1.35	7568	-0.02	0.28	27.3	0.29	6.4	0.42	163
Frison	CBD002	24.50	25.90	1.40	7569	-0.02	0.24	14.1	0.16	4.9	0.9	167
Frison	CBD002	25.90	27.40	1.50	7570	-0.02	0.27	7.4	0.15	4.9	0.31	150
Frison	CBD002	27.40	28.75	1.35	7571	-0.02	0.20	6.9	0.14	7.4	0.28	188
Frison	CBD002	28.75	30.25	1.50	7572	-0.02	0.58	19.5	0.71	9.3	0.93	73
Frison	CBD002	30.25	31.75	1.50	7573	-0.02	0.45	25.9	0.45	9.2	2.51	174
Frison	CBD002	31.75	33.30	1.55	7574	-0.02	0.26	13.5	0.27	10	0.69	148
Frison	CBD002	33.30	34.82	1.52	7576	-0.02	0.47	11.1	0.46	11	0.52	108
Frison	CBD002	34.82	36.25	1.43	7577	-0.02	0.44	14	0.42	10.7	0.5	72
Frison	CBD002	36.25	37.85	1.60	7578	-0.02	0.26	15	0.19	8.4	0.56	61
Frison	CBD002	37.85	39.35	1.50	7579	-0.02	0.38	15.3	0.33	10.7	0.93	83
Frison	CBD002	39.35	40.75	1.40	7580	-0.02	0.39	14.7	0.28	10.2	0.93	108
Frison	CBD002	40.75	42.25	1.50	7581	-0.02	0.33	22	0.54	13.2	0.48	98
Frison	CBD002	42.25	43.70	1.45	7582	-0.02	0.51	15.8	0.44	13.4	0.59	144
Frison	CBD002	43.70	45.20	1.50	7583	-0.02	0.27	15.7	0.25	10.2	0.24	164
Frison	CBD002	45.20	46.70	1.50	7584	-0.02	0.55	39.9	0.43	36.2	1.88	187
Frison	CBD002	46.70	48.15	1.45	7585	-0.02	0.30	38.3	0.32	19.3	1.01	216
Frison	CBD002	48.15	49.60	1.45	7587	-0.02	0.26	11.6	0.29	9.4	1.2	224
Frison	CBD002	49.60	51.10	1.50	7588	-0.02	0.16	12	0.12	6.3	0.44	181
Frison	CBD002	51.10	52.60	1.50	7589	-0.02	0.05	2.4	0.15	5.6	1.48	147
Frison	CBD002	52.60	53.95	1.35	7590	-0.02	0.16	4.8	0.18	6.1	0.78	115
Frison	CBD002	53.95	55.15	1.20	7591	-0.02	0.19	3.3	0.16	8.2	0.38	110
Frison	CBD002	55.15	55.85	0.70	7592	-0.02	0.40	45.7	0.76	97	1.1	202
Frison	CBD002	55.85	57.30	1.45	7593	-0.02	0.08	4.5	0.18	9.1	0.66	128
Frison	CBD002	57.30	58.77	1.47	7594	-0.02	0.02	2.4	0.25	6.6	0.44	129
Frison	CBD002	58.77	59.90	1.13	7595	-0.02	0.02	2.4	0.24	8.3	0.36	124
Frison	CBD002	59.90	61.05	1.15	7596	-0.02	0.03	2	0.18	7.5	0.25	153
Frison	CBD002	61.05	62.50	1.45	7597	-0.02	0.02	2.4	0.08	6.7	0.14	135
Frison	CBD002	62.50	64.00	1.50	7598	-0.02	0.01	1.8	0.09	5.8	0.31	144
Frison	CBD002	64.00	64.60	0.60	7599	-0.02	0.01	2	0.09	6.3	0.47	161

Target	Hole ID	Depth From	Depth To	Interval Length	Sample ID	Au g/t	Ag g/t	As_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
Frison	CBD002	64.60	65.45	0.85	7601	-0.02	0.53	34.4	0.42	21.3	25.5	139
Frison	CBD002	65.45	66.85	1.40	7602	-0.02	0.80	64.6	1.74	170	7.25	264
Frison	CBD002	66.85	67.00	0.15	7603	-0.02	1.51	88.6	3.04	256	8.08	243
Frison	CBD002	67.00	68.70	1.70	7604	-0.02	0.79	62.1	3.06	88.8	6.2	287
Frison	CBD002	68.70	70.30	1.60	7605	-0.02	0.86	85.7	1.52	108	5.46	257
Frison	CBD002	70.30	71.80	1.50	7606	-0.02	0.06	5.2	0.29	6.2	1.61	120
Frison	CBD002	71.80	73.30	1.50	7607	-0.02	0.01	2.6	0.29	14.2	0.39	141
Frison	CBD002	73.30	74.10	0.80	7608	-0.02	0.38	17.1	2.87	104	9.99	172
Frison	CBD002	74.10	75.30	1.20	7609	-0.02	1.14	54.1	6.07	491	36.7	204
Frison	CBD002	75.30	76.80	1.50	7610	-0.02	0.02	2.2	0.32	10.8	0.33	88
Frison	CBD002	76.80	78.25	1.45	7611	-0.02	0.02	2	0.46	8.6	0.62	96
Frison	CBD002	78.25	79.80	1.55	7612	-0.02	0.17	3.6	0.34	34.7	0.45	185
Frison	CBD002	79.80	80.60	0.80	7613	-0.02	0.08	2.4	0.32	17.2	0.36	157
Frison	CBD002	80.60	81.90	1.30	7614	-0.02	0.07	2.1	0.24	8.6	0.16	116
Frison	CBD002	81.90	83.40	1.50	7615	-0.02	0.06	2.4	0.44	11.5	0.33	118
Frison	CBD002	83.40	84.80	1.40	7616	-0.02	0.06	1.9	0.34	11.8	0.22	107
Frison	CBD002	84.80	85.20	0.40	7617	-0.02	0.25	5.4	0.53	23.2	1.52	176
Frison	CBD002	85.20	86.60	1.40	7618	-0.02	0.01	2.2	0.28	11.7	0.22	120
Simmental	CBD003	63.55	65.05	1.50	7678	-0.02	0.24	20	0.57	7.8	0.88	51
Simmental	CBD003	65.05	65.35	0.30	7679	-0.02	0.89	29.4	4.91	134	2.35	112
Simmental	CBD003	65.35	66.75	1.40	7680	0.03	0.41	30.3	1.84	21.7	0.97	60
Simmental	CBD003	66.75	67.62	0.87	7681	-0.02	0.31	36.8	1.49	19.8	0.65	67
Simmental	CBD003	67.62	69.37	1.75	7682	0.02	0.80	78.9	2.7	99.9	1.97	196
Simmental	CBD003	69.37	70.70	1.33	7683	0.04	1.11	107	4.96	356	2.33	571
Simmental	CBD003	70.70	71.30	0.60	7685	0.03	1.09	67.8	5.17	455	6.05	2050
Simmental	CBD003	71.30	72.80	1.50	7686	0.03	0.38	85.8	2.97	73.6	1.12	59
Simmental	CBD003	90.40	91.40	1.00	7687	-0.02	0.29	24.7	0.46	6.4	1.01	33
Simmental	CBD003	91.40	91.92	0.52	7688	0.04	0.83	188.5	3.97	28.9	1.9	29
Simmental	CBD003	91.92	92.95	1.03	7689	-0.02	0.35	32.6	1.16	6.4	0.6	35
Frison	CBD005	2.60	3.60	1.00	7690	-0.02	0.50	63.9	2.38	39	11.65	125
Frison	CBD005	3.60	4.70	1.10	7691	-0.02	0.32	35.1	1.52	48.6	2.06	100
Frison	CBD005	4.70	5.80	1.10	7692	-0.02	0.32	29.3	0.19	5.7	0.73	131
Frison	CBD005	5.80	6.95	1.15	7693	-0.02	0.38	43.7	0.29	10.3	7.71	127
Frison	CBD005	6.95	8.10	1.15	7694	-0.02	0.34	22.7	0.37	6.4	2.69	104
Frison	CBD005	8.10	8.40	0.30	7695	-0.02	0.40	19.9	0.28	8.4	1.41	91
Frison	CBD005	9.45	10.45	1.00	7696	-0.02	0.72	25.9	0.33	24.6	10.6	114
Frison	CBD005	10.45	11.08	0.63	7697	-0.02	0.52	40.7	0.95	14.9	2.15	94
Frison	CBD005	11.08	11.75	0.67	7698	-0.02	0.45	7.7	2.16	15.5	0.62	45
Frison	CBD005	11.75	12.43	0.68	7699	-0.02	0.55	7	1.56	24.4	0.56	51
Frison	CBD005	12.43	12.95	0.52	7700	-0.02	0.70	8.8	2.57	29.4	0.55	43
Frison	CBD005	12.95	13.65	0.70	7701	-0.02	0.33	27.4	3.91	57.4	0.56	25
Frison	CBD005	13.65	14.60	0.95	7702	-0.02	0.27	33.6	2.44	56.8	0.61	24

Target	Hole ID	Depth From	Depth To	Interval Length	Sample ID	Au g/t	Ag g/t	As_ppm	Mo_ppm	Pb_ppm	Sb_ppm	Zn_ppm
Frison	CBD005	14.60	15.25	0.65	7704	-0.02	0.28	45	1.58	121.5	0.75	18
Frison	CBD005	15.25	15.77	0.52	7705	-0.02	0.35	79.8	2.04	111.5	0.88	146
Frison	CBD005	15.77	16.25	0.48	7706	-0.02	0.21	31	0.95	76.6	0.54	54
Frison	CBD005	16.25	16.95	0.70	7707	-0.02	0.13	9.8	1.29	29.2	0.26	16
Frison	CBD005	16.95	17.30	0.35	7708	-0.02	0.26	22.4	1.19	24.4	0.42	41
Frison	CBD005	17.30	18.55	1.25	7709	-0.02	0.08	9.2	0.53	6	0.2	29
Frison	CBD005	18.55	19.80	1.25	7710	-0.02	0.12	14.1	0.57	8.4	0.31	23
Frison	CBD005	19.80	20.10	0.30	7711	-0.02	0.51	17.8	1.45	100	0.74	76
Frison	CBD005	20.10	21.50	1.40	7712	-0.02	0.12	12.5	0.7	9.9	0.26	28
Frison	CBD005	21.50	23.00	1.50	7713	-0.02	0.11	14.8	0.46	7.3	0.26	41

Appendix 2 – Droughtmaster Channel Assay Results

Channel	Sample	Depth	Depth	Interval Length					
ID	ID	From m	To m	m	Au g/t	Ag g/t	As_ppm	Sb_ppm	Zn_ppm
CC028	7953	0	2	2	0.1	1.38	42.6	1.04	7
CC028	7954	2	4	2	0.04	1.02	40.6	1.26	7
CC028	7955	4	6	2	0.06	3.15	40.3	1.02	41
CC028	7956	6	8	2	0.16	9	24.9	1.12	7
CC028	7957	8	10	2	0.04	1.78	9.7	0.74	5
CC028	7958	10	12	2	0.02	0.33	28.3	0.87	9
CC028	7959	12	14	2	0.03	0.56	31.3	1.31	12
CC028	7960	14	16	2	0.03	0.74	22.2	1.95	10
CC028	7961	16	18	2	0.32	1.73	27.3	2.47	12
CC028	7962	18	20	2	3.11	17.15	59.8	38.8	59
CC029	7964	0	2	2	0.28	18.4	431	24.8	2
CC029	7965	2	4	2	0.41	55.1	56.2	6.28	41
CC029	7966	4	6	2	0.46	4.8	34.4	1.59	2
CC029	7967	6	7.6	1.6	0.19	15.05	30.3	1.29	3
CC030	7968	0	2	2	0.15	11.5	11.3	1.56	3
CC030	7969	2	4.1	2.1	0.09	1.28	17.1	1.53	13
CC031	7972	0	2	2	0.02	0.27	6.8	0.42	2
CC031	7973	2	4	2	0.26	41.7	20.4	1.92	18
CC031	7974	4	6	2	0.03	1.26	14.4	0.9	6
CC031	7975	6	8	2	0.06	1.68	14.1	1.14	9
CC031	7976	8	10	2	0.06	0.94	28.1	1.01	3
CC032	7977	0	2	2	0.03	2.71	510	9.42	-2
CC032	7978	2	4	2	0.62	52	644	22.6	4
CC032	7979	4	6	2	0.34	29.2	220	2.88	3
CC032	7980	6	8.2	2.2	0.16	14.9	72.7	3.43	2
CC033	7451	0	2	2	0.16	2.86	46.3	0.73	-2
CC033	7452	2	3.5	1.5	0.03	2.24	63.4	0.97	3
CC033	7453	3.5	4.5	1	0.02	1.83	98.9	0.94	5

Channel ID	Sample ID	Depth From m	Depth To m	Interval Length m	Au g/t	Ag g/t	As_ppm	Sb_ppm	Zn_ppm
CC034	7454	0	0.6	0.6	0.03	2.02	97.9	0.8	6
CC034	7455	0.6	2.2	1.6	0.03	1.29	158	1.2	11
CC035	7456	0	0.9	0.9	0.03	2.7	65.4	0.65	5
CC035	7457	0.9	2.7	1.8	0.02	1.85	371	2.64	5
CC036	7461	0	1.3	1.3	0.01	1.45	203	1.33	3
CC036	7462	1.3	2.5	1.2	0.02	2.01	169	1.84	4
CC037	7473	0	1.2	1.2	0.01	1.06	120.5	7.83	6
CC037	7474	1.2	2.3	1.1	0	0.34	23.9	1.65	3
CC038	7481	0	0.8	0.8	0.03	0.7	30.6	0.53	13
CC038	7482	0.8	1.5	0.7	0.05	0.63	52	0.66	32
CC038	7483	1.5	2.9	1.4	0.06	0.7	68	0.81	17
CC038	7484	2.9	3.7	0.8	0.29	1.62	138	1.69	14
CC038	7485	3.7	4.5	0.8	0.03	0.83	32	0.82	11
CC039	7989	0	2	2	0.29	37.3	42.7	3.25	4
CC039	7990	2	4	2	0.13	5.75	52.2	1.21	8
CC039	7991	4	6	2	0.15	22	78	3.39	22
CC039	7992	6	8	2	0.38	107	139.5	3.94	99
CC039	7993	8	10	2	0.1	6.68	52.8	1.24	4
CC039	7994	10	12	2	0.1	16.85	37.8	1.94	6
CC040	7995	0	2	2	2.18	74.7	27	3.01	3
CC040	7996	2	3.1	1.1	0.82	10.7	20.4	1.56	3
CC041	7998	0	1.4	1.4	1.58	163	52.4	9.89	32
CC041	7999	1.4	2.8	1.4	7.39	923	91.5	27.9	33
CC042	7327	0	1.25	1.25	4.18	1290	83.5	52	30
CC042	7328	1.25	2.5	1.25	1.95	231	73.5	16.4	69
CC043	7492	0	1.1	1.1	0.68	178	104	11.15	323
CC043	7493	1.8	3	1.2	0.3	69.3	29.7	5.63	18
CC044	7496	0	1.2	1.2	0.3	13.6	37.3	1.67	29
CC044	7497	1.2	2.4	1.2	0.21	25.4	50.9	3.13	16
CC045	7329	0	2	2	0.01	0.54	32.6	1.67	78
CC045	7330	2	4	2	0.02	0.99	43.3	2.55	68
CC045	7331	4	6	2	1.62	3.91	49.1	10.7	275
CC045	7332	6	8	2	0.02	0.66	34.5	1.96	101
CC045	7333	8	10	2	0.05	1.32	38.6	4.29	211
CC045	7334	10	12	2	0.01	0.3	23.3	0.57	19
CC045	7335	12	14	2	0.01	0.26	19.6	0.6	14
CC045	7336	14	16	2	0.01	0.61	27.3	0.62	17
CC045	7337	16	18	2	0.01	0.45	28.8	0.4	8
CC045	7338	18	20	2	0.06	1.34	24.4	0.82	21
CC045	7339	20	22	2	0.06	1.34	23.1	0.53	8
CC045	7340	22	24	2	0.01	0.53	26.2	0.48	22
CC045	7341	24	25.75	1.75	0.02	0.51	29.6	0.54	19

Channel	Sample	Depth	Depth	Interval Length					
ID	ID	From m	To m	m	Au g/t	Ag g/t	As_ppm	Sb_ppm	Zn_ppm
CC045	7342	25.75	27.5	1.75	0.01	0.59	31.4	0.62	9
CC046	7360	0	1.2	1	0.01	0.67	60.9	0.44	41
CC046	7361	1.2	2.2	1.2	0.01	0.78	58.4	0.57	44
CC046	7362	2.2	3.2	1	0.01	0.48	46.4	0.31	37
CC046	7363	3.2	3.9	0.7	0.02	1.18	72.7	1.19	13
CC046	7364	3.9	5.5	1.6	0.01	0.66	52.9	0.7	21
CC046	7365	5.5	6	0.5	0.01	0.65	47.4	0.68	20
CC046	7366	6	7.2	1.2	0.01	1.04	53.2	0.79	18
CC047	7372	0	1.3	1.3	0.43	45.7	36.1	4.7	9
CC047	7373	1.3	2.2	0.9	2.72	467	49.6	15.45	11
CC048	7376	0	0.8	0.8	2.94	206	94.2	10.05	16
CC048	7377	0.8	2	1.2	1.33	180	130.5	7.14	12

Appendix 3 – Droughtmaster Rockchip Assay Results

Target ID	Sample ID	East SAD69 H19	North SAD69 H19	RL	Sample Type	Strike	Dip	Dip Dir	Length m	Au g/t	Ag g/t	As ppm	Sb ppm	Zn ppm
PERCHERON	7326	281341	4838302	818.0	ROCKCHIP				2	13.3	1705	153.5	91.2	48
PERCHERON	7488	281797	4837797	887.0	CHIPCHANNEL	310	80	50	1.4	0.27	19.55	63.4	2.13	21
PERCHERON	7489	281818	4837784	884.0	CHIPCHANNEL	310	80	50	0.8	0.93	72.5	328	6.66	37
PERCHERON	7490	281842	4837762	889.0	CHIPCHANNEL	310	80	5	1.8	0.98	81.3	95.3	5.84	15
PERCHERON	7491	281854	4837751	896.0	CHIPCHANNEL	310	80	50	1.1	0.12	13.9	80.7	3.27	11
PERCHERON	7494	281982	4837718	899.0	CHIPCHANNEL	280	80	20	1.5	0.57	234	87.3	13.45	26
PERCHERON	7495	282014	4837702	839.0	CHIPCHANNEL	280	80	20	0.3	0.7	234	135	12.8	18
PERCHERON	7501	280535.34	4837958.67	773.8	ROCKCHIP	142	65	232	0.3	0.15	3.87	40	1.71	177
PERCHERON	7502	281871.58	4838085.85	847.3	ROCKCHIP					1.09	22.4	32	1.41	5
PERCHERON	7503	282031.64	4837930.31	854.3	ROCKCHIP					0.44	32.1	334	13.35	3
PERCHERON	7504	281804.95	4838195.15	827.7	ROCKCHIP					0.53	35.9	36.5	2.78	5
PERCHERON	7505	281802.64	4838206.08	834.9	ROCKCHIP					0.06	2.73	30.8	2.67	11
PERCHERON	7506	281801.92	4838206.94	835.0	ROCKCHIP					0.92	66.3	60.5	5.24	15
PERCHERON	7507	281794	4838211	834.6	ROCKCHIP	320	80	50	0.1	0.11	1.88	57.3	1.37	5
PERCHERON	7508	281783	4838215	835.7	ROCKCHIP					0.04	5.01	87.1	6.49	-2
PERCHERON	7509	281757	4838257	832.1	ROCKCHIP					0.04	0.67	34.9	1.16	4
PERCHERON	7511	281745.05	4838296.56	824.7	ROCKCHIP					0.03	0.6	67.6	2.38	88
PERCHERON	7512	281738.07	4838304.99	819.9	ROCKCHIP					0.07	3.42	53	2.81	6
PERCHERON	7513	281728.3	4838309.86	815.9	ROCKCHIP					0.12	4.9	52.8	2.08	16
PERCHERON	7514	281725.56	4838330.57	812.8	ROCKCHIP					0.03	0.88	33.8	1.45	11
PERCHERON	7515	281713.82	4838341.27	808.5	ROCKCHIP					0.04	0.85	45.9	3.46	24
PERCHERON	7516	281711.71	4838354.88	796.9	ROCKCHIP					2.18	15.4	66	42.3	72
PERCHERON	7517	281705.72	4838348.66	794.8	ROCKCHIP					0.11	1.33	71.1	3.05	17
PERCHERON	7518	281717.23	4838316.92	812.0	ROCKCHIP					0.54	24.3	96.4	4.2	13
PERCHERON	7519	281832.21	4838105.24	802.2	ROCKCHIP					0.03	0.41	22.6	0.52	4
PERCHERON	7520	281838.44	4838087.99	806.5	ROCKCHIP					0.02	0.37	9.5	0.32	2
PERCHERON	7521	281865.91	4838068.85	813.6	ROCKCHIP					0.02	0.3	39.9	0.44	37
PERCHERON	7522	282006.29	4837958.77	845.3	ROCKCHIP					0.05	2.49	102.5	1.58	2
PERCHERON	7523	282018.62	4837940.19	844.6	ROCKCHIP					0.22	22.6	383	19.9	12
PERCHERON	7524	282033.11	4837934.04	845.8	ROCKCHIP					0.48	49.2	28.1	1.2	4
PERCHERON	7986	282612	4837230	997.0	ROCKCHIP	120	70	220		0.04	0.05	8.4	5.19	22
PERCHERON	7987	282492	4837304	973.0	ROCKCHIP	320	90	0		-0.02	1.94	41.4	0.67	8
PERCHERON	7988	281901	4837828	901.3	ROCKCHIP	120	70	225	0.8	0.91	147	165	6.5	7
PERCHERON	7997	281860	4837747	900.0	ROCKCHIP	300	80	220	1.5	2.38	795	177	47.2	62

Target ID	Sample ID	East SAD69 H19	North SAD69 H19	RL	Sample Type	Strike	Dip	Dip Dir	Length m	Au g/t	Ag g/t	As ppm	Sb ppm	Zn ppm
PERCHERON	7343	281303.24	4839287.12	614.9	CHIPCHANNEL	360	90	0	0.3	0.01	0.71	29.4	1.36	4
PERCHERON	7344	281306.32	4839252.74	622.8	CHIPCHANNEL	175	50	265	0.6	0.012	0.89	45.5	0.72	21
PERCHERON	7346	281307.81	4839252.02	622.6	CHIPCHANNEL	210	45	300	0.5	0.011	0.63	78.5	1.17	33
PERCHERON	7347	281309	4839252	623.0	CHIPCHANNEL	210	45	300	0.5	0.014	0.73	80.5	1	32
PERCHERON	7351	281741	4838139	794.0	ROCKCHIP	300	90	0	0.3	0.272	13.7	35	1.01	10
PERCHERON	7352	281739	4838139	793.0	ROCKCHIP	300	90	0	0.35	0.231	6.32	45	1.28	2
PERCHERON	7353	281747	4838152	794.0	ROCKCHIP	300	90	0	0.8	1.02	302	109	11.3	46
PERCHERON	7354	281736	4838153	802.0	ROCKCHIP	300	90	0	0.5	0.094	7.35	21.8	0.74	2
PERCHERON	7355	281322	4839113	598.0	ROCKCHIP	330	90	0	1.5	0.181	1.86	17.1	0.47	2
PERCHERON	7356	281294	4839199	605.0	ROCKCHIP	330	90	0	0.3	0.018	2.74	21.9	2.01	10
PERCHERON	7357	281270	4839497	593.0	ROCKCHIP	330	90	0	5	0.012	0.62	43.1	0.56	51
PERCHERON	7358	281267	4839539	589.0	ROCKCHIP	330	90	0	5	0.014	0.57	44.7	0.52	22
PERCHERON	7359	281707	4838120	815.0	ROCKCHIP	330	90	0	0.3	0.134	3.87	10.1	0.52	-2
PERCHERON	7498	280755.59	4838616.41	790.8	ROCKCHIP	340	90	0	0.7	0.285	44.6	34.3	4.34	3
PERCHERON	7499	280611.98	4838752.83	827.3	ROCKCHIP	295	90	0	0.3	0.506	3.55	342	8.94	158
PERCHERON	7525	281380.85	4839101.79	613.0	ROCKCHIP					0.01	0.92	94.2	1.14	8
PERCHERON	7348	281299.69	4839270.75	611.8	ROCKCHIP	10	90	0	0.5	0.023	1.28	48.7	1.65	8
PERCHERON	7349	281311.5	4839234.79	600.0	ROCKCHIP				0.5	0.007	0.5	65.2	1.94	29
PERCHERON	7350	281292.36	4839212.41	592.2	ROCKCHIP	190	80	280	1	0.008	0.23	19.3	0.43	17
PERCHERON	7367	281527.16	4839051.57	659.6	ROCKCHIP	20	90	0	0.13	0.129	3.45	33.1	1.4	20
PERCHERON	7368	281520.99	4839058.8	658.8	ROCKCHIP	145	65	235	0.5	0.078	2.56	42.7	0.98	4
PERCHERON	7369	281376.03	4838026.77	849.5	ROCKCHIP	145	65	235	0.15	0.85	31.5	66.2	2.71	1580
PERCHERON	7370	281377.95	4838026.61	838.7	ROCKCHIP	130	65	220	0.3	0.446	23.8	33.2	2.8	21
PERCHERON	7371	281316.21	4838066.43	844.6	ROCKCHIP	130	90	0	0.2	0.281	40.3	9.2	2.8	10
PERCHERON	7374	281191.08	4838337.48	776.1	ROCKCHIP	340	90	0	0.13	0.058	2.26	92.8	2.19	6
PERCHERON	7375	281159.94	4838413.24	743.5	ROCKCHIP	350	90	0	1.2	1.35	141	19	11.4	14
PERCHERON	7378	281147.91	4837985.35	863.5	ROCKCHIP	120	90	0	0.2	0.185	29.8	15.9	3.72	23
BELGA	7379	281296.31	4838145.48	833.3	CHIPCHANNEL	300	90	0	1.1	0.992	39.7	37	4.84	25
BELGA	7381	281342	4838113	832.0	CHIPCHANNEL	320	85	230	1	0.181	10.5	161	9.73	15
BELGA	7382	281354	4838103	833.0	CHIPCHANNEL	280	85	200	1	1.64	37.5	54.8	5.83	41
BELGA	7383	281377	4838081	839.0	CHIPCHANNEL	280	85	200	0.8	1.075	22.5	65.6	2.44	34
BELGA	7384	281384	4838077	837.0	CHIPCHANNEL	310	80	50	0.7	1.025	12.35	48.3	2.81	121
BELGA	7385	281399	4838062	438.0	CHIPCHANNEL	310	80	50	0.5	0.617	51	54.8	3.64	21
BELGA	7386	281410	4838057	832.0	CHIPCHANNEL	310	80	50	0.5	0.196	5.02	16	2.67	11
PERCHERON	7500	281320.39	4839184.27	603.2	ROCKCHIP				0.3	0.012	0.39	19	0.28	33
PERCHERON	7458	282494.32	4837825.95	889.0	CHIPCHANNEL				0.7	0.036	2.35	155	1.63	2
PERCHERON	7459	282421.77	4837842.47	856.2	CHIPCHANNEL	120	75	210	1.25	0.01	1.89	132.5	1.47	3
PERCHERON	7460	282402.55	4837850.01	857.7	CHIPCHANNEL				1.6	0.017	1.36	189.5	1.42	6
PERCHERON	7464	282320.82	4837906.03	864.1	CHIPCHANNEL				0.6	0.012	0.99	38	0.85	4
PERCHERON	7465	282318.05	4837908.49	864.3	CHIPCHANNEL				1.4	0.015	1.66	63.9	1.03	4
PERCHERON	7466	283157.53	4838035.38	817.8	ROCKCHIP	105	75	195	0.03	0.025	0.78	152	2.01	7
PERCHERON	7951	282174.26	4837811.07	852.4	ROCKCHIP	150	40	220	0.3	0.016	1	47.2	0.88	9
PERCHERON	7952	281714.75	4838321.84	802.7	ROCKCHIP	330	90	0		0.04	0.72	45.6	1.17	4
PERCHERON	7963	281750.64	4838292.54	833.1	ROCKCHIP	320	90	0		0.069	9.06	35.6	10.85	6
PERCHERON	7970	282005.87	4837959.87	845.9	ROCKCHIP	120	80	213	5	0.063	3.05	126	5.41	3
PERCHERON	7971	282022.42	4837941.22	843.7	ROCKCHIP				0.5	0.31	25.7	290	10.35	25
PERCHERON	7981	282046.09	4837921.04	840.2	ROCKCHIP					0.014	1.2	94.4	0.66	2
PERCHERON	7982	282035.44	4837929	841.5	ROCKCHIP					0.355	83.1	91.6	9.06	41
PERCHERON	7983	282187	4837832	856.0	FLOAT					0.385	200	65	12.1	60
PERCHERON	7467	282754.17	4837742.63	888.9	CHIPCHANNEL	225	67	315	0.3	0.117	7.03	185.5	2.6	7
PERCHERON	7468	281723.33	4838683.06	753.0	ROCKCHIP				0.5	0.008	0.26	53.7	0.75	78
PERCHERON	7469	281542	4838868	639.0	ROCKCHIP					0.038	5.43	118	5.97	23
PERCHERON	7470	281541	4838868	639.0	ROCKCHIP					0.831	9.12	17.2	5.53	35
PERCHERON	7471	281476.23	4838622.5	688.3	CHIPCHANNEL	0	75	90	0.3	0.001	0.97	87.6	7.39	5
PERCHERON	7472	281478	4838622.5	688.3	CHIPCHANNEL	0	90	0	0.2	0.002	0.25	26.4	1.84	4

Target ID	Sample ID	East SAD69 H19	North SAD69 H19	RL	Sample Type	Strike	Dip	Dip Dir	Length m	Au g/t	Ag g/t	As ppm	Sb ppm	Zn ppm
PERCHERON	7475	281571.39	4839284.03	708.7	CHIPCHANNEL	10	80	100	0.6	0.032	2.38	39.2	1.59	2
PERCHERON	7476	281683.4	4839358.95	752.0	ROCKCHIP	180	45	270		0.012	0.84	50	4.43	32
PERCHERON	7477	281293.22	4839349.62	598.7	ROCKCHIP	8	90	98	0.5	0.004	0.31	32.1	0.66	16
PERCHERON	7478	281550.22	4839001.67	630.4	ROCKCHIP					0.015	1.44	30.1	1.71	21
PERCHERON	7479	281270.27	4839555.61	636.7	CHIPCHANNEL				1.6	0.004	0.52	50.9	0.83	40
PERCHERON	7480	281504.06	4839617.92	640.2	CHIPCHANNEL	205	67	295	1.1	0.029	0.51	63.8	0.84	46
PERCHERON	7486	281306.12	4839258.41	616.8	CHIPCHANNEL	315	90	0	0.3	0.007	0.8	31.5	0.59	19