

Building the pre-eminent vertically integrated Lithium business in Ontario, Canada

EXPLORATION SUCCESS AT JUNIOR AND DRILLING TO RECOMMENCE AT SEYMOUR LITHIUM PROJECT

HIGHLIGHTS

- Successful 5-month field exploration over the Eastern Hub has led to the confirmation of additional LCT pegmatite outcrops across the now 100% owned Junior Lithium Project
- Renewed Exploration Agreement (EA) executed with Whitesand First Nation solidifying support for exploration activities across the Seymour, Falcon, and Junior projects
- Junior is located 22km east of GT1's Flagship Seymour Project, covering ~109km² of tenure, GT1 field exploration highlights include:
 - LCT spodumene-bearing pegmatites measuring up to 40 meters in length and approximately 6 meters in width surface exposure
 - Significant lithia grade up to 3.23% Li₂O returned from rock chip samples with visible Spodumene mineralisation
 - Junior now boasts proven grade and multiple occurrences, indicating the likelihood of stacked pegmatites or a potentially fertile intrusive system with the potential to significantly add to GT1's eastern-hub resource base
 - Similar magnetic signatures to other GT1 advanced lithium deposits such as Root Bay
- A 7,736 metre, 58 hole diamond drilling program to upgrade North and South Aubry Deposits at Seymour has commenced
- Second rig mobilising to Seymour mid-October to accelerate the drill program and resource update in preparation for the feasibility studies
- Numerous priority targets at Junior will now be drill tested over a maiden 4,000m diamond drill campaign in Q1 2024

Green Technology Metals Limited (**ASX: GT1**) (**GT1** or the **Company**), a Canadian-focused multi-asset lithium business, is pleased to provide an exploration update across the Eastern Hub at its 100% owned projects in Ontario, Canada.

"This has been a big exploration season for GT1 with field teams covering a large amount of ground over the Eastern Hub, with proven success at Tape Lake, part of the Junior Project, as a highlight, showcasing immense regional potential. Proven grades and multiple occurrences hint at stacked pegmatites or a fertile intrusive system, promising significant expansion of GT1's eastern-hub resource base.

Furthermore, we're pleased to announce the renewal of our Exploration Agreement with Whitesand First Nation, showing support for Seymour, Falcon, and Junior projects. We extend our gratitude to our Indigenous partners for allowing us to work in their Traditional Territory.

As we conclude our field exploration activities for the season, our attention now shifts back to drilling at our flagship Seymour project and the planning of our maiden drilling campaign at Tape Lake. The coming months will be busy, with multiple rigs operating simultaneously at our Root Bay deposit and Seymour with ongoing Seymour development activities in the background. Stay tuned for updates on our progress."

- GT1 Chief Executive Officer, Luke Cox

Eastern Hub

The Eastern Hub comprises the Seymour Project, Junior Lake, Falcon, Gathering and Superb project areas. Initially, exploration efforts were focused on the southern Seymour Project area, giving priority to accelerated drilling and development to expedite Seymour's production timeline. Currently, exploration has expanded to encompass all projects within the Eastern hub, aiming to increase tonnage by identifying new priority target areas for upcoming drilling campaigns.

Over the past five months, a thorough and extensive field exploration program was executed across the company's substantial 56,000-hectare landholding. This program involved prospecting, mapping, and sampling, utilising a diverse range of exploration techniques that have demonstrated success in the company's other lithium exploration properties. As this exploration campaign approaches its completion, diamond drilling at Seymour is set to resume within the coming week.

Figure 1: Field exploration team at Junior Project

Exploration Agreement

GT1 has successfully renewed the exploration agreement with Whitesand First Nation, solidifying support for exploration activities across the Seymour, Falcon, and Junior projects. This agreement also sets the stage for further discussions regarding an Impact Benefit Agreement, marking a significant step forward in the ongoing collaboration with our First Nation partners. The company is fully committed to initiating formal engagement with its Indigenous partners to work towards an agreement that ensures the equitable distribution of benefits from the Seymour Project. The company is grateful for the chance to collaborate within the Traditional Territory of its Indigenous partners and recognizes the critical role of supporting communities for the project's success.

Junior Project

The Junior Project spans 10,856 hectares and features three drill-ready LCT pegmatite prospects: Tape, Swole, and Despard, identified through prior exploration efforts. Our GT1 teams have conducted thorough exploration at the Tape Lake area, involving LiDar, magnetic and geophysical surveys, comprehensive mapping, sampling, and verification of historical exploration data.

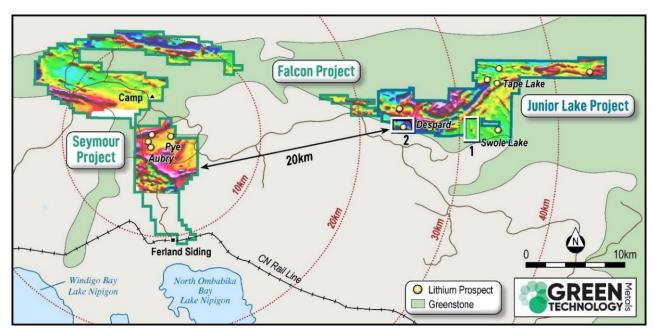


Figure 2: Eastern Hub Exploration target area

Tape Prospect

Field crews dedicated six weeks to traverse the Tape area via a newly constructed logging road and have verified the presence of spodumene in two pegmatite dykes historically reported. The discovery includes a significant LCT spodumene-bearing pegmatite measuring 40 meters in length and up to 6 meters in width and based on outcrop observations, aligning with the characteristics of other lithium-bearing dikes in the region.

The first outcrop (Ridge Peg) has samples of 2.97% Li₂0 returned and varied crystal lengths. With the second pegmatite (Roadside Peg), measuring 15 meters in length and 6 meters in width, has rock chip samples returned at 1.68% Li₂0 with crystals extending up to 12 centimetres, bordered by intensely chlorite-actinolite-altered mafic volcanic rocks to the east. Visual inspection of the sample has confirmed the presence of course spodumene as the dominant lithium bearing mineral.

Figure 3: LCT Pegmatite outcrop samples with coarse grained spodumene (Easting 433191 Northing 5591393)

Over the course of the six-week program approximately 400 outcrops were mapped and 389 samples collected with significant results including

Sample ID	Name	Easting	Northing	Туре	Li ₂ 0 %
F712692	Ridge Peg	433191	5591393	Outcrop	2.97
F712769	Ridge Peg	433193	5591392	Float	2.67
F712693	Ridge Peg	433192	5591389	Outcrop	2.11
F712715	Roadside Peg	432080	5591839	Outcrop	1.68
F712714	Roadside Peg	432078	5591841	Outcrop	1.52
F712799	Roadside Peg	432081	5591832	Outcrop	1.56

The Tape Lake zone now boasts proven grade and multiple occurrences, indicating the likelihood of stacked pegmatites or a potentially fertile intrusive system. The magnetic response combined with the LiDAR topography shows similarities to other GT1 advanced lithium deposits, Seymour and Root Bay. Taken together with our recent sampling program provides GT1 the confidence to progress to the next phase of exploration to include diamond drilling. The Junior project has the potential to significantly augment GT1's eastern-hub resource base, particularly if they are part of a stacked system.

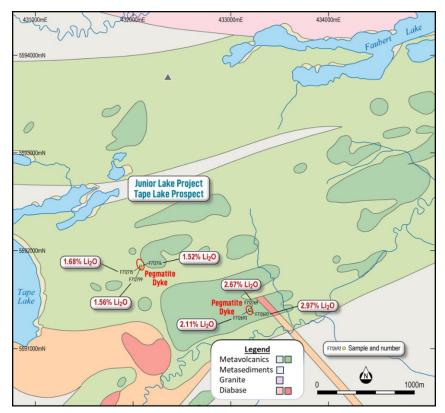


Figure 4: Tape prospect area mapped pegmatite Dykes and rock chip sample results

Despard Prospect

Located approximately 1km north of North Lamaune, Despard showcases exposed pegmatite outcrops and boulders. Due to overgrown tracks, exploration efforts have been confined to foot access only, with a focus on the Tape Prospect due to its high prospectivity and early-stage development. Initial field work at Despard has uncovered surface exposure of a spodumene-bearing pegmatite, measuring 2 x 2 meters with spodumene crystals with lengths of up to 20 centimetres. Rock chip samples have demonstrated significant results up to 3.23% Li₂0 and re-confirm Despard's fertility within the region.

Sample ID	Name	Easting	Northing	Туре	Li ₂ 0
					%
F713162	Despard	422507	5586337	Float	3.23%
F713124	Despard	422504	5586341	Outcrop	2.56%

Figure 5: Despard surface outcrop with Spodumene crystals in pegmatite mass. (Easting 422504, Northing 5586341)

Drilling

GT1 recommenced diamond drilling at Seymour on Thursday, 5th October 2023. A 7,736m diamond drill program primarily focused on infill drilling to upgrade the resource at the North and South Aubry deposits and is planned to run until December 2023. Additionally, a number of priority exploration targets will also be drilled in parallel to the exploration program located to the North of North Aubry. Following the initial drilling program at Seymour the company will begin a maiden drilling program at the nearby Junior Project, encompassing 2,000m at Tape followed by 2,000m at Despard and planned to commence in Q1 2024.

Phase 1 October - December: 7,736m North and South Aubry infill campaign Phase 2 Q124: 4,000m maiden Junior campaign (2,000m Despard, 2,000m Tape).

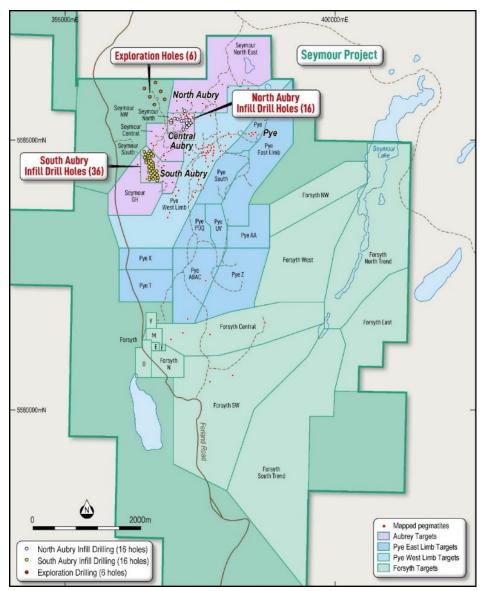


Figure 6: Seymour project area showing infill and exploration drilling plan

Indigenous Partners Acknowledgement. We would like to say Gchi Miigwech to our Indigenous partners. GT1 appreciates the opportunity to work in the Traditional Territory and remains committed to the recognition and respect of those who have lived, travelled, and gathered on the lands since time immemorial. Green Technology Metals is committed to stewarding Indigenous heritage and remains committed to building, fostering, and encouraging a respectful relationship with Indigenous Peoples based upon principles of mutual trust, respect, reciprocity, and collaboration in the spirit of reconciliation.

KEY CONTACTS

Investors

Luke Cox

Chief Executive Officer

info@greentm.com.au +61 8 6557 6825 Media

Jacinta Martino

Investor Relations and Media

ir@greentm.com.au +61 430 147 046

Green Technology Metals (ASX:GT1)

GT1 is a North American-focussed lithium exploration and development business with a current global resource of 22.5Mt Li_2O at 1.14% Li_2O . The Company's main 100% owned Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including clean hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li₂0 (comprised of 5.2 Mt at 1.29% Li₂0 Indicated and 4.7 Mt at 0.76% Li₂0 Inferred). Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, *Interim Seymour Mineral Resource Doubles to 9.9Mt*. For full details of the Root Maiden Mineral Resource estimate, see GT1 ASX release dated 19 April 2023, *GT1 Mineral Resources Increased to 14.4MT*. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

The information in this report that relates to Exploration Results pertaining to the Project is based on, and fairly represents, information and supporting documentation either compiled or reviewed by Mr Stephen John Winterbottom who is a member of Australian Institute of Geoscientists (Member 6112). Mr Winterbottom is the General Manager – Technical Services of Green Technology Metals. Mr Winterbottom has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person (CP) as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Winterbottom consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr Winterbottom holds securities in the Company.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

The information in this report relating to the Mineral Resource estimates for the Root Project is extracted from the Company's ASX announcements dated 19 April 2023 and 7 June 2023. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GTI's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GTI's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or quarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence

JORC Code, 2012 Edition - Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 GT1 commenced exploration reconnaissance work at their Junior Lake prospects in June 2023 through to September 2023. GT1 have taken 389 field grab samples to date to September 20, 2023 Grab Samples Preparation prior to obtaining the grab sample included logging location with D/GPS, geological setting and rock identification and mineralogy Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mixups. One tag from a triple tag book was inserted in the sample bag.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No drilling has been undertaken since GT1 has acquired the prospects. Historic drilling has been detailed in previous announcements by GT1 dated 13-March 2024.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Historic drilling has been detailed in previous announcements by GT1 dated 13-March 2024
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	 Historic drilling has been detailed in previous announcements by GT1 dated 13-March 2024. GT1 Grab Samples

Criteria	JORC Code explanation	Commentary
	 appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content. Logging is qualitative in nature. Samples are not representative of the whole.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Historic drilling has been detailed in previous announcements by GT1 dated 13-March 2024. GT1 Grab Samples Each grab sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. The sample preparation process is considered representative of the whole sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	GT1 inserted certified lithium standards and blanks at regular intervals into each batch of assays submitted to AGAT laboratories Thunder Bay Ontario. Return results were compared to certified OREAS standard values using control chart for each standard. No significant bias or precision issues were noted.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Pegmatite intersections are verified by the logging geologists and further reviewed by the Exploration manager by comparing intercepts with core photographs and assay returns along with regular visits to the core storage facilities for further verification if required. The laboratory assay results have been sourced directly from the laboratory and the laboratory file directly imported directly into GTI's SQL database. Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical

Criteria	JORC Code explanation	Commentary
		errors. No adjustment to laboratory assay data was made other than conversion of Li ppm to Li ₂ O using a factor of 2.153
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	A GPS reading was taken for each sample location using UTM NAD83 Zone16 (for Seymour and Junior Lake); waypoint averaging or dGPS was performed when possible.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is insufficient to support a sufficient degree of geological or grade continuity appropriate for a Mineral Resource estimate.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Grab samples were taken where outcrop was available. Grab samples are not representative of the entire unit and are used only as a guide to future exploration activities.
Sample security	The measures taken to ensure sample security.	All samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to AGAT in Thunder Bay for preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• N/A

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures,	The Junior Lake Lithium property is composed of 591 staked mining claims covering 11,185 hectares and are owned 100% by Landore Resources Canada Inc. The property lies within NTS zones 521/08 and 42L/05. Surface rights on the property are owned by the Crown. GTM is unaware of any third party ownership of the claims or overriding royalties. The property lies within the traditional territory of Whitesand, AZA and Aroland First Nations, but these communities must title to the land. GTM is unaware of any impediments to obtaining Exploration Permits from Ontario MINES. Claim numbers:

Criteria	JORC Code explanation	Commentary
	partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	100704,100705,102781,103569,103570,103571,103682,104033,104168,104201,104202,104203,104657,104658,105470,105471,109258,110721,111233,111234,111509,111510,112167,112188,1122 99,112415,112539,112540,112564,112665,112638,112784,112785,114001,114568,115305,115306,11 8100,118970,119444,121178,121826,121845,123951,23352,124628,1251532,125153,125353,125895,132380,132381,133114,133858,133859,134706,135299,136170,136172,136600,137009,138501,13852 6,139169,140614,142203,142204,143938,143695,143966,144011,145185,145186,146014,146563,147126,147127,149197,149198,151074,145393,143655,143966,144011,145185,152692,152693,154050,156 106,156107,157401,157402,157403,157404,158000,158021,158022,158272,158273,158274,159 635,159891,159892,159993,160298,160335,161226,161779,162660,162661,163101,163332,16340 2,163463,164061,164062,164063,165405,16543,166379,167126,166471,168472,168595,16923 8,170272,170414,172261,172550,174388,176399,177783,178129,179172,179801,179831,180536,180537,181891,81190,18191,1812e7,8118268,182200,18257,818371,813714,185326,18536,1856 28,186453,186454,187200,187201,187302,187954,188509,189631,192500,192961,195260,1985 55,198565,199208,201432,2020021,202660,202590,202391,202391,203906,205299,205300,206032, 206033,206034,206689,207731,2082449,209145,2100552,210053,21054,210698,210690,2122 225,213781,215144,215145,216876,215877,216352,216352,216352,218475,219233,221568,223148,22331476,232514,223147,2331478,233179,234426,234427,234428,235525,235524,25578 6,236611,236681,236682,238272,239210,240492,240515,240516,242417,242418,242563,245352,445352,445300,245007,245453,245352,453573,4458,235604,256981,254698,224548,224548,24458,2
Exploration done by other parties	 Acknowledgme nt and appraisal of exploration by other parties. 	 Exploration of the Junior Lake area has historically focused on PGE mineralization, base metals and gold mineralization with lesser exploration into lithium-bearing LCT type pegmatites. The Despard Pegmatite Target has historically been drilled by Sogemines Development Co. Limited in 1959 (10 NQ diamond drill holes totalling 517.246 metres) with sampling indicated on the original drill logs, but no assays or assay certificated included with the report. Of the 10 holes, 9 intersected spodumene-bearing

Criteria	JORC Code explanation	Commentary
		pegmatite.
Geology	Deposit type, geological setting and style of mineralisation.	Regional Geology: The Junior Lake property is located within the Caribou Lake – O'Sullivan greenstone belt of the Eastern Wabigoon Subprovince, Superior Province, roughly 230 kilometres north-northeast of Thunder Bay, Ontario. Granite, quartz diorite, tonalite gneiss and migmatite of the Robinson Lake Batholith flanks the greenstone belt to the south. To the north is the English River Subprovince which is differentiated from the eastern Wabigoon Subprovince by a major, roughly east-west trending shear zone / terrain boundary. To the west of the property is a series of undulating, NeoProterozoicage Nipigon diabase sills and dykes that intrude the greenstone belt. The elliptical, tonalitic to quartz dioritic Summit Lake Batholith is located directly northeast of the property. Property Geology: Berger (1992) subdivided the supracrustal rocks of the Caribou-O'Sullivan greenstone belt into the Archean-aged Toronto and Marshall Lake groups, with the main difference between the two being a higher degree of clastic metasedimentary rocks and lesser mafic intrusives in the Marshall Lake group. The property is host to three main lithium-bearing pegmatite occurrences called the Tape Lake pegmatite, Despard lithium occurrence and the Swole Lake pegmatite dyke. These pegmatites are located within the vicinity of Tape Lake, Lamaune Lake and Swole Lake, respectively. Ore Geology: Swole Lake: The Swole Lake area is underlain by the Swole Lake ultramafic complex hosted within well bedded medium grained Archean sedimentary to the west and volcanic sequences. The ultramafics are host to anomalous nickel, copper and PGE's (McCrindle 2001, et al). A granitic intrusion is emplaced to the north and thought to the source of the pegmatite discovered on the property. Pegmatites trend 010 and dip steeply (70) the NW. There are two significant shears and can be traced up to 2km either running along the contacts between the plutonic and mafic rocks or through the metasediments. The two shears intersect at the western edge of Felix La
		•

Criteria	JORC Code explanation	Commentary
		Grantic Pearwatte Erractics (L-Ta-Ca Bearing) Section Section
		 Despard Target (Pye R055 et al): Despard hosts pegmatite intermittent surface exposures hosted within metavolcanics displaying schistose fabric and amphibolite level metamorphic grades. The pegmatites consist of feldspar, spodumene and quartz with small amounts of muscovite, tourmaline and trace apatite. Spodumene can reach up to 30% of the pegmatite rock mass. The pegmatites strike east-west and dip shallowly to the north. 1950's by Sogemines Development Company Limited, Frobisher Limited, and Venures Ltd surface sampling results have been verified from field work carried out by Bayside Consulting Geologists with 3 samples taken from pegmatite outcrop and float specimens as well as surrounding meta-volcanics. The float
		Pegmatite sample, F713162, showed strong white spodumene mineralisation with light green muscovite, feldspar, trace apatite and columbite-tantalite yielding 3.23% Li ₂ 0. A nearby outcrop LCT pegmatite was sampled, F713124, and showed 2.56% Li ₂ 0 with upto 20cm green spodumene crystals, interstitial quartz, feldspar muscovite with rare columbite-tantalite and garnet. Despard pegmatite strike N70W to N80E and dipping 10N with strike extents of at least 1500ft (500m) based on 300 foot spaced diamond drillholes as describe by Pye et al 1955.
		Tape Lake:
		Tape Lake is underlain by predominantly amphibolites thought to be derived from gabbroic origin with a strong schistose – gneissic fabric trending 080 and dipping 70 to the south. Interspersed through the amphibolite are less deformed pillow basalts cross-cut by north-south trending 50m wide unaltered dolerite dykes. Metasediments consisting of quartz and biotite protrude into the areas from the west with a few outcrops and on the southern edge of the area.
		 Field crews dedicated six weeks to traverse the Tape area via a newly constructed logging road and have verified the presence of spodumene in two pegmatite dykes historically reported. The discovery includes a significant LCT spodumene-bearing pegmatite measuring 40 meters in length and up to 6 meters in width and based on outcrop observations, aligning with the characteristics of other lithium-bearing dikes in the region.
		 The first outcrop (Ridge Pegmatite) has samples of 2.97% Li20 returned and varied crystal lengths. With the second pegmatite (Roadside Pegmatite), measuring 15 meters in length and 6 meters in width, has rock chip samples

Criteria	JORC Code explanation	Commentary
		returned at 1.68% Li20 with crystals extending up to 12 centimetres, bordered by intensely chlorite-actinolite-altered mafic volcanic rocks to the east. The pegmatites consist of quartz, felspar and muscovite with fluorapatite, spodumene, columbite-tantalite and tourmaline present.
Drill hole Informatio n	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Historic drilling has been detailed in previous announcements by GT1 dated 13-March 2024

Criteria	JORC Code explanation	Commentary
Data aggregatio n methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut- off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Grab samples are not weighted and do not represent the unit they occur in. No cut-off grades have been used to report the Li₂0 results. No metal equivalents have been used in the reporting of the results.
Relationshi p between mineralisat ion widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, 	Grab samples are not representative of the mineralisation present and only present an indication as to prospectivity.

Criteria	JORC Code explanation	Commentary
	its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	-556000mN Junior Lake Project Tape Lake Prospect T

Balanced reporting

- Where comprehensi ve reporting of all Exploration Results is not practicable, representativ e reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.
- GT1 have engaged Bayside Geological Services Ltd to undertake field work on Junior Lake prospects.
- GT1 have sampled 389 grab samples from Tape and Despard Lake prospect (5 samples from Despard Lake) and visual inspection of the samples has confirmed the presence of coarse spodumene as the dominant lithium bearing mineral in the mineralised samples, confirming historic reports. A summary of the grab samples is noted below:

PROJECT	PROSPEC T	SAMPLE	Northing	Easting	LITH	Sample Type	Li20 ppm
Junior	Despard Lake	F713124	5586341	422504	Pegmatit e - Spod bearing	Outcrop	25,617
Junior	Despard Lake	F713125	5586345	422496	Pegmatit e - LCT (no spod)	Outcrop	1,528
Junior	Despard Lake	F713126	5586354	422513	Mafic Volcanics	Outcrop	47
Junior	Despard Lake	F713162	5586337	422507	Pegmatit e - Spod bearing	Float	32,290
Junior	Despard Lake	F713163	5585803	422733	Mafic Volcanics	Outcrop	77
Junior	Tape Lake	F712501	5591619	431974	Metasedi ments	Outcrop	56
Junior	Tape Lake	F712502	5591626	431978	Mafic Volcanics	Outcrop	52
Junior	Tape Lake	F712503	5591853	432067	Metasedi ments	Outcrop	831
Junior	Tape Lake	F712504	5591851	432064	Pegmatit e - LCT (no spod)	Outcrop	177
Junior	Tape Lake	F712505	5591882	432073	Pegmatit e - LCT (no spod)	Outcrop	149
Junior	Tape Lake	F712506	5591465	431797	Mafic Volcanics	Outcrop	82
Junior	Tape Lake	F712507	5591419	431731	Mafic Volcanics	Outcrop	50
Junior	Tape Lake	F712508	5593001	433154	Metasedi ments	Subcrop	54
Junior	Tape Lake	F712509	5592978	433182	Pegmatit e - LCT (no spod)	Float	82
Junior	Tape Lake	F712511	5592952	433225	Intermedi ate Volcanics	Outcrop	24
Junior	Tape Lake	F712512	5592941	433242	Intermedi ate Volcanics	Outcrop	26
Junior	Tape Lake	F712513	5592879	433280	Intermedi ate Volcanics	Outcrop	28
Junior	Tape Lake	F712514	5592917	433358	Mafic Volcanics	Outcrop	37
Junior	Tape Lake	F712515	5592983	433362	Intermedi ate Volcanics	Outcrop	30
Junior	Tape Lake	F712516	5592953	433387	Mafic Volcanics	Outcrop	56
Junior	Tape Lake	F712517	5592908	433435	Intermedi ate Volcanics	Outcrop	43
Junior	Tape Lake	F712518	5593030	433268	Metasedi ments	Subcrop	32
Junior	Tape Lake	F712519	5591989	432625	Metasedi ments	Outcrop	30
Junior	Tape Lake	F712521	5591989	432625	Pegmatit e - Barren	Float	28
Junior	Tape Lake	F712522	5592023	432524	Metasedi ments	Outcrop	71
Junior	Tape Lake	F712523	5592080	432243	Diorite	Outcrop	77
Junior	Tape Lake	F712524	5592043	432402	Mafic Volcanics	Outcrop	11

Junior	Tape	F712525	5591976	432384	Mafic	Outcrop	
	Lake	F712526			Volcanics Metasedi		80
Junior	Tape Lake		5591922	432410	ments	Outcrop	159
Junior	Tape Lake	F712527	5591987	432165	Metasedi ments	Outcrop	11
Junior	Tape Lake	F712528	5592824	433184	Intermedi ate	Outcrop	80
			550000	(77047	Volcanics		00
Junior	Tape Lake	F712529	5592807	433213	Intermedi ate	Outcrop	52
Junior	Tape	F712531	5592798	433360	Volcanics Mafic	Outcrop	
Junior	Lake Tape	F712532	5592877	433392	Volcanics Mafic	Outcrop	32
	Lake				Volcanics	,	37
Junior	Tape Lake	F712533	5592860	433460	Mafic Volcanics	Outcrop	69
Junior	Tape Lake	F712534	5592838	433453	Mafic Volcanics	Outcrop	11
Junior	Tape	F712535	5592865	433549	Mafic	Outcrop	
Junior	Lake Tape	F712536	5592906	433670	Volcanics Mafic	Outcrop	73
Junior	Lake Tape	F712537	5592967	433755	Volcanics Mafic	Outcrop	26
Junior	Lake	F712538	EE02000	433802	Volcanics Mafic		11
	Tape Lake		5592869		Volcanics	Outcrop	41
Junior	Tape Lake	F712539	5592762	433665	Mafic Volcanics	Outcrop	50
Junior	Tape Lake	F712541	5592771	433519	Mafic Volcanics	Outcrop	103
Junior	Таре	F712542	5592949	433473	Mafic	Outcrop	
Junior	Lake Tape	F712543	5592752	433259	Volcanics Mafic	Outcrop	37
Junior	Lake Tape	F712544	5592802	432825	Volcanics Mafic	Outcrop	54
	Lake				Volcanics		11
Junior	Tape Lake	F712545	5592855	432543	Mafic Volcanics	Outcrop	50
Junior	Tape Lake	F712546	5591477	432070	Mafic Volcanics	Outcrop	24
Junior	Tape Lake	F712547	5591280	432349	Metasedi ments	Outcrop	80
Junior	Tape	F712548	5591121	432394	Mafic	Outcrop	
Junior	Lake Tape	F712549	5591172	432481	Volcanics Mafic	Outcrop	24
Junior	Lake Tape	F712551	5591211	432572	Volcanics Mafic	Outcrop	58
	Lake		EE012/2		Volcanics		41
Junior	Tape Lake	F712552	5591242	432638	Mafic Volcanics	Outcrop	56
Junior	Tape Lake	F712553	5591241	432735	Mafic Volcanics	Outcrop	11
Junior	Tape Lake	F712554	5591279	432841	Mafic Volcanics	Outcrop	69
Junior	Tape	F712555	5591314	432974	Gabbro	Outcrop	
Junior	Lake Tape	F712556	5591277	433110	Mafic	Outcrop	24
Junior	Lake Tape	F712557	5591183	432953	Volcanics Mafic	Outcrop	43
	Lake			433168	Volcanics	Outcrop	67
Junior	Tape Lake	F712558	5591259		Mafic Volcanics	'	56
Junior	Tape Lake	F712559	5591309	433238	Mafic Volcanics	Outcrop	11
Junior	Tape Lake	F712561	5591609	432047	Mafic Volcanics	Outcrop	77
Junior	Tape	F712562	5589234	430789	Mafic	Outcrop	
Junior	Lake Tape	F712563	5589247	430826	Volcanics Mafic	Outcrop	34
Junior	Lake Tape	F712564	5589316	430867	Volcanics Mafic	Subcrop	62
	Lake				Volcanics	·	32
Junior	Tape Lake	F712565	5591888	432080	Metasedi ments	Outcrop	534

		ı			ı	1	ı
Junior	Tape Lake	F712566	5591901	432104	Metasedi ments	Outcrop	32
Junior	Tape Lake	F712567	5591898	432131	Mafic Volcanics	Outcrop	41
Junior	Tape Lake	F712568	5591857	432120	Mafic Volcanics	Outcrop	110
Junior	Tape	F712569	5591840	432107	Mafic	Outcrop	
Junior	Lake Tape	F712571	5591846	432092	Volcanics Other	Outcrop	211
Junior	Lake Tape	F712572	5591832	432081	Pegmatit	Outcrop	133
Junior	Lake Tape	F712573	5591843	432077	e - Barren Pegmatit	Outcrop	359
oumor	Lake	1712070	3331010	102077	e - LCT (no spod)	Cutorop	2,015
Junior	Tape Lake	F712574	5591843	432078	Pegmatit e - LCT (no spod)	Outcrop	1,345
Junior	Tape Lake	F712575	5591845	432083	Mafic Volcanics	Outcrop	506
Junior	Tape Lake	F712576	5591858	432083	Pegmatit e - Barren	Outcrop	676
Junior	Tape Lake	F712577	5591995	432047	Metasedi ments	Outcrop	26
Junior	Tape Lake	F712578	5591624	432337	Mafic Volcanics	Outcrop	34
Junior	Tape Lake	F712579	5591499	432487	Mafic Volcanics	Outcrop	28
Junior	Tape Lake	F712581	5591365	433207	Pegmatit e - LCT	Outcrop	123
Junior	Tape Lake	F712582	5591409	433186	(no spod) Pegmatit e - LCT (no spod)	Outcrop	90
Junior	Tape Lake	F712583	5591423	433177	Mafic Volcanics	Outcrop	58
Junior	Tape Lake	F712584	5591539	433248	Mafic Volcanics	Outcrop	84
Junior	Tape Lake	F712585	5591534	433042	Mafic Volcanics	Outcrop	41
Junior	Tape Lake	F712586	5590486	431483	Mafic Volcanics	Outcrop	47
Junior	Tape Lake	F712587	5590418	431464	Gabbro	Outcrop	22
Junior	Tape Lake	F712588	5590391	431482	Metasedi ments	Outcrop	112
Junior	Tape Lake	F712589	5590347	431589	Gabbro	Outcrop	39
Junior	Tape Lake	F712591	5590503	431446	Mafic Volcanics	Outcrop	56
Junior	Tape Lake	F712592	5590348	431377	Mafic Volcanics	Outcrop	39
Junior	Tape Lake	F712593	5590445	430959	Mafic Volcanics	Outcrop	41
Junior	Tape Lake	F712594	5590559	430950	Mafic Volcanics	Outcrop	34
Junior	Tape	F712595	5590620	431001	Metasedi	Outcrop	45
Junior	Lake Tape	F712596	5590557	431062	ments Mafic Volcanics	Outcrop	45
Junior	Lake Tape	F712597	5590444	431127	Mafic Volcanics	Outcrop	30
Junior	Lake Tape Lake	F712598	5590390	431209	Intermedi ate	Outcrop	144
Junior	Tape Lake	F712599	5590378	431418	Volcanics Gabbro	Outcrop	26
Junior	Tape	F712601	5590404	431405	Mafic	Outcrop	45
Junior	Lake Tape	F712602	5592182	431818	Volcanics Mafic	Subcrop	
Junior	Lake Tape	F712603	5592239	431868	Volcanics Mafic	Outcrop	84
Junior	Lake Tape	F712604	5592301	431932	Volcanics Mafic	Outcrop	50
	Lake				Volcanics		11

	1 -	FEMALOSE		/ 74770	l ,, ;;	Ι	1
Junior	Tape Lake	F712605	5592293	431778	Mafic Volcanics	Subcrop	11
Junior	Tape Lake	F712606	5592249	431816	Mafic Volcanics	Outcrop	11
Junior	Tape Lake	F712607	5592353	431961	Mafic Volcanics	Outcrop	37
Junior	Tape	F712608	5592387	432023	Mafic	Outcrop	
Junior	Lake Tape	F712609	5592010	432074	Volcanics Mafic	Outcrop	34
Junior	Lake Tape	F712611	5592011	432074	Volcanics Metasedi	Outcrop	95
Junior	Lake Tape	F712612	5591975	432079	ments Metasedi	Outcrop	26
	Lake				ments	·	136
Junior	Tape Lake	F712613	5591946	432061	Metasedi ments	Outcrop	323
Junior	Tape Lake	F712614	5591933	432066	Metasedi ments	Outcrop	136
Junior	Tape Lake	F712615	5591916	432074	Metasedi ments	Outcrop	47
Junior	Tape	F712616	5591901	432074	Metasedi	Outcrop	
Junior	Lake Tape	F712617	5591838	432080	ments Pegmatit	Outcrop	47
	Lake				e - Spod bearing		24
Junior	Tape Lake	F712618	5591840	432077	Pegmatit e - Spod	Outcrop	90
		F710010	5501075	/ 70750	bearing		
Junior	Tape Lake	F712619	5591935	432356	Metasedi ments	Outcrop	11
Junior	Tape Lake	F712621	5591887	432407	Metasedi ments	Outcrop	37
Junior	Tape Lake	F712622	5591843	432396	Mafic Volcanics	Outcrop	121
Junior	Tape	F712623	5591816	432381	Metasedi	Outcrop	
Junior	Lake Tape	F712624	5591822	432312	ments Metasedi	Outcrop	1,412
Junior	Lake Tape	F712625	5591856	432280	ments Metasedi	Outcrop	3,767
Junior	Lake Tape	F712626	5591842	432223	ments Mafic	Outcrop	47
Junior	Lake	F712627	5591853	432196	Volcanics Metasedi		28
	Tape Lake				ments	Outcrop	65
Junior	Tape Lake	F712628	5591864	432069	Pegmatit e - LCT	Subcrop	930
Junior	Tape	F712629	5593201	432392	(no spod) Mafic	Outcrop	TBA
Junior	Lake Tape	F712631	5593186	432452	Volcanics Mafic	Outcrop	TBA
	Lake				Volcanics		
Junior	Tape Lake	F712632	5593170	432486	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712633	5593176	432494	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712634	5593180	432478	Mafic Volcanics	Outcrop	TBA
Junior	Tape	F712635	5591636	431914	Mafic	Outcrop	TBA
Junior	Lake Tape	F712636	5591649	431870	Volcanics Mafic	Outcrop	TBA
Junior	Lake Tape	F712637	5591655	431805	Volcanics Mafic	Outcrop	TBA
Junior	Lake Tape	F712638	5591625	431754	Volcanics Metasedi	Outcrop	TBA
	Lake				ments	·	
Junior	Tape Lake	F712639	5591606	431723	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712641	5591586	431730	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712642	5591597	431796	Mafic Volcanics	Outcrop	TBA
Junior	Tape	F712643	5591580	431902	Mafic	Outcrop	TBA
Junior	Lake Tape	F712644	5591592	431893	Volcanics Mafic	Outcrop	TBA
	Lake				Volcanics]	

Junior	Tape Lake	F712645	5591603	431651	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712646	5591594	431808	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712647	5592918	433185	Intermedi ate	Outcrop	TBA
Junior	Таре	F712648	5592893	433190	Volcanics Intermedi	Outcrop	TBA
	Lake				ate Volcanics		
Junior	Tape Lake	F712649	5592912	433209	Intermedi ate Volcanics	Outcrop	TBA
Junior	Tape Lake	F712651	5592878	433225	Intermedi ate Volcanics	Outcrop	TBA
Junior	Tape Lake	F712652	5592497	433921	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712653	5592515	433946	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712654	5592555	433978	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712655	5592565	434023	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712656	5592602	434048	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712657	5592639	434111	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712658	5592725	434049	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712659	5593157	433814	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712661	5593146	433834	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712662	5593094	433832	Intermedi ate Volcanics	Outcrop	TBA
Junior	Tape Lake	F712663	5592937	433821	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712664	5592942	433893	Intermedi ate	Outcrop	ТВА
Junior	Tape Lake	F712665	5593065	434074	Volcanics Mafic Volcanics	Outcrop	ТВА
Junior	Tape Lake	F712666	5593060	434037	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712667	5592221	432142	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712668	5592222	432179	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712669	5592218	432179	Pegmatit e - LCT	Outcrop	TBA
Junior	Tape Lake	F712671	5592212	432208	(no spod) Pegmatit e - LCT	Outcrop	ТВА
Junior	Tape	F712672	5592216	432206	(no spod) Mafic	Outcrop	TBA
Junior	Lake Tape Lake	F712673	5592294	432552	Volcanics Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712674	5588932	430632	Metasedi ments	Outcrop	TBA
Junior	Tape Lake	F712675	5588994	430628	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F712676	5590466	431422	Intermedi ate	Outcrop	ТВА
Junior	Tape	F712677	5590471	431422	Volcanics Mafic	Outcrop	TBA
Junior	Lake Tape	F712678	5592219	432211	Volcanics Metasedi	Outcrop	TBA
Junior	Lake Tape Lake	F712679	5592213	432169	ments Pegmatit e - LCT	Outcrop	TBA
	Lunc				(no spod)		

	1	1		ı	1	,	1
Junior	Tape Lake	F712681	5593190	433947	Intermedi ate	Outcrop	41
lumian	Tana	F712682	FF07000	/7/1/1	Volcanics	Outoron	
Junior	Tape Lake	F712682	5593288	434141	Intermedi ate Volcanics	Outcrop	60
Junior	Tape Lake	F712683	5593168	434163	Mafic Volcanics	Outcrop	50
Junior	Tape Lake	F712684	5593155	434144	Mafic Volcanics	Outcrop	37
Junior	Tape Lake	F712685	5593076	434109	Pegmatit e - Barren	Float	11
Junior	Tape Lake	F712686	5593076	434119	Intermedi ate Volcanics	Outcrop	149
Junior	Tape Lake	F712687	5592999	434010	Mafic Volcanics	Outcrop	1
Junior	Tape Lake	F712688	5593026	433935	Mafic Volcanics	Outcrop	11
Junior	Tape Lake	F712689	5593005	433839	Intermedi ate Volcanics	Outcrop	52
Junior	Tape Lake	F712691	5592966	433661	Mafic Volcanics	Outcrop	11
Junior	Tape Lake	F712692	5591393	433191	Pegmatit e - Spod bearing	Outcrop	29,707
Junior	Tape Lake	F712693	5591389	433192	Pegmatit e - Spod bearing	Outcrop	21,118
Junior	Tape Lake	F712694	5591359	433200	Mafic Volcanics	Outcrop	108
Junior	Tape Lake	F712695	5591382	433195	Pegmatit e - LCT (no spod)	Outcrop	35
Junior	Tape Lake	F712696	5591361.7 4	433190.07	Mafic Volcanics	Outcrop	99
Junior	Tape Lake	F712697	5591347.4 4	433143.99	Mafic Volcanics	Outcrop	58
Junior	Tape Lake	F712698	5591309	433194	Mafic Volcanics	Outcrop	11
Junior	Tape Lake	F712699	5591398	433146	Mafic Volcanics	Outcrop	54
Junior	Tape Lake	F712701	5591383	433176	Mafic Volcanics	Outcrop	108
Junior	Tape Lake	F712702	5591296	433062	Mafic Volcanics	Outcrop	37
Junior	Tape Lake	F712703	5591327	433024	Gabbro	Outcrop	30
Junior	Tape Lake	F712704	5591367	433051	Mafic Volcanics	Outcrop	37
Junior	Tape Lake	F712705	5591373	433113	Mafic Volcanics	Outcrop	65
Junior	Tape Lake	F712706	5591407	433082	Mafic Volcanics	Outcrop	58
Junior	Tape Lake	F712707	5591451	433077	Mafic Volcanics	Outcrop	65
Junior	Tape Lake	F712708	5591445	432993	Mafic Volcanics	Outcrop	39
Junior	Tape Lake	F712709	5592213	432230	Pegmatit e - Barren	Outcrop	26
Junior	Tape Lake	F712711	5592219	432141	Pegmatit e - Barren	Outcrop	24
Junior	Tape Lake	F712712	5592260	432190	Mafic Volcanics	Outcrop	1
Junior	Tape Lake	F712713	5592302	432143	Mafic Volcanics	Outcrop	39
Junior	Tape Lake	F712714	5591841	432078	Pegmatit e - Spod bearing	Outcrop	15,219
Junior	Tape Lake	F712715	5591839	432080	Pegmatit e - Spod bearing	Outcrop	16,834
Junior	Tape Lake	F712716	5591838	432078	Pegmatit e - Spod	Outcrop	9,515

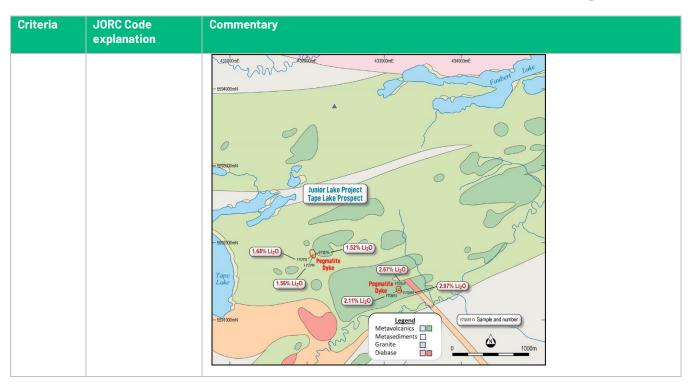
	T _	T	T T			1 .	1
Junior	Tape Lake	F712717	5593690	431969	Mafic Volcanics	Outcrop	60
Junior	Tape Lake	F712718	5593739	431597	Mafic Volcanics	Outcrop	54
Junior	Tape Lake	F712719	5593732	431510	Mafic Volcanics	Outcrop	32
Junior	Таре	F712721	5593709	431864	Mafic	Outcrop	
Junior	Lake Tape	F712722	5593244	430976	Volcanics Mafic	Outcrop	62
Junior	Lake Tape	F712723	5593149	431034	Volcanics Mafic	Outcrop	52
Junior	Lake	F712724	5593063	431091	Volcanics Mafic	Outcrop	11
	Lake				Volcanics	'	62
Junior	Tape Lake	F712725	5593029	431168	Mafic Volcanics	Outcrop	26
Junior	Tape Lake	F712726	5593139	431125	Mafic Volcanics	Outcrop	95
Junior	Tape Lake	F712727	5593276	431121	Mafic Volcanics	Outcrop	26
Junior	Таре	F712728	5593348	431108	Metasedi	Outcrop	
Junior	Lake Tape	F712729	5593432	431143	ments Mafic	Outcrop	11
Junior	Lake Tape	F712731	5593562	431192	Volcanics Mafic	Outcrop	47
Junior	Lake Tape	F712732	5588582	430130	Volcanics Mafic	Outcrop	77
	Lake				Volcanics		37
Junior	Tape Lake	F712733	5588711	430287	Mafic Volcanics	Outcrop	88
Junior	Tape Lake	F712734	5588750	430330	Mafic Volcanics	Outcrop	60
Junior	Tape Lake	F712735	5588868	430541	Metasedi ments	Outcrop	161
Junior	Tape	F712736	5591374	432019	Mafic	Outcrop	
Junior	Lake Tape	F712737	5591453	431988	Volcanics Mafic	Outcrop	39
Junior	Lake Tape	F712738	5590588	431319	Volcanics Mafic	Outcrop	34
Junior	Lake Tape	F712739	5590521	431271	Volcanics Mafic	Outcrop	58
	Lake			-	Volcanics	,	60
Junior	Tape Lake	F712741	5590453	431229	Mafic Volcanics	Outcrop	65
Junior	Tape Lake	F712742	5593309	433952	Intermedi ate	Subcrop	32
Junior	Tape	F712743	5593414	430427	Volcanics Mafic	Outcrop	
	Lake				Volcanics		11
Junior	Tape Lake	F712744	5593466	433906	Mafic Volcanics	Outcrop	11
Junior	Tape Lake	F712745	5593411	433871	Mafic Volcanics	Outcrop	41
Junior	Tape Lake	F712746	5593354	433798	Mafic Volcanics	Outcrop	45
Junior	Tape	F712747	5593062	433683	Mafic	Outcrop	
Junior	Lake Tape	F712748	5592638	433664	Volcanics Mafic	Outcrop	32
Junior	Lake Tape	F712749	5592689	433773	Volcanics Mafic	Outcrop	54
Junior	Lake Tape	F712751	5593343	431857	Volcanics Metasedi	Outcrop	43
	Lake				ments	·	60
Junior	Tape Lake	F712752	5593336	431775	Mafic Volcanics	Outcrop	24
Junior	Tape Lake	F712753	5593405	431402	Pegmatit e - Barren	Subcrop	11
Junior	Tape Lake	F712754	5593369	431218	Pegmatit e - LCT	Subcrop	11
to on t		F740755	FF07/0/	/74040	(no spod)	Our	"
Junior	Tape Lake	F712755	5593404	431216	Metasedi ments	Outcrop	58
Junior	Tape Lake	F712756	5593290	431326	Metasedi ments	Outcrop	84
Junior	Tape Lake	F712757	5593235	431416	Mafic Volcanics	Outcrop	41

Junior	Tape Lake	F712758	5591859	431957	Gabbro	Subcrop	90
Junior	Tape Lake	F712759	5591540	431430	Mafic Volcanics	Outcrop	30
Junior	Tape Lake	F712761	5591442	431454	Mafic Volcanics	Outcrop	52
Junior	Tape Lake	F712762	5591364	431566	Mafic Volcanics	Outcrop	45
Junior	Tape Lake	F712763	5591167	431437	Mafic Volcanics	Outcrop	54
Junior	Tape	F712764	5591173	431355	Gabbro	Outcrop	95
Junior	Lake Tape	F712765	5591937	432121	Mafic	Outcrop	
Junior	Lake Tape	F712766	5591597	432448	Volcanics Intermedi	Outcrop	52
	Lake				ate Volcanics		32
Junior	Tape Lake	F712767	5591421	432695	Mafic Volcanics	Outcrop	37
Junior	Tape Lake	F712768	5591392	433194	Pegmatit e - Spod	Outcrop	142
Junior	Tape	F712769	5591392	433193	bearing Pegmatit	Float	
	Lake				e - Spod bearing		26,693
Junior	Tape Lake	F712771	5591491	433487	Mafic Volcanics	Outcrop	73
Junior	Tape Lake	F712772	5591464	433367	Mafic Volcanics	Outcrop	32
Junior	Tape Lake	F712773	5590732	431826	Mafic Volcanics	Outcrop	45
Junior	Tape Lake	F712774	5592530	432579	Mafic Volcanics	Outcrop	11
Junior	Tape Lake	F712775	5592506	432811	Mafic Volcanics	Outcrop	37
Junior	Tape	F712776	5592436	432805	Mafic	Outcrop	34
Junior	Lake Tape	F712777	5592302	432809	Volcanics Intermedi	Outcrop	
	Lake				ate Volcanics		30
Junior	Tape Lake	F712778	5592336	432688	Metasedi ments	Outcrop	45
Junior	Tape Lake	F712779	5592301	432460	Metasedi ments	Outcrop	28
Junior	Tape Lake	F712781	5592338	432330	Mafic Volcanics	Outcrop	67
Junior	Tape Lake	F712782	5592326	432206	Mafic Volcanics	Outcrop	30
Junior	Tape Lake	F712783	5591948	432194	Metasedi ments	Outcrop	52
Junior	Tape Lake	F712784	5591952	432329	Metasedi ments	Outcrop	65
Junior	Tape Lake	F712785	5591983	432342	Mafic Volcanics	Outcrop	56
Junior	Tape Lake	F712786	5592048	432351	Mafic Volcanics	Outcrop	69
Junior	Tape Lake	F712787	5592230	432240	Metasedi ments	Outcrop	11
Junior	Tape	F712788	5590517	431411	Gabbro	Outcrop	
Junior	Lake Tape	F712789	5590574	431416	Intermedi	Outcrop	32
	Lake				Volcanics	_	77
Junior	Tape Lake	F712791	5590635	431434	Mafic Volcanics	Outcrop	56
Junior	Tape Lake	F712792	5591330	431547	Mafic Volcanics	Outcrop	50
Junior	Tape Lake	F712793	5591318	431589	Mafic Volcanics	Outcrop	75
Junior	Таре	F712794	5591532	431937	Mafic Volcanics	Outcrop	34
outiloi	Lake						
Junior	Lake Tape Lake	F712795	5592349	432062	Mafic Volcanics	Outcrop	32

28	Outcrop	Metasedi ments	431961	5592180	F712797	Tape Lake	Junior
27	Outcrop	Metasedi ments	431979	5592207	F712798	Tape Lake	Junior
15,62	Outcrop	Pegmatit e - Spod bearing	432081	5591839	F712799	Tape Lake	Junior
4	Outcrop	Mafic Volcanics	431337	5593072	F712801	Tape Lake	Junior
6	Outcrop	Metasedi ments	431544	5592993	F712802	Tape Lake	Junior
5	Outcrop	Mafic Volcanics	431753	5593065	F712803	Tape Lake	Junior
17	Outcrop	Mafic Volcanics	432072	5592170	F712804	Tape Lake	Junior
15	Outcrop	Mafic Volcanics	432073	5592190	F712805	Tape Lake	Junior
26	Outcrop	Mafic Volcanics	432084	5592195	F712806	Tape Lake	Junior
17	Outcrop	Mafic Volcanics	432090	5592183	F712807	Tape Lake	Junior
1	Outcrop	Aplite	432067	5592227	F712808	Tape Lake	Junior
3	Outcrop	Mafic Volcanics	432072	5592227	F712809	Tape Lake	Junior
7	Outcrop	Mafic Volcanics	432065	5592212	F712811	Tape Lake	Junior
31	Outcrop	Metasedi ments	432065	5592212	F712812	Tape Lake	Junior
11	Outcrop	Diorite	432067	5592027	F712813	Tape Lake	Junior
7	Outcrop	Mafic Volcanics	432132	5592029	F712814	Tape Lake	Junior
4	Outcrop	Diorite	432131	5592031	F712815	Tape Lake	Junior
6	Outcrop	Diorite	432169	5592049	F712816	Tape Lake	Junior
6	Outcrop	Gabbro	432204	5592023	F712817	Tape Lake	Junior
14	Outcrop	Gabbro	432214	5592024	F712818	Tape Lake	Junior
7	Outcrop	Gabbro	432210	5592057	F712819	Tape Lake	Junior
17	Outcrop	Mafic Volcanics	430651	5588985	F712821	Tape Lake	Junior
11	Outcrop	Mafic Volcanics	430684	5588977	F712822	Tape Lake	Junior
2	Outcrop	Mafic Volcanics	432215	5591622	F712823	Tape Lake	Junior
2	Outcrop	Metasedi ments	432338	5591806	F712824	Tape Lake	Junior
	Outcrop	Metasedi ments	432317	5591796	F712825	Tape Lake	Junior
11	Outcrop	Metasedi ments	432420	5591806	F712826	Tape Lake	Junior
	Outcrop	Metasedi ments	432420	5591821	F712827	Tape Lake	Junior
2	Outcrop	Mafic Volcanics	432465	5591837	F712828	Tape Lake	Junior
4	Outcrop	Mafic Volcanics	432946	5591762	F712829	Tape Lake	Junior
1	Outcrop	Mafic Volcanics	432954	5591717	F712831	Tape Lake	Junior
1	Outcrop	Mafic Volcanics	432921	5591705	F712832	Tape Lake	Junior
3	Outcrop	Mafic Volcanics	431715	5591300	F712833	Tape Lake	Junior
2	Outcrop	Diabase	431946	5591099	F712834	Tape Lake	Junior
	Outcrop	Diabase	432062	5591126	F712835	Tape Lake	Junior
5	Outcrop	Mafic Volcanics	432283	5591086	F712836	Tape Lake	Junior
6	Subcrop	Mafic Volcanics	432432	5591038	F712837	Tape	Junior

Junior	Tape Lake	F712838	5591037	432431	Felsic Volcanics	Outcrop	47
Junior	Tape Lake	F712839	559441	433659	Mafic Volcanics	Subcrop	54
Junior	Tape Lake	F712841	5593450	433713	Mafic Volcanics	Outcrop	52
Junior	Tape	F712842	5593331	433756	Mafic	Outcrop	
Junior	Lake Tape	F712843	5593215	431859	Volcanics Mafic	Outcrop	26
Junior	Lake Tape	F712844	5593217	431812	Volcanics Mafic	Outcrop	22
Junior	Lake Tape	F712845	5593227	431732	Volcanics Gabbro	Outcrop	30
Junior	Lake Tape	F712846	5593372	431672	Mafic	Outcrop	11
Junior	Lake Tape	F712847	5593508	434186	Volcanics Metasedi	Outcrop	37
	Lake				ments	,	11
Junior	Tape Lake	F712848	5593452	434147	Metasedi ments	Outcrop	41
Junior	Tape Lake	F712849	5593162	432361	Intermedi ate Volcanics	Outcrop	45
Junior	Tape Lake	F712851	5591396	433251	Mafic Volcanics	Outcrop	32
Junior	Tape Lake	F712852	5591424	433321	Mafic Volcanics	Outcrop	22
Junior	Tape Lake	F712853	5591328	433291	Mafic Volcanics	Outcrop	26
Junior	Tape Lake	F712854	5591386	433369	Mafic Volcanics	Outcrop	24
Junior	Tape	F712855	5591503	433439	Mafic	Outcrop	
Junior	Lake Tape	F712856	5591556	433398	Volcanics Mafic	Outcrop	26
Junior	Lake Tape	F712857	5591504	433304	Volcanics Mafic	Outcrop	56
Junior	Lake Tape	F712858	5591483	433253	Volcanics Mafic	Outcrop	11
Junior	Lake Tape	F712859	5591442	433124	Volcanics Mafic	Outcrop	26
Junior	Lake Tape	F712861	5592247	432118	Volcanics Mafic	Outcrop	34
Junior	Lake Tape	F712862	5593417	431416	Volcanics Mafic	Outcrop	28
Junior	Lake Tape	F712863	5593394	431323	Volcanics Mafic	Outcrop	26
Junior	Lake Tape	F712864	5593389	431544	Volcanics Mafic	Outcrop	43
Junior	Lake Tape	F712865	5593336	431577	Volcanics Mafic	Outcrop	60
Junior	Lake Tape	F712866	5593313	431542	Volcanics Mafic	Outcrop	26
Junior	Lake Tape	F712867	5593371	431630	Volcanics Mafic	Outcrop	11
Junior	Lake Tape	F712868	5593419	431680	Volcanics Mafic	Outcrop	24
	Lake				Volcanics		60
Junior	Tape Lake	F712869	5593033	433484	Metasedi ments	Outcrop	11
Junior	Tape Lake	F712871	5593032	433480	Mafic Volcanics	Outcrop	30
Junior	Tape Lake	F712872	5592978	433490	Mafic Volcanics	Outcrop	32
Junior	Tape Lake	F712873	5592992	433519	Mafic Volcanics	Outcrop	47
Junior	Tape Lake	F712874	5593019	433568	Metasedi ments	Outcrop	11
	Tape Lake	F712875	5593026	433616	Metasedi ments	Outcrop	11
Junior	Lane		EE07010	433661	Mafic	Outcrop	"
Junior Junior	Tape	F712876	5593016	100001			11
		F712876 F712877	5593062	433703	Volcanics Mafic Volcanics	Outcrop	11 24

Junior	Tape Lake	F712879	5593070	433601	Mafic Volcanics	Outcrop	2
Junior	Tape Lake	F712881	5591840	433470	Metasedi ments	Outcrop	8
Junior	Tape	F712882	5592347	432862	Metasedi ments	Outcrop	8
Junior	Lake Tape	F712883	5592364	432760	Mafic	Outcrop	
Junior	Lake Tape	F712884	5592390	432657	Volcanics Mafic	Outcrop	5
Junior	Lake Tape	F712885	5592434	432536	Volcanics Mafic	Outcrop	1
Junior	Lake Tape	F712886	5592412	432293	Volcanics Mafic	Outcrop	2
Junior	Lake Tape	F712887	5590227	431302	Volcanics Mafic	Outcrop	3
Junior	Lake Tape	F712888	5592652	433569	Volcanics Mafic	Outcrop	
	Lake				Volcanics	·	3
Junior	Tape Lake	F712889	5590442	431035	Mafic Volcanics	Outcrop	3
Junior	Tape Lake	F712891	5590240	431569	Mafic Volcanics	Outcrop	2
Junior	Tape Lake	F712892	5590185	431564	Mafic Volcanics	Outcrop	
Junior	Tape Lake	F713127	5589653	415305	Metasedi ments	Outcrop	TBA
Junior	Tape	F713128	5589671	415368	Mafic Volcanics	Outcrop	TBA
Junior	Lake Tape	F713129	5589118	416105	Intermedi	Subcrop	TBA
	Lake				ate Volcanics		
Junior	Tape Lake	F713131	5589601	415326	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F713132	5589669	414942	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F713133	5589197	415725	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F713134	5588902	416004	Mafic Volcanics	Outcrop	TBA
Junior	Tape	F713135	5588915	415924	Mafic	Outcrop	TBA
Junior	Lake Tape	F713136	5588889	415861	Volcanics Granite	Outcrop	TBA
Junior	Lake Tape	F713137	5588891	415859	Mafic	Outcrop	TBA
Junior	Lake Tape	F713138	5588973	415777	Volcanics Mafic	Outcrop	TBA
Junior	Lake Tape	F713139	5588955	415623	Volcanics Mafic	Outcrop	TBA
Junior	Lake Tape	F713141	5589633	415122	Volcanics Mafic	Outcrop	TBA
Junior	Lake Tape	F713142	5589773	415113	Volcanics Mafic	Outcrop	TBA
	Lake				Volcanics	·	
Junior	Tape Lake	F713143	5587550	417991	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F713144	5587559	418086	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F713146	5589716	414826	Mafic Volcanics	Outcrop	TBA
Junior	Tape Lake	F713147	5589715	414824	Granite	Outcrop	TBA
Junior	Tape Lake	F713148	5589672	414878	Mafic Volcanics	Outcrop	TBA
Junior	Tape	F713149	5589460	414784	Mafic	Outcrop	TBA
Junior	Lake Tape	F713151	5589497	414765	Volcanics Mafic	Outcrop	TBA
Junior	Lake Tape	F713152	5589561	414757	Volcanics Metasedi	Outcrop	TBA
Junior	Lake Tape	F713153	5589575	414764	ments Mafic	Outcrop	TBA
Junior	Lake Tape	F713154	5589666	414783	Volcanics Mafic	Outcrop	TBA
	Lake				Volcanics	·	
Junior	Tape Lake	F713155	5589477	414357	Mafic Volcanics	Outcrop	TBA



 ı		1		-			ı	T
	Junior	Tape Lake	F713156	5589444	414253	Mafic Volcanics	Outcrop	TBA
	Junior	Tape Lake	F713157	5589411	414198	Mafic Volcanics	Outcrop	ТВА
	Junior	Tape Lake	F713158	5589422	414199	Mafic Volcanics	Outcrop	TBA
	Junior	Tape Lake	F713159	5589417	414162	Mafic Volcanics	Outcrop	ТВА
	Junior	Tape Lake	F713161	5589434	414090	Mafic Volcanics	Outcrop	TBA
	Junior	Tape	F714151	5589497	414765	Mafic	Outcrop	ТВА
		Lake				Volcanics		

Criteria	JORC Code explanation	Commentary
Other substantiv e exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Landore Resources Canada Inc. Completed a low-level helicopter AeroTEM EM and MAG survey in 2004. Berland Resources Ltd. Completed prospecting within the vicinity of Swole Lake area and discovered the pegmatite boulder field in 2001. This pegmatite boulder field is the same field that Landore drilled in 2011. GT1 undertook a high resolution, 50m line spacing, Heli-mag survey over the entire Junior Lake prospect in June and July 2023 to aid in LCT pegmatite target identification.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	GT1 has undertaken early exploration reconnaissance work over the prospect area confirming the historic LCT pegmatite outcrop locations and grades after completing an airborne heli mounted magnetic survey over the Junior Lake tenement package and extensive field work season. The next phase of work will be to undertake exploration drilling to test the full extent and tenor of the confirmed LCT pegmatites in the Tape and Despard prospects.

