31 December 2016

Equus Mining at a Glance

ASX listed Resource Company focused on developing natural resource projects strategically located near existing mine infrastructure. The company has just acquired the rights to 100\% of the Los Domos Gold and Silver project located adjacent to the operating Cerro Bayo mine.
The company's Mina Rica thermal coal project, located adjacent to ship loading facilities, is focused on developing thermal coal resources for the Chilean power generation market and replacing the high level of thermal coal imports.

Facts
ASX Code:
Share Price (27 Jan 2017): \$0.013
Shares on Issue: 534M
Market Capitalisation: A\$6.9M

Directors and Officers

Mark Lochtenberg
Non-Executive Chairman
Ted Leschke
Managing Director
Juerg Walker
Non-Executive Director

Robert Yeates

Non-Executive Director
Marcelo Mora
Company Secretary

Equus Mining Limited

ABN 44065212679
Level 2, 66 Hunter Street
Sydney NSW 2000
Australia
T +619300 3366
F +6192216333
E info@equusmining.com
W www.equusmining.com

Quarterly Activities Report December 2016

Equus Mining Limited ('Equus' or 'Equus Mining') (ASX: EQE) is pleased to report on its activities for the quarter ended 31 December 2016.

Summary of Activities

Los Domos Gold-Silver Project

- The Los Domos gold-silver project located in Chile's XI Region and adjacent to the operating Cerro Bayo mine.
- Field mapping and sampling to better define known gold-silver and base metal epithermal mineralisation at the T7 Structure Prospect commenced during the December 2016 quarter. Initial assay results, for intercepts that are predominantly remain open, are as follows:

Channel	Intercept m	Au g / t	Ag g / t	Pb $\%$	Zn $\%$	Open
LDT004	4.00	2.71	215.7	0.34	0.11	To SW
LDT014	1.40	7.55	431.0	1.16	0.03	To SW \& NE
LDT001	6.85	0.83	18.6	1.43	1.28	
LDT006	5.00	0.78	34.6	3.53	0.14	To SW \& NE
LDT007	4.70	1.72	48.2	0.70	0.07	To SW \& NE
LDT008	4.30	0.53	22.4	1.63	0.25	To SW \& NE
LDT002-3	3.00	1.61	48.4	0.07	0.02	To SW
LDT005	4.00	0.79	10.8	0.18	0.03	
LDT010-13	2.30	1.16	27.3	0.40	0.02	To SW \& NE
LDT015	0.60	0.79	7.1	0.17	0.12	To SW

- The overall T7 Structure Prospect is interpreted to extend over a minimum strike length of 1200 m as indicated by recent and historical sampling and mapping.
- Field work including channel sampling has commenced at the T1, T2 and T8 Structure Prospects. Previous sampling has shown these prospects to host high grade gold and silver mineralisation at surface including:
LD00013-0.40m @ 81.10 g/t Au \& $1996 \mathrm{~g} / \mathrm{t}$ Ag
LD00007-0.40m @ $\mathbf{5 0 . 6 8} \mathrm{g} / \mathrm{t}$ Au \& $326 \mathrm{~g} / \mathrm{t}$ Ag
LD00035-0.40m @ $32.73 \mathrm{~g} / \mathrm{t}$ Au \& $227 \mathrm{~g} / \mathrm{t}$ Ag
LD00081-0.40m @ $5.67 \mathrm{~g} / \mathrm{t}$ Au \& $1340 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$
LD00008-0.70m @ $17.16 \mathrm{~g} / \mathrm{t}$ Au \& $449 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$
- Assays from a further 188 samples are expected by mid-February.

M I N I NG LIM I TED
ABN 44065212679

Los Domos Gold-Silver Project

Equus Mining Limited (ASX: EQE) has 100\% rights to the Los Domos gold-silver project. See announcement dated on 25 October 2016 for further details. See Map 1 for the project's location. The Los Domos gold-silver project is located 10km south of the township of Chile Chico, Region XI, Chile and the project area's altitude range of 8001200 m and a dry, moderate climate permits year-round exploration. The project area is located 15 km southeast of the operating Cerro Bayo gold-silver mine and treatment plant which is owned by Mandalay Resources and is currently producing around 30 Kozpa gold and 3 Mozpa of silver. Reserves as of March 2015 were 142 Kozpa gold and 14.9 Mozpa of silver (Source: Mandalay Resources Corporation - Cerro Bayo Project Technical Report NI 43-101 - March 13, 2015).

Map 1. Los Domos Gold-Silver Project Location

Previous mapping and rock chip sampling to date throughout the Los Domos Project area (See Map 2) has delineated multiple structural corridors hosting chalcedonic - saccaroidal quartz veins and hydrothermal breccias. Apart from reconnaissance style mapping and sampling, these newly discovered structural corridors have never received any modern systematic exploration and hence have never been drill tested. Previous vein mapping and sample results have shown typical vertical precious metal, pathfinder element and quartz texture zonation:

- High grade gold and silver grades are reported predominantly in saccaroidal veins which outcrop at lower altitudes throughout the Los Domos Project area - typically below 1100m. See areas T1 \& T7SE in Map 3.
- Areas where both relatively higher antinomy and arsenic and intermittent grade gold and silver grades have been recorded typically occur between 1100 m and 1200 m . See areas T2 and the newly discovered T8 area.
- Areas where relatively higher antinomy and arsenic and other pathfinder element values are reported with only anomalous precious metal values are typically in veins at higher altitude above 1200 m . See areas T3, T4, T5, T6 and T7NW.

Understanding the vertical metal zonation within the epithermal vein system at Los Domos is key to guiding future exploration including drill testing (see announcement dated on 25 October 2016 for further discussion). Increased recognition of geochemical, vein quartz texture and alteration zonation of epithermal Au-Ag systems is delivering the next generation of discoveries of concealed deposits, such as those of Cerro Bayo (Mandalay) and Cerro Negro (Goldcorp).

MIN I NG LIMITED
ABN 44065212679

Map 2. Los Domos Gold-Silver Geochemical Sampling Results Summary

Fieldwork at Los Domos is Underway

Field work to better define and extend known multiphase high grade gold-silver and base metal mineralisation commenced during the December 2016 quarter for which initial assay results have been received. Rock channel sampling is being predominantly being carried out using a diamond saw to give continuous, representative results (See Photo1). The aim of this systematic sampling and mapping of surface mineralised vein and breccia structures and peripheral stockwork zones is to better define potential extensions to mineralised structures at surface and provide vectors to mineralization at depth for subsequent drill testing.

Photo 1. Diamond Saw Cutting for Continuous Rock Channel Sampling at Los Domos

T7 Structure Prospect

During the December 2016 Quarter channel sampling commenced on the T7 Structure Prospect (See Map 3 and Table 1) along a cumulative 400 m strike extent within an overall recently mapped extension of 700 m . Mineralization comprises of a series of steeply northeast to north-northeast dipping multiphase $\mathrm{Au}-\mathrm{Ag}$ quartz veins and brecciation which crosscut earlier adjacent $\mathrm{Au}-\mathrm{Ag}-\mathrm{Pb}-\mathrm{Zn}$ base metal sulphide veins, breccia and sulphide-silica replacement zones.

The host fault structure comprises a zone of intense silicification and interpreted high level crackle to jigsaw textured brecciation which varies in width from $25-75 \mathrm{~m}$ and extends over a cumulative minimum strike length of 1200 m as indicated by both recent and historical sampling and mapping. Importantly, most intercepts remain open along strike and the associated structures remain only partially sampled due to a considerable portion of mineralized outcrop hosted in portions of steep cliffs semi-parallel to the mineralized structures.

ABN 44065212679

At lower altitudes of the host structure's surface exposure centered at approximately 950 m absl, the southeast most channel LDT004 returned $4 \mathrm{~m} @ 2.7 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 215.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ and $0.34 \% \mathrm{~Pb}$ (including a 1 m interval reporting $8.08 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $699 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$). Along strike, 200 m further to the NW, trench LDT007 reported 5 m @ $1.72 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 48.2 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ and $0.70 \% \mathrm{~Pb}$, and 150 m further along strike trench LDT_014 reported a 1.4 m interval grading $7.55 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 431.0 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ and $1.16 \% \mathrm{~Pb}$. Numerous nearby, large angular quartz float blocks (up to 3 m in diameter) are interpreted to have been sourced from the same host structure along inaccessible fault scarps.

Previous reported chip samples results with $\mathrm{Au} \& \mathrm{Ag}$ mineralization include:

- 2.50 m @ $5.60 \mathrm{~g} / \mathrm{t} \mathrm{Au} \& 116 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (LD00086)
- 1.50 m @ $4.76 \mathrm{~g} / \mathrm{t} \mathrm{Au} \& 134 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (LD00065)
- 1.00 m @ $2.60 \mathrm{~g} / \mathrm{t} \mathrm{Au} \mathrm{\&} 131 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (LD00082)
- 0.50 m @ $2.5 \mathrm{~g} / \mathrm{t}$ Au \& $16.8 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (LD00087)

Table 1. Initial assay results from T7 Structure Prospect

Channel	M	Au g/t	Ag g/t	Pb \%	Zn \%	
LDT_004	4.00	2.71	215.7	0.34%	0.11%	open to SW
LDT_014	1.40	7.55	431.0	1.16%	0.03%	open to SW \& NE
LDT_001	6.85	0.83	18.6	1.43%	1.28%	
LDT_006	5.00	0.78	34.6	3.53%	0.14%	open to SW \& NE
LDT_007	4.70	1.72	48.2	0.70%	0.07%	open to SW \& NE
LDT_008	4.30	0.53	22.4	1.63%	0.25%	open to SW \& NE
LDT_002/3	3.00	1.61	48.4	0.07%	0.02%	open to SW
LDT_005	4.00	0.79	10.8	0.18%	0.03%	
LDT_010/13	2.30	1.16	27.3	0.40%	0.02%	open to SW \& NE
LDT_015	0.60	0.79	7.1	0.17%	0.12%	open to SW

The T7 mineralized structure is believed to host at least 2 epithermal phases with the high Au-Ag grade quartz vein hosted mineralization phase being emplaced at a later stage to the $\mathrm{Au}-\mathrm{Ag}-\mathrm{Pb}-\mathrm{Zn}$ sulphide mineralization, which is similar to that reported at the nearby Cerro Bayo Au-Ag mine. The relatively wide scale of silicification and brecciation that encompasses this mineralization suggests that the WNW-NW trending, host structure created dilatational zones conducive to emplacement of veining typical of both the adjacent Cerro Bayo mine and other nearby similar aged epithermal deposits throughout the Deseado Massif of Argentina (e.g. Cerro Negro).

Regional occurrences of epithermal system related sinter and paleo water table silica replacement at elevations between 1250-1300m, mapped north of the Los Domos project towards the Cerro Bayo Mine, suggest that the elevation of identified Au-Ag mineralization at T7 represent the upper level of the precious metal depositional interval of the epithermal system.

MININGLIMITED
ABN 44065212679

Map 3. T7 Structure Prospect Sampling Result Locations

Channel No.	Intercept M	$\mathrm{Aug} / \mathrm{t}$	$\mathrm{Ag} \mathrm{g} / \mathrm{t}$	$\mathrm{Pb} \%$	$\mathrm{Zn} \%$	Open Ended
LDT_008	4.30	0.53	22.4	1.63%	0.25%	To SW
LDT_010/13	2.30	1.16	27.3	0.40%	0.02%	To SW
LDT_014	1.40	7.55	431.0	1.16%	0.03%	To SW \& NE
including	0.90	9.46	523.0	1.27%	0.03%	

Channel No.	Intercept M	Aug/t	Ag g/t	Pb \%	Zn \%	Open Ended
LDT_007	4.70	1.72	48.2	0.70\%	0.07\%	To SW \& NE
Channel No.	Intercept M	Aug/t	Ag g/t	Pb \%	Zn \%	Open Ended
LDT_006	5.00	0.78	34.6	3.53\%	0.14\%	To SW \& NE
Channel No.	Intercept M	Au g/t	Ag g/t	Pb \%	Zn \%	Open Ended
LDT_001	6.85	0.83	18.6	1.43\%	1.28\%	To SW \& NE
Channel No.	Intercept M	Aug/t	Ag g/t	Pb \%	Zn \%	Open Ended
LDT_015	0.60	0.79	7.1	0.17\%	0.12\%	Open Ended
Channel No.	Intercept M	Aug/t	Ag g/t	Pb \%	Zn \%	Open Ended
LDT_005	4.00	0.79	10.8	0.18\%	0.03\%	To SW \& NE
Channel No.	Intercept M	Aug/t	Ag g/t	Pb \%	Zn \%	Open Ended
LDT_004	4.00	2.71	215.7	0.34\%	0.11\%	
including	1.00	8.08	699.0	0.29\%	0.04\%	To SW

Channel No.	Intercept M	$\mathrm{Aug} / \mathrm{t}$	$\mathrm{Ag} \mathrm{g} / \mathrm{t}$	$\mathrm{Pb} \%$	$\mathrm{Zn} \%$	Open Ended
LDT_002/3	3.00	1.61	48.4	0.07%	0.02%	

MININGLIMITED

T2 Structure Prospect

Rock channel sampling at the T2 Structure Prospect commenced in December 2016 (See Map 4). The prospect consists of a 30 m wide chalcedonic silica flooded, crackle to jigsaw brecciated zone with high grade Au and Ag bearing chalcedonic-sacaroidal quartz vein and breccia style mineralization. Previous chip samples included:

- $\quad 0.70 \mathrm{~m}$ @ $17.16 \mathrm{~g} / \mathrm{t} \mathrm{Au} \& 449 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (LD00008)

Coincident elevated path finder element concentrations ($\mathrm{Ba}, \mathrm{As}, \mathrm{Sb}$ and Ba) and precious metal combined with smectite>illite dominate alteration suggests that this prospect's topographic level between $1125-1175 \mathrm{~m}$ absl is within the upper transitional epithermal zone of precious metal deposition. Current sampling is being concentrated over the interpreted higher grade, lower altitude portions of T2 towards the NW. Interpreted high grade veining was recently been mapped and marked up for channel sampling over an approximate strike length of 650 m and Ag bearing minerals have been observed in rock samples and confirmed by hand portable x-ray fluoresence spectrometry where laboratory assays are still pending (See Map 5).

Interpreted high level crackle brecciation, extensive silicfication and smectite dominant alteration enveloping the vein structures at surface suggests the vein host structures at T2 are potentially more significant at depth than what is represented by the veins at surface. The T2 and T4 prospect host structures are interpreted as comprising the bounding faults of a +3.5 km long $x 450 \mathrm{~m}$ wide graben structure. Graben structures are indicative of extensional structural settings which are conducive to open space development and quartz vein emplacement and intrusion by high level subvolcanic rhyolitic flow dome complexes, as that observed at Los Domos.

Photo 2. Host Au and Ag bearing structures at the T8 Structure Target, Los Domos

MININGLIMITED
ABN 44065212679

Map 4. T2 Structure Prospect

MININGLIMITED

Diagram 1. Interpreted Graben at the T2 and T4 Structure Projects

Los Domos T2 \& T4 Interpreted Controls on Mineralisation-3.5km long Graben Structure

T1 Structure Prospect

Sampling has commenced at the T1 Structure Prospect. This prospect is interpreted to the strike extension of the T2 Structure Prospect and hence a continuation of the NE bounding fault of a NW trending tensional graben structure. See map 2 for prospect location.

The 22 m wide structural corridor with veins returning bonanza Au and Ag grades in previous sampling at lower elevations and is consistent with the epithermal mineral zonation model. Previous chip samples include:

- 0.40 m @ $81.10 \mathrm{~g} / \mathrm{t}$ Au \& $1996 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (LD00013)
- $0.40 \mathrm{~m} @ \mathbf{5 0 . 6 8} \mathrm{~g} / \mathrm{t}$ Au \& $326 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (LD00007)
- $0.40 \mathrm{~m} @ 32.73 \mathrm{~g} / \mathrm{t}$ Au \& $227 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (LD00035)
- 0.40 m @ $5.67 \mathrm{~g} / \mathrm{t}$ Au \& $1340 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (LD00081)

Current sampling is focuses on structures in at an altitude range of $1000-1100 \mathrm{~m}$ which is with the precious metal epithermal window. Numerous assays are pending (See Map 5).

MININGLIMITED
ABN 44065212679

Map 5. T1 \& T2 Structure Prospect - Pending Assays

T8 Structure Prospect

The T8 Structure Prospect features a newly delineated $25-100 \mathrm{~m}$ wide $\times 450 \mathrm{~m}$ long NNW trending zone of silicification and hematite rich, brecciated poorly welded tuff which outcrops between 1050-1150m absl and which hosts widespread dominantly chalcedonic quartz veining over individual widths of up to 3 m . (See map 2 for prospect location). Preliminary analysis of selective vein samples with a hand held XRF unit has indicated the presence of elevated Ag grades. Channel sampling and mapping at this prospect commenced in January 2017

Photo 2. T8 Structure Prospect outcrop

Corporate

Exploration Expenditure

During the quarter ended 31 December 2016 Equus invested a total of $\$ 53 \mathrm{~K}$ in direct exploration.

Yours sincerely

Edward Leschke

Managing Director

pjn8766

For further information please contact:
Ted Leschke - Managing Director
Ph: +61 293003366

Email: tleschke@equusmining.com
Website: www.equusmining.com

MININGLIMITED
ABN 44065212679
${ }^{\text {(i) }}$ All the material assumptions underpinning exploration results for samples numbers LD00001 to LD00102 are outline in Table 1 in the initial public reports for Los Domos Gold-Silver project (see ASX release dated 25 October 2016) continue to apply and have not materially changed.
${ }^{(i i)}$ All the material assumptions underpinning exploration results for samples numbers LD00103 to LD00235 are outline in Table 1 and Appendix 1 in this report for Los Domos Gold-Silver project.

COMPETENT PERSON'S STATEMENT:

The information in this report that relates to Exploration Results for the Los Domos Gold-Silver project is based on information compiled by Damien Koerber. Mr Koerber is a geological consultant to the Company. Mr Koerber is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Koerber has a beneficial interest as shareholder and Director of Terrane Minerals SpA ('vendor') in Los Domos Gold-Silver project and consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Tenement Information

Acquired during the quarter	Disposed during the quarter	Held at the end of the quarter	Location	Ownership
		Mina Rica 1, 2, 4, 6, 8, $11,12,15,16,19,20$, 23, 26, 29-31	Mina Rica, Magallanes, Chile	Carbones del Sur
		Kol 1 to 12, 14-16	Mina Rica, Magallanes, Chile	Carbones del Sur
		Brunswick 3A, 4A	Mina Rica, Magallanes, Chile	Carbones del Sur
		Mina Rica 32-39	Mina Rica, Magallanes, Chile	Carbones del Sur
		Rio Rubens 1 to 11	Rubens, Magallanes, Chile	Carbones del Sur
		Rio Rubens Este 1 to 7	Rubens, Magallanes, Chile	Carbones del Sur
			Rubens, Magallanes, Chile	Carbones del Sur
		Rio Perez A to H	Perez. Magallanes, Chile	Carbones del Sur
			Perez, Magallanes, Chile	Carbones del Sur
			Perez, Magallanes, Chile	Carbones del Sur
		Skyring 1-31	Perez, Magallanes, Chile	Carbones del Sur
Electrum 1-11 (under JV option)		Electrum 1-11 (under JV option)	Chile Chico, XI Region, Chile	Terrane Minerals SpA ${ }^{(1)}$
Pedregoso I, VIII		Pedregoso I, VIII	Chile Chico, XI Region, Chile	Terrane Minerals SpA ${ }^{(1),(2)}$
Honda 20		Honda 20	Chile Chico, XI Region, Chile	Terrane Minerals SpA ${ }^{(1),(2)}$
		Osenace	Ghana	Equus 90\%
		Asamankese	Ghana	Equus 90\%
		Pramkese	Ghana	Equus 90\%
		Kwatechi	Ghana	Equus 7\% equity interest

(1) The Company's wholly owned subsidiary, Southern Gold SpA has an option to acquire 100% of the Los Domos Gold project. The Company is earning a 51\% interest in the project through the drilling program of 2,000 metres.
(2) As part of Los Domos Gold project, Terrane Mineral SpA has an option to acquire 100\% of the Mining concessions from Patagonia SCM.
A. DIAMOND SAW CHANNEL SAMPLING

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Diamond Saw Channel Sampling - Sawn Channel samples were collected of quartz veins and zones of silicification, within Jurassic age lbanez Formation rhyolite ignimbrite by a qualified geologist. - Sample locations were surveyed with a handheld GPS using Coordinate Projection System SAD69 UTM Zone 19S. - Representative channel samples of $2-3 \mathrm{Kg}$ weight were taken across the strike of the outcrop over various width intervals except where noted. Intervals were cut at right angles to geological strike except where noted. - Limited analysing of hand samples was conducted by a handheld XRF instrument prior to despatch of samples for conventional laboratory analysis.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling was carried out in this sampling programme
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling was carried out in this sampling programme
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	- Sawn Channel samples were geologically logged by a qualified geologist. - The orientation of the associated mineralised structures was logged by a qualified geologist.

- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage of the relevant intersections logged.

Sub-sampling

techniques and
sample
preparation

- If core, whether cut or Rock Chip and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

Quality of assay
 data and
 laboratory tests
 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

Verification of
 sampling and

assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

| Location of data | Accuracy and quality of surveys used to locate drill |
| :--- | :--- | :--- |
| points | holes (collar and down-hole surveys), trenches, mine | workings and other locations used in Mineral Resource

Diamond Saw Channel Sampling

- Samples were stored in a secure location and transported to the ALS laboratory in in Santiago for sample preparation of fine crush, riffle split and pulverizing of 1 kg to $85 \%<75 \mu \mathrm{~m}$ under laboratory code Prep-31
- Pulps were analysed by ALS Santiago using method code Au-ICP21, ME-MS41, Ag-OG46 (for Ag values > 100 $\mathrm{g} / \mathrm{t} \mathrm{Ag}$) and $\mathrm{Zn}-\mathrm{AA} 62$ y $\mathrm{Pb}-\mathrm{AA} 62$ for Zn and Pb values over 1% respectively
- Alternate blanks and certified standards were submitted within each laboratory batch at a ratio of $1: 15$ (i.e. 65%) for which acceptable levels of accuracy were reported

Diamond Saw Channel Sampling

- Laboratory CSV files are merged with GPS Location data files using unique sample numbers as the key.
- No adjustments made to assay data

Sawn Channel samples were a minimum width of 30 cm and approximate sample support of half core NQ from diamond drilling, ie sample diameter of 56 mm , being a half core sample of that.

Diamond Saw Channel Sampling

- Samples are located using handheld GPS receivers.
- Coordinate Projection System SAD69 UTM Zone 19S
- Specification of the grid system used
- The topographic control, using handheld GPS, was adequate for the survey.
- Quality and adequacy of topographic control.

Data spacing

 and distribution- Data spacing for reporting of Exploration Results
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- Whether sample compositing has been applied.
- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

Sample security • The measures taken to ensure sample security.

Audits 0

reviews

- The results of any audits or reviews of sampling techniques and data.

Orientation of

data in relation
to geological structure

Rock Chip Channel Sampling

- Results will not be used for resource estimation prior to any supporting drilling being carried out.
- Compositing of assay results where applicable on contiguous samples has been applied on a weighted average basis.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	- Equus Mining Limited holds the rights to acquire 100% of Los Domos PROJECT which consists of exploration licences Electrum 1 to 11, exploration claim application Electrum 12 and mining licenses Pedregoso 7 1-30, Pedregoso 1 1-30 and Honda 20 1-20. - Through an agreement, Terrane Minerals SpA will transfer all its LOS DOMOS PROJECT assets into a new JV company (51% Equus, 49% Terrane) for Equus funding a programme of systematic surface sampling and $2,000 \mathrm{~m}$ of drilling. - Post the initial exploration programme Equus has a one-year option to acquire the remaining 49% of the JV company by issuing Terrane $A \$ 450 \mathrm{k}$ in shares at a fixed share price based on the market at the time of agreement execution. Vendor shares will be escrowed for 1 year. - The laws of Chile relating to exploration and mining have various requirements. As the exploration advances, specific filings and environmental or other studies may be required. There are ongoing requirements under Chilean mining laws that will be required at each stage of advancement. Those filings and studies are maintained and updated as required by Equus Mining's environmental and permit advisors specifically engaged for such purposes.
Exploration done by other	- Acknowledgment and appraisal of exploration by other parties.	- All sampling to date has been done by Damien Koerber who is a qualified geologist with 20 years of experience in Latin America and is a Member of the Australian Institute of Geoscientists

LDT_020	288760	4828063	1151	35	0	1
LDT_021	288758	4828064	1151	35	0	1
LDT_022	288746	4828078	1134	50	15	2.8
LDT_023	288673	4828189	1141	40	10	3.1
LDT_024	288654	4828226	1072	45	0	1
LDT_025	288652	4828227	1069	45	0	0.9
LDT_026	288648	4828230	1066	45	0	0.85
LDT_027	288371	4828546	985	35	5	3.25
LDT_028	288325	4828527	1007	60	0	1.8

Data aggregation

 methods- In reporting Exploration Results weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high rades) and cut-off grades are grades) and cut-off grades are usually

Material and should be stated.

- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical be stated and some typical should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.
- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true
- Neither equivalent, aggregate or upper or lower cut-off grades were used in any tables or summations of the data.

Relationship
between
mineralisation
widths and
intercept
lengths

- All sample intervals were taken perpendicular to the strike of the vein outcrop

Criteria	JORC Code explanation	Commentary
	width not known').	
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- The location and results received for Diamond Saw Channel samples are displayed in the attached maps and/or Tables.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- Results for all samples collected in this program are displayed on the attached maps and/or Tables.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- No metallurgical or bulk density tests were conducted at the project.
Further work	- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	- Further work is dependent on management review of the existing data.

Appendix 1 - Los Domos Sample Assays

Sample	$\begin{gathered} \text { East } \\ \text { SAD69 } \end{gathered}$	North SAD70	Altitude	Vein Width	Strike	Dip	Au	Ag	As	Sb	Zn	Pb	Cu	Hg	Mo
Number	H19	H19	(m)	(m)	(x°)	$\left(-x^{\circ}\right)$	ppm	ppm	ppm	ppm	\%	\%	ppm	ppm	ppm
LD00001	289578	4827518	985	0.05	0	0	0.052	6	85	22	0.0085	0.0291	136	0.005	5
LD00002	289581	4827217	1166	0.1	290	85	0.003	1	37	19	0.002	0.0016	9	0.005	2
LD00003	289467	4827236	1150	0.1	115	90	0.003	4	530	11	0.0026	0.0016	12	0.005	7
LD00004	289467	4827286	1108	0.1	115	80	0.003	1	329	9	0.0022	0.0025	8	0.005	2
LD00005	289417	4827258	1140	0.05	0	0	0.007	2	172	2.5	0.0061	0.0102	10	0.005	14
LD00006	288363	4828792	944	0.15	345	85	0.003	3	18	9	0.0036	0.0046	24	0.005	4
LD00007	287937	4829088	1040	0.4	125	80	50.68	326	112	14	0.0259	0.0396	28	0.005	10
LD00008	288638	4828225	1127	0.7	125	70	17.16	449	155	14	0.02	0.045	21	0.005	10
LD00009	288363	4828831	961		0	0	4.906	179	54	22	0.0034	0.0054	159	0.005	13
LD00010	289520	4827075	1185	0.1	125	70	0.054	12	1019	111	0.0101	0.0056	11	0.005	6
LD00011	287453	4828410	1177	0.15	120	70	0.035	3.7	177	41	0.0027	0.0042	6	0.56	3
LD00012	289583	4827214	1181	0.5	115	80	0.003	1	336	58	0.0074	0.0046	27	0.005	4
LD00013	287874	4829123	1073	0.4	120	65	81.1	1996	124	61	0.0029	0.015	29	0.005	16
LD00014	289275	4826982	1181	0.15	0	0	110.1	51	29	10	0.0033	0.0073	16	0.005	2
LD00015	289519	4827150	1212	0.5	115	80	0.023	2	230	20	0.0044	0.0035	8	0.005	4
LD00016	288583	4826114	1174	0.15	330	70	0.606	14.3	94	18	0.0131	0.0539	6	0.15	1
LD00017	287294	4828568	1184	0.5	320	80	0.011	3	91	47	0.0123	0.0165	30	0.005	66
LD00018	288457	4825476	1230	0.1	330	80	0.005	0.5	20	24	0.0027	0.0017	3	0.28	1
LD00019	288581	4826114	1187		60	70	0.078	0.5	72	10	0.0054	0.0306	78	0.005	2
LD00020	288425	4826416	1281		170	60	0.276	0.5	79	31	0.0052	0.0225	92	0.005	5
LD00021	288715	4828516	929		0	0	0.286	11	45	10	0.0167	0.0079	102	0.005	5
LD00022	288782	4824445	980	0.3	190	80	0.054	28	413	69	0.2099	0	197	0.005	6
LD00023	287391	4828410	1211	0.15	0	0	0.007	0.5	18	6	0.0005	0.0005	4	0.08	0.5
LD00024	290067	4827612	790	5	0	90	0.005	0.5	2.5	2.5	0.0045	0.001	4	0.005	4
LD00025	288320	4828873	959	0.3	0	0	0.07	97	73	47	0.0869	0.3552	275	0.005	17
LD00026	289562	4827224	1177	0.4	130	90	0.003	0.5	94	25	0.0037	0.0023	10	0.005	3

LD00027	289664	4827493	949	0.4	0	0	0.01	1	144	63	0.0261	0.0072	4	0.98	5
LD00028	289742	4826207	1136	0.5	180	80	0.387	2.1	160	9	0.0012	0.0275	7	0.29	11
LD00029	287757	4829604	1200	5	120	85	0.099	3.7	47	13	0.0007	0.0024	2	0.18	1
LD00030	288637	4828583	931	1	340	80	0.003	2	23	13	0.0043	0.0047	13	0.005	3
LD00031	288108	4830397	1254		0	0	0.005	0.5	18	12	0.0012	0.0027	1	0.33	1
LD00032	288460	4825479	1235	0.03	330	80	0.005	0.6	32	15	0.0019	0.0018	2	0.27	1
LD00033	288581	4824638	969		0	0	0.003	2	445	11	0.008	0.0406	11	0.005	4
LD00034	288734	4824769	1120		290	80	0.02	2	376	14	0.0025	0.0079	11	0.005	20
LD00035	287920	4829095	1048	0.4	120	75	32.73	227	64	8	0.0028	0.008	15	0.005	12
LD00036	289174	4825208	1232		0	0	0.005	0.5	33	8	0.0032	0.0042	2	0.13	2
LD00037	288641	4828583	931	0.06	340	80	0.003	6	29	7	0.0057	0.0062	16	0.005	3
LD00038	288202	4826310	1324		0	0	0.005	0.6	12	5	0.0022	0.0017	11	0.52	0.5
LD00039	289115	4824528	964	2.5	300	60	0.148	7.5	218	46	0.0565	0.176	50	0.68	3
LD00040	290188	4827367	827	0.15	0	0	0.062	51	46	53	0.0126	0.0048	17	0.005	7
LD00041	287314	4830356	1320	0.02	130	30	0.005	0.5	30	9	0.0013	0.0032	2	0.07	1
LD00042	288470	4825408	1213	0.03	340	70	0.01	0.6	54	15	0.0032	0.0016	3	0.67	2
LD00043	288714	4824787	1124	0.5	300	80	0.635	5.1	247	22	0.001	0.0021	2	0.18	2
LD00044	289245	4824328	890	2.5	0	0	0.811	92.2	382	124	0.0213	0.0829	101	4.06	3
LD00045	288689	4824804	1139	1	290	80	0.007	4	549	17	0.0053	0.0049	13	0.005	48
LD00046	288426	4826338	1261	0.1	180	75	0.05	23.2	47	46	0.0121	0.0643	24	1.34	1
LD00047	289248	4824330	890	0.5	0	0	0.852	43.1	309	101	0.0643	0.084	170	3.87	3
LD00048	288264	4825381	1003	1	330	80	0.008	3	851	32	0.006	0.0148	32	0.005	4
LD00049	288408	4828543	942	0.3	330	80	0.33	40							
LD00050	288406	4825254	1176	0.03	340	90	0.006	0.5	43	15	0.0012	0.0014	3	0.21	1
LD00051	288875	4824672	1047	0.1	0	0	0.026	1.7	83	11	0.0025	0.0037	3	0.15	2
LD00052	288457	4825113	1196	0.1	340	90	0.006	0.5	40	12	0.0019	0.0019	3	0.12	1
LD00053	288064	4830474	1272		0	0	0.005	0.5	19	16	0.0009	0.0014	2	0.21	2
LD00054	289226	4824369	918	2	330	85	0.412	6.6	435	26	0.0182	0.16	39	0.23	1
LD00055	287321	4830364	1190		0	0	0.005	0.5	12	13	0.0032	0.0021	3	0.29	2
LD00056	289481	4826229	983	0.05	0	0	0.414	2.7	72	69	0.0016	0.0004	4	0.04	1
LD00057	288952	4825249	1250		0	0	0.005	0.5	32	8	0.0028	0.0017	3	0.08	1
LD00058	288417	4826250	1304	0.3	335	85	0.012	3	346	73	0.0398	0.0165	7	0.63	8

LD00059	288153	4828413	1036	0.2	230	80	0.04	2							
LD00060	289242	4824224	997	0.1	330	75	0.462	33	67	10	0.0013	0.0015	3	0.88	2
LD00061	288744	4824111	1196	0.1	280	90	0.021	0.8	43	19	0.0021	0.0037	7	0.29	2
LD00062	288473	4825468	1212	1	20	90	0.005	0.5	11	9	0.0037	0.0024	3	0.07	1
LD00063	289219	4824297	990	0.2	330	70	2.25	61.8	104	41	0.213	0.784	60	3.2	2
LD00064	289251	4824334	890	1.5	0	0	0.072	2.3	138	25	0.0426	0.0671	104	0.27	3
LD00065	289247	4824330	890	1.5	0	0	4.76	134	257	98	0.0198	0.0826	137	5.14	1
LD00066	288417	4826097	1225	0.01	330	90	0.273	3.2	82	30	0.0014	0.0016	3	0.14	1
LD00067	288585	4828292	1121	0.3	140	70	0.17	21							
LD00068	288703	4824222	1083	0.5	180	75	0.112	3.9	105	10	0.0023	0.0099	3	0.16	2
LD00069	288486	4828486	1085	0.4	0	90	0.09	19							
LD00070	288428	4825975	1219	0.05	330	90	0.007	1.1	69	6	0.0005	0.0051	2	0.18	1
LD00071	288431	4826416	1290	0.15	330	90	0.006	2.6	7	14	0.0043	0.0019	7	0.24	1
LD00072	288660	4827718	1195	2			0.01	1							
LD00073	288414	4826155	1258	0.4	330	80	0.005	0.5	45	7	0.0029	0.0028	6	0.07	1
LD00074	289220	4827060	1208	5			0.02	1							
LD00075	288428	4826417	1285	0.1	330	90	0.008	6.6	17	28	0.0034	0.0066	9	0.18	0.5
LD00076	288276	4828466	977	0.15			0.01	2							
LD00077	288602	4828281	1122	0.4	140	70	0.29	14							
LD00078	288420	4826097	1225	0.05	0	0	0.025	0.9	53	8	0.0008	0.0015	4	0.24	2
LD00079	289328	4824385	1180	1	340	70	2.24	19							
LD00080	289246	4824224	997	0.01	320	70	0.013	1.2	92	7	0.0009	0.0011	3	0.02	3
LD00081	287825	4829201	1069	0.4	140	70	5.67	1340							
LD00082	289224	4824394	1175	1	340	70	2.6	131							
LD00083	289237	4824238	1008	0.1	330	75	0.176	19	50	17	0.0012	0.0163	5	0.25	1
LD00084	290086	4827599	789	5	0	90	0.005	0.5	2.5	2.5	0.0045	0.001	4	0.005	4
LD00085	290503	4824704	774	0.2	0	0	0.128	7.1	31	2.5	0.0019	0.004	16	0.19	3
LD00086	289224	4824329	915	2.5	330	70	5.6	116	215	107	0.0234	0.0853	162	3.46	1
LD00087	289145	4824369	976	0.5	0	0	2.49	16.8	38	8	0.0058	0.0256	24	0.44	0.5
LD00088	288679	4825749	1220	0.1	330	80	0.014	1	147	37	0.0007	0.0016	2	0.11	2
LD00089	289264	4824210	989	0.1	310	80	0.093	2.5	28	9	0.0012	0.0003	3	0.08	0.5
LD00090	290049	4827005	996	0.05	0	0	0.054	2.5	122	23	0.0008	0.0009	3	0.04	0.5

LD00091	288407	4826014	1206	0.2	330	60	0.019	0.8	84	76	0.0025	0.0019	4	0.05	1
LD00092	288715	4825830	1212	0.1	330	90	0.05	4.5	815	42	0.0847	0.0026	14	0.38	4
LD00093	288417	4826130	1228	0.5	330	90	0.102	2.9	351	30	0.0033	0.0116	4	0.6	2
LD00094	288948	4825236	1214	0.5	150	80	0.007	0.6	54	11	0.0026	0.0008	4	0.14	0.5
LD00095	289217	4824383	959	1	0	0	0.16	1.9	44	15	0.0269	0.1155	57	0.08	0.5
LD00096	288698	4825723	1207	0.5	170	85	0.028	1.4	17	37	0.0021	0.0006	4	0.16	1
LD00097	289628	4825846	1131	0.05	0	0	0.128	4.2	170	9	0.0061	0.0151	7	0.19	14
LD00098	289394	4826173	1005	0.1	0	0	0.109	1.8	425	25	0.0049	0.001	4	0.05	1
LD00099	288889	4825941	1137	0.1	0	0	0.005	0.5	76	2.5	0.002	0.0017	4	0.04	1
LD00100	288683	4825778	1216	0.1	340	90	0.025	2.2	313	35	0.001	0.004	3	0.48	5
LD00101	289416	4826193	1011	0.2	0	0	0.036	1.7	178	14	0.008	0.0029	4	0.05	3
LD00102	288796	4825699	1226	1	170	85	0.046	2.6	14	52	0.0013	0.0011	4	0.1	1
LD00103	289387	4824349	908	1	301	75	0.026	1.35	80.1	17.2	0.099	0.05	88.9	0.07	2.26
LD00104	289387	4824349	908	1	301	75	0.088	3	233	34.2	0.657	0.311	165.5	0.31	3.17
LD00105	289387	4824348	908	1	301	75	0.053	3.01	230	68.2	0.203	0.0998	273	0.16	4.38
LD00106	289387	4824348	908	1	301	75	0.017	0.49	139.5	2.51	0.0153	0.00456	6.6	0.04	1.28
LD00107	289386	4824347	908	1	301	75	0.025	0.65	112.5	6.75	0.0296	0.0351	30.7	0.06	1.26
LD00108	289386	4824347	908	1	301	75	0.013	0.42	108	2.52	0.0291	0.00641	11	0.04	2.2
LD00109	289385	4824346	908	1	301	75	0.042	2.59	402	33.6	0.212	0.173	166.5	0.16	2.08
LD00110	289385	4824346	908	1	301	75	0.031	1.9	307	25	0.254	0.141	119.5	0.15	2.38
LD00111	289384	4824345	908	1	301	75	0.032	1.15	147.5	18	0.053	0.0257	73.6	0.06	1.54
LD00112	289384	4824345	908	1	301	75	0.504	4.92	457	32.5	0.405	0.498	120.5	0.13	4.7
LD00113	289383	4824344	908	1	301	75	1.865	3.76	785	15.65	0.0574	0.115	77.9	0.13	1.59
LD00114	289383	4824344	908	1	301	75	0.505	11.85	659	10.65	0.0585	0.575	21.6	0.1	1.68
LD00115	289382	4824343	908	1	301	75	0.182	3.24	322	10.5	0.168	0.0656	49.2	0.14	2.17
LD00116	289382	4824343	908	1	301	75	1.625	52	1050	565	2.07	4.35	1850	1.31	4.39
LD00117	289381	4824342	908	1	301	75	0.539	27.7	408	379	3.92	2.38	818	0.84	2.09
LD00118	289381	4824342	908	1	301	75	0.515	24.1	348	309	2.11	1.795	863	0.6	3.37
LD00119	289380	4824341	908	1	301	75	0.019	0.48	53.5	5.96	0.0947	0.02	148	0.02	2.22
LD00120	289380	4824341	908	1	301	75	0.013	0.55	42.5	11.1	0.127	0.0274	195	0.03	1.93
LD00121	289379	4824340	908	1	301	75	0.028	4.15	115.5	140	0.158	0.0737	429	0.15	8.15
LD00122	289379	4824340	908	1	301	75	0.02	1.09	81.9	26.1	0.0819	0.0241	207	0.09	0.99

LD00123	289378	4824339	908	1	301	75	0.012	1.03	64	24.3	0.139	0.01075	245	0.03	1.33
LD00125	289378	4824339	908	1	301	75	0.028	0.75	62.5	15.2	0.156	0.0189	275	0.03	1.73
LD00126	289377	4824338	908	1	301	75	0.009	0.22	41.6	1.64	0.0972	0.00918	143	0.01	1.37
LD00127	289377	4824338	908	1	301	75	0.01	0.21	42.9	1.56	0.102	0.00921	111	0.01	1.25
LD00128	289376	4824337	908	1	301	75	0.023	0.48	59.4	5.44	0.13	0.01085	145.5	0.02	2.38
LD00129	289376	4824337	908	1	301	75	0.015	0.62	51.9	12.6	0.0743	0.001	77.3	0.01	1.25
LD00130	289375	4824336	908	1	301	75	0.017	0.36	56.8	4.72	0.0468	0.00682	33.3	0.01	1.43
LD00131	289375	4824336	908	1	301	75	0.02	0.36	72.2	5.79	0.0252	0.00698	27.2	0.01	1.3
LD00132	289374	4824335	908	1	301	75	0.013	0.22	56.3	1.45	0.0194	0.00233	7.4	0.01	1.08
LD00133	289374	4824335	908	1	301	75	0.01	0.2	41.4	1.38	0.0369	0.00096	5.6	0.01	1.01
LD00134	289373	4824334	908	1	301	75	0.008	0.19	27.9	1.23	0.0141	0.00074	6	0.01	1.03
LD00135	289373	4824334	908	1	301	75	0.062	1.34	94.7	19.2	0.0211	0.0107	55.4	0.03	1.67
LD00136	289372	4824333	908	1	301	75	0.047	1.5	90.7	28.4	0.0194	0.0157	103	0.05	1.42
LD00137	289372	4824333	908	1	301	75	0.027	0.68	56.2	10.3	0.0109	0.0066	43.9	0.04	1.16
LD00138	289371	4824332	908	1	301	75	0.015	0.44	55.1	4.72	0.0083	0.0258	20.7	0.03	1.07
LD00139	289371	4824332	908	1	301	75	0.004	0.23	28.1	1.24	0.0176	0.00071	7.1	0.01	0.82
LD00140	289370	4824331	908	1	301	75	0.004	0.23	29.6	1.13	0.0202	0.0009	5.6	0.01	0.83
LD00141	289370	4824331	908	1	301	75	0.01	0.34	40.2	2.89	0.0229	0.00074	14.2	0.02	0.86
LD00142	289369	4824330	908	1	301	75	0.005	0.26	29.7	1.47	0.0268	0.00074	6.6	0.01	0.98
LD00143	289369	4824330	908	1	301	75	0.007	0.28	49.4	0.76	0.0196	0.00059	3.4	0.01	1.21
LD00144	289368	4824329	908	1	301	75	0.024	0.74	56.2	4.56	0.0266	0.00403	20.2	0.03	1.47
LD00146	289368	4824329	908	1	301	75	0.008	0.21	41.8	0.58	0.0113	0.00084	2.4	<0.01	1.22
LD00147	289367	4824328	908	1	301	75	0.013	0.29	56.1	1.03	0.0085	0.00215	3.1	0.01	1.32
LD00148	289367	4824328	908	1	301	75	0.017	0.27	48.5	0.94	0.0128	0.00259	4.5	0.01	0.94
LD00149	289366	4824327	908	1	301	75	0.091	0.98	167.5	4.64	0.0195	0.0154	12.4	0.02	1.26
LD00150	289366	4824327	908	1	301	75	0.016	0.29	54.7	0.87	0.0074	0.00108	3.1	<0.01	1.04
LD00151	289365	4824326	908	1	301	75	0.01	0.2	40.8	0.91	0.0092	0.0008	5.1	<0.01	1.13
LD00152	289365	4824326	908	1	301	75	0.021	0.45	95	1.44	0.015	0.00388	5.1	<0.01	1.34
LD00153	289364	4824325	908	1	301	75	0.053	0.84	169	3.13	0.0333	0.0117	10.4	0.02	1.64
LD00154	289364	4824325	908	1	301	75	0.022	0.37	84.6	1.83	0.0171	0.00168	6.8	0.01	1.16
LD00155	289285	4824301	975	1	327	72	0.225	5.72	278	20.5	0.0163	0.0497	28	0.15	2.72
LD00156	289285	4824301	975	1	327	72	0.521	44.3	180	163	0.0225	0.0524	44.8	0.73	3.61

LD00157	289286	4824302	975	1	327	72	2.1	54.1	217	199.5	0.035	0.0963	126	0.74	3.19
LD00158	289286	4824302	975	1	327	72	2.21	46.7	143	169	0.0138	0.0644	135	3.65	3.08
LD00159	289286	4824302	975	1	327	72	0.118	3.76	188	27.6	0.0449	0.122	185	0.29	3.13
LD00160	289286	4824303	975	1	327	72	1.015	43.3	299	105	0.0784	0.322	188	1.11	1.99
LD00162	289288	4824305	978	1	327	72	0.387	46.5	341	336	0.136	0.38	360	1.74	3.34
LD00163	289288	4824305	978	1	327	72	1.365	74.1	439	87.9	0.168	0.378	412	1.33	4.16
LD00164	289289	4824305	978	1	327	72	8.08	699	560	128	0.0392	0.293	238	5.3	8.81
LD00165	289290	4824305	978	1	327	72	0.05	2.08	68.7	3.77	0.0612	0.0532	101	0.08	1.08
LD00166	289217	4824355	985	1	325	70	0.015	1.16	52.3	11.45	0.0632	0.00866	88.3	0.09	2.3
LD00167	289217	4824355	985	1	325	70	0.054	2.12	40.3	3.42	0.0944	0.0517	25.8	0.06	2.08
LD00168	289218	4824355	985	1	325	70	0.055	1.84	47.4	7.86	0.118	0.0668	43	0.08	2.86
LD00169	289218	4824355	985	1	325	70	0.7	8.45	147	19	0.056	0.127	43.3	0.38	3.39
LD00170	289219	4824354	985	1	325	70	1.595	21	458	10.8	0.0088	0.169	27.1	0.27	2.55
LD00171	289219	4824354	985	1	325	70	0.458	7.68	568	18	0.0148	0.125	22.6	0.24	3.9
LD00172	289220	4824353	985	1	325	70	0.398	5.87	341	16.65	0.0245	0.317	34	0.3	3.09
LD00173	289220	4824353	985	1	325	70	0.024	1.05	35.2	2.82	0.0456	0.0635	18.7	0.11	1.41
LD00174	289206	4824418	975	1	293	78	0.491	21.9	262	58.1	0.148	1.555	107	0.57	1.46
LD00175	289206	4824418	975	1	293	78	0.738	97.8	260	190.5	0.156	12.25	199	1.97	2.18
LD00176	289206	4824417	975	1	293	78	0.248	9.78	245	32.1	0.338	0.418	141.5	0.14	1.51
LD00178	289206	4824416	975	1	293	78	0.601	11.35	251	35.9	0.0386	0.502	361	0.23	1.44
LD00179	289205	4824415	975	1	293	78	1.835	32.2	855	74.2	0.0195	0.941	1295	1.13	2.38
LD00180	289203	4824415	978	0.7	293	78	0.005	45.7	609	102	0.123	0.73	235	1.73	3.71
LD00181	289203	4824414	978	1	293	78	1.085	49.5	765	235	0.0842	1.31	453	1.01	2.67
LD00182	289202	4824414	978	1	293	78	2.99	54	560	89.2	0.0742	0.887	454	1.15	2.38
LD00183	289202	4824413	978	1	293	78	2.42	55.2	370	35.6	0.0295	0.381	196	1.29	2.59
LD00184	289202	4824413	978	1	293	78	1.585	36	484	27.4	0.0508	0.187	133.5	0.49	2.38
LD00185	289142	4824502	1001	1	294	85	0.191	6.01	126	6.36	0.0398	0.29	27.6	0.48	9.93
LD00186	289142	4824502	1001	0.8	294	85	2.23	70.1	255	75.9	0.114	3.74	202	5.66	58.8
LD00187	289142	4824503	1001	1.2	294	85	0.157	15	187	34.9	0.579	0.556	120.5	1.05	2.25
LD00188	289142	4824503	1001	0.3	294	85	0.161	31.1	48.7	48.5	0.18	6.72	117.5	0.32	0.97
LD00189	289143	4824503	1001	1	294	85	0.052	6.8	56.6	28.8	0.198	1.055	112.5	0.2	0.69
LD00190	289135	4824490	1006	1	295	60	0.031	1.99	39.2	2.27	0.0092	0.0996	22.6	0.12	0.85

LD00191	289135	4824490	1006	1	295	60	0.026	1.28	42.8	1.03	0.0085	0.0435	17.6	0.04	1.22
LD00192	289135	4824490	1006	1	295	60	0.048	2.36	74.1	3.16	0.0072	0.0285	14.4	0.27	1.95
LD00194	289135	4824490	1006	1	295	60	0.115	16.55	99.6	16.7	0.0755	0.185	48.5	2.61	3.41
LD00195	289147	4824500	998	0.4	294	85	0.913	19	214	18.6	0.0241	0.421	85.9	0.8	1.83
LD00196	289148	4824500	998	1	294	85	0.483	33.5	159.5	110	0.0289	0.591	177	0.72	1.82
LD00197	289150	4824500	996	0.2	294	85	2.46	11.25	267	7.34	0.0114	0.239	42.8	0.17	1.59
LD00198	289152	4824498	994	0.7	294	85	1.885	27.8	218	68.3	0.01	0.168	140.5	1	1.36
LD00199	289155	4824496	993	0.4	294	85	2.77	201	534	25.3	0.0067	0.88	70.5	2.27	3.19
LD00200	289156	4824496	993	1	294	85	9.46	523	662	31.6	0.0347	1.27	146.5	6.91	2.26
LD00201	289118	4824472	945	0.6	330	85	0.789	7.13	225	103.5	0.168	0.12	392	0.18	0.77
LD00202	289118	4824472	945	0.6	330	85	0.142	1.96	115	21.4	0.0323	0.0208	71	0.06	0.65
LD00203	289118	4824471	945	0.8	330	85	0.012	0.78	48.8	20.6	0.0564	0.00525	77.5	0.14	0.84
LD00204	289118	4824471	945	0.8	330	85	0.025	2.29	76.6	30.6	0.0343	0.22	165.5	0.07	0.57
LD00205	289118	4824471	945	0.8	330	85	0.017	0.57	41.7	8.57	0.035	0.00331	51.4	0.04	0.58

