Company Announcement, 28 April 2020

Further Milestone Achieved in Path to Kvanefjeld Mining License

Greenland Minerals Ltd ('GML' or 'the Company') is pleased to advise that it has achieved another important milestone in the path to a mining license for the Company's 100% owned Kvanefjeld Rare Earth Project.

Under Greenland's Mineral Resources Act, one of the main requirements for the granting of an exploitation (mining) license is the effective documentation of a deposit of exploitable minerals in the license area, and that this has been approved by the Greenland Government. Greenland's Ministry of Mineral Resources and Labour has provided written confirmation that GML's documentation (mineral resource and feasibility reports) for the Kvanefjeld Project (exclusive exploration license EL 2010/02) has been approved.

In the case of resource reporting, mineral resources are required to be of the 'indicated' (or higher) category as reported in accordance with the Australian JORC Code. The mineral resources for the Kvanefjeld mine plan (initial 37-year operation) are largely of the 'measured' category (highest confidence category).

Greenland's Ministry of Mineral Resources and Labour engaged Auralia Mining Consultants to conduct the evaluation. This involved the review of a series of reports on the Kvanefjeld Project, most of which had been conducted by SRK Consulting.

Auralia confirmed that the resource estimation of the following 16 oxides and 1 metal have been completed to JORC (2012) standards:

Light Rare Earth Oxides		Heavy Rare Ear	th Oxides	Other			
Lanthanum	La ₂ O ₃	Europium	Eu ₂ O ₃	Yttrium	Y ₂ O ₃		
Cerium	CeO ₂	Gadolinium	Gd ₂ O ₃	Uranium	U3O8		
Praseodymium	Pr ₆ O ₁₁	Terbium	Tb ₄ O ₇	Zinc	Zn		
Neodymium	Nd ₂ O ₃	Dysprosium	Dy ₂ O ₃				
Samarium	Sm ₂ O ₃	Holmium	Ho ₂ O ₃				
		Erbium	Er ₂ O ₃				
		Thulium	Tm ₂ O ₃				
		Ytterbium	Yb ₂ O ₃				
		Lutetium	Lu ₂ O ₃				

Evaluations were conducted following the JORC (2012) Table 1 requirements.

Background

The Kvanefjeld Rare Earth Project is one of the most significant and advanced emerging rare earth projects globally. The Project is underpinned by a 1 billion tonne mineral resource, and a 108 million tonne ore reserve. Kvanefjeld is favourably located near existing infrastructure in southern Greenland with year-round direct shipping access to the project area.

Rare earth elements are critical to the electric vehicle revolution, as well as many other energy efficient applications. The Kvanefjeld Project is forecast to be a globally significant producer of all commercially important rare earth elements including **neodymium**, **praseodymium**, **terbium** and **dysprosium**, over an initial **37**-year mine life. These rare earths are used to make high powered permanent magnets that are utilised in electric vehicles, along with many other applications. Kvanefjeld is well-placed to meet the major surge in rare earth demand that will be generated by the transition to electric vehicles.

Greenland Minerals Ltd has an internationally diverse shareholder base. The largest shareholder (11%) is Shenghe Resources Holding Co Ltd, a leading international rare earth company that supplies end-user industries globally with high purity rare earth metals and oxides. Shenghe have also played a key role in the successful restart of the Mountain Pass rare earth mine in the United States. Shenghe bring full rare earth value chain proficiency to the Kvanefjeld Project.

Authorised by: Dr John Mair Managing Director

-ENDS-

ABOUT GREENLAND MINERALS LTD.

Greenland Minerals Ltd (ASX: GGG) is an exploration and development company focused on developing high-quality mineral projects in Greenland. The Company's flagship project is the Kvanefjeld Rare Earth Project. A pre-feasibility study was finalised in 2012, and a comprehensive feasibility study was completed in 2015 and updated following pilot plant operations in 2016. The studies demonstrated the unique and highly advantageous strengths of the Kvanefjeld Project and outlined the potential for Kvanefjeld to be developed as a long-life, low cost, and large-scale producer of rare earth elements; key enablers to the electrification of transport systems.

GML is working closely with major shareholder and strategic partner Shenghe Resources Holding Co Ltd to develop Kvanefjeld as a cornerstone of future rare earth supply. An exploitation (mining) license application for the initial development strategy was reviewed by the Greenland Government through 2016 -19 and was updated in 2019 following addition supporting studies.

In 2017-18, GML undertook technical work programs with Shenghe Resources Holding Co Ltd that improved the metallurgical performance and simplified the development strategy and infrastructure footprint in Greenland, with optimised Feasibility Study outcomes announced in mid-2019. This defined a significantly enhanced project cost-structure and a direct alignment with downstream processing. In addition, the Company continues its focus on working closely with Greenland's regulatory bodies on the processing of the mining license application and maintaining regular stakeholder updates.

Dr John Mair Managing Director +61 8 9382 2322 Christian Olesen Rostra Communication +45 3336 0429

Greenland Minerals Ltd will continue to advance the Kvanefjeld project in a manner that is in accord with both Greenlandic Government and local community expectations and looks forward to being part of continued stakeholder discussions on the social and economic benefits associated with the development of the Kvanefjeld Project.

Competent Person Statement – Mineral Resources Ore Reserves and Metallurgy

The information in this report that relates to Mineral Resources is based on information compiled by Mr Robin Simpson, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Simpson is employed by SRK Consulting (UK) Ltd ("SRK") and was engaged by Greenland Minerals Ltd on the basis of SRK's normal professional daily rates. SRK has no beneficial interest in the outcome of the technical assessment being capable of affecting its independence. Mr Simpson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Robin Simpson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in the statement that relates to the Ore Reserves Estimate is based on work completed or accepted by Mr Damien Krebs of Greenland Minerals Ltd and Mr Scott McEwing of SRK Consulting (Australasia) Pty Ltd. The information in this report that relates to metallurgy is based on information compiled by Damien Krebs.

Damien Krebs is a Member of The Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the type of metallurgy and scale of project under consideration, and to the activity he is undertaking, to qualify as Competent Persons in terms of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 edition). The Competent Persons consent to the inclusion of such information in this report in the form and context in which it appears.

Scott McEwing is a Fellow and Chartered Professional of The Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity he is undertaking, to qualify as Competent Persons in terms of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 edition). The Competent Persons consent to the inclusion of such information in this report in the form and context in which it appears.

The mineral resource estimate for the Kvanefjeld Project was updated and released in a Company Announcement on February 12th, 2015. The ore reserve estimate was released in a Company Announcement on June 3rd, 2015. There have been no material changes to the resource estimate, or ore reserve since the release of these announcements.

Statement of Identified Minerals Resources, Independently Prepared by SRK Consulting (February 2015)														
	Multi-Ele	ement Resour	ces Classif	ication, To	onnage ai	nd Grade					Cont	ained Me	etal	
Cut-off	Classification	M tonnes	TREO ²	U₃O ₈	LREO	HREO	REO	Y_2O_3	Zn	TREO	HREO	Y ₂ O ₃	U ₃ O ₈	Zn
(U₃O ₈ ppm) ¹		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt
Kvanefjeld - Fe	bruary 2015													
150	Measured	143	12,100	303	10,700	432	11,100	978	2,370	1.72	0.06	0.14	95.21	0.34
150	Indicated	308	11,100	253	9,800	411	10,200	899	2,290	3.42	0.13	0.28	171.97	0.71
150	Inferred	222	10,000	205	8,800	365	9,200	793	2,180	2.22	0.08	0.18	100.45	0.48
150	Total	673	10,900	248	9,600	400	10,000	881	2,270	7.34	0.27	0.59	368.02	1.53
200	Measured	111	12,900	341	11,400	454	11,800	1,048	2,460	1.43	0.05	0.12	83.19	0.27
200	Indicated	172	12,300	318	10,900	416	11,300	970	2,510	2.11	0.07	0.17	120.44	0.43
200	Inferred	86	10,900	256	9,700	339	10,000	804	2,500	0.94	0.03	0.07	48.55	0.22
200	Total	368	12,100	310	10,700	409	11,200	955	2,490	4.46	0.15	0.35	251.83	0.92
250	Measured	93	13,300	363	11,800	474	12,200	1,105	2,480	1.24	0.04	0.10	74.56	0.23
250	Indicated	134	12,800	345	11,300	437	11,700	1,027	2,520	1.72	0.06	0.14	101.92	0.34
250	Inferred	34	12,000	306	10,800	356	11,100	869	2,650	0.41	0.01	0.03	22.91	0.09
250	Total	261	12,900	346	11,400	440	11,800	1,034	2,520	3.37	0.11	0.27	199.18	0.66
300	Measured	78	13,700	379	12,000	493	12,500	1,153	2,500	1.07	0.04	0.09	65.39	0.20
300	Indicated	100	13,300	368	11,700	465	12,200	1,095	2,540	1.34	0.05	0.11	81.52	0.26
300	Inferred	15	13,200	353	11,800	391	12,200	955	2,620	0.20	0.01	0.01	11.96	0.04
300	Total	194	13,400	371	11,900	471	12,300	1,107	2,530	2.60	0.09	0.21	158.77	0.49
350	Measured	54	14,100	403	12,400	518	12,900	1,219	2,550	0.76	0.03	0.07	47.59	0.14
350	Indicated	63	13,900	394	12,200	505	12,700	1,191	2,580	0.87	0.03	0.07	54.30	0.16
350	Inferred	6	13,900	392	12,500	424	12,900	1,037	2,650	0.09	0.00	0.01	5.51	0.02
350	Total	122	14,000	398	12,300	506	12,800	1,195	2,570	1.71	0.06	0.15	107.45	0.31

 PERTH: Unit 7, 100 Railway Road, Subiaco Western Australia 6008
 POSTAL: PO Box 2006, Subiaco WA 6904

 Telephone: +61 8 9382 2322
 Facsimile: +61 8 9382 2788

 GREENLAND: PO Box 156, Narsaq, Greenland 3921

 WEB: www.ggg.gl
 EMAIL: info@ggg.gl

 ABN: 85 118 463 004

Multi-Element Resources Classification, Tonnage and Grade										Contained Metal				
Cut-off	Classification	M tonnes	TREO ²	U3O8	LREO	HREO	REO	Y2O3	Zn	TREO	HREO	Y ₂ O ₃	U3O8	Zn
(U₃O ₈ ppm) ¹		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt
Sørensen - Ma	rch 2012													
150	Inferred	242	11,000	304	9,700	398	10,100	895	2,602	2.67	0.10	0.22	162.18	0.63
200	Inferred	186	11,600	344	10,200	399	10,600	932	2,802	2.15	0.07	0.17	141.28	0.52
250	Inferred	148	11,800	375	10,500	407	10,900	961	2,932	1.75	0.06	0.14	122.55	0.43
300	Inferred	119	12,100	400	10,700	414	11,100	983	3,023	1.44	0.05	0.12	105.23	0.36
350	Inferred	92	12,400	422	11,000	422	11,400	1,004	3,080	1.14	0.04	0.09	85.48	0.28
Zone 3 - May 2	012													
150	Inferred	95	11,600	300	10,200	396	10,600	971	2,768	1.11	0.04	0.09	63.00	0.26
200	Inferred	89	11,700	310	10,300	400	10,700	989	2,806	1.03	0.04	0.09	60.00	0.25
250	Inferred	71	11,900	330	10,500	410	10,900	1,026	2,902	0.84	0.03	0.07	51.00	0.20
300	Inferred	47	12,400	358	10,900	433	11,300	1,087	3,008	0.58	0.02	0.05	37.00	0.14
350	Inferred	24	13,000	392	11,400	471	11,900	1,184	3,043	0.31	0.01	0.03	21.00	0.07
All Deposits – C	Grand Total													
150	Measured	143	12,100	303	10,700	432	11,100	978	2,370	1.72	0.06	0.14	95.21	0.34
150	Indicated	308	11,100	253	9,800	411	10,200	899	2,290	3.42	0.13	0.28	171.97	0.71
150	Inferred	559	10,700	264	9,400	384	9,800	867	2,463	6.00	0.22	0.49	325.66	1.38
150	Grand Total	1010	11,000	266	9,700	399	10,100	893	2,397	11.14	0.40	0.90	592.84	2.42

¹There is greater coverage of assays for uranium than other elements owing to historic spectral assays. U₃O₈ has therefore been used to define the cut-off grades to maximise the confidence in the resource calculations.

²Total Rare Earth Oxide (TREO) refers to the rare earth elements in the lanthanide series plus yttrium.

Note: Figures quoted may not sum due to rounding.

Kvanefjeld Ore Reserves Estimate – April 2015

Class	Inventory (Mt)	TREO (ppm)	LREO (ppm)	HREO (ppm)	Y₂O₃ (ppm)	U₃O ₈ (ppm)	Zn (ppm)
Proven	43	14,700	13,000	500	1,113	352	2,700
Probable	64	14,000	12,500	490	1,122	368	2,500
Total	108	14,300	12,700	495	1,118	362	2,600

 PERTH: Unit 7, 100 Railway Road, Subiaco Western Australia 6008
 POSTAL: PO Box 2006, Subiaco WA 6904

 Telephone: +61 8 9382 2322
 Facsimile: +61 8 9382 2788

 GREENLAND: PO Box 156, Narsaq, Greenland 3921

 WEB: www.ggg.gl
 EMAIL: info@ggg.gl

 ABN: 85 118 463 004