

Company Announcement, July 31st, 2019

Greenland Minerals Secures \$7 Million Via a Placement to Institutional Investors

Highlights:

- Heavily oversubscribed placement to Australian and Asian institutional investors
- Strong support from existing shareholders
- Funds to be utilised to progress ongoing technical development of the Kvanefjeld, complete project permitting and advance commercial development

Greenland Minerals Limited ("GML" or "the Company"), 100% owner and operator of the Kvanefjeld Project in Greenland, is pleased to announce a strongly supported share Placement (the Placement) to Australian institutional investors to raise \$7.0 million (AUD) before costs.

The Kvanefjeld Project is underpinned by a JORC-code compliant resource of >1 billion tonnes, and an ore reserve estimate of 108 million tonnes to sustain an initial 37-year mine life. It is projected to be one of the largest global producers of key magnet metals including **neodymium**, **praseodymium**, **dysprosium** and **terbium**. Kvanefjeld offers a new, simpler path to rare earth production than traditional refractory sources. Kvanefjeld is one of a small number of advanced rare earth projects globally.

The successful capital raise follows the completion of a highly successful feasibility optimisation program that resulted in a 40% reduction in both the capital and operating cost estimates. These outcomes have Kvanefjeld positioned with the lowest capital intensity, lowest unit costs of production and longest mine life of emerging ASX-listed rare earth projects. Metallurgical optimisation was guided by leading rare earth company and GML's major shareholder Shenghe Resources Holding Co Ltd.

Ashanti Capital acted as Lead Manager of the Placement.

Completion of Capital Raise

The Company received firm commitments for 58,333,333 shares, which will raise A\$7.0 million before costs. The placement was undertaken at an issue price of A\$0.12c per share, representing a 20% discount to the 20-day volume weighted average price of GML shares trading on the ASX up to 26th July 2019.

The placement was limited to institutional and sophisticated investors in accordance with Section 708 Corporations Act and shares will be issued within the Company's Listing Rule 7.1 capacity. The participation of numerous Australian and Asian funds is a strong endorsement of the Company's significant progress in advancing Kvanefjeld toward production and as the outlook for the rare earth sector continues to strengthen.

The completion of the placement will place the Company in a strong cash position. The funds will be utilised to:

- Further advance technical development of the Kvanefjeld project
- Progress the mining licence application through public consultation and impact benefit agreement negotiations
- Continued development of downstream processing and path to market strategy, and project commercialisation

-ENDS-

ABOUT GREENLAND MINERALS LTD.

Greenland Minerals Ltd (ASX: GGG) is an exploration and development company focused on developing high-quality mineral projects in Greenland. The Company's flagship project is the Kvanefjeld Rare Earth Project (rare earth elements, uranium, zinc). A pre-feasibility study was finalised in 2012, and a comprehensive feasibility study was completed in 2015 and updated following pilot plant operations in 2016. The studies highlight the potential to develop Kvanefjeld as a long-life, low cost, and large-scale producer of rare earth elements; key enablers to the electrification of transport systems.

GML is working closely with major shareholder and strategic partner Shenghe Resources Holding Co Ltd to develop Kvanefjeld as a cornerstone of future rare earth supply. An exploitation (mining) license application for the initial development strategy has been undergoing review by the Greenland Government through the latter part of 2016 and through 2017.

In 2017-18, GML continues to undertake technical work programs with Shenghe Resources Holding Co Ltd that aim to improve the metallurgical performance, simplify the development strategy and infrastructure footprint in Greenland, enhance the coststructure, and ensure that Kvanefjeld is aligned with downstream processing. In addition, the Company continues its focus on working closely with Greenland's regulatory bodies on the processing of the mining license application and maintaining regular stakeholder updates.

> Dr John Mair Managing Director +61 8 9382 2322

Christian Olesen Rostra Communication +45 3336 0429

Greenland Minerals Ltd will continue to advance the Kvanefjeld project in a manner that is in accord with both Greenlandic Government and local community expectations and looks forward to being part of continued stakeholder discussions on the social and economic benefits associated with the development of the Kvanefjeld Project.

Competent Person Statement – Mineral Resources Ore Reserves and Metallurgy

The information in this report that relates to Mineral Resources is based on information compiled by Mr Robin Simpson, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Simpson is employed by SRK Consulting (UK) Ltd ("SRK") and was engaged by Greenland Minerals Ltd on the basis of SRK's normal professional daily rates. SRK has no beneficial interest in the outcome of the technical assessment being capable of affecting its independence. Mr Simpson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Robin Simpson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in the statement that relates to the Ore Reserves Estimate is based on work completed or accepted by Mr Damien Krebs of Greenland Minerals Ltd and Mr Scott McEwing of SRK Consulting (Australasia) Pty Ltd. The information in this report that relates to metallurgy is based on information compiled by Damien Krebs.

Damien Krebs is a Member of The Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the type of metallurgy and scale of project under consideration, and to the activity he is undertaking, to qualify as Competent Persons in terms of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 edition). The Competent Persons consent to the inclusion of such information in this report in the form and context in which it appears.

Scott McEwing is a Fellow and Chartered Professional of The Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity he is undertaking, to qualify as Competent Persons in terms of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 edition). The Competent Persons consent to the inclusion of such information in this report in the form and context in which it appears.

The mineral resource estimate for the Kvanefjeld Project was updated and released in a Company Announcement on February 12th, 2015. The ore reserve estimate was released in a Company Announcement on June 3rd, 2015. There have been no material changes to the resource estimate, or ore reserve since the release of these announcements

Multi-Element Resources Classification, Tonnage and Grade										Contained Metal				
Cut-off	Classification	M tonnes	TREO ²	U ₃ O ₈	LREO	HREO	REO	Y ₂ O ₃	Zn	TREO	HREO	Y ₂ O ₃	U ₃ O ₈	Zn
$(U_3O_8 ppm)^1$		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt
Kvanefjeld - Fe	bruary 2015													
150	Measured	143	12,100	303	10,700	432	11,100	978	2,370	1.72	0.06	0.14	95.21	0.34
150	Indicated	308	11,100	253	9,800	411	10,200	899	2,290	3.42	0.13	0.28	171.97	0.71
150	Inferred	222	10,000	205	8,800	365	9,200	793	2,180	2.22	0.08	0.18	100.45	0.48
150	Total	673	10,900	248	9,600	400	10,000	881	2,270	7.34	0.27	0.59	368.02	1.53
200	Measured	111	12,900	341	11,400	454	11,800	1,048	2,460	1.43	0.05	0.12	83.19	0.27
200	Indicated	172	12,300	318	10,900	416	11,300	970	2,510	2.11	0.07	0.17	120.44	0.43
200	Inferred	86	10,900	256	9,700	339	10,000	804	2,500	0.94	0.03	0.07	48.55	0.22
200	Total	368	12,100	310	10,700	409	11,200	955	2,490	4.46	0.15	0.35	251.83	0.92
250	Measured	93	13,300	363	11,800	474	12,200	1,105	2,480	1.24	0.04	0.10	74.56	0.23
250	Indicated	134	12,800	345	11,300	437	11,700	1,027	2,520	1.72	0.06	0.14	101.92	0.34
250	Inferred	34	12,000	306	10,800	356	11,100	869	2,650	0.41	0.01	0.03	22.91	0.09
250	Total	261	12,900	346	11,400	440	11,800	1,034	2,520	3.37	0.11	0.27	199.18	0.66
300	Measured	78	13,700	379	12,000	493	12,500	1,153	2,500	1.07	0.04	0.09	65.39	0.20
300	Indicated	100	13,300	368	11,700	465	12,200	1,095	2,540	1.34	0.05	0.11	81.52	0.26
300	Inferred	15	13,200	353	11,800	391	12,200	955	2,620	0.20	0.01	0.01	11.96	0.04
300	Total	194	13,400	371	11,900	471	12,300	1,107	2,530	2.60	0.09	0.21	158.77	0.49
350	Measured	54	14,100	403	12,400	518	12,900	1,219	2,550	0.76	0.03	0.07	47.59	0.14
350	Indicated	63	13,900	394	12,200	505	12,700	1,191	2,580	0.87	0.03	0.07	54.30	0.16
350	Inferred	6	13,900	392	12,500	424	12,900	1,037	2,650	0.09	0.00	0.01	5.51	0.02
350	Total	122	14,000	398	12,300	506	12,800	1,195	2,570	1.71	0.06	0.15	107.45	0.32

Statement of Identified Mineral Resources	. Kvanefield Pr	roject. Independentl	v Prepared b	v SRK Consulting	(February	. 2015)

Multi-Element Resources Classification, Tonnage and Grade									Contained Metal					
Cut-off	Classification	M tonnes	TREO ²	U ₃ O ₈	LREO	HREO	REO	Y_2O_3	Zn	TREO	HREO	Y ₂ O ₃	U₃O ₈	Zn
$(U_3O_8 ppm)^1$		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt
Sørensen - Mai	rch 2012													
150	Inferred	242	11,000	304	9,700	398	10,100	895	2,602	2.67	0.10	0.22	162.18	0.63
200	Inferred	186	11,600	344	10,200	399	10,600	932	2,802	2.15	0.07	0.17	141.28	0.52
250	Inferred	148	11,800	375	10,500	407	10,900	961	2,932	1.75	0.06	0.14	122.55	0.43
300	Inferred	119	12,100	400	10,700	414	11,100	983	3,023	1.44	0.05	0.12	105.23	0.36
350	Inferred	92	12,400	422	11,000	422	11,400	1,004	3,080	1.14	0.04	0.09	85.48	0.28
Zone 3 - May 2	012													
150	Inferred	95	11,600	300	10,200	396	10,600	971	2,768	1.11	0.04	0.09	63.00	0.26
200	Inferred	89	11,700	310	10,300	400	10,700	989	2,806	1.03	0.04	0.09	60.00	0.25
250	Inferred	71	11,900	330	10,500	410	10,900	1,026	2,902	0.84	0.03	0.07	51.00	0.20
300	Inferred	47	12,400	358	10,900	433	11,300	1,087	3,008	0.58	0.02	0.05	37.00	0.14
350	Inferred	24	13,000	392	11,400	471	11,900	1,184	3,043	0.31	0.01	0.03	21.00	0.07
All Deposits – C	Grand Total													
150	Measured	143	12,100	303	10,700	432	11,100	978	2,370	1.72	0.06	0.14	95.21	0.34
150	Indicated	308	11,100	253	9,800	411	10,200	899	2,290	3.42	0.13	0.28	171.97	0.71
150	Inferred	559	10,700	264	9,400	384	9,800	867	2,463	6.00	0.22	0.49	325.66	1.38
150	Grand Total	1010	11,000	266	9,700	399	10,100	893	2,397	11.14	0.40	0.90	592.84	2.42

Statement of Identified Mineral Resources, Kvanefjeld Project, Independently Prepared by SRK Consulting (February, 2015)

¹There is greater coverage of assays for uranium than other elements owing to historic spectral assays. U₃O₈ has therefore been used to define the cutoff grades to maximise the confidence in the resource calculations.

²Total Rare Earth Oxide (TREO) refers to the rare earth elements in the lanthanide series plus yttrium.

Note: Figures quoted may not sum due to rounding.

Kvanefjeld Ore Reserves Estimate – April 2015

Class	Inventory (Mt)	TREO (ppm)	LREO (ppm)	HREO (ppm)	Y ₂ O ₃ (ppm)	U ₃ O ₈ (ppm)	Zn (ppm)
Proven	43	14,700	13,000	500	1,113	352	2,700
Probable	64	14,000	12,500	490	1,122	368	2,500
Total	108	14,300	12,700	495	1,118	362	2,600