

STANDOUT HISTORIC DRILLING RESULTS AT NEW PEGASO VII TARGET 1.13m @ 166.1 g/t AuEq¹ (95.51 g/t Au, 5291.1 g/t Ag)

Equus Mining Limited ('Equus' or 'Company') **(ASX: EQE)** is pleased to announce outstanding high-grade gold and silver drill results following compilation and initial re-logging of historical drill data from a highly prospective zone titled Pegaso VII Target at its 100% owned Cerro Bayo Project. This work has highlighted a series of high-priority drill targets along a vein corridor mapped over an approximate 450m width x 1.4km length, located 2.5km to the northeast of the Cerro Bayo processing plant.

HIGHLIGHTS

PEGASO VII TARGET- HISTORIC DRILL RESULTS

- ▶ DGA009:
 - 1.13m @ 166.06 g/t AuEq¹ (95.51 g/t Au, 5291.05 g/t Ag) from 235.50m
- ► DGA012:
 - 1.70m @ 35.46 g/t AuEq¹ (13.76 g/t Au, 1627.61 g/t Ag) from 259.10m
- ► CRH-44:
 - 1.48m @ 39.00 g/t AuEq¹ (5.55 g/t Au, 2508.95 g/t Ag) from 36.37m
- ▶ DGA010:
 - 1.00m @ 39.44 g/t AuEq¹ (20.86 g/t Au, 1393.46 g/t Ag) from 169.15m
- ▶ DGA019:
 - 5.45m @ 5.13 g/t AuEq¹ (4.53 g/t Au, 45.09 g/t Ag) from 322.30m
- ▶ DGA029:
 - 1.45m @ 9.41 g/t AuEq¹ (2.04 g/t Au, 552.96 g/t Ag) from 127.00m

FOLLOW UP DRILLING

Planned follow-up drilling totaling 2,500m will test the geometry and continuity of high-grade mineralization over a vertical interval of +250m, both along strike and at depth, throughout a +400m long portion of the Pegaso VII vein corridor. In parallel, given that a large proportion (approximately 75%) of the historical drill core was not analyzed, and recent re-logging has defined significant unsampled drill core intervals hosting veining, a detailed program of historic drill core sampling is in process.

Damien Koerber, Chief Operating Officer, Equus Mining Commented:

"Follow up of the very high-grade historic drill results of the large, underexplored Pegaso VII target provides an exciting addition to the company's pipeline of high impact exploration targets, which include the nearby large scale Appaloosa Vein Breccia and Pegaso I-VI structures.

Importantly for the Pegaso VII Target, high grade drill results from historic, relatively wide spaced drilling extend over a deep vertical interval of up to 250m, many of which remain open laterally and at depth. Furthermore, relogging of drill core has defined significant intervals hosting veining which weren't sampled historically, which, subsequent to assaying, may define wider zones of mineralization than are currently understood'.

The AuEq formula assumes a gold and silver price of US\$1,800/oz and US\$24/oz respectively and similar recoveries for gold and silver Gold and silver recovery assumptions are based on historical performance of the Cerro Bayo processing plant

¹Gold Equivalent (AuEq) is based on the formula AuEq g/t = Au g/t + (Ag g/t / 75).

TECHNICAL APPENDIX

The Pegaso VII target is located 2.5km to the north-east of the Cerro Bayo plant infrastructure and sits 1km in a subparallel north west trend from the partially exploited Coyita Mine (approximately 140kOz AuEq¹ @ 6.6 g/t AuEq¹ in mine production/remaining NI 43.101 resources²) (Figure 1). Veining defined to date throughout the Pegaso VII Target predominantly occupies the footwall position with respect to the district scale, southeasterly dipping Appaloosa Fault (see Figure 1).

A total of 14,134.67m in 64 holes were drilled on the Pegaso VII target by previous operators, initiating in 2004 and for which the majority (>90%) was completed prior to 2013. Historic drill hole collar data is provided in the JORC Table 1 and detailed results³ for these holes are provided in Appendix 1.

Historic drilling throughout the Pegaso VII target was broadly focused over a 450m wide x 1400m long corridor hosting a series of sub-vertical veins mapped and interpreted from core logging principally along, north-south and north-northwest trends (Refer to Plan in Figure 2). A large proportion of historic drilling was concentrated in the southern 400m of this corridor throughout which high-grade mineralization was intersected over a vertical interval of +250m (Refer to Section in Figure 3).

Significant drill results from the above historic drilling include:

- ▶ DGA009:
 - 1.13m @ 166.06 g/t AuEq¹ (95.51 g/t Au, 5291.05 g/t Ag) from 235.50m
- DGA012:
 - 1.70m @ 35.46 g/t AuEq¹ (13.76 g/t Au, 1627.61 g/t Ag) from 259.10m
- ► CRH-44:
 - 1.48m @ 39.00 g/t AuEq¹ (5.55 g/t Au, 2508.95 g/t Ag) from 36.37m
- ► DGA010:
 - 1.00m @ 39.44 g/t AuEq¹ (20.86 g/t Au, 1393.46 g/t Ag) from 169.15m
- DGA019:
 - 5.45m @ 5.13 g/t AuEq¹ (4.53 g/t Au, 45.09 g/t Ag) from 322.30m
- ▶ DGA029:
 - 1.45m @ 9.41 g/t AuEq¹ (2.04 g/t Au, 552.96 g/t Ag) from 127.00m
- ► DGA007:
 - 2.5m @ 5.36 g/t AuEq¹ (1.78 g/t Au, 268.25 g/t Ag) from 129.80m
- ► CRH-59
 - 0.36m @ 30.55 g/t AuEq¹ (10.01 g/t Au, 1540.64 g/t Ag) from 151.64

Importantly, 30 of the 64 historic holes drilled at Pegaso VII returned downhole intercepts of greater than 2.5 AuEq¹ gram-metres⁴.

² Reported effective December 31, 2016 by Mandalay Resources Corporation – Cerro Bayo Project, Project #2559 according to Canadian Institute of Mining definitions in an independent National Instrument 43-101 Technical Report filed March 31, 2017.

³ Details regarding the reporting of these historical results can be found on page 5 of this report

 $^{^4}$ The term gram-metre refers to the grams per tonne of gold equivalent , multiplied by the intersection length

The above high-grade results generally correlate to weakly banded and brecciated individual veins of between 0.3-0.8m width which are commonly enveloped by zones of stockwork veining and brecciation varying in width between 1-5m.

Recent initial re-logging of the historic drill core has defined significant intervals of unsampled drill core which hosts stockwork veining and brecciation. Given that a large portion of the historic holes (75%) were not assayed, a systematic program of relogging and core sampling is in process to confirm if additional core intervals host mineralization which may underpin definition of wider vein grade geometries.

Figure 1 – Plan view showing location of Pegaso VII, Appaloosa Fault vein-breccia and Pegaso II- VII targets and historic production/resources of the historic open pit and underground mines

Figure 2 – Pegaso VII Target - Plan view of southern portion showing summary high grade historic drill results and location of Section 4842820N (refer to Figure 3)

Figure 3 – Pegaso VII Section 4842820N - showing summary high grade historic composited drill results and unsampled drill core intervals (purple hole trace)

Reporting of Historic Results

The above historical results include exploration results collected between approximately 2000-2016. The mining and exploration activity was undertaken up until approximately 2009 by Coeur d'Alene Mines Corporation (now Coeur Mining or "Coeur") and Mandalay Resources from 2010 to 2016. As per ASX requirements, Equus notes that a minor portion of the drill results dating prior to 2005 are not reported in accordance with the National Instrument 43.101 or JORC Code 2012; a competent person has not done sufficient work to disclose the corresponding exploration results in accordance with the JORC Code 2012; it is possible that following further evaluation and/or exploration work that the confidence in the prior reported exploration results may be reduced when reported under the JORC Code 2012; that nothing has come to the attention of Equus that questions the accuracy or reliability of the former owner's exploration results, but Equus is in the process of independently validating the former owner's exploration results and therefore is not to be regarded as reporting, adopting or endorsing those results.

The levels of gold and silver reported, from past drilling activity, is a key factor in guiding Equus's exploration strategy. The previous drilling activity, which produced these results, involved multiple diamond drill holes and check assaying, providing Equus with confidence that the results are reliable, relevant and an accurate representation of the available data and studies undertaken by previous exploration activity. Proposed verification work includes further drilling and resampling of historical drill core which Equus is currently undertaking.

- END -

This announcement has been approved by the Managing Director, John Braham.

For further information please contact:

John Braham Managing Director T: +61 400 852 245 E: jbraham@equusmining.com

pjn11565

COMPETENT PERSON'S STATEMENT:

The information in this report that relates to Exploration Results for the Cerro Bayo Project is based on information compiled by Damien Koerber. Mr Koerber is a fulltime employee to the Company. Mr Koerber is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Koerber has a beneficial interest as shareholder of Equus Mining Limited and consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1

EQUUS MINING LIMITED CERRO BAYO EXPLORATION PROGRAM

A. DIAMOND DRILLING & SURFACE SAMPLING

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Historic Data Data collected during 2004-2017 by Compañía Minera Cerro Bayo Ltd or CMCB over the Pegaso VII Target comprised BQ, NQ and HQ Diamond Drilling and surface continuous rock channels. All the respective samples from the above methods were analyzed at the Cerro Bayo Mine assay laboratory located at the mine site. This lab contains all the facilities for sample preparation, fire, wet and atomic absorption assays, as well as offices, washrooms, reagents and general storage. An audit was performed by Lakefield Research in 2002 on the laboratory. Their findings were that the laboratory meets international standard operating procedures. The sample preparation and assay procedures for the historic data comprised: Each drill and/or channel sample is identified with a unique sample number that is tracked throughout the assaying process. The as-received samples that range between 0.5 and 5.0 kg were weighed prior to crushing. Following weighing, the sample was jaw crushed to produce a 9.5 mm product, roll crushed to achieve 90% passing 2.00 mm (10 mesh ASTM) product, then split with a 1-in rifle to approximately 0.50 kg. This 0.50 kg sample is dried for 2 hours at 102° C prior to being pulverized using a plate pulverizer to 100% passing 0.15 mm (100 mesh ASTM). After pulverizing each sample, the bowl, ring, and puck assembly are disassembled with the pulverizer assembly is placed back in the bowl with another sample. Two assemblies are used in an alternating fashion. The pulverized sample is rolled and transferred to a numbered envelope. Silica sand is pulverized at the end of the entire sample run in order to minimize possible contamination for the next run. Assaying was done by fire assaying methods (30 g charge) with a gravimetric finish. Each sample is fire- assayed using a traditional lead oxide flux as well as a known addition of silver, called in inquart. The samples are placed in gas fired assay furnaces. The fusion of the flux and inquarted

24 February 2023

Criteria	JORC Code explanation	Commentary
		 pounded to remove any adhering slag. The lead button is then cupelled using a magnesium oxide cupel. The remaining doré bead is flattened and weighed. The weighed doré is placed in a test tube and concentrated nitric acid added. The button is then rinsed, ammonia added, and rinsed again. The button is dried and then roasted for 5 minutes. After cooling, the gold is weighed. Gold to silver ratios are checked. If greater than 0.40 additional silver and lead is added, and the sample re-analyzed. The gold and silver present in the sample are expressed according to the following formula: Au (g/t) = Au (mg) / sample weight (g); and Ag (g/t) = (Au + Ag) (mg) – Au (mg) / sample weight (g)
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Historic Data • Diamond Drilling –Three sizes of core drilling were drilled from surface in the Pegaso VII area: • BQ (36 mm) • NQ (47 mm) • HQ (64mm) • The majority of the holes drilled in the Pegaso VII Resource area are NQ in size. Drilling was carried out predominantly by CMCB personnel using CMCB owned DDH rigs. It is unclear whether the diamond core from the historic drilling was orientated.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 <u>Historic DDH drilling</u> Reported recoveries of DDH drill samples were recorded in approximately 85% of the recovered historical logs which generally indicated greater than 90% recovery.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 <u>Historic Drill Data-</u> Sampling of core drilling was performed under strictly geological criteria. Geologic and geotechnical logging was performed on the core. The former was carried out by geologists for lithological, structural and mineralogical information, while the latter was done by trained personnel for recovery and RQD information. Core recoveries are consistently high, averaging over 90%. Mineralized intervals were selected for assaying for gold and silver content. In cases where the holes were aimed for a specific target, sampling is carried out only in selected intervals of geological interest (veins, veinlets, stockworks or breccias). Sampling interval size varies from a minimum of 0.10 meter to a maximum of 4.68 meters. The mean length is 0.70 meters. Due to the predominantly relatively small core size (BQ & NQ), the entire core was consumed in the assaying process. Digital photographs were taken of the core drilled from 2012-2013 to keep a permanent record. Intervals that were not assayed for these holes are held in storage at the

24 February 2023

Criteria	JORC Code explanation	Commentary				
		mine site.				
Sub- sampling techniques and sample preparation	 If core, whether cut or Rock Chip and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in- situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Historic Drill data- Diamond Core – manual hydraulic ½ core splitting (HQ and NQ core holes) and whole core assaying (NQ & BQ holes). 				
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 For the historic drill data, an internal quality control program was implemented by CMCB which comprised of: Duplicate assay pulps on 5% of volume; Duplicate assay splits on 5% of volume; and Standards inserted every 20th sample. CMCB utilized four mineral standards for the drilling: CBm-06 - 1.17 g/t Au, 72.19 g/t Ag CBm-03 - 1.11 g/t Au, 134.46 g/t Ag CBm-04 - 11.79 g/t Au, 617.56 g/t Ag CBm-05 - 97.54 g/t Au, 4,651 g/t Ag CBm-05 - 97.54 g/t Au, 4,651 g/t Ag QAQC results from historic data preceding 2010 are not available. For the Cerro Bayo Mine laboratory, the process comprised: Sample preparation initially comprises drying, weighing, jaw and fine roll crush, riffle split and pulverizing of 1kg to 85% < 75µm Au: Fire Assay 30 gr - Au by fire assay fusion and Atomic Absorption Spectroscopy (AAS) finish on 30 g nominal sample weight with lower and upper detection limit of 0.01 ppm and 8 ppm Au respectively. Au-GRA (by fire assay and gravimetric finish 30 g nominal sample weight) for Au values > 8 g/t up to 1,000 g/t Au. Ag by 4 acid HNO3-HCIO4-HF-HCI digestion, HCI leach and Atomic Absorption Spectroscopy (AAS) finish with lower and upper detection limit of 2 and 500 ppm Ag respectively. Ag-GRA (by fire assay and gravimetric finish 30 g nominal sample weight) for Au values > 8 g/t up to 1,000 g/t Ag. 				

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 <u>Historic Diamond Drilling</u> No direct twinned holes of historic hole traces have yet been drilled by Equus Mining. No adjustment to the historic drill assay data was made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 <u>Historic Diamond Drilling</u> The datum South American 69 Huso 19 south was adopted for the drill collar surveying and topographic bases For the historic drill hole collar data, the drill hole collars were surveyed with an industry standard theodolite and total station survey instruments by in-house and third party contractors. Equus Mining undertook initial random field checks on historic collar locations. Historic collar locations were generally found to be within ±10m of the expected position. The majority of the historic diamond drill hole collars were surveyed with a Sperry-sun down hole survey instrument.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 <u>Historic Diamond Drilling Sampling</u> Results will not be used for resource estimation prior to any supporting drilling being carried out. Compositing of assay results where applicable on contiguous samples has been applied on a weighted average basis.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 <u>Historic Diamond Drilling</u> Vein orientations are currently interpreted as being sub-vertical and generally strike north-south and north-west and hence historic drilling from surface has been aligned, where possible, to intersect the veins structures at an orthogonal angle to their strike orientation. It is considered the drilling orientations were appropriate for the styles of mineralization under consideration and sampling achieves an un-biased representation of the mineralization.
Sample security	• The measures taken to ensure sample security.	• An internal sample security protocol program was implemented by CMCB during the course of exploration from 2002-2017
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the data management system have been carried out.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary							
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Equus Mining Limited on the 2nd December 2021 executed the 100% acquisition of Mandalay Resources Corporation (TSX:MND, OTCQB: MNDJF) Cerro Bayo Project in Region XI, Southern Chile whereby Equus Mining Limited owns 100% of all the mine infrastructure, including the operational 0.5Mtpa Cerro Bayo flotation plant and stockpile processing, mining infrastructure, existing mineral resources and 294 sqkm mining claim package. The laws of Chile relating to exploration and mining have various requirements. As the exploration advances, specific filings and environmental or other studies may be required. There are ongoing requirements under Chilean mining laws that will be required at each stage of advancement. Those filings and studies are maintained and updated as required by Equus Mining's environmental and permit advisors specifically engaged for such purposes. 							
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Historic exploration was conducted by Compania Minera Cerro Bayo Ltda which included drilling and surface sampling and mapping. 							
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Cerro Bayo district hosts epithermal veins and breccias containing gold and silver as well as base metal mineralisation. The deposits show multiple stages of mineralisation and display open-space filling and banding, typical of low-sulphidation epithermal style mineralisation. Mineralogy is complex and is associated with mineralisation and alteration assemblages that suggest at least three stages of precious and base metal deposition. Exploration model types of both Low Sulphidation (e.g. Cerro Negro, Santa Cruz, Argentina) and Intermediate Sulphidation deposits (San Jose and Cerro Moro, Santa Cruz, Argentina and Juanacipio, Mexico) are being targeted 							
Drill hole • A summary of all inj Information • A summary of all inj Information • material to the underexploration results in tabulation of the foliniformation for all N holes: • easting and nor hole collar • elevation or RL (elevation above metres) of the d • dip and azimuth • down hole length. • hole length. • If the exclusion of the basis information is not N exclusion does not a understanding of the	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and 	Historic Diamond Drilling Sampling• All drill hole collar positions were determined by an industry standard theodolite and total station survey instruments by in- house and third party contractors using the grid system SAD69 UTM Zone 19S Historic Drill Hole CollarsHole IDTargetEast (SAD 69 Zone19S)North (SAD 69 Zone19S)Dip (m)Azim -x°Total Depth (m)CDE032PEGASO VII27189348429454007070130.12CDE033PEGASO VII27192948433703947110580.05							
	 interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the 	CDE034 PEGASO VII 271928 4843371 393 90 0 110.05 CRH-29 PEGASO VII 271673 4843107 431 44 120 138.85 CRH-30 PEGASO VII 271696 4842830 393 38 301 87.75 CRH-31 PEGASO VII 271738 4842910 392 48 320 152.35 CRH-33 PEGASO VII 271715 4843274 425 45 254 137.05							

24 February 2023

Criteria	JORC Code explanation	Commer	ntary						
	Competent Person should clearly	CRH-36	PEGASO VII	271740	4843226	431	40	56	80.50
	explain why this is the case.	CRH-37	PEGASO VII	271634	4843127	439	47	123	211.85
		CRH-38	PEGASO VII	271815	4843767	374	40	91	109.05
		CRH-39	PEGASO VII	271875	4843340	393	49	101	112.35
		CRH-40	PEGASO VII	271839	4843225	394	35	91	133.25
		CRH-41	PEGASO VII	271806	4843347	405	50	104	190.25
		CRH-44	PEGASO VII	271913	4842801	341	38	57	115.80
		CRH-45	PEGASO VII	272022	4842733	319	40	230	109.50
		CRH-51	PEGASO VII	271907	4842943	397	55	243	185.65
		CRH-52	PEGASO VII	271904	4843011	400	56	257	190.60
		CRH-54	PEGASO VII	271883	4842642	340	52	63	219.05
		CRH-55	PEGASO VII	271872	4842781	342	39	59	200.75
		CRH-56	PEGASO VII	271912	4842902	393	42	85	93.90
		CRH-57	PEGASO VII	271905	4842943	397	27	240	140.85
		CRH-58	PEGASO VII	271904	4843010	400	20	260	100.35
		CRH-59	PEGASO VII	271925	4842571	325	47	65	201.20
		CRH-60	PEGASO VII	271926	4842571	325	31	66	150.15
		CRH-61	PEGASO VII	271945	4842508	320	41	65	173.60
		CRH-62	PEGASO VII	271827	4842812	354	25	60	140.85
		CRH-63	PEGASO VII	271909	4842591	327	55	67	250.10
		CRH-64	PEGASO VII	271930	4842532	322	55	67	235.50
		DGA001	PEGASO VII	271931	4842532	323	30	55	210.35
		DGA002	PEGASO VII	271945	4842508	320	47	65	220.50
		DGA003	PEGASO VII	272042	4842841	315	30	262	140.75
		DGA004	PEGASO VII	272042	4842841	315	64	262	171.15
		DGA005	PEGASO VII	272025	4842739	318	77	265	168.05
		DGA006	PEGASO VII	271945	4842508	320	41	98	281.95
		DGA007	PEGASO VII	271880	4842945	397	50	90	194.90
		DGA008	PEGASO VII	271904	4843010	400	53	90	218.80
		DGA009	PEGASO VII	272101	4842808	299	26	50	269.05
		DGA010	PEGASO VII	272010	4842400	202	53	276	282.00
		DGA012	PEGASO VII	272016	4842466	230	44	50	293.00
		DGA013	PEGASO VII	272101	4842808	298	41	306	280.60
		DGA014	PEGASO VII	272016	4842466	282	46	35	331.90
		DGA015	PEGASO VII	272101	4842808	299	58	250	266.60
		DGA016	PEGASO VII	271925	4842419	303	53	50	328.70
		DGA017	PEGASO VII	272110	4842753	290	59	250	293.60
		DGA018	PEGASO VII	272148	4842717	280	56	240	335.85
		DGA019	PEGASO VII	272017	4842459	285	49	46	407.30
		DGA020	PEGASO VII	272143	4842807	296	57	273	353.05

24 February 2023

Criteria	JORC Code explanation	Comme	ntary						
		DGA021	PEGASO VII	272069	4843297	366	53	232	350.10
		DGA022	PEGASO VII	272025	4842739	318	53	90	300.00
		DGA023	PEGASO VII	272378	4843092	387	36	249	305.30
		DGA024	PEGASO VII	272021	4843138	404	38	82	250.15
		DGA025	PEGASO VII	272021	4843138	404	59	251	271.80
		DGA026	PEGASO VII	272066	4843608	366	40	241	370.70
		DGA028	PEGASO VII	272066	4843608	366	31	281	295.30
		DGA029	PEGASO VII	271894	4842716	320	44	81	400.40
		DGA032	PEGASO VII	272167	4843030	385	41	262	316.60
		DLE001	PEGASO VII	271713	4843608	389	29	272	300.00
		DLE002	PEGASO VII	271633	4843125	430	29	270	258.70
		DLV16- 016	PEGASO VII	272276	4842695	271	29	64	581.90
		FCH477	PEGASO VII	272087	4843538	386	57	240	100.25
		FCH478	PEGASO VII	272092	4843541	386	55	60	85.05
		FCH479	PEGASO VII	272144	4843618	393	43	245	195.15
		FCH480	PEGASO VII	271979	4843821	327	44	240	236.75
		• D	rilling sam	ple assays	are shown i	n App	endix I	as per w	/hen
		re	eported for	r the first tir	ne.				
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Neither equivalent or upper or lower cut-off grades are used in any tables or summations of the data. Aggregated averages of rock sampled assays are weighted according to the sample length as per normal weighted average calculations. Gold Equivalent (AuEq) is based on the formula AuEq g/t = Au g/t + (Ag g/t / 75). The AuEq formula assumes a gold and silver price of US\$1,800/oz and US\$24/oz respectively and similar recoveries for gold and silver. Gold and silver recovery assumptions are based on historical performance of the Cerro Bayo processing plant 							ed average = Au g/t er price coveries s are essing
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known). 	Hist • In in dr m	oric Diamo tercepts q tervals at t ill holes v ineralisatio	nd Drilling uoted for his stage an vill be req on.	all drill hol Id further di uired to de	es rel rilling etermi	ate onl and relo	y to do ogging o true w	wn hole f historic idths of

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 <u>Historic Diamond Drilling</u> The location and visual results received in diamond drilling are displayed in the attached maps and/or tables.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Results for samples with material assay values are displayed on the attached maps and/or tables.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Metallurgical recovery tests have not been conducted. Historical recoveries from the processing of ore sourced from mines throughout the Cerro Bayo Mine district with similar characteristics and grades to that intersected in the exploration drill holes characteristically achieved approximately 89-93% for silver and 86%-91% for gold.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work including relogging, sampling of remaining core that hosts veining and brecciation, modelling of vein geometries, and exploration drilling is planned to test zones beneath and along strike from both high grade and anomalous precious metal and pathfinder element geochemical results.

ASX ANNOUNCEMENT 24 February 2023

Appendix I – Pegaso VII Summary Historic Drill Hole Assay Results

	Depth From	Depth To	Interval	Sample ID			Au Eq g/t
	(m)	(m)	(m)	Sample ID	Au g/t	Ag g/l	(Au +Ag/75)
CRH-44	28.86	29.44	0.58	285440	0.10	5.49	0.17
CRH-44	29.44	29.70	0.26	285441	3.13	239.37	6.32
CRH-44	29.70	30.35	0.65	285442	0.20	25.57	0.54
CRH-44	30.35	31.10	0.75	285443	0.27	12.12	0.43
CRH-44	35.23	36.37	1.14	285444	0.30	23.43	0.61
CRH-44	36.37	37.04	0.67	285445	11.21	5495.91	84.48
CRH-44	37.04	37.58	0.54	285447	0.36	41.06	0.90
CRH-44	37.58	37.85	0.27	285448	1.93	32.48	2.36
CRH-44	37.85	39.38	1.53	285449	0.13	11.75	0.28
CRH-44	48.20	49.66	1.46	285456	0.13	16.39	0.34
CRH-44	49.66	49.87	0.21	285457	0.96	598.17	8.93
CRH-44	49.87	50.90	1.03	285458	0.10	13.04	0.27
CRH-45	83.71	84.22	0.51	285578	3.02	92.99	4.25
CRH-45	84.22	84.63	0.41	285579	0.10	5.54	0.17
CRH-45	84.63	85.38	0.75	285580	0.13	7.03	0.22
CRH-45	85.38	85.76	0.38	285581	0.30	12.35	0.46
CRH-45	85.76	86.89	1.13	285582	4.42	287.72	8.25
CRH-45	86.89	87.77	0.88	285584	0.43	42.42	0.99
CRH-45	87.77	88.71	0.94	285585	0.46	108.23	1.90
CRH-54	166.48	167.28	0.80	286566	0.05	2.44	0.08
CRH-54	167.28	167.60	0.32	286567	1.12	436.77	6.94
CRH-54	167.60	168.20	0.60	286568	0.07	4.49	0.12
CRH-54	185.22	186.18	0.96	286574	0.05	4.01	0.10
CRH-54	186.18	187.00	0.82	286575	1.16	388.22	6.33
CRH-54	187.00	187.78	0.78	286577	0.89	199.25	3.54
CRH-54	187.78	188.43	0.65	286578	0.20	15.39	0.40
CRH-59	144.19	144.45	0.26	287200	2.18	181.79	4.60
CRH-59	144.45	145.11	0.66	287201	0.05	5.08	0.11
CRH-59	145.11	146.07	0.96	287202	0.05	1.00	0.06
CRH-59	146.07	146.58	0.51	287203	0.20	25.50	0.54
CRH-59	146.58	147.00	0.42	287204	0.05	5.12	0.11
CRH-59	147.00	148.00	1.00	287205	2.63	267.13	6.19
CRH-59	148.00	148.68	0.68	287206	0.53	19.64	0.79
CRH-59	150.79	151.64	0.85	287208	0.16	16.66	0.38
CRH-59	151.64	152.00	0.36	287209	10.01	1540.64	30.55
CRH-59	152.00	152.94	0.94	287211	0.30	22.52	0.60
CRH-59	152.94	153.36	0.42	287212	0.59	20.26	0.86
CRH-59	153.36	154.24	0.88	287213	0.13	13.60	0.31
CRH-59	154.24	154.86	0.62	287214	0.20	42.57	0.76

 EQUUS MINING LIMITED ABN 44 065 212 679

 Level 2, 66 Hunter Street, Sydney NSW 2000, Australia

 T: +61 2 9300 3366
 F: +61 2 9221 6333

24 February 2023

Hole ID	Depth From	Depth To (m)	Interval (m)	Sample ID	Au g/t	Ag g/t	Au Eq g/t (Au +Ag/75)
DGA004	17 14	18 14	1.00	17109	0.50	61 39	1 31
DGA004	18.14	19.02	0.88	17110	0.80	143.38	2.71
DGA004	19.02	19.42	0.40	17111	3.63	818.47	14.54
DGA004	19.42	19.95	0.53	17112	0.76	193.91	3.34
DGA004	131.06	131.75	0.69	17519	0.05	1.00	0.06
DGA004	131.75	132.55	0.80	17520	9.90	31.00	10.31
DGA004	132.55	133.55	1.00	17521	0.05	1.00	0.06
DGA007	71.60	72.33	0.73	24904	0.23	14.53	0.42
DGA007	72.33	73.05	0.72	24905	1.69	508.72	8.47
DGA007	73.05	73.48	0.43	24907	0.13	32.37	0.56
DGA007	128.80	129.80	1.00	24977	0.05	6.10	0.13
DGA007	129.80	130.30	0.50	24978	3.66	718.83	13.24
DGA007	130.30	131.30	1.00	24979	0.66	222.26	3.62
DGA007	131.30	132.30	1.00	24980	1.96	88.96	3.14
DGA007	132.30	132.80	0.50	24981	0.93	68.81	1.84
DGA007	132.80	133.80	1.00	24982	0.23	13.93	0.41
DGA007	133.80	134.23	0.43	24983	0.56	107.67	1.99
DGA007	128.80	129.80	1.00	24977	0.05	6.10	0.13
DGA009	235.31	235.50	0.19	25635	0.23	4.86	0.29
DGA009	235.50	235.93	0.43	25637	105.09	8967.16	224.65
DGA009	235.93	236.27	0.34	25638	157.82	5253.83	227.87
DGA009	236.27	236.63	0.36	25639	25.23	935.28	37.70
DGA009	236.63	236.95	0.32	25640	0.46	40.79	1.00
DGA009	236.95	237.35	0.40	25641	0.20	31.49	0.61
DGA010	114.30	114.67	0.37	26068	0.93	128.49	2.64
DGA010	114.67	115.02	0.35	26069	4.45	183.23	6.89
DGA010	115.02	115.45	0.43	26070	0.56	229.47	3.61
DGA010	162.00	162.53	0.53	26094	1.37	124.59	3.03
DGA010	162.53	163.50	0.97	26095	0.05	5.12	0.11
DGA010	168.15	169.15	1.00	26097	0.05	6.11	0.13
DGA010	169.15	170.15	1.00	26098	20.86	1393.46	39.43
DGA010	170.15	171.15	1.00	26099	0.20	14.04	0.38
5.64.04.0		476.45	4.00	264.00	0.05	5.45	0.40
DGA010	1/5.45	1/6.45	1.00	26100	0.05	5.45	0.12
DGA010	1/6.45	1/6./5	0.30	26101	0.13	21.15	0.41
DGA010	1/6./5	177.85	1.10	26102	0.73	56.94	1.48
				1		1	1
DGAUIU	102.00	102.00	1.00	26402	0.05	4 70	0.1.1
	192.06	193.06	1.00	26103	0.05	4.78	0.11
	192.06 193.06	193.06 193.40	1.00 0.34	26103 26104	0.05 3.00	4.78 613.46	0.11 11.17
DGA010 DGA010	192.06 193.06 193.40	193.06 193.40 193.72	1.00 0.34 0.32	26103 26104 26105 26107	0.05 3.00 0.70	4.78 613.46 163.79	0.11 11.17 2.88

24 February 2023

	Depth From	Depth To	Interval	Committee ID	A	A = = <i>(</i>);	Au Eq g/t
Hole ID	(m)	(m)	(m)	Sample ID	Au g/t	Ag g/t	(Au +Ag/75)
DGA012	35.66	36.22	0.56	26504	0.50	76.16	1.51
DGA012	36.22	36.70	0.48	26505	0.50	59.99	1.29
DGA012	36.70	37.01	0.31	26507	2.85	581.58	10.60
DGA012	37.01	37.31	0.30	26508	0.66	98.21	1.96
DGA012	37.31	37.62	0.31	26509	5.15	328.91	9.53
DGA012	37.62	38.00	0.38	26510	0.87	93.44	2.11
DGA012	40.10	40.42	0.32	26515	0.05	24.34	0.37
DGA012	40.42	40.83	0.41	26517	1.99	796.32	12.60
DGA012	40.83	41.40	0.57	26518	0.13	7.63	0.23
DGA012	226.00	226.52	0.52	26775	0.05	6.07	0.13
DGA012	226.52	227.45	0.93	26777	8.30	296.61	12.25
DGA012	227.45	228.05	0.60	26778	0.17	14.78	0.36
DGA012	228.05	228.50	0.45	26779	0.05	10.03	0.18
DGA012	234.85	235.10	0.25	26780	1.90	13.08	2.07
DGA012	236.25	236.50	0.25	26781	0.73	12.23	0.89
DGA012	257.95	258.62	0.67	26782	0.05	9.60	0.17
DGA012	258.62	259.10	0.48	26783	0.05	7.56	0.15
DGA012	259.10	259.50	0.40	26784	54.36	6601.94	142.38
DGA012	259.50	260.00	0.50	26785	1.86	174.03	4.18
DGA012	260.00	260.80	0.80	26787	0.90	48.95	1.55
DGA012	260.80	261.40	0.60	26788	0.30	37.93	0.80
DGA015	204.06	204.45	0.39	27397	3.86	14.90	4.05
DGA015	204.45	205.45	1.00	27398	2.42	9.38	2.54
DGA017	113.16	113.83	0.67	27832	0.30	12.33	0.46
DGA017	113.83	114.86	1.03	27833	0.05	5.75	0.12
DGA017	114.86	115.88	1.02	27834	0.05	5.18	0.11
DGA017	115.88	116.15	0.27	27835	20.88	860.94	32.35
DGA017	116.15	117.00	0.85	27837	0.05	3.80	0.10
DGA017	227.85	228.70	0.85	27890	0.63	46.25	1.24
DGA017	228.70	229.60	0.90	27891	2.81	30.86	3.22
DGA017	229.60	230.50	0.90	27892	3.12	42.27	3.68
DGA017	230.50	231.50	1.00	27893	0.33	23.73	0.64
DGA020	145.23	145.84	0.61	29599	16.93	64.58	17.79
DGA020	269.17	269.72	0.55	29859	0.05	3.63	0.09
DGA020	276.40	276.62	0.22	29860	5.33	1149.73	20.65
DGA020	284.05	284.40	0.35	29861	0.05	5.59	0.12
DGA029	83.86	84.70	0.84	34964	7.65	37.25	8.14
DGA029	84.70	85.60	0.90	34965	0.05	3.84	0.10
DGA029	95.50	96.50	1.00	34966	0.05	3.53	0.09

 EQUUS MINING LIMITED ABN 44 065 212 679

 Level 2, 66 Hunter Street, Sydney NSW 2000, Australia

 T: +61 2 9300 3366
 F: +61 2 9221 6333

Hole ID	Depth From (m)	Depth To (m)	Interval (m)	Sample ID	Au g/t	Ag g/t	Au Eq g/t (Au +Ag/75)
DGA029	96.50	96.85	0.35	34967	1.03	168.07	3.27
DGA029	101.50	102.50	1.00	34971	0.05	1.00	0.06
DGA029	102.50	103.52	1.02	34972	1.85	457.25	7.94
DGA029	103.52	104.40	0.88	34974	0.20	26.74	0.55
DGA029	126.30	127.00	0.70	34997	0.05	5.10	0.11
DGA029	127.00	127.45	0.45	34998	5.97	1635.08	27.77
DGA029	127.45	128.45	1.00	35000	0.27	66.00	1.15
DGA029	128.45	129.45	1.00	35001	0.05	3.06	0.09