

Building the pre-eminent vertically integrated Lithium business in Ontario, Canada

SIGNIFICANT RESOURCE AND CONFIDENCE LEVEL INCREASE AT ROOT, GLOBAL RESOURCE INVENTORY NOW AT 24.5MT

HIGHLIGHTS

- 25% increase in the Root Bay Lithium Mineral Resource Estimate (MRE) to 10.1Mt @ 1.29% Li₂0,
- Increases GT1's global resource inventory in Ontario to 24.5Mt @ 1.14% Li₂O
- 93% of Root in the higher confidence, Indicated JORC category, now available for economic evaluation
- Root Bay is now the largest GT1 deposit with a MRE of 10.1Mt @ 1.29% Li₂0 incorporating infill drilling conducted over 1.3km trend of the deposit, which is still open along strike
- Potential for further Mineral Resource growth along trend at Root Bay, including the recent deep extensions (see release 11 October 2023) and across the larger 20km wide Root Lithium project area
- Two drill rigs are actively testing extensions to the east and west of the Root Bay deposit along a 3-kilometer extent entailing a 46 hole, 8,440m drill campaign

Green Technology Metals Limited (**ASX: GT1**) (**GT1** or the **Company**), a Canadian-focused multi-asset lithium business, is pleased to announce an updated Mineral Resource Estimate (MRE) for its 100% owned Root Project, located approximately 200km west of the flagship Seymour Project in Ontario, Canada.

Project	Tonnes (Mt)	Li ₂ 0 (%)
Root Project		
Root Bay		
Indicated	9.4	1.30
Inferred	0.7	1.14
Total	10.1	1.29
McCombe		
Inferred	4.5	1.01
Total	14.6	1.21
Seymour Project ¹		
North Aubry		
Indicated	5.2	1.29
Inferred	2.6	0.93
South Aubry Inferred	2.1	0.55
Total	9.9	1.04
Combined Total	24.5	1.14

Table 1: Combined Lithium Mineral Resources - 0.2% Li20 cut-off

¹For full details of the Seymour Mineral Resource estimate and Root Maiden Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, Interim Seymour Mineral Resource Doubles to 9.9Mt and GT1 Mineral Resources increased to 14.4MT dated 19 April 2023.

17 October 2023

We are pleased with the recent 25% increase in the Mineral Resource Estimate (MRE) at the Root Bay deposit, especially within the higher confidence, Indicated category. This significant update has propelled Root Bay to become the largest GT1 deposit and still hosts significant down dip extensions that haven't been included in this update.

This accomplishment underscores the substantial growth and potential that our projects hold. We still have a lot of ground to cover and with time, we will continue increasing our resource base with extensive exploration programs across our highly prospective projects with our primary focus currently on the down dip, eastern and western sides of Root Bay, where we anticipate further exciting developments."

- GT1 Chief Executive Officer, Luke Cox

ROOT BAY RESOURCE ESTIMATE SUMMARY

The latest update to the MRE for our Root Bay Lithium project now totals an impressive 10.1 million tonnes with a grade of 1.29% Li₂0. This elevates the overall resource for the Root project, situated in our western hub, to 14.6 million tonnes at 1.21% Li₂0, encompassing 4.5 million tonnes at a Li₂0 grade of 1.01% from the McCombe deposit.

The updated MRE from the Root Bay deposit includes all results from drilling that commenced on 23 February 2023, comprising 158 holes for 31,383.8m. The drilling revealed multiple shallow-dipping LCT pegmatite systems, with thicknesses of up to 18 meters, and exceptional lithium grades of up to 1.81% Li₂0 over that downhole thickness.

18 stacked pegmatites have been identified and defined to depths exceeding 450 meters and extending along the Root Bay trend for 1,300 meters, with a northerly strike length of up to 300 meters.

The pegmatites are hosted within an Archean package of meta-basalts. The meta-basalts are themselves sandwiched in a 300m wide corridor flanked in the south by meta-sediments and in the north by more meta-sediments hosting Banded Iron Formation and Black Shale units. The contacts between the meta-basalts and the meta-sedimentary units are thought to be steeply dipping, to sub-vertical orientations.

17 October 2023

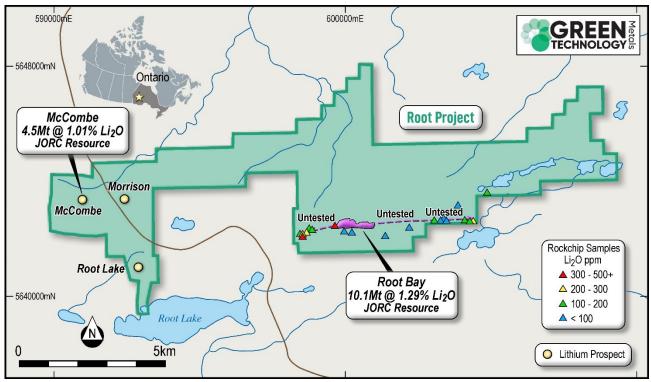


Figure 1: Root Lithium Project exploration target area

The MRE has been constrained within a pit shell generated through the Micromine Pit Optimiser module. Pegmatite tonnes and grade are reported above a 0.2% Li₂0 cut-off within the pit shell on a dry basis.

Root Bay 2023 MRE					
Grade cut-off (% Li₂0)	Tonnes (Mt)	Li ₂ 0 (%)			
0.0	10.1	1.29			
0.2	10.1	1.29			
0.4	9.8	1.31			
0.6	9.4	1.35			

Table 1: Root 2023 MRE Grade-Tonnage Data

Infill drilling at Root Bay to convert the previous inferred mineral resource classification is largely complete after this last round of drilling, which delineated a further 2Mt over and above the previous Inferred MRE (refer ASX announcement 7 June 2023). Mining studies to support necessary modifying factors, waste characterisation, metallurgical recoveries, and geotechnical assessments are currently underway.

17 October 2023

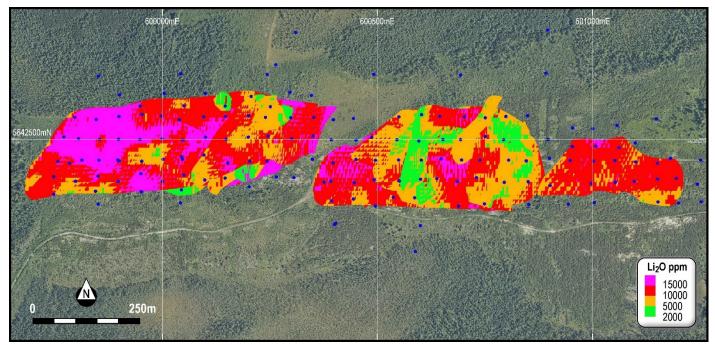


Figure 2: Root Bay plan view showing block model (multi colour), and collar locations (blue).

Further Resource Growth Potential

Diamond drilling by GT1 at the project has increased the MRE at Root Bay by 25% as well as converted 93% of the deposit to Indicated confidence levels. Initial drilling at the thick, high-grade western pegmatite (RB006) has also identified potential for underground expansion targets through deeper extension of two infill holes (RB-23-044 and RB-23-1130). The deposit has been modelled to a depth of ~350m below surface, deeper extension drilling has shown this extends over a 1km downdip or 550m from surface.

GT1 are currently conducting extensional drilling focused on the areas 1.5km east and 1.7km west along the trend from the current Root Bay deposit where the recent field season led to the discovery of new LCT pegmatites. The trend remains open and highly prospective and can be clearly traced over the entire length of GT1's tenement through the highly magnetic BIF unit that runs along the northern boundary of the Root Bay deposit.

17 October 2023

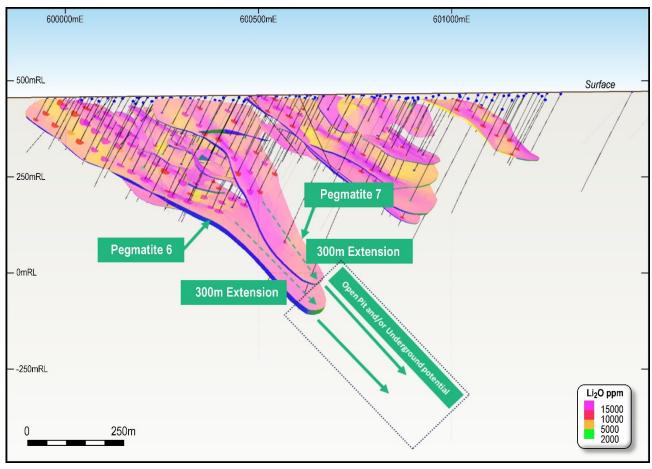


Figure 3: Stacked LCT pegmatites at Root Bay defined to 550m vertical from surface and open. Oblique view looking north-westerly

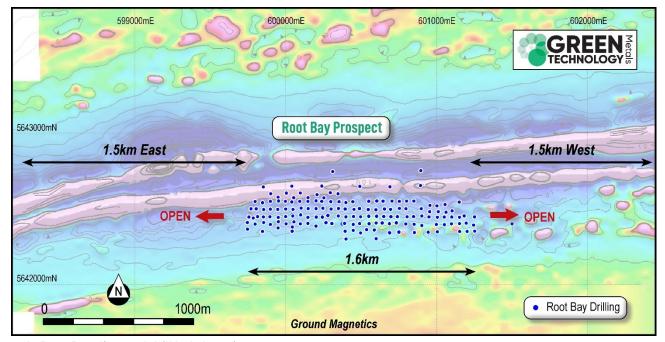


Figure 4: Root Bay diamond drill hole locations

17 October 2023

Indigenous Partners Acknowledgement

We would like to say Gchi Miigwech to our Indigenous partners. GT1 appreciates the opportunity to work in their Traditional Territory and is committed to the recognition and respect of those who have lived, travelled, and gathered on the lands since time immemorial. Green Technology Metals is committed to stewarding Indigenous heritage and remains committed to building, fostering, and encouraging a respectful relationship with Indigenous Peoples based upon principles of mutual trust, respect, reciprocity, and collaboration in the spirit of reconciliation.

Root Mineral Resource Estimate Detail

Regional and Local Geology

The Root Lake Lithium Project is located the boundary between the Uchi Domain and the English River sub province is defined by the Sydney Lake - Lake St. Joseph Fault, a steeply dipping brittle ductile fault zone over 450km along strike and 1-3km wide. It is estimated that the fault had accommodated 30km dextral, transcurrent displacement and 2.5km of south side up normal movement.

The English River Terrane is an east-west trending sub province composed of highly metamorphosed sedimentary rock, including turbiditic sediments and oxide iron formations, abundant granitoid batholiths, mafic to ultramafic plutons and rare felsic to intermediate metavolcanic rock.

Figure 5: Root and Seymour Property Locations and Geology

Bedrock Geology

17 October 2023

McCombe, Morrison and Root Bay project areas bedrock consist primarily of metavolcanic rocks of the Lake St. Joseph greenstone belt within the Uchi Domain, while the Root Lake pegmatite is within metasedimentary rocks of the English River Terrane.

Property Geology

The Root Lake Lithium Project is covered in a veneer of patchy glacial deposits comprising shallow gravelly soils, boulder till and in places thick moraines. In low-lying areas the bedrock is also obscured by lakes and swamps with the Roadhouse River transecting the southern portion of the McCombe deposit and western Morrison pegmatites.

The local bedrock consists primarily of Archean metavolcanics and intercalated sediments with later cross-cutting felsic intrusions to the east of the McCombe pegmatites. East-west or northeast, steep or moderately dipping lithium bearing pegmatites crosscut the meta-volcanics and sediments. The Root Bay deposit lies along an east-west trending ridge of meta-basalts hosting moderately easterly dipping pegmatites and sandwiched between meta-sediments to the south and north. The northern sediments host steeply dipping magnetite rich horizons.

Pegmatites

Four spodumene bearing pegmatite groups are found on GT1's Root Lake land holdings, McCombe, Morrison and Root Bay and Root Lake.

The **McCombe** pegmatites is a combination of several spodumene-bearing granitic pegmatites located on the northwest side of the property. The dykes are exposed over 200m along strike length and vary from east-west to northeast orientations. Dips are the south and southeast and vary from 30-40 degrees to 60-70 degrees. Pegmatite width vary from 2-15m wide.

The **Morrison** Lake pegmatite is located on the northwest side of the property, 1.7km southeast from the McCombe pegmatite. The pegmatite trends east-west, dips moderately-steeply to the south, is exposed along strike over 195m and is 6.5m wide.

The **Root Bay** pegmatite is located on the south-eastern side of the property. It is exposed approximately 60m along strike, is 10m wide (Smyk et al., 2008; Magyarosi, 2016) and follows the presumed trace of the Lake St. Joseph Fault (Smyk et al., 2008). The pegmatites are hosted in foliated, locally pillowed mafic metavolcanic rock that contain metasomatic holmquistite near the contact of the pegmatite (Magyarosi, 2016).

The **Root Lake** pegmatite is located on the southwestern side of the property, south of the McCombe and Morrison pegmatites. The pegmatite is based on an occurrence from a single drill hole. The 168.55m drill hole intersected 7 spodumene-bearing and spodumene-absent granite pegmatite intervals between 0.15-1.22m thick within quartz biotite schists and metagreywackes.

17 October 2023

Mineral Resource Estimates

Sampling and sub-sampling techniques

Green Technology Metals Ltd have drilled 308 holes within the Root Lake project area with 116 holes drilled at McCombe, a further 34 holes into the neighbouring Morrison prospect and 158 holes in Root Bay for a total of 56,965m as of 19 September 2023.

The bulk of the core is NQ diameter core with some BQTK that a previous owner drilled at McCombe. All recent drilling by GT1 is NQ diameter core. Each $\frac{1}{2}$ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. A proportion of the mineralised pulps were re-tested by an independent laboratory, ACTLABS, Thunder Bay. The sample preparation process is considered representative of the whole core sample.

Drilling Techniques

HQ drilling was undertaken through the thin overburden prior to NQ2 diamond drilling through the primary rock. The holes were drilled used a standard barrel configuration and the core was orientated using a Reflex ACTIII tool located on the rear of the downhole barrel.

Database Integrity

Data was imported into the database directly from source geology logs and laboratory csv files. The data was then passed through a series of validation checks before final acceptance of the data for downstream use.

Site Visits

A site visit was undertaken by the Competent Person (John Winterbottom) between 14 to 15 March 2023 and 9th to 11th August 2023; general site layout, drilling sites, logging practices, and diamond drilling operations were viewed. GT1 store diamond core in a dedicated facility at Thunder Bay. The storage facility was visited on 13 March and 16 August and several holes reviewed and compared to logging.

Geological interpretation

Interpretation was made directly from pegmatites noted in geological logs with confirmation through core photographs and structural orientation data recorded directly from orientated core. The overburden lower contact and pegmatite units, as logged in the drilling, were digitised using Leapfrog® software and cut to the Lidar surface to create individual pegmatite and geological solids.

No high-grade envelopes were warranted at Root Bay due to the consistent high-grade nature of the main pegmatites. Pegmatite wireframes were seamlessly utilised in Seequent Leapfrog Edge® software for use in building the sub-blocked block models. Alternative geological interpretations would have a minimal effect on the resource estimate. Root Bay has two main types of pegmatites, thin low-grade pegmatites and thicker higher-grade pegmatites. The thinner low-grade units were interpreted and estimated in the MRE but were not considered as Mineral Resource inventory due to the likely low recovery and low-grade nature of these pegmatites. 2m thickness envelopes were generated for each of the pegmatites, where this was possible, for later MRE reporting purposes.

17 October 2023

Dimensions

The Root Bay deposit has a total strike extent of approximately 300m and has been drilled to a down dip extent of over 1000m downdip (550m below ground level). The pegmatites all dip to the east at approximately 35 degrees. The pegmatites are stacked and occur along a 1,300m east-west corridor.

Estimation and modelling techniques

An Ordinary Kriging (OK) grade estimation methodology has been used for Li_2O in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review. OK was also applied to important potential bi-product or deleterious elements (Ta_2O_5 , Fe, K, S). Elements other than Li_2O have not been included in the Mineral Resource figures as they have no economic value. All estimates were made to parent blocks. Leapfrog Edge version 2022.1.0 software was used for estimation, statistical and geostatistical data analysis at Root Bay.

Estimation Methodology

The Root Bay block model used $5mE \times 10mN \times 5mRL$ unrotated blocks and sub blocked to ensure they faithfully captured the pegmatite volumes. Variable Orientation searches were used for each pegmatite. Two passes were used to ensure blocks are filled in areas with sparser drilling. Root Bay also used two searches the first at $100m \times 100m \times 25m$ and a second at 150m search radii with all blocks filled after the second pass.

Moisture

All tonnages are reported on a dry basis.

Cut-off parameters

The Root Bay Mineral Resource is reported using open-pit mining constraints.

The open-pit Mineral Resource is only the portion of the resource that is constrained within a US\$4,000 / t SC6 optimised shell and above a 0.2% Li20 cut-off grade. The optimised open pit shell

- \$4/t mining cost
- \$15.19/t processing costs
- Mining loss of 5% with no mining dilution
- 55-degree pit slope angles
- 75% Product Recovery Modifying Factors

17 October 2023

Bulk density

McCombe - 1,599 bulk density measurements were made by GT1 on ½ NQ core 20cm billets using water immersion (Archimedes) techniques. 217 of the measurements were directly on pegmatite core. 2 pegmatite measurements were rejected as being anomalously low, 1.3 and 1.96.

Root Bay - 2,993 bulk densities were tested on Root Bay 1/2 NQ drill core billets with 890 measurements made directly on pegmatite core. Results were similar to those measured at McCombe.

Rock Type	Cumulative Length (m)	Root Bay Bulk Density
Pegmatite	257.9	2.72
BIF	19.43	2.90
Black Shale	2.90	2.78
Sediment	80.96	2.78
Basalt	122.13	2.74
_Overburden*	751.45	3.02

^{*} Estimated

Root Bay pegmatite bulk density measurements averaged 2.72. No bulk density data is available for the largely glacial cover over the deposit due to the difficulty in recovering this material in the drilling process. This material is volumetrically negligible ranging in depths from 0 to 19m and averaging around 6m at Root Bay. An assumed bulk density of 2.2 was used for overburden. There is a weak to moderate correlation between bulk density and Li₂O grade (Correlation Coefficient 58%) and so an assumed average pegmatite bulk density was used.

This ASX release has been approved for release by the Board.

KEY CONTACTS

Media **Investors**

Luke Cox Jacinta Martino

Chief Executive Officer Investor Relations and Media

info@greentm.com.au ir@greentm.com.au

+61 8 6557 6825 +61 430 147 046

Green Technology Metals (ASX:GT1)

GT1 is a North American-focussed lithium exploration and development business with a current global Mineral Resource estimate of 24.5 Mt at 1.14 % Li₂0. The Company's main 100 % owned Ontario lithium projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison, Falcon, Gathering, Junior, Pennock and Superb) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada. All sites are proximate to excellent existing infrastructure (including clean hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality. Targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

Combined Lithium Mineral Resources

Project	Tonnes (Mt)	Li ₂ 0 (%)
Root Project		
Root Bay		
Indicated	9.4	1.30
Inferred	0.7	1.14
Total	10.1	1.29
McCombe		
Inferred	4.5	1.01
Total	14.6	1.21
Seymour Project		
North Aubry		
Indicated	5.2	1.29
Inferred	2.6	0.93
South Aubry Inferred	2.1	0.55
Total	9.9	1.04
Combined Total	24.5	1.14

Combined Lithium Mineral Resources - 0.2% Li20 cut-off

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, *Interim Seymour Mineral Resource Doubles to 9.9Mt*. For full details of the Root Maiden Mineral Resource estimate, see GT1 ASX release dated 19 April

2023, GT1 Mineral Resources Increased to 14.4MT. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Mineral Resource Estimation is based on information reviewed by Mr John Winterbottom (Member AIG). Mr Winterbottom has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Winterbottom consents to the inclusion of the data in the form and context in which it appears in this release. Mr Winterbottom is the General Manager of Technical Service for the Company and holds securities in the Company.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

The information in this report relating to the Mineral Resource estimate for the Root Project is extracted from the Company's ASX announcement dated 19 April 2023. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GTI's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forwardlooking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence.

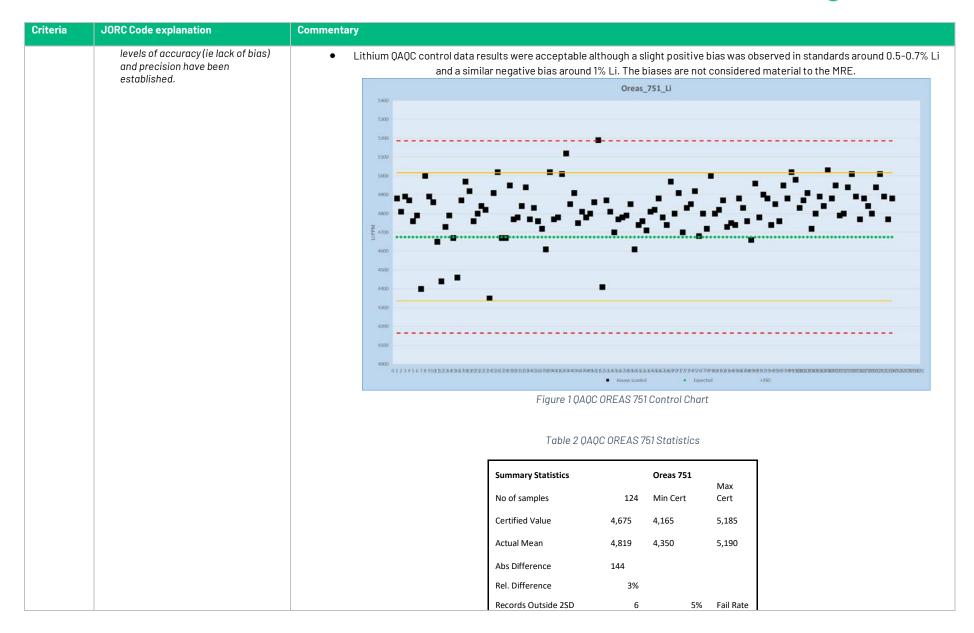
APPENDIX A: JORC CODE, 2012 EDITION – Table 1 Report

Section 1 Sampling Techniques and Data

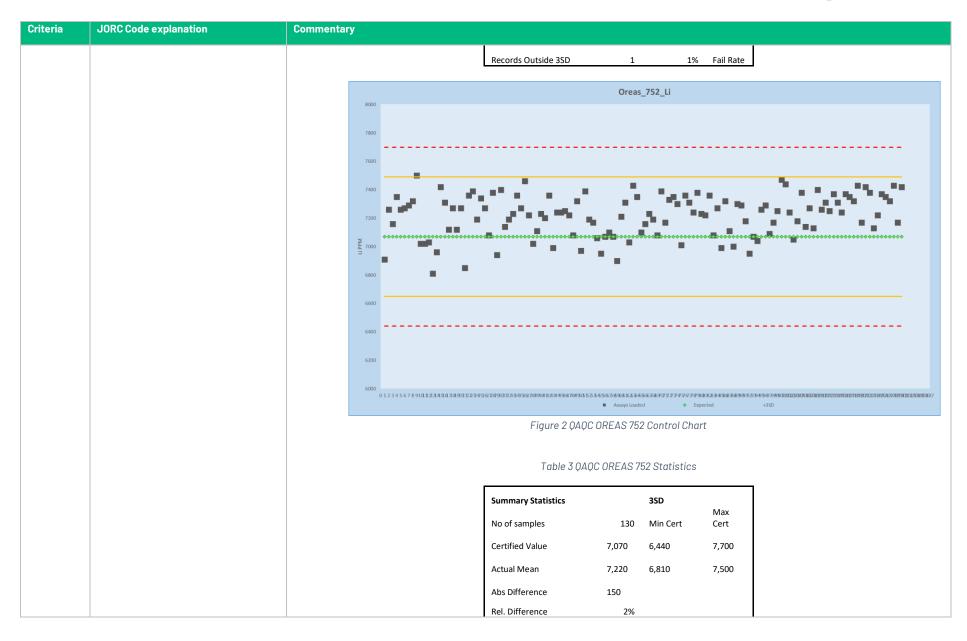
(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary									
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual	the cur verified In 2016 identif was un	I Lithium and CMI rrent MRE as drill d to the requirem Ardiden drilled a ied by earlier hist dertaken. Technology Meta es into the neighb	hole spatial loca nents of JORC 20 a total of 8 diamo toric drill prograr als Ltd have drille	tion, sampling a 12. nd NQ holes and ns. Ardiden conf d 308 holes with prospect and 15	took one char firmed the pre ain the Root La 8 holes in Roo e 1 MRE figures	n practices of nnel sample is sence of the like project a t Bay for a to	to test the hi pegmatites rea with 116 h otal of 58,599	nd QAQC prot storic McCor but no furthe noles drilled a 3.7m as of 26	mbe pegmatitier work at McCombe, at McCombe, a September 20	ot be es Combe
	commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed	All historic holes from the 50's were excluded from the MRE due to unverifiable spatial location data and QAQC validation. 3 Ardiden holes were rejected due to spatial location or hole orientation concerns. Hole RB-23-001 was excluded due to unrepresentative angle to the mineralisation's as well as 1 redrill. 1 Channel sample was used in the grade estimation of the MRE.									
	warrant disclosure of detailed information.	as well as 1 redri			-		quipment pr	oducing 4.76	cm diamete	r core.	

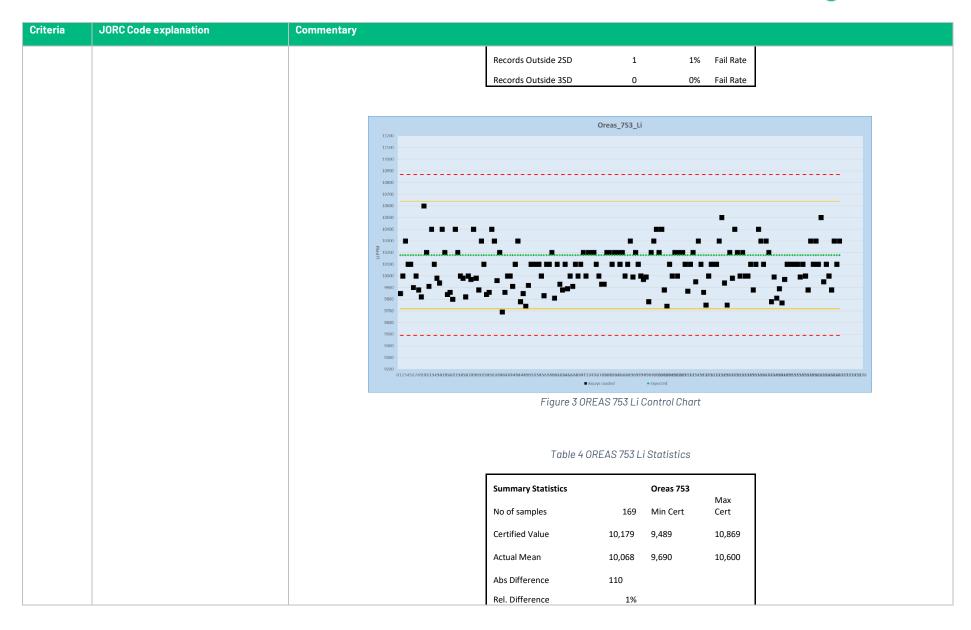
Green Technology Metals www.greentm.com.au



Criteria	JORC Code explanation	Commentary
		Historic Grab Samples
		Grab samples were not used in the MRE
		Historic Channel Samples
		 Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmatite structures. Samples were cut across the pegmatite with a diamond saw perpendicular to strike. Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with QAQC procedures. Sampling continued past the Spodumene -Pegmatite zone, even if it is truncated by Mafic Volcanic a later intrusion. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag.
		As recorded, procedures were consistent with normal industry practices.
		Channel samples were used to aid the pegmatite interpretation but were not used in the estimate except one channel sample was used at Root Bay.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 HQ drilling was undertaken through the thin overburden prior to NQ2 diamond drilling through the primary rock. 11 holes at MCombe were drilled by Ardiden using BQTK core. Holes were drilled used a standard barrel configuration. GT1 core was orientated using a Reflex ACTIII tool located on the rear of the downhole barrel.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 No core was recovered through the overburden, glacial cover, HQ section of the hole, typically the top 5m of the hole. Core recovery through the primary rock and mineralised pegmatite zones was over 97% and considered satisfactory. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run. No relationship was observed between grade and core recovery. Minor preferential lower recovery was observed in where micas were thought to have been present in the original rock.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation,	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock.



Criteria	JORC Code explanation	Commentary			
	mining studies and metallurgical studies. • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • The total length and percentage of the relevant intersections logged.	 Logging is qualitative in nature based on visual estimates of mineral species and geological features. All core was photographed in both a wet and dry condition after metres marks and lithology had been transcribed onto the core surface with wax crayon. 			
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The bulk of the core is NQ diameter core with some BQTK Ardiden at McCombe. All recent drilling is NQ diameter core. Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. A proportion of the mineralised pulps were re-tested by an independent laboratory, ACTLABS, ThunderBay. The sample preparation process is considered representative of the whole core sample. 			
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable	GT1 inserted certified ORES standards and blanks at a rate of 1:20 or better into each batch of samples submitted to the laboratory. The laboratory tested the control samples in sequence and any control failures were repeated. A failure was considered as any control sample that was outside 3 standards deviations from the certified value or where 2 controls samples were outside 2 standards deviations within the same batch. OREAS control samples were lithium certified standards, OREAS 751,752 and 753. OREAS 751,752 and 753.			



Criteria	JORC Code explanation	Commentary				
			Records Outside 2SD	1	1%	Fail Rate
			Records Outside 3SD	0	0%	Fail Rate
		 Tantalum, whilst certified by OF not ideal for economic levels of In addition to the independent of Their results also did not indicated The bulk of the samples were discussed in the Samples were discussed i	amples outside 2 SD or 1 REAS in the standards u tantalum but aided in d controls inserted into ea te any significant bias. ispatched to AGAT labor ersion (Archimedes) bul on ½ NQ core billets. were determined for eac locks within the model:	sed by GT etecting u ach batch ratories Th	utside 3SD in the p ntoward assay by GT1, AGAT al nunder Bay, On tests at McCom ajor rock types	ne same batch) were repeated by the laboratory. rimary element of consideration and therefore is batches. so conducted their own internal QAQC protocols.
			MaCamaha			
			McCombe Rock Type	Length	Bulk Density	
			Pegmatite	94.58	2.70	
			Felsic	10.49	2.76	
			Sediment	238.39	3.03	
			Basalt	133.95	2.97	
			Root Bay			
			Rock Type	Length	Bulk Density	
			Pegmatite	143.10	2.72	
			BIF Sediment	5.19 116.46	2.90	
			Black Shale	2.90	2.77	
			Didox Stiale	2.80	2.70	

Criteria	JORC Code explanation	Commentary
Verification	The verification of significant	Basalt 292.85 3.02 Significant Li ₂ 0 intersections were verified by the site geologist as well as the competent person from core photography and visits to the
of sampling and assaying	intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Thunder Bay core facility to inspect the core first hand. Spodumene, the principal lithium bearing mineral, is a good indicator of likely Li grades and is visually conspicuous at higher Li grades. High grades were generally confirmed when comparing returned assays to the corresponding pegmatite intercepts and spodumene content. Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical errors. Drill and surface sample data is retained in a purpose-built SQL database managed by a third-party Database Administrator based in Albany Western Australia. All original assay certificates are retained on the companies secure OneDrive directory. No adjustment to laboratory assay data was made. Oxide conversions were calculated for Li20 and Ta205 using factors of 2.153 and 1.2211 respectively.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 A differential GPS (dGPS) reading was taken for each sample location using UTM NAD83 Zone15 (for Root); GPS readings were used in some cases where access proved difficult. Lidar survey of the Root area in 2021 (+/- 0.15m) which underpins the local topographic surface. All drill collars have been draped onto the LIDAR surface to ensure accurate elevation data for the drillholes. GT1 employed a calibrated Reflex SprintlQ North Seeking Gyroscopic tool on all 2022 and 2023 drill holes and surveyed the holes in their entirety with readings downhole every 5m. North Seeking gyroscopes have a typical azimuth accuracy of +/-0.75 degrees and +/-0.15 degrees for dip. 7 holes only obtained partial or no gyroscopic surveys.

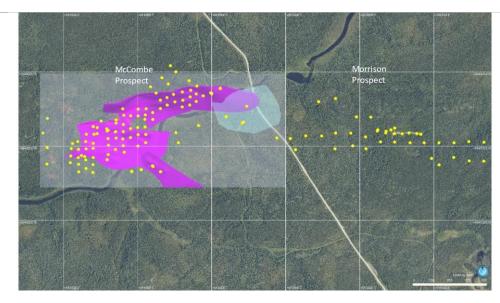
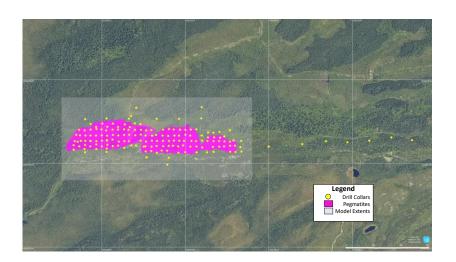



Figure 4 McCombe prospect area

Criteria	a JORC Code explanation Commentary			
		Figure 5 Root Bay prospect area		
		 All collars are picked up and stored in the database in North American Datum of 1983 (NAD83) Zone 15 horizontal and geometric control datum projection for the United States. 		
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has	 Drill spacing at McCombe was variable ranging from 50 x 50 to 50 x 100 with some more sparsely drilled areas of the deposit. Drill spacing at Root Bay was 50 x50 to 100 x 150m. The drill spacing is sufficient to support the inferred level of Mineral Resource classification applied to the estimate. 1m compositing was applied to the Mineral Resource update based on a review of sample interval lengths. Histogram of Interval Length		
	been applied.	1600 -		
		1400 -		
		1200 - Count 2,367 Mean 0.94 SD 0.18 1000 - CV 0.19		
		Variance 0.03 Minimum 0.20 Q1 0.95 Q2 1.00 Q3 1.00		
		800 - Maximum 1.64		
		400 -		
		200 -		
<u> </u>		0 02 0.4 0.6 0.8 1 1.2 1.4 1.6 Interval Length		
		Figure 6 McCombe sample intervals		

Criteria	JORC Code explanation	Commentary
		Histogram of Interval. Blanck Say, Colora LIME Propriettive Control 2018 Con
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 GT1 drill samples were drilled close to perpendicular to the strike of the pegmatite unit and sampled the entire length of the pegmatite as well including several metres into the mafic country rock either side of the pegmatite. Hole RB-23-001 was an exception and was drilled down the pegmatite dip direction. This hole and any re-drill were ignored for the Root Bay MRE. Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite.
Sample security	The measures taken to ensure sample security.	All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivery to AGAT in Thunder Bay for cutting, preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No independent audits or reviews have been undertaken on this Mineral Resource estimate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Green Technology Metals (ASX:GTI) owns 100% interest in the Ontario Lithium Projects (Seymour, Root and Wisa). A 1.5% NSR exists over the Root project where 0.5% is held by Primero Holdings, a subsidiary of NRW Holdings Group and 1% is held by Lithium Royalty Corp. The Root Lithium Asset consists of 249 boundary Cell mining claims (Exploration Licences), 33 mining license of occupation claims (285 total claims) with a total claim area of 5,377 ha. Generally surface rights to the Root Property remain with the Crown, except for 9 Patent Claims (PAT-51965. PAT-51966. PAT-51967. PAT-51970. PAT-51974. PAT-51975. PAT-51976 and PAT-51977). All Cell Claims are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Regional exploration for lithium deposits commenced in the 1950's. In 1955-1956 Capital Lithium Mines Ltd. geologically mapped and sampled dikes near the McCombe Deposit with the highest recorded channel sample of 1.52m at 3.06% Li₂0. 7 drill holes (1,042.26m total) within the McCombe Deposit and Root Lake Prospect yielding low lithium assays. According to Mulligan (1965), Capital Lithium Mines Ltd. reported to Mulligan that they drilled at least 55 holes totalling 10469.88m in 1956. They delineated 4 pegmatite zones and announced a non-compliant NI 41-101 reserve calculation of 2.297 million tons at 1.3% Li₂0. However, none of that information is available on the government database. In 1956, Consolidated Morrison Explorations Ltd drilled 16 holes (1890m total) at the Morrison prospect recording 3.96m at 2.63% Li₂0. In 1956, Three Brothers Mining Exploration southwest of the McCombe Deposit that did not intersect pegmatite In 1957, Geo-Technical Development Company Limited on behalf of Continental Mining Exploration conducted a magnetometer survey and an electromagnetic check survey on the eastern claims of the Root Lithium Project to locate pyrrhotite mineralization In 1977, Northwest Geophysics Limited on behalf of Noranda Exploration Company Ltd. conducted an electromagnetic and magnetometer survey for sulphide conductors on a small package of claims east of the Morrison Prospect. Noranda also conducted a mapping and sampling program over the same area, mapped a new pegmatite dike and sampled a graphitic schist assaying 0.03% Cu and 0.15% Zn. In 1998, Harold A. Watts prospected, trenched and sampled spodumene-bearing pegmatites with the Morrison Prospect assaying up to 5.91% Li₂0.

Criteria	JORC Code explanation	Commentary
		In 2002 stripped and blasted 2 more spodumene-bearing pegmatites near the Morrison prospect. In 2005, Landore Resources Canada Inc. created a reconnaissance survey, mapping and sampling project mostly within the McCombe Deposit, but also in the Morrison and Root Lake Prospects. Highest sample was 3.69% Li ₂ 0 with the McCombe Deposit. In 2008, Rockex Ltd. on behalf of Robert Allan Ross stripped and trenched 40 trenches for iron, gold and base metals associated with oxide iron formation. All Fe assays were above 25% (up to 47.5% Fe). 3 gold zones were discovered with assays up to 4.0g/t Au in Zone A (Root Bay Gold Prospect), 1.3% g/t Au over 0.5m in Trench 9, 0.19% Cu-Zn over 8m and up to 0.14% Li ₂ 0 in Zone B. Best assays of samples collected north-east area of Root Bay had up to 394ppm Zn, 389ppm Cu, 185ppm Ni, 102ppm Co and 57.0ppm Mo. In 2009, Golden Dory Resources along with Harold A. Watts conducted a due diligence sampling program to validate historic data from the Morrison Prospect. Highest grab sample was 5.10% Li ₂ 0 and a channel sample of 5m at 4.44% Li ₂ 0. In 2011, Geo Data Solutions GDS Inc. on behalf of Rockex Ltd. flew a high-resolution helicopter borne aeromagnetic survey intersecting a small portion of the south-central claims owned by GM1. In 2012, Stares Contracting on behalf of Golden Dory Resources Corporation conducted a ground magnetic survey near the Morrison Prospect to look for magnetic contrasts between pegmatites and metasedimentary units. They also conducted a prospecting (lithium) and soil sampling (gold) program at the Rook Lake Prospect and east of the Morrison Prospect. Highest Li assays within GM1 claims was 0.0037% Li ₂ 0 and a gold soil assay of 52ppb Au. In 2016, the previous owner conducted a drilled 7 diamond drill holes (469m total) within the McCombe deposit. Highest assay was Im at 3.8% Li ₂ 0. A hole drilled down dip intersected 70m at 1.7% Li ₂ 0. An outcrop sampling within the Morrison and Root Bay Prospects yielded 0.04% Li ₂ 0. Channel sample within the Mor
Geology	Deposit type, geological setting and style of mineralisation.	 Regional Geology: The Root Lithium Asset is located within the Uchi Domain, predominately metavolcanic units interwoven with granitoid batholiths and English River Terrane, a highly metamorphosed to migmatized, clastic and chemical metasedimentary rock with abundant granitoid batholiths. They are part of the Superior craton, interpreted to be the amalgamation of Archean aged microcontinents and accretionary events. The boundary between the Uchi Domain and the English River Terrane is defined by the Sydney Lake - Lake St. Joseph fault, an east west trending, steeply dipping brittle ductile shear zone over 450km along strike and 1 - 3m wide. Several S-Type, peraluminous granitic plutons host rare-element mineralization near the Uchi Domain and English River subprovince boundary. These pegmatites include the Root Lake Pegmatite Group, Jubilee Lake Pegmatite Group, Sandy Creek Pegmatite and East Pashkokogan Lake Lithium Pegmatite. Local Geology: The Root Lithium Asset contains most of the pegmatites within the Root Lake Pegmatite Group including the McCombe Pegmatite, Morrison Prospect, Root Lake Prospect and Root Bay Prospect. The McCombe Pegmatite and Morrison Prospect are hosted in predominately mafic metavolcanic rock of the Uchi Domain. The Root Lake and Root Bay Prospects are hosted in predominately metasedimentary rocks of the English River Terrane. On the eastern end of the Root Lithium Asset there is a gold showing (Root Bay Gold Prospect) hosted in or proximal to silicate, carbonate, sulphide, and oxide iron formations of the English River Terrane. Ore Geology: The McCombe Pegmatite is internally zoned. These zones are classified by the tourmaline discontinuous zone along the pegmatite contact, white feldspar-rich wall zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-being, porphyritic potassium feldspar spodumene pegmatite zone and lepidolite-rich pods and seams (Breaks et al., 2003). The Root project pegmatites

Criteria	JORC Code explanation	Commentary										
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar	In 2016 Ardiden dril historic drill progra Green Technology I and 37 holes at Roo All historic holes from rejected due to spatial estimation of the Month of the	ms. Ardiden c Metals Ltd hav t Bay for a tot om the 50's we tial location o RE sted to G4 dril s have been us	onfirmed the re drilled 116 h al of 34,443.1 ere excluded f r hole orienta ling using a Ni eed in the deli	presence oles within 3m as of 19 from the M tion conce O, standar neation of	of the pegmanthe McComb 5 April 2023. RE due to un erns and the i d configuration the MRE	tites but no fu be project area verifiable spat nitial Root Bay on coring equi ummary table	orther work at a, a further 34 ial location d r hole, RB-23 pment produ	: McCombe w 4 holes into th ata and QAQC -001. Channel cing 4.76cm o	as und ertakel e neighbourir validation. 3 samples werd	n. ng Morrisor Ardiden ho e not used i	n prospec oles were
	o elevation or RL (Reduced Level –	Dri	Drilling Used in the September 2023 Mineral Resource Estimate									
	elevation above sea level in	Company		Ardiden			Gre	en Techno	logy Meta			
	metres) of the drill	Туре	СН	DDH		DDH	DDH	DDH	DDH	DDH		
	hole collar o dip and azimuth of the hole o down hole length and interception	Prospect	Root Bay	McCombe	Total	McCombe	McCombe	Morrison	Morrison	Root Bay	Total	
		Year	2016	2016		2022	2023	2022	2023	2023		
		Holes	1	8	9	82	34	6	28	158	308	
	depth	Metres	15.00	468.50	483.50	13,101.93	6,566.00	1,230.00	4,683.00	31,383.80	56,965	
	 hole length. If the exclusion of this 	Proportion			1%						99%	
	information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All historic holes holes were reject to the mineralisatinclusion in the garden between the mineralisatinclusion in the garden between the mineralisatinclusion in the garden between the mineralisation between t	ted due to spa ation's as well a grade estimate eral Resource	tial location or as 1 redrill. 3 h . 1 Channel san Estimates to	hole orier oles were mple was u 15 April 20 9 holes us	tation concerused to guide sed in the gra	ns. Hole RB-23 the mineralisat de estimation de estimation	on was excluion, but assay of the MRE.	uded due to ui s were noted	nrepresentativ	e angle	
					Table	e 7 McCombe	Drill Collar date	a				
			Но	leID Ea	sting I	Northing	RL Dip	Azimuth	Depth			
			RL	-16-01A 5	90,792	5,643,600	398 - 45	357	75			
		T. Control of the Con			1	-			7			

RL-16-04 590,726 5,643,623 398 - 45 - 41 RL-16-05 590,853 5,643,552 393 - 45 - 80 RL-16-07 590,848 5,643,594 396 - 45 - 54 RL-22-001 590,698 5,643,630 398 - 59 359 60 RL-22-003 590,699 5,643,631 394 - 62 1 1 72 RL-22-003 590,699 5,643,483 395 - 61 358 144 RL-22-003 590,699 5,643,483 395 - 61 358 144 RL-22-005 590,890 5,643,483 395 - 61 360 147 RL-22-006 590,800 5,643,605 398 - 59 1 1 120 RL-22-006 590,800 5,643,605 398 - 59 1 1 120 RL-22-007 590,799 5,643,41 394 - 61 3 3186 RL-22-010 590,799 5,643,407 392 - 61 359 180 RL-22-011 590,792 5,643,407 392 - 61 359 180 RL-22-012 590,903 5,643,604 392 - 61 359 180 RL-22-013 590,903 5,643,604 397 - 61 360 132 RL-22-014 590,902 5,643,604 397 - 61 360 132 RL-22-015 590,903 5,643,604 397 - 61 360 132 RL-22-016 590,903 5,643,604 397 - 61 360 132 RL-22-017 590,903 5,643,604 397 - 61 360 132 RL-22-018 590,903 5,643,604 397 - 61 360 132 RL-22-019 590,792 5,643,702 392 - 61 360 132 RL-22-010 590,903 5,643,604 397 - 61 360 132 RL-22-011 590,903 5,643,604 397 - 61 360 132 RL-22-013 590,903 5,643,604 397 - 61 360 132 RL-22-014 590,903 5,643,504 394 - 61 3 156 RL-22-015 590,905 5,643,506 396 - 59 2 129 RL-22-015 590,905 5,643,506 397 - 59 348 120 RL-22-017 590,905 5,643,506 397 - 59 348 120 RL-22-018 591,002 5,643,507 397 - 60 3 150 RL-22-019 591,002 5,643,507 397 - 60 3 150 RL-22-019 591,002 5,643,507 394 - 51 3 150 RL-22-020 590,001 5,643,509 388 - 61 3 599 150 RL-22-021 590,648 5,643,529 394 - 59 1 1 152 RL-22-022 590,648 5,643,529 394 - 59 1 1 152 RL-22-022 590,648 5,643,529 394 - 59 1 1 152 RL-22-022 590,648 5,643,529 394 - 50 3 150	Criteria	JORC Code explanation	Commentary							
RL-16-05				RL-16-04	590,726	5,643,623	398	- 45	-	41
RL-16-07 590,848 5,643,594 396 - 45 - 54 RL-22-001 590,698 5,643,630 398 - 59 359 60 RL-22-002 590,704 5,643,578 394 - 62 1 72 RL-22-003 590,699 5,643,517 394 - 58 359 102 RL-22-004 590,698 5,643,483 395 - 61 358 144 RL-22-005 590,699 5,643,421 394 - 60 360 147 RL-22-006 590,800 5,643,643 398 - 59 1 120 RL-22-007 590,799 5,643,549 393 - 61 360 147 RL-22-008 590,800 5,643,41 394 - 61 3 186 RL-22-001 590,799 5,643,41 394 - 61 3 186 RL-22-010 590,799 5,643,41 394 - 61 3 186 RL-22-011 590,792 5,643,407 392 - 61 360 132 RL-22-013 590,903 5,643,644 397 - 61 360 132 RL-22-014 590,902 5,643,644 397 - 61 360 132 RL-22-015 590,902 5,643,596 396 59 2 129 RL-22-016 590,909 5,643,546 394 - 61 3 156 RL-22-017 590,951 5,643,646 397 - 61 360 132 RL-22-018 590,902 5,643,702 392 - 61 1 99 RL-22-019 591,002 5,643,702 390 - 61 2 90 RL-22-019 591,002 5,643,702 390 - 61 3 150 RL-22-019 591,002 5,643,702 390 - 61 3 150 RL-22-019 591,002 5,643,702 390 - 61 2 90 RL-22-019 590,951 5,643,646 397 - 59 348 120 RL-22-019 591,002 5,643,755 396 - 60 3 120 RL-22-019 590,091 5,643,575 396 - 60 3 120 RL-22-020 590,091 5,643,575 396 - 60 3 120 RL-22-021 590,091 5,643,575 396 - 60 3 150 RL-22-021 590,091 5,643,575 396 - 60 3 150 RL-22-021 590,091 5,643,575 396 - 60 3 150 RL-22-021 590,091 5,643,579 396 - 60 3 150									-	
RL-22-001				RL-16-07	590,848		396	- 45	-	54
RL-22-003				RL-22-001	590,698	5,643,630	398	- 59	359	60
RL-22-004 590,698 5,643,483 395 - 61 358 144 RL-22-005 590,699 5,643,421 394 - 60 360 147 RL-22-006 590,800 5,643,605 398 - 59 1 120 RL-22-007 590,799 5,643,549 393 - 61 360 117 RL-22-008 590,802 5,643,504 392 - 61 0 162 RL-22-009 590,799 5,643,641 394 - 61 3 186 RL-22-010 590,792 5,643,401 392 - 61 359 150 RL-22-011 590,792 5,643,403 392 - 86 89 180 RL-22-013 590,903 5,643,644 397 - 61 360 132 RL-22-014 590,902 5,643,596 396 - 59 2 129 RL-22-015 590,952 5,643,702 392 - 61 1 93 RL-22-016 590,959 5,643,546 394 - 61 3 156 RL-22-017 590,951 5,643,556 397 - 59 348 120 RL-22-018 591,002 5,643,555 397 - 59 348 120 RL-22-019 591,002 5,643,702 390 - 61 2 90 RL-22-019 591,002 5,643,703 390 - 61 2 90 RL-22-019 591,002 5,643,699 388 - 61 359 150 RL-22-020 591,001 5,643,599 388 - 61 359 150 RL-22-021 590,901 5,643,500 397 - 60 3 120 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,003 5,643,529 394 - 59 1 152 RL-22-024 590,642 5,643,529 394 - 59 1 152 RL-22-025 590,648 5,643,529 394 - 59 1 152 RL-22-026 590,648 5,643,529 394 - 59 1 152				RL-22-002	590,704	5,643,578	394	- 62	1	72
RL-22-005				RL-22-003	590,699	5,643,517	394	- 58	359	102
RL-22-006				RL-22-004	590,698	5,643,483	395	- 61	358	144
RL-22-007				RL-22-005	590,699	5,643,421	394	- 60	360	147
RL-22-010				RL-22-006	590,800	5,643,605	398	- 59	1	120
RL-22-010				RL-22-007	590,799	5,643,549	393	- 61	360	117
RL-22-010 590,792 5,643,407 392 - 61 359 150 RL-22-011 590,792 5,643,406 392 - 86 89 180 RL-22-013 590,903 5,643,644 397 - 61 360 132 RL-22-014 590,902 5,643,596 396 - 59 2 129 RL-22-015 590,952 5,643,702 392 - 61 1 93 RL-22-016A 590,899 5,643,546 394 - 61 3 156 RL-22-017 590,951 5,643,556 397 - 59 348 120 RL-22-018 591,002 5,643,702 390 - 61 2 90 RL-22-019 591,002 5,643,575 396 - 60 3 120 RL-22-020 591,001 5,643,499 388 - 61 359 150 RL-22-021 590,964 5,643,500 397 - 60 3 150 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150				RL-22-008	590,802	5,643,504	392	- 61	0	162
RL-22-011 590,792 5,643,406 392 - 86 89 180 RL-22-013 590,903 5,643,644 397 - 61 360 132 RL-22-014 590,902 5,643,596 396 - 59 2 129 RL-22-015 590,952 5,643,702 392 - 61 1 93 RL-22-016A 590,899 5,643,546 394 - 61 3 156 RL-22-017 590,951 5,643,556 397 - 59 348 120 RL-22-018 591,002 5,643,702 390 - 61 2 90 RL-22-019 591,002 5,643,575 396 - 60 3 120 RL-22-020 591,001 5,643,499 388 - 61 359 150 RL-22-021 590,901 5,643,500 397 - 60 3 150 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150				RL-22-009	590,799	5,643,441	394	- 61	3	186
RL-22-013				RL-22-010	590,792	5,643,407	392	- 61	359	150
RL-22-014 590,902 5,643,596 396 - 59 2 129 RL-22-015 590,952 5,643,702 392 - 61 1 93 RL-22-016A 590,899 5,643,546 394 - 61 3 156 RL-22-017 590,951 5,643,556 397 - 59 348 120 RL-22-018 591,002 5,643,702 390 - 61 2 90 RL-22-019 591,002 5,643,575 396 - 60 3 120 RL-22-020 591,001 5,643,499 388 - 61 359 150 RL-22-021 590,901 5,643,590 397 - 60 3 150 RL-22-022 590,648 5,643,593 398 - 61 3 189 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-024 590,642 5,643,428 392 - 60 3 150				RL-22-011	590,792	5,643,406	392	- 86	89	180
RL-22-015 590,952 5,643,702 392 - 61 1 93 RL-22-016A 590,899 5,643,546 394 - 61 3 156 RL-22-017 590,951 5,643,556 397 - 59 348 120 RL-22-018 591,002 5,643,702 390 - 61 2 90 RL-22-019 591,002 5,643,775 396 - 60 3 120 RL-22-020 591,001 5,643,499 388 - 61 359 150 RL-22-021 590,901 5,643,500 397 - 60 3 150 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-024 590,642 5,643,597 396 - 60 1 141				RL-22-013	590,903	5,643,644	397	- 61	360	132
RL-22-016A 590,899 5,643,546 394 - 61 3 156 RL-22-017 590,951 5,643,556 397 - 59 348 120 RL-22-018 591,002 5,643,702 390 - 61 2 90 RL-22-019 591,002 5,643,575 396 - 60 3 120 RL-22-020 591,001 5,643,499 388 - 61 359 150 RL-22-021 590,901 5,643,500 397 - 60 3 150 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-025 590,851 5,643,597 396 - 60 1 141				RL-22-014	590,902	5,643,596	396	- 59	2	129
RL-22-017 590,951 5,643,556 397 - 59 348 120 RL-22-018 591,002 5,643,702 390 - 61 2 90 RL-22-019 591,002 5,643,575 396 - 60 3 120 RL-22-020 591,001 5,643,499 388 - 61 359 150 RL-22-021 590,901 5,643,500 397 - 60 3 150 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-025 590,851 5,643,597 396 - 60 1 141				RL-22-015	590,952	5,643,702	392	- 61	1	93
RL-22-018 591,002 5,643,702 390 - 61 2 90 RL-22-019 591,002 5,643,575 396 - 60 3 120 RL-22-020 591,001 5,643,499 388 - 61 359 150 RL-22-021 590,901 5,643,500 397 - 60 3 150 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-025 590,851 5,643,597 396 - 60 1 141				RL-22-016A	590,899	5,643,546	394	- 61	3	156
RL-22-019 591,002 5,643,575 396 - 60 3 120 RL-22-020 591,001 5,643,499 388 - 61 359 150 RL-22-021 590,901 5,643,500 397 - 60 3 150 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-025 590,851 5,643,597 396 - 60 1 141				RL-22-017	590,951	5,643,556	397	- 59	348	120
RL-22-020 591,001 5,643,499 388 - 61 359 150 RL-22-021 590,901 5,643,500 397 - 60 3 150 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-025 590,851 5,643,597 396 - 60 1 141				RL-22-018			390	- 61	2	
RL-22-021 590,901 5,643,500 397 - 60 3 150 RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-025 590,851 5,643,597 396 - 60 1 141				RL-22-019	591,002	5,643,575	396	- 60		
RL-22-022 590,648 5,643,529 394 - 59 1 152 RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-025 590,851 5,643,597 396 - 60 1 141				RL-22-020				- 61		150
RL-22-023 590,700 5,643,630 398 - 61 3 189 RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-025 590,851 5,643,597 396 - 60 1 141										
RL-22-024 590,642 5,643,428 392 - 60 3 150 RL-22-025 590,851 5,643,597 396 - 60 1 141					·					
RL-22-025 590,851 5,643,597 396 - 60 1 141										
				RL-22-025 RL-22-027	590,851 590,853	5,643,597 5,643,653	396 397	- 60 - 59	<u>1</u> 359	141

Criteria	JORC Code explanation	Commentary							
			RL-22-028	591,123	5,643,856	391	- 60	316	150
			RL-22-029	590,850	5,643,475	392	- 60	1	227
			RL-22-033	590,600	5,643,476	395	- 58	5	162
			RL-22-035	590,650	5,643,480	397	- 59	1	162
			RL-22-037	590,598	5,643,421	392	- 60	1	180
			RL-22-038	591,050	5,643,709	390	- 60	1	141
			RL-22-039	590,600	5,643,375	392	- 60	357	201
			RL-22-040	591,048	5,643,679	389	- 62	0	126
			RL-22-041	590,649	5,643,405	391	- 59	0	210
			RL-22-387	590,652	5,643,578	394	- 60	356	123
			RL-22-461	590,951	5,643,616	394	- 60	1	107
			RL-22-490	591,053	5,643,521	389	- 60	8	201
			RL-22-499	591,100	5,643,725	389	- 61	1	120
			RL-22-501	591,153	5,643,752	388	- 60	2	201
			RL-22-505	591,198	5,643,775	388	- 59	359	210
			RL-22-521	590,547	5,643,432	391	- 59	360	180
			RL-22-526	590,698	5,643,373	390	- 60	1	180
			RL-22-529	591,152	5,643,808	389	- 59	320	150
			RL-22-530	591,197	5,643,826	390	- 59	322	150
			RL-22-531	591,241	5,643,847	391	- 61	321	150
			RL-22-532	591,199	5,643,775	388	- 85	320	231
			RL-22-533	591,153	5,643,752	388	- 86	313	204
			RL-22-534	591,251	5,643,797	388	- 61	320	201
			RL-22-535	591,300	5,643,864	391	- 60	322	150
			RL-22-536	591,304	5,643,808	390	- 60	320	180
			RL-22-537	591,299	5,643,763	388	- 58	322	201
			RL-22-538	590,619	5,643,435	392	- 45	302	102
			RL-22-539	590,619	5,643,435	392	- 70	300	117

Criteria	JORC Code explanation	Commentary							
			RL-22-540	591,357	5,643,875	392	- 59	322	150
			RL-22-541	591,353	5,643,831	389	- 59	322	180
			RL-22-542	591,351	5,643,776	388	- 59	318	252
			RL-22-543	591,351	5,643,776	388	- 74	323	252
			RL-22-548	591,394	5,643,851	389	- 60	321	192
			RL-22-549	591,394	5,643,800	388	- 59	319	249
			RL-22-550	591,441	5,643,838	389	- 59	313	150
			RL-22-571	591,735	5,643,768	391	- 49	1	273
			RL-23-044	591,054	5,643,576	397	- 60	1	381
			RL-23-353	591,939	5,643,553	393	- 61	359	221
			RL-23-442	590,908	5,643,457	388	- 74	3	168
			RL-23-452	590,905	5,643,706	392	- 60	1	201
			RL-23-454	590,898	5,643,750	391	- 60	320	180
			RL-23-480	591,002	5,643,748	390	- 59	1	201
			RL-23-544A	591,021	5,643,340	393	- 61	319	225
			RL-23-545	591,099	5,643,364	395	- 60	321	225
			RL-23-546	590,957	5,643,327	388	- 59	321	210
			RL-23-553	591,441	5,643,838	389	- 46	318	120
			RL-23-554	591,057	5,643,750	389	- 45	1	150
			RL-23-556	591,103	5,643,360	395	- 60	12	222
			RL-23-558	591,099	5,643,365	395	- 82	314	210
			RL-23-560	591,257	5,643,589	388	- 57	335	351
			RL-23-561	591,103	5,643,360	395	- 45	354	225
			RL-23-567	591,557	5,643,890	388	- 44	350	129
			RL-23-568C	591,499	5,643,851	388	- 75	348	132
			RL-23-569	591,499	5,643,855	388	- 45	353	120
			RL-23-570	591,557	5,643,886	388	- 83	350	120
			RL-23-572	591,705	5,643,654	390	- 60	2	240

Criteria	JORC Code explanation	Commentary									
			RL	-23-573	591,153	5,643,32	6 394	- 80	13	3 2	201
					591,492	5,643,85		- 88	131		324
					591,595	5,643,69		- 55			270
					<u> </u>		1			ı	
		Root Bay Colla	ars								
					7	able 8 Roo	ot Bay Collo	ır data			
		P	Prospect	HoleID	East	ng l	Northing	RL	Dip	Azi	Depth
		R	Root Bay	GT-23-003	600	,589	5,642,239	418	- 62	32	225
		R	Root Bay	GT-23-004	600	,264	5,642,672	431	- 57	181	183
		R	Root Bay	RB-23-001*	600	,403	5,642,412	434	- 46	90	204
		R	Root Bay	RB-23-003	600	,493	5,642,405	439	- 61	274	201
		R	Root Bay	RB-23-005	600	,601	5,642,407	438	- 60	266	210
		R	Root Bay	RB-23-007	600	,686	5,642,401	435	- 60	272	231
		R	Root Bay	RB-23-009	600	,795	5,642,399	430	- 61	274	288
		R	Root Bay	RB-23-011	600	,901	5,642,392	432	- 60	283	353
		R	Root Bay	RB-23-013	600	,997	5,642,397	443	- 60	272	402
		R	Root Bay	RB-23-014	600	,397	5,642,445	434	- 60	272	372
		R	Root Bay	RB-23-016	600	,496	5,642,451	437	- 61	274	162
		R	Root Bay	RB-23-029	600	,496	5,642,345	428	- 60	274	171
			Root Bay	RB-23-040			5,642,498	432	- 61	274	354
		R	Root Bay	RB-23-042	600	,487	5,642,504	431	- 61	275	168
			Root Bay	RB-23-044			5,642,495	435	- 61	275	558
			Root Bay	RB-23-046			5,642,499	438	- 61	273	252
			Root Bay	RB-23-048			5,642,498	435	- 60	273	291
			Root Bay	RB-23-050			5,642,499	434	- 61	272	354
			Root Bay	RB-23-053			5,642,302	394	- 47	72	219
			Root Bay	RB-23-057			5,642,300	418	- 61	272	192
		R	Root Bay	RB-23-081	600	,243	5,642,448	435	- 60	269	351

Criteria	JORC Code explanation	Commentary								
			Root Bay	RB-23-083	600,153	5,642,444	433	- 60	268	324
			Root Bay	RB-23-085	600,045	5,642,458	428	- 45	271	228
			Root Bay	RB-23-088	599,897	5,642,452	429	- 45	273	201
			Root Bay	RB-23-091	599,785	5,642,444	425	- 45	274	207
			Root Bay	RB-23-098	600,042	5,642,352	422	- 60	271	273
			Root Bay	RB-23-1004	599,748	5,642,372	421	- 61	274	81
			Root Bay	RB-23-1005	599,757	5,642,448	424	- 52	274	39
			Root Bay	RB-23-1007	599,798	5,642,402	422	- 61	272	103
			Root Bay	RB-23-1007	599,813	5,642,451	425	- 59	272	84
			Root Bay	RB-23-1009	599,805	5,642,501	425	- 61	273	54
			Root Bay	RB-23-1010	599,797	5,642,550	422	- 58	275	30
			Root Bay	RB-23-1010	599,797	5,642,379	419	- 61	273	132
				RB-23-1013	599,853	5,642,451	427	- 60	273	102
			Root Bay	RB-23-1013	599,854	5,642,499	428	- 60	274	93
			Root Bay							
			Root Bay	RB-23-1018	599,898	5,642,402	424	- 61	273	162 135
			Root Bay	RB-23-1019	599,900	5,642,449	429	- 61	274	
			Root Bay	RB-23-102	599,851	5,642,349	420	- 59	272	162
			Root Bay	RB-23-1020	599,899	5,642,499	426	- 61	273	111
			Root Bay	RB-23-1021	599,899	5,642,552	424	- 60	274	96
			Root Bay	RB-23-1022	599,900	5,642,602	427	- 61	271	75
			Root Bay	RB-23-1024	599,951	5,642,378	418	- 61	272	201
			Root Bay	RB-23-1025	599,953	5,642,448	430	- 60	273	162
			Root Bay	RB-23-1026	599,948	5,642,499	429	- 61	271	141
			Root Bay	RB-23-1027	599,953	5,642,557	422	- 61	273	126
			Root Bay	RB-23-1028	599,949	5,642,576	424	- 61	273	126
			Root Bay	RB-23-1030	600,001	5,642,402	422	- 61	272	204
			Root Bay	RB-23-1031	600,002	5,642,453	429	- 60	275	186
			Root Bay	RB-23-1032	600,000	5,642,501	428	- 60	272	171

Criteria	JORC Code explanation	Commentary								
			Root Bay	RB-23-1033	599,998	5,642,554	427	- 61	273	156
			Root Bay	RB-23-1034	600,005	5,642,606	426	- 60	273	126
			Root Bay	RB-23-1036	600,045	5,642,382	422	- 60	273	243
			Root Bay	RB-23-1037	600,048	5,642,453	428	- 61	273	234
			Root Bay	RB-23-1038	600,048	5,642,497	428	- 60	271	201
			Root Bay	RB-23-1040	600,051	5,642,577	426	- 62	276	183
			Root Bay	RB-23-1043	600,099	5,642,405	424	- 61	273	261
			Root Bay	RB-23-1045	600,100	5,642,505	429	- 61	273	234
			Root Bay	RB-23-1046	600,097	5,642,552	428	- 61	272	207
			Root Bay	RB-23-1047	600,100	5,642,606	429	- 60	274	195
			Root Bay	RB-23-1052	600,148	5,642,500	431	- 60	271	255
			Root Bay	RB-23-1053	600,147	5,642,552	430	- 61	271	231
			Root Bay	RB-23-1054	600,146	5,642,576	427	- 60	269	276
			Root Bay	RB-23-1057	600,202	5,642,389	425	- 61	275	321
			Root Bay	RB-23-1059	600,200	5,642,505	432	- 61	275	291
			Root Bay	RB-23-1060	600,201	5,642,554	430	- 60	273	261
			Root Bay	RB-23-1061	600,207	5,642,599	430	- 61	271	234
			Root Bay	RB-23-1066	600,246	5,642,507	434	- 61	272	327
			Root Bay	RB-23-1068	600,251	5,642,575	432	- 61	274	291
			Root Bay	RB-23-1071	600,306	5,642,410	432	- 61	275	375
			Root Bay	RB-23-1073	600,301	5,642,501	433	- 61	271	342
			Root Bay	RB-23-1074	600,299	5,642,550	412	- 60	274	315
			Root Bay	RB-23-1075	600,297	5,642,609	431	- 60	274	288
			Root Bay	RB-23-1078	600,349	5,642,453	437	- 61	277	357
			Root Bay	RB-23-1080	600,352	5,642,550	431	- 61	273	339
			Root Bay	RB-23-1081	600,347	5,642,601	432	- 61	270	315
			Root Bay	RB-23-1086	600,398	5,642,545	396	- 61	275	369
			Root Bay	RB-23-1090	600,450	5,642,453	435	- 61	275	300

Criteria	JORC Code explanation	Commentary								
			Root Bay	RB-23-1091	600,451	5,642,497	435	- 61	276	303
			Root Bay	RB-23-1097	600,546	5,642,498	434	- 60	272	57
			Root Bay	RB-23-1099	600,445	5,642,548	432	- 60	275	360
			Root Bay	RB-23-1101	600,552	5,642,403	437	- 62	274	150
			Root Bay	RB-23-1102	600,549	5,642,451	438	- 61	274	132
			Root Bay	RB-23-1104	600,550	5,642,551	431	- 61	273	36
			Root Bay	RB-23-1109	600,602	5,642,451	439	- 61	277	165
			Root Bay	RB-23-1111	600,603	5,642,557	431	- 61	276	50
			Root Bay	RB-23-1116	600,648	5,642,454	438	- 61	273	186
			Root Bay	RB-23-1118	600,645	5,642,553	432	- 61	272	90
			Root Bay	RB-23-1121	600,689	5,642,344	426	- 61	274	108
			Root Bay	RB-23-1123	600,696	5,642,451	437	- 62	271	213
			Root Bay	RB-23-1125	600,702	5,642,551	432	- 61	273	162
			Root Bay	RB-23-1128	600,749	5,642,350	423	- 61	271	252
			Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	275	630
			Root Bay	RB-23-1132	600,751	5,642,549	433	- 62	274	171
			Root Bay	RB-23-1137	600,805	5,642,451	433	- 61	274	270
			Root Bay	RB-23-1139	600,799	5,642,552	432	- 61	272	225
			Root Bay	RB-23-1142	600,852	5,642,348	425	- 61	273	279
			Root Bay	RB-23-1143	600,850	5,642,401	430	- 60	272	297
			Root Bay	RB-23-1144	600,846	5,642,449	433	- 62	274	297
			Root Bay	RB-23-1146	600,849	5,642,554	433	- 61	271	213
			Root Bay	RB-23-1151	600,900	5,642,455	433	- 61	273	162
			Root Bay	RB-23-1156	600,944	5,642,349	433	- 61	275	51
			Root Bay	RB-23-1158	600,948	5,642,450	437	- 61	272	51
			Root Bay	RB-23-1163	601,004	5,642,353	435	- 61	275	69
			Root Bay	RB-23-1165	601,003	5,642,449	401	- 61	273	66
			Root Bay	RB-23-1171	601,053	5,642,400	447	- 61	274	96

Criteria	JORC Code explanation	Commentary								
			Root Bay	RB-23-1172	601,052	5,642,450	444	- 61	274	114
			Root Bay	RB-23-1177	599,748	5,642,412	419	- 60	272	69
			Root Bay	RB-23-1178	601,097	5,642,402	446	- 61	273	123
			Root Bay	RB-23-1179	599,951	5,642,419	425	- 60	271	180
			Root Bay	RB-23-1183	601,152	5,642,354	434	- 61	273	150
			Root Bay	RB-23-1184	601,151	5,642,407	449	- 61	274	150
			Root Bay	RB-23-1185	601,151	5,642,444	447	- 62	271	150
			Root Bay	RB-23-1186	601,200	5,642,351	432	- 60	273	180
			Root Bay	RB-23-1187	601,195	5,642,408	446	- 61	274	180
			Root Bay	RB-23-1188	601,181	5,642,455	458	- 61	275	180
			Root Bay	RB-23-1189	601,253	5,642,355	434	- 60	273	201
			Root Bay	RB-23-1190	601,251	5,642,451	448	- 60	273	201
			Root Bay	RB-23-1191	600,954	5,642,525	432	- 60	272	30
			Root Bay	RB-23-1192	601,001	5,642,523	434	- 61	272	57
			Root Bay	RB-23-1193	601,057	5,642,532	435	- 61	277	81
			Root Bay	RB-23-1200	600,392	5,642,403	433	- 60	272	42
			Root Bay	RB-23-1201	600,265	5,642,412	433	- 61	267	345
			Root Bay	RB-23-1202	600,350	5,642,507	431	- 61	274	342
			Root Bay	RB-23-1206	600,051	5,642,416	425	- 61	274	225
			Root Bay	RB-23-1207	600,097	5,642,463	429	- 61	272	243
			Root Bay	RB-23-1208	600,146	5,642,409	430	- 62	274	291
			Root Bay	RB-23-1209	601,149	5,642,547	439	- 61	272	150
			Root Bay	RB-23-1210	601,101	5,642,447	449	- 62	272	120
			Root Bay	RB-23-1211	600,953	5,642,482	435	- 61	272	36
			Root Bay	RB-23-1212	601,008	5,642,483	439	- 61	275	57
			Root Bay	RB-23-1213	601,062	5,642,480	442	- 61	273	84
			Root Bay	RB-23-1214	601,100	5,642,491	441	- 61	274	111
			Root Bay	RB-23-1215	599,772	5,642,505	422	- 61	273	33

129 309 69 63 132 162 195 243 126 210
69 63 132 162 195 243 126 210
63 132 162 195 243 126 210
132 162 195 243 126 210
162 195 243 126 210
195 243 126 210
243 126 210
126 210
210
66
120
369
300
120
201
231
411
347
222
126
312
342
219
300
1

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 length weighted averages and all resource estimates are tonnage weighted averages Grade cut-offs have not been incorporated. No metal equivalent values are quoted.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this	 McCombe holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendicular to strike, and therefore, most of the downhole intercepts reported are approximately equivalent to the true width of the mineralisation. Root Bay intercepts are reported as downhole depths and are generally drilled tangential to pegmatite strike and dip except for hole RB-23-001 which was drilled downdip of the initial pegmatite to confirm downdip mineralisation continuity. Trenches are representative widths of the exposed pegmatite outcrop. Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled.

Criteria	JORC Code explanation	Commentary
	effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The appropriate maps are included in the announcement for the Root deposit.

Balanced reporting

Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.

Pegmatite mineralisation is summarised in the table below for Root Bay. All other intercepts failed to intercept significant lithium mineralisation.

McCombe intercepts was previously report in our news release dated 19-April 2023.

PROSPECT	HoleID	Easting	Northing	RL	Dip	Azi	Depth	From	То	Interval (m)	Pegmatite Li20 %
Root Bay	RB-23-014	600,397	5,642,444	434	- 60	271	372	343.7	359.2	15.5	1.80
Root Bay	RB-23-040	600,393	5,642,498	432	- 61	273	354	326.3	343.4	17.1	1.81
Root Bay	RB-23-044	600,597	5,642,495	435	- 61	274	558	341.0	349.4	8.4	
Root Bay	RB-23-044	600,597	5,642,495	435	- 61	274	558	427.7	436.1	8.4	1.14
Root Bay	RB-23-044	600,597	5,642,495	435	- 61	274	558	440.6	451.7	11.1	1.18
Root Bay	RB-23-044	600,597	5,642,495	435	- 61	274	558	457.5	465.5	8.0	1.06
Root Bay	RB-23-1010	599,797	5,642,550	422	- 58	274	30	11.3	20.7	9.4	0.89
Root Bay	RB-23-1019	599,900	5,642,449	429	- 61	273	135	100.7	117.7	17.0	1.64
Root Bay	RB-23-1021	599,899	5,642,552	424	- 60	273	96	72.9	90.8	17.9	1.48
Root Bay	RB-23-1033	599,998	5,642,554	427	- 61	272	156	69.2	72.8	3.7	0.49
Root Bay	RB-23-1033	599,998	5,642,554	427	- 61	272	156	129.0	146.7	17.7	1.63
Root Bay	RB-23-1037	600,048	5,642,453	428	- 61	272	234	101.4	105.2	3.8	0.14
Root Bay	RB-23-1037	600,048	5,642,453	428	- 61	272	234	184.8	194.4	9.6	0.56
Root Bay	RB-23-1045	600,100	5,642,505	429	- 61	272	234	109.7	116.1	6.4	0.53
Root Bay	RB-23-1046	600,097	5,642,552	428	- 61	271	207	182.4	194.8	12.4	1.70
Root Bay	RB-23-1052	600,148	5,642,500	431	- 61	273	255	28.6	34.3	5.7	1.46
Root Bay	RB-23-1052	600,148	5,642,500	431	- 61	273	255	149.4	152.4	3.0	0.61
Root Bay	RB-23-1052	600,148	5,642,500	431	- 61	273	255	220.0	241.0	21.0	1.32
Root Bay	RB-23-1054	600,146	5,642,576	427	- 60	268	276	198.8	216.0	17.3	0.75
Root Bay	RB-23-1059	600,200	5,642,505	432	- 61	274	291	69.0	74.3	5.3	0.35
Root Bay	RB-23-1059	600,200	5,642,505	432	- 61	274	291	247.9	264.9	17.0	1.62
Root Bay	RB-23-1060	600,201	5,642,554	430	- 60	272	261	30.1	34.7	4.7	1.60
Root Bay	RB-23-1060	600,201	5,642,554	430	- 60	272	261	197.7	201.6	3.9	0.55
Root Bay	RB-23-1060	600,201	5,642,554	430	- 60	272	261	224.7	227.9	3.2	1.33

	Root Bay	RB-23-1060	600,201	5,642,554	430	- 60	272	261	232.0	238.9	6.9	1.29
	Root Bay	RB-23-1060	600,201	5,642,554	430	- 60	272	261	243.4	251.3	7.9	0.97
	Root Bay	RB-23-1066	600,246	5,642,507	434	- 61	271	327	50.9	53.6	2.7	0.50
	Root Bay	RB-23-1066	600,246	5,642,507	434	- 61	271	327	105.6	110.8	5.2	0.95
	Root Bay	RB-23-1066	600,246	5,642,507	434	- 61	271	327	257.1	261.6	4.6	2.03
Ī	Root Bay	RB-23-1066	600,246	5,642,507	434	- 61	271	327	287.3	298.5	11.2	1.57
	Root Bay	RB-23-1072	600,279	5,642,457	401	- 61	273	357	129.1	137.7	8.7	1.07
	Root Bay	RB-23-1072	600,279	5,642,457	401	- 61	273	357	310.6	328.7	18.1	1.50
Ī	Root Bay	RB-23-1078	600,349	5,642,453	437	- 61	276	357	179.0	187.2	8.2	1.51
	Root Bay	RB-23-1078	600,349	5,642,453	437	- 61	276	357	326.1	344.2	18.1	1.67
	Root Bay	RB-23-1081	600,347	5,642,601	432	- 61	269	315	250.9	254.5	3.6	0.03
	Root Bay	RB-23-1086	600,398	5,642,545	396	- 61	274	369	188.8	194.8	6.0	1.62
	Root Bay	RB-23-1086	600,398	5,642,545	396	- 61	274	369	316.8	331.5	14.7	1.81
	Root Bay	RB-23-1086	600,398	5,642,545	396	- 61	274	369	357.6	359.9	2.3	0.54
	Root Bay	RB-23-1090	600,450	5,642,453	435	- 61	274	300	34.6	44.9	10.3	1.60
	Root Bay	RB-23-1090	600,450	5,642,453	435	- 61	274	300	48.0	51.0	2.9	1.01
	Root Bay	RB-23-1090	600,450	5,642,453	435	- 61	274	300	280.4	289.7	9.3	1.57
	Root Bay	RB-23-1091	600,451	5,642,497	435	- 61	275	303	275.1	283.8	8.7	1.37
	Root Bay	RB-23-1097	600,546	5,642,498	434	- 60	271	57	34.0	47.7	13.6	1.12
	Root Bay	RB-23-1101	600,552	5,642,403	437	- 62	273	150	101.6	110.6	9.0	1.66
	Root Bay	RB-23-1101	600,552	5,642,403	437	- 62	273	150	118.8	125.0	6.2	0.88
	Root Bay	RB-23-1104	600,550	5,642,551	431	- 61	272	36	4.5	10.8	6.3	0.87
	Root Bay	RB-23-1111	600,603	5,642,557	431	- 61	275	50	20.1	34.9	14.8	0.91
ſ	Root Bay	RB-23-1123	600,696	5,642,451	437	- 62	270	213	20.7	22.7	2.0	0.65
ſ	Root Bay	RB-23-1123	600,696	5,642,451	437	- 62	270	213	148.3	152.0	3.7	1.53
Ī	Root Bay	RB-23-1123	600,696	5,642,451	437	- 62	270	213	163.7	169.3	5.6	0.66
	Root Bay	RB-23-1123	600,696	5,642,451	437	- 62	270	213	174.2	180.0	5.8	1.46
	Root Bay	RB-23-1123	600,696	5,642,451	437	- 62	270	213	201.4	207.3	5.9	1.16
ſ	Root Bay	RB-23-1125	600,702	5,642,551	432	- 61	272	162	76.2	82.0	5.8	1.34

Root Bay RB-25-1125 600,702 5,642,551 432 - 61 272 182 97.2 102.9 5.7 1 Root Bay RB-25-1130 600,702 5,642,651 4-37 - 62 274 630 61.4 63.6 2.2 1 Root Bay RB-25-1130 600,738 5,642,651 4-37 - 62 274 630 112.3 178.2 5.9 1 Root Bay RB-25-1130 600,738 5,642,651 4-37 - 62 274 630 198.3 200.2 3.9 1 Root Bay RB-25-1130 600,738 5,642,651 4-37 - 62 274 630 351.0 357.5 6.6 0 Root Bay RB-25-1130 600,738 5,842,651 4-37 - 62 274 630 351.0 357.5 6.6 0 Root Bay RB-25-1130 600,738 5,842,651 4-37 - 62 274 630 560.5 5.60.5 6.0 <th></th>												
Root Bay RB-25-1130 600,738 5,642,461 437 - 62 274 630 61.4 63.6 2.2 1 Root Bay RB-25-1130 600,738 5,642,461 437 - 62 274 630 112.3 178.2 5.9 1 Root Bay RB-23-130 600,738 5,842,461 437 - 62 274 630 186.3 200.2 3.9 1 Root Bay RB-23-130 600,738 5,842,461 437 - 62 274 630 223.9 235.0 11.1 1 Root Bay RB-23-130 600,738 5,842,461 437 - 62 274 630 550.5 560.5 6.0 0 Root Bay RB-23-130 600,738 5,842,461 437 - 62 274 630 562.9 558.1 7.2 1 Root Bay RB-23-130 600,738 5,842,461 437 - 62 274 630 560.6 563.1 2.5	Root Bay	RB-23-1125	600,702	5,642,551	432	- 61	272	162	87.7	91.6	3.9	1.66
Root Bay RB-23-1130 800.738 5.642.461 437 - 62 274 630 172.3 178.2 5.8 1. Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 630 186.3 200.2 3.9 1. Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 630 223.9 235.0 11.1 1. Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 630 233.9 235.0 11.1 1. Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 630 550.5 550.5 6.8 0.0 Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 630 550.5 550.5 6.0 1. Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 650 528.8 556.1 7.2 1. Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1130 600.738 5.642.461 437 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1137 600.805 5.642.461 437 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1137 600.805 5.642.461 433 - 61 273 270 122.9 128.3 3.4 1. Root Bay RB-23-1137 600.805 5.642.461 433 - 61 273 270 206.1 210.1 4.0 1. Root Bay RB-23-1139 600.805 5.642.461 433 - 61 273 270 223.3 229.1 5.8 0.0 Root Bay RB-23-1139 600.805 5.642.461 433 - 61 273 270 223.3 229.1 5.8 0.0 Root Bay RB-23-1139 600.799 5.642.652 432 - 61 271 225 82.1 51.7 164.8 3.1 1. Root Bay RB-23-1139 600.799 5.642.652 432 - 61 271 225 128.9 136.0 6.0 1. Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 152.5 155.4 2.9 0.0 Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 266.5 271.5 5.0 0.0 Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 266.5 271.5 5.0 0.0 Root Bay RB-23-1143 600.860 5.642.401 430 - 60 271 297 266.5 271.5 5.0 0.0 Root Bay RB-23-1144 600.846 5.642.449 433 - 62 273 297 284.0 288.3 4.3 1.1 Root Bay RB-23-1144 600.846 5.642.449 433 - 62 273 297 284.0 288.3 4.3 1.1 Root Bay RB-23-1144 600.846 5.642.449 433 - 62 273 297 286.6 286.0 5.3 1.1	Root Bay	RB-23-1125	600,702	5,642,551	432	- 61	272	162	97.2	102.9	5.7	1.46
Root Bay RB-23-1130 600.738 5.642.451 4.37 - 62 274 630 108.3 200.2 3.9 1.1 Root Bay RB-23-1130 600.738 5.642.451 4.37 - 62 274 630 223.8 235.0 11.1 1 Root Bay RB-23-1130 600.738 5.642.451 4.37 - 62 274 630 351.0 357.5 6.6 0.1 Root Bay RB-23-1130 600.738 5.642.451 4.37 - 62 274 630 503.5 509.5 6.0 1.1 Root Bay RB-23-1130 600.738 5.642.451 4.37 - 62 274 630 503.5 509.5 6.0 1.1 Root Bay RB-23-1130 600.738 5.642.451 4.37 - 62 274 630 528.9 538.1 7.2 1.1 Root Bay RB-23-1130 600.738 5.642.451 4.37 - 62 274 630 528.9 538.1 7.2 1.1 Root Bay RB-23-1130 600.738 5.642.451 4.37 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1137 600.805 5.642.451 4.37 - 62 274 630 580.1 588.5 18.4 1.1 Root Bay RB-23-1137 600.805 5.642.451 4.33 - 61 273 270 122.9 128.3 3.4 1.1 Root Bay RB-23-1137 600.805 5.642.451 4.33 - 61 273 270 208.1 210.1 4.0 1.1 Root Bay RB-23-1137 600.805 5.642.451 4.33 - 61 273 270 223.3 229.1 5.8 0.0 Root Bay RB-23-1139 600.799 5.642.552 4.32 - 61 271 225 82.1 67.6 5.6 0.0 Root Bay RB-23-1139 600.799 5.642.552 4.32 - 61 271 225 128.9 138.0 6.0 1 Root Bay RB-23-1139 600.799 5.642.552 4.32 - 61 271 225 161.8 167.3 5.4 1.1 Root Bay RB-23-1139 600.805 5.642.451 4.30 - 60 271 297 256.2 254.9 4.7 1.1 Root Bay RB-23-1143 600.850 5.642.451 4.30 - 60 271 297 256.5 254.9 4.7 1.1 Root Bay RB-23-1143 600.850 5.642.451 4.30 - 60 271 297 256.5 254.9 4.7 1.1 Root Bay RB-23-1144 600.866 5.642.401 4.30 - 60 271 297 256.5 275.5 5.0 0.0 Root Bay RB-23-1144 600.866 5.642.401 4.30 - 60 271 297 256.5 275.5 5.0 0.0 Root Bay RB-23-1144 600.866 5.642.409 4.33 - 62 273 297 144.4 147.5 3.1 1.1 Root Bay RB-23-1144 600.866 5.642.449 4.33 - 62 273 297 248.0 288.3 4.3 1.1 Root Bay RB-23-1144 600.866 5.642.449 4.33 - 62 273 297 248.0 288.0 5.3 1.1	Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	274	630	61.4	63.6	2.2	1.08
Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 223,9 235.0 11.1 1 1.1 Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 351.0 357.5 6.6 0.0 Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 503.5 503.5 508.5 6.0 1.1 Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 503.5 508.5 508.5 6.0 1.1 Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1137 600,805 5,642,461 437 - 62 274 630 580.1 588.5 18.4 1.1 Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 122.9 126.3 3.4 1.1 Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 206.1 210.1 4.0 1.1 Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 223.3 229.1 5.8 0.0 Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 223.3 229.1 5.8 0.0 Root Bay RB-23-1139 600,899 5,642,552 432 - 61 271 225 82.1 87.6 5.6 0.0 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 129.9 136.0 6.0 1.1 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 129.9 136.0 6.0 1.1 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1.1 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1.1 Root Bay RB-23-1134 600,680 5,642,401 430 - 60 271 297 250.2 268.9 4.7 1.1 Root Bay RB-23-1143 600,680 5,642,401 430 - 60 271 297 250.2 268.9 4.7 1.1 Root Bay RB-23-1143 600,680 5,642,401 430 - 60 271 297 250.2 268.9 4.7 1.1 Root Bay RB-23-1143 600,680 5,642,401 430 - 60 271 297 260.5 264.9 4.7 1.1 Root Bay RB-23-1143 600,680 5,642,401 430 - 60 271 297 260.5 264.9 4.7 1.1 Root Bay RB-23-1144 600,646 5,642,449 433 - 62 273 297 243.2 247.5 3.1 1.1 Root Bay RB-23-1144 600,646 5,642,449 433 - 62 273 297 243.2 247.5 3.1 1.1 Root Bay RB-23-1144 600,646 5,642,449 433 - 62 273 297 243.2 247.5 3.3 4.3 1.1 Root Bay RB-23-1144 600,646 5,642,449 433 - 62 273 297 243.2 247.5 3.3 4.3 1.1 Root Bay RB-23-1144 600,646 5,642,449 433 - 62 273 297 243.2 247.5 3.3 4.3 1.1 Root Bay RB-23-1144 600,646 5,642,449 433 - 62 273 297 243.2 247.5 5.3	Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	274	630	172.3	178.2	5.9	1.43
Root Bay RB-23-1130 600,738 5.642,451 437 - 62 274 630 351.0 357.5 6.6 0.0 Root Bay RB-23-1130 600,738 5.642,451 437 - 62 274 630 503.5 508.5 6.0 1.1 Root Bay RB-23-1130 600,738 5.642,451 437 - 62 274 630 528.9 536.1 7.2 1.1 Root Bay RB-23-1130 600,738 6.642,451 437 - 62 274 630 528.9 536.1 7.2 1.1 Root Bay RB-23-1130 600,738 5.642,451 437 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1130 600,738 5.642,451 437 - 62 274 630 560.6 563.1 2.5 0.0 Root Bay RB-23-1137 600,805 5.642,451 433 - 61 273 270 122.9 126.3 3.4 1.1 Root Bay RB-23-1137 600,805 5.642,451 433 - 61 273 270 206.1 210.1 4.0 1.1 Root Bay RB-23-1137 600,805 5.642,451 433 - 61 273 270 223.3 228.1 5.8 0.0 Root Bay RB-23-1137 600,805 5.642,451 433 - 61 273 270 223.3 228.1 5.8 0.0 Root Bay RB-23-1139 600,805 5.642,451 433 - 61 273 270 225.0 263.7 4.7 0.0 Root Bay RB-23-1139 600,805 5.642,451 433 - 61 273 270 225.0 263.7 4.7 0.0 Root Bay RB-23-1139 600,805 5.642,451 433 - 61 271 225 82.1 87.6 5.6 0.1 Root Bay RB-23-1139 600,805 5.642,451 433 - 61 271 225 129.9 136.0 6.0 1.1 Root Bay RB-23-1139 600,805 5.642,552 432 - 61 271 225 129.9 136.0 6.0 1.1 Root Bay RB-23-1139 600,805 5.642,552 432 - 61 271 225 161.8 167.3 5.4 1.1 Root Bay RB-23-1139 600,860 5.642,401 430 - 60 271 297 152.5 166.4 2.9 0.0 Root Bay RB-23-1143 600,860 5.642,401 430 - 60 271 297 228. 224.4 2.6 1.1 Root Bay RB-23-1143 600,860 5.642,401 430 - 60 271 297 288.5 271.5 5.0 0.0 Root Bay RB-23-1143 600,860 5.642,401 430 - 60 271 297 288.5 271.5 5.0 0.0 Root Bay RB-23-1144 600,846 5.642,401 430 - 60 271 297 288.5 271.5 5.0 0.0 Root Bay RB-23-1144 600,846 5.642,409 433 - 62 273 297 243.2 247.5 4.2 1.1 Root Bay RB-23-1144 600,846 5.642,449 433 - 62 273 297 243.2 247.5 4.2 1.1 Root Bay RB-23-1144 600,846 5.642,449 433 - 62 273 297 243.2 247.5 4.2 1.1	Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	274	630	196.3	200.2	3.9	1.24
Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 503.5 509.5 6.0 1. Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 528.9 536.1 7.2 1. Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 560.6 563.1 2.5 0. Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 560.6 563.1 2.5 0. Root Bay RB-23-1137 600,805 5,642,461 437 - 62 274 630 580.1 598.5 18.4 1. Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 122.9 126.3 3.4 1. Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 206.1 210.1 4.0 1. Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 223.3 229.1 5.8 0. Root Bay RB-23-1139 600,805 5,642,461 433 - 61 273 270 258.0 263.7 4.7 0. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 82.1 87.6 5.6 0. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.7 154.8 3.1 1. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 221.8 224.4 2.6 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 260.2 254.9 4.7 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 260.2 254.9 4.7 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 260.2 254.9 4.7 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 260.2 254.9 4.7 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 260.2 254.9 4.7 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1.	Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	274	630	223.9	235.0	11.1	1.13
Root Bay RB-23-1130 600,738 5.642,461 437 - 62 274 630 528.9 536.1 7.2 1. Root Bay RB-23-1130 600,738 5.642,461 437 - 62 274 630 560.6 563.1 2.5 0. Root Bay RB-23-1130 600,738 5.642,461 437 - 62 274 630 560.6 563.1 2.5 0. Root Bay RB-23-1137 600,805 5.642,461 433 - 61 273 270 122.9 126.3 3.4 1. Root Bay RB-23-1137 600,805 5.642,461 433 - 61 273 270 206.1 210.1 4.0 1. Root Bay RB-23-1137 600,805 5.642,461 433 - 61 273 270 223.3 229.1 5.8 0. Root Bay RB-23-1137 600,805 5.642,461 433 - 61 273 270 259.0 263.7 4.7 0. Root Bay RB-23-1139 600,805 5.642,461 433 - 61 273 270 259.0 263.7 4.7 0. Root Bay RB-23-1139 600,799 5.642,562 432 - 61 271 225 82.1 87.6 5.6 0. Root Bay RB-23-1139 600,799 5.642,562 432 - 61 271 225 129.9 136.0 6.0 1. Root Bay RB-23-1139 600,799 5.642,562 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1143 600,650 5.642,401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600,650 5.642,401 430 - 60 271 297 250.2 254.9 4.7 1. Root Bay RB-23-1143 600,650 5.642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,650 5.642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,650 5.642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,650 5.642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,650 5.642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1144 600,846 5.642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5.642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5.642,449 433 - 62 273 297 243.2 247.5 4.2 1.	Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	274	630	351.0	357.5	6.6	0.30
Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 560.6 563.1 2.5 0 0 Root Bay RB-23-1130 600,738 5,642,461 437 - 62 274 630 580.1 580.1 588.5 18.4 1 Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 122.9 126.3 3.4 1. Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 206.1 210.1 4.0 1. Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 223.3 229.1 5.8 0 Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 223.3 229.1 5.8 0 Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 259.0 263.7 4.7 0. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 82.1 87.6 5.6 0. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 129.9 136.0 6.0 11 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 297 294.0 288.3 4.7 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 298.0 288.3 4.3 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 298.0 288.3 4.3 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 298.0 288.3 4.3 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 5. 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 5. 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 5. 1. Root Bay RB-23-1144 600,846 5,64	Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	274	630	503.5	509.5	6.0	1.30
Root Bay RB-23-1137 600.805 5.642.451 437 - 62 274 630 580.1 598.5 18.4 1. Root Bay RB-23-1137 600.805 5.642.451 433 - 61 273 270 122.9 126.3 3.4 1. Root Bay RB-23-1137 600.805 5.642.451 433 - 61 273 270 206.1 210.1 4.0 1. Root Bay RB-23-1137 600.805 5.642.451 433 - 61 273 270 223.3 229.1 5.8 0. Root Bay RB-23-1137 600.805 5.642.451 433 - 61 273 270 259.0 263.7 4.7 0. Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 82.1 87.6 5.6 0. Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 129.9 136.0 6.0 1. Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 151.7 154.8 3.1 1. Root Bay RB-23-1139 600.805 5.642.401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 250.2 254.9 4.7 1. Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 250.2 254.9 4.7 1. Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 250.2 254.9 4.7 1. Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 284.0 288.3 4.3 1. Root Bay RB-23-1144 600.866 5.642.401 430 - 60 271 297 284.0 288.3 4.3 1. Root Bay RB-23-1144 600.866 5.642.401 430 - 60 271 297 284.0 288.3 4.3 1. Root Bay RB-23-1144 600.866 5.642.404 433 - 62 273 297 224.4 2.6 1. Root Bay RB-23-1144 600.866 5.642.404 433 - 62 273 297 224.4 230.4 3.0 1. Root Bay RB-23-1144 600.866 5.642.404 433 - 62 273 297 224.5 24.7 5 4.2 1. Root Bay RB-23-1144 600.866 5.642.404 433 - 62 273 297 224.5 24.7 5 4.2 1.	Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	274	630	528.9	536.1	7.2	1.28
Root Bay RB-23-1137 600,805 5,642,451 433 - 61 273 270 122.9 126.3 3.4 1. Root Bay RB-23-1137 600,805 5,642,451 433 - 61 273 270 208.1 210.1 4.0 1. Root Bay RB-23-1137 600,805 5,642,451 433 - 61 273 270 223.3 229.1 5.8 0 Root Bay RB-23-1137 600,805 5,642,451 433 - 61 273 270 259.0 263.7 4.7 0.0 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 82.1 87.6 5.6 0.0 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 151.7 154.8 3.1 1 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 151.7 154.8 3.1 <td>Root Bay</td> <td>RB-23-1130</td> <td>600,738</td> <td>5,642,451</td> <td>437</td> <td>- 62</td> <td>274</td> <td>630</td> <td>560.6</td> <td>563.1</td> <td>2.5</td> <td>0.78</td>	Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	274	630	560.6	563.1	2.5	0.78
Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 206.1 210.1 4.0 1. Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 223.3 229.1 5.8 0. Root Bay RB-23-1137 600,805 5,642,461 433 - 61 273 270 259.0 263.7 4.7 0. Root Bay RB-23-1139 600,799 5,642,452 432 - 61 271 225 82.1 87.6 5.6 0. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 129.9 136.0 6.0 1. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 151.7 154.8 3.1 1. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 284.0 288.3 4.3 1. Root Bay RB-23-1144 600,860 5,642,401 430 - 60 271 297 284.0 288.3 4.3 1. Root Bay RB-23-1144 600,860 5,642,401 430 - 60 271 297 284.0 288.3 4.3 1. Root Bay RB-23-1144 600,866 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1.	Root Bay	RB-23-1130	600,738	5,642,451	437	- 62	274	630	580.1	598.5	18.4	1.53
Root Bay RB-23-1137 600.805 5.642.451 433 - 61 273 270 223.3 229.1 5.8 0 Root Bay RB-23-1137 600.805 5.642.451 433 - 61 273 270 259.0 263.7 4.7 0.0 Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 82.1 87.6 5.6 0.0 Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 129.9 136.0 6.0 1 Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 151.7 154.8 3.1 1 Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 151.7 154.8 3.1 1 Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 151.7 154.8 3.1 1 Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 152.5 155.4 2.9 0.0 Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 221.8 224.4 2.6 1. Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1144 600.846 5.642.401 430 - 60 271 297 266.5 271.5 5.0 0.0 Root Bay RB-23-1144 600.846 5.642.449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600.846 5.642.449 433 - 62 273 297 227.4 230.4 3.0 1. Root Bay RB-23-1144 600.846 5.642.449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600.846 5.642.449 433 - 62 273 297 243.2 247.5 4.2 1.	Root Bay	RB-23-1137	600,805	5,642,451	433	- 61	273	270	122.9	126.3	3.4	1.56
Root Bay RB-23-1137 600.805 5.642.451 433 - 61 273 270 259.0 263.7 4.7 0.0 Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 82.1 87.6 5.6 0.0 Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 129.9 136.0 6.0 1 Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 151.7 154.8 3.1 1 Root Bay RB-23-1139 600.799 5.642.552 432 - 61 271 225 161.8 167.3 5.4 1 Root Bay RB-23-1143 600.850 5.642.601 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600.850 5.642.401 430 - 60 271 297 250.2 254.9 4.7 <td>Root Bay</td> <td>RB-23-1137</td> <td>600,805</td> <td>5,642,451</td> <td>433</td> <td>- 61</td> <td>273</td> <td>270</td> <td>206.1</td> <td>210.1</td> <td>4.0</td> <td>1.62</td>	Root Bay	RB-23-1137	600,805	5,642,451	433	- 61	273	270	206.1	210.1	4.0	1.62
Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 82.1 87.6 5.6 0. Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 129.9 136.0 6.0 1 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 151.7 154.8 3.1 1 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 221.8 224.4 2.6 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1144 600,850 5,642,401 430 - 60 271 297 284.0 288.3 4.3 1 Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1.	Root Bay	RB-23-1137	600,805	5,642,451	433	- 61	273	270	223.3	229.1	5.8	0.87
Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 129.9 136.0 6.0 1 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 151.7 154.8 3.1 1 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 221.8 224.4 2.6 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1144 600,866 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1.	Root Bay	RB-23-1137	600,805	5,642,451	433	- 61	273	270	259.0	263.7	4.7	0.48
Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 151.7 154.8 3.1 1 Root Bay RB-23-1139 600,799 5,642,552 432 - 61 271 225 161.8 167.3 5.4 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 221.8 224.4 2.6 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 11 Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1144 600,850 5,642,401 430 - 60 271 297 284.0 288.3 4.3 11 Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1.	Root Bay	RB-23-1139	600,799	5,642,552	432	- 61	271	225	82.1	87.6	5.6	0.94
Root Bay RB-23-1143 600,850 5,842,401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600,850 5,842,401 430 - 60 271 297 221.8 224.4 2.6 1. Root Bay RB-23-1143 600,850 5,842,401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600,850 5,842,401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600,850 5,842,401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600,850 5,842,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1144 600,850 5,842,401 430 - 60 271 297 284.0 288.3 4.3 1 Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 227.4 230.4 3.0 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1.	Root Bay	RB-23-1139	600,799	5,642,552	432	- 61	271	225	129.9	136.0	6.0	1.61
Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 152.5 155.4 2.9 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 221.8 224.4 2.6 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 284.0 288.3 4.3 1 Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 <td>Root Bay</td> <td>RB-23-1139</td> <td>600,799</td> <td>5,642,552</td> <td>432</td> <td>- 61</td> <td>271</td> <td>225</td> <td>151.7</td> <td>154.8</td> <td>3.1</td> <td>1.51</td>	Root Bay	RB-23-1139	600,799	5,642,552	432	- 61	271	225	151.7	154.8	3.1	1.51
Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 221.8 224.4 2.6 1. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 1 Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 284.0 288.3 4.3 1 Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 <td>Root Bay</td> <td>RB-23-1139</td> <td>600,799</td> <td>5,642,552</td> <td>432</td> <td>- 61</td> <td>271</td> <td>225</td> <td>161.8</td> <td>167.3</td> <td>5.4</td> <td>1.66</td>	Root Bay	RB-23-1139	600,799	5,642,552	432	- 61	271	225	161.8	167.3	5.4	1.66
Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 250.2 254.9 4.7 11 Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 284.0 288.3 4.3 11 Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 227.4 230.4 3.0 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1.	Root Bay	RB-23-1143	600,850	5,642,401	430	- 60	271	297	152.5	155.4	2.9	0.94
Root Bay RB-23-1143 600,850 5,842,401 430 - 60 271 297 266.5 271.5 5.0 0. Root Bay RB-23-1143 600,850 5,842,401 430 - 60 271 297 284.0 288.3 4.3 1 Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 227.4 230.4 3.0 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 240.6 286.0 5.3 1.	Root Bay	RB-23-1143	600,850	5,642,401	430	- 60	271	297	221.8	224.4	2.6	1.48
Root Bay RB-23-1143 600,850 5,642,401 430 - 60 271 297 284.0 288.3 4.3 1 Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 227.4 230.4 3.0 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 280.6 286.0 5.3 1.	Root Bay	RB-23-1143	600,850	5,642,401	430	- 60	271	297	250.2	254.9	4.7	1.51
Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 144.4 147.5 3.1 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 227.4 230.4 3.0 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 240.6 286.0 5.3 1.	Root Bay	RB-23-1143	600,850	5,642,401	430	- 60	271	297	266.5	271.5	5.0	0.52
Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 227.4 230.4 3.0 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 280.6 286.0 5.3 1.	Root Bay	RB-23-1143	600,850	5,642,401	430	- 60	271	297	284.0	288.3	4.3	1.61
Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 243.2 247.5 4.2 1. Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 280.6 286.0 5.3 1.	Root Bay	RB-23-1144	600,846	5,642,449	433	- 62	273	297	144.4	147.5	3.1	1.29
Root Bay RB-23-1144 600,846 5,642,449 433 - 62 273 297 280.6 286.0 5.3 1.	Root Bay	RB-23-1144	600,846	5,642,449	433	- 62	273	297	227.4	230.4	3.0	1.25
	Root Bay	RB-23-1144	600,846	5,642,449	433	- 62	273	297	243.2	247.5	4.2	1.00
	Root Bay	RB-23-1144	600,846	5,642,449	433	- 62	273	297	280.6	286.0	5.3	1.42
Root Bay RB-23-1179 599,951 5,642,419 425 - 60 270 180 158.3 171.2 12.8 1.	Root Bay	RB-23-1179	599,951	5,642,419	425	- 60	270	180	158.3	171.2	12.8	1.70

	Root Bay	RB-23-1185	601,151	5,642,444	447	- 62	270	150	121.3	125.1	3.7	0.80
ĺ	Root Bay	RB-23-1188	601,181	5,642,455	458	- 61	274	180	143.4	146.7	3.3	1.43
	Root Bay	RB-23-1190	601,251	5,642,451	448	- 60	272	201	164.7	167.4	2.8	
	Root Bay	RB-23-1200	600,392	5,642,403	433	- 60	271	42	11.3	25.2	13.9	1.52
ĺ	Root Bay	RB-23-1201	600,265	5,642,412	433	- 61	266	345	306.3	320.8	14.5	1.72
	Root Bay	RB-23-1202	600,350	5,642,507	431	- 61	273	342	165.5	168.5	2.9	0.49
	Root Bay	RB-23-1202	600,350	5,642,507	431	- 61	273	342	187.0	189.6	2.6	0.05
	Root Bay	RB-23-1202	600,350	5,642,507	431	- 61	273	342	310.8	329.3	18.5	1.69
	Root Bay	RB-23-1206	600,051	5,642,416	425	- 61	273	225	203.6	217.5	13.9	1.61
	Root Bay	RB-23-1207	600,097	5,642,463	429	- 61	271	243	145.2	147.4	2.2	1.41
	Root Bay	RB-23-1207	600,097	5,642,463	429	- 61	271	243	212.0	222.4	10.4	0.38
	Root Bay	RB-23-1208	600,146	5,642,409	430	- 62	273	291	82.1	84.9	2.8	0.85
	Root Bay	RB-23-1208	600,146	5,642,409	430	- 62	273	291	247.3	262.8	15.5	1.60
	Root Bay	RB-23-1209	601,148	5,642,547	439	- 61	271	150	34.0	37.0	3.1	1.80
	Root Bay	RB-23-1210	601,101	5,642,447	449	- 62	271	120	97.5	102.0	4.4	
	Root Bay	RB-23-1215	599,772	5,642,505	422	- 61	272	33	5.5	24.1	18.6	1.58
	Root Bay	RB-23-1217	600,203	5,642,448	435	- 62	274	309	87.5	92.8	5.3	1.64
	Root Bay	RB-23-1217	600,203	5,642,448	435	- 62	274	309	283.5	298.7	15.2	1.49
	Root Bay	RB-23-1220	600,446	5,642,399	437	- 61	273	69	42.6	56.1	13.5	1.61
	Root Bay	RB-23-1221	600,394	5,642,357	427	- 61	273	63	17.0	24.3	7.3	0.72
	Root Bay	RB-23-1222	600,537	5,642,365	428	- 62	274	132	89.6	96.5	7.0	1.20
	Root Bay	RB-23-1222	600,537	5,642,365	428	- 62	274	132	100.1	106.4	6.2	1.22
	Root Bay	RB-23-1223	600,587	5,642,364	429	- 62	271	162	120.1	122.8	2.7	0.81
	Root Bay	RB-23-1224	600,639	5,642,408	436	- 61	272	195	93.2	97.0	3.8	0.57
	Root Bay	RB-23-1224	600,639	5,642,408	436	- 61	272	195	128.4	130.6	2.2	0.85
	Root Bay	RB-23-1224	600,639	5,642,408	436	- 61	272	195	147.8	155.6	7.8	1.34
	Root Bay	RB-23-1224	600,639	5,642,408	436	- 61	272	195	164.8	168.7	3.9	1.82
	Root Bay	RB-23-1225	600,730	5,642,410	434	- 61	276	243	74.7	77.3	2.6	0.56
J	Root Bay	RB-23-1225	600,730	5,642,410	434	- 61	276	243	168.5	172.4	3.9	1.53

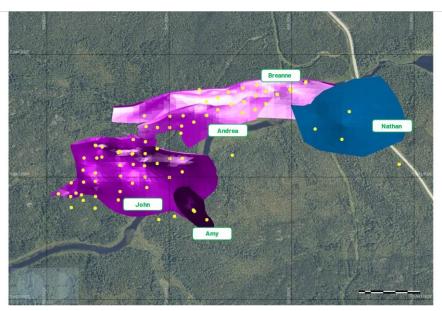
			1				-		1	1	
Root Bay	RB-23-1225	600,730	5,642,410	434	- 61	276	243	192.2	199.9	7.7	0.84
Root Bay	RB-23-1225	600,730	5,642,410	434	- 61	276	243	212.4	214.6	2.1	1.47
Root Bay	RB-23-1225	600,730	5,642,410	434	- 61	276	243	223.0	230.7	7.7	1.06
Root Bay	RB-23-1227	600,652	5,642,499	437	- 61	275	126	84.8	90.2	5.5	0.14
Root Bay	RB-23-1227	600,652	5,642,499	437	- 61	275	126	100.1	107.5	7.3	1.18
Root Bay	RB-23-1227	600,652	5,642,499	437	- 61	275	126	113.2	115.4	2.2	0.68
Root Bay	RB-23-1228	600,751	5,642,506	435	- 61	273	210	140.5	142.5	2.0	0.15
Root Bay	RB-23-1228	600,751	5,642,506	435	- 61	273	210	154.4	161.4	7.0	0.95
Root Bay	RB-23-1229	600,444	5,642,361	428	- 61	271	66	46.0	51.8	5.7	1.08

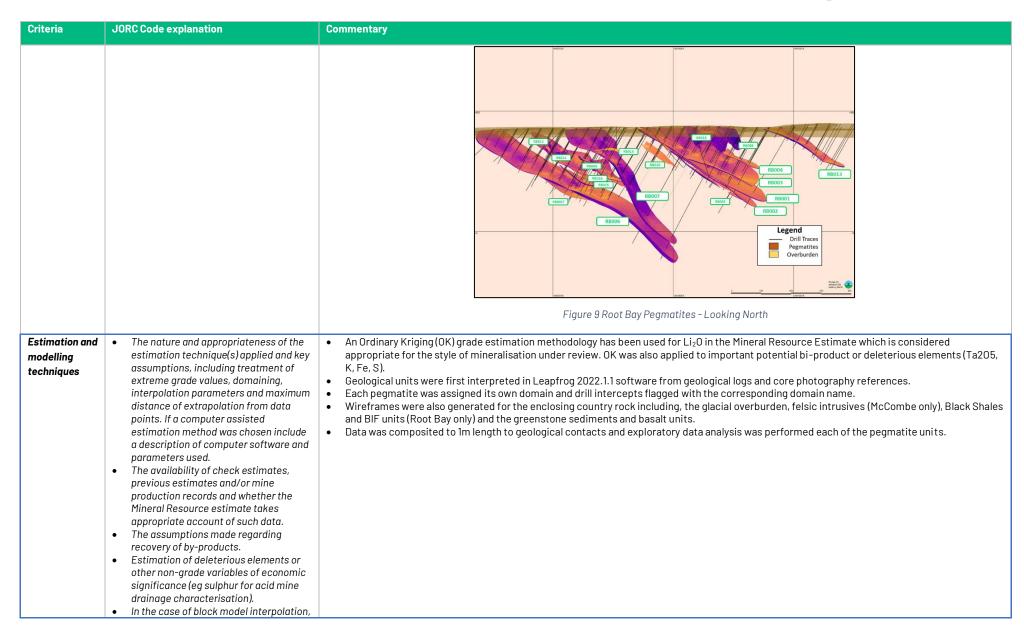
Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 GT1 completed a high resolution Heliborne Magnetic geophysical survey over the property in July 2022. The survey was undertaken by Propsectair using their Robinson R-44 and EC120B helicopters. Survey details, 1,201 line-km, 50m line spacing, direction 179 degrees to crosscut pegmatite strike, 50m altitude. Control lines were flown perpendicular to these lines at 500m spacing. Images have been received Total Magnetics. Interpretation was completed by Southern Geoscience Several pegmatite targets were identified based on structural interpretation of the magnetic response of basement formations. Lithium vector analysis from existing drill data and surface samples was undertaken by Dr Nigel Brand, a geochemist from Portable Spectral Services in Perth Western Australia. Dr Brand formulated an index for identifying potential LCT hosted pegmatites both in greenstone and pegmatite host rocks. Further regional country rock sampling programs is being conducted to assay for elements of interest to generate the vectoring index to allow further LCT pegmatite targets at Root.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further geological field mapping of anomalies and associated pegmatites at Root and regional claims Sampling country rock to assist in LCT pegmatite vector analysis and target generation. Infill drilling at the McCombe deposit to improve the deposits resource confidence. Continuation of detailed mining studies Further exploration and extension of the Root Bay pegmatites discovered to date.

Section 3 Estimation and Reporting of Mineral Resources – (McCombe and Root deposit)

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	Data was imported into the database directly from source geology logs and laboratory csv files. Was then passed through a series of validation checks before final acceptance of the data for downstream use.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 A site visit to the Root area was undertaken by the Competent Person (John Winterbottom) between 14th and 15th March 2023 and again between the 22nd to 24th August 2023; general site layout, drilling sites, diamond drilling operations were viewed, plus diamond core in the storage facility Thunder Bay.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 There is sufficient confidence in the geological interpretation of the McCombe and Root Bay deposits in most areas; there are some areas of uncertainty at the outer limits of the deposits where drill spacing is sparse. Interpretation was made directly from pegmatites noted in geological logs and confirmation through core photographs. Alternative geological interpretation would have a minimal effect on the resource estimate. Pegmatite intrusions were used to constrain the mineral resource estimation.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 McCombe The deposit consists of 6 LCT pegmatite units of varying thicknesses and attitudes. The McCombe deposit has a total strike extent of approximately 1,500m and has been drilled to a down dip depth of over 250m. McCombes pegmatites varying in strike direction from east-west to southwest-northeast and all dip towards the south or southeast at varying degrees of inclination ranging from 40 to 70 degrees.




Figure 8 McCombe pegmatites – Plan view

Root Bay

- The deposit consists of 18 LCT pegmatite units of varying thicknesses and attitudes.

 The Root Bay deposit has a total strike extent of approximately 200m along a 1500m trend and has been drilled to a down dip depth of nearly 1,000m (6000m from surface)
- Root Bays pegmatites strike direction from north-south and moderately dip towards the east.

Criteria	JORC Code explanation	Commentary
	the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Histogram of leteval Length White Good July Good Jul

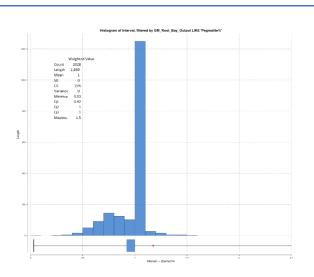
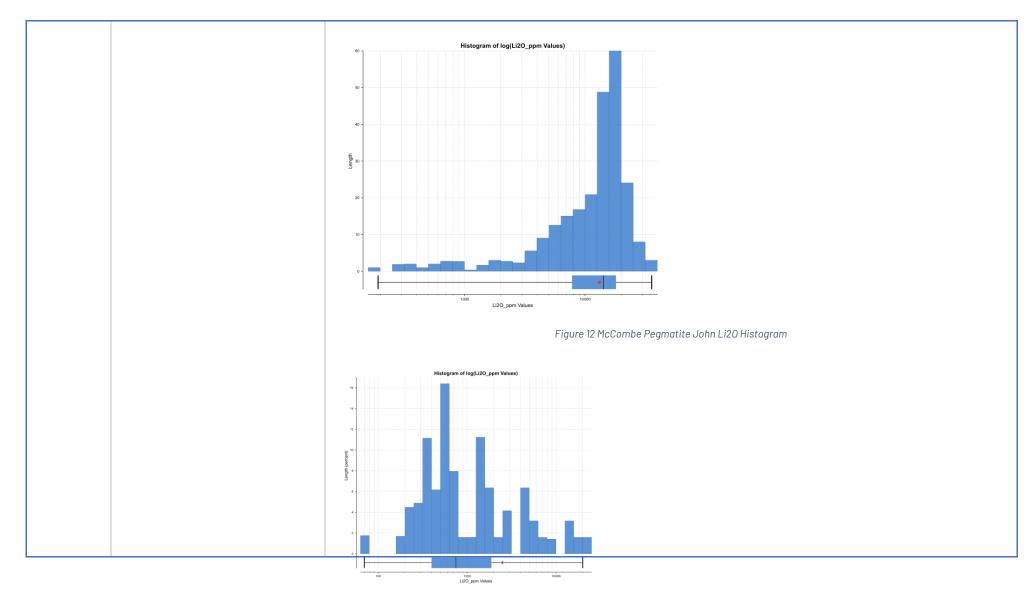
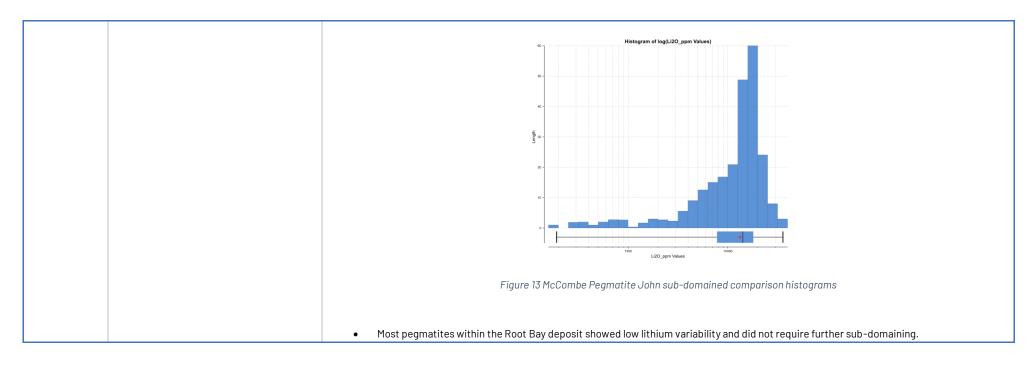


Figure 11 Root Bay Intervals

• Li20 showed poor correlation with the other elements of interest.


Table 9 McCombe Element Correlation

Field Name	Li20 ppm	Ta205 ppm	Rb20 ppm	Cs20 ppm	Ca ppm	Fe ppm	Mg ppm	K ppm	S ppm
Correlation Matrix									
Li20 ppm	100%								
Ta205 ppm	7%	100%							
Rb20 ppm	19%	-7%	100%						
Cs20 ppm	9%	1%	58%	100%					
Ca ppm	-26%	-45%	-29%	-4%	100%				
Fe ppm	-18%	-47%	-27%	4%	91%	100%			
Mg ppm	-22%	-48%	-25%	9%	89%	91%	100%		
K ppm	5%	-16%	86%	44%	-31%	-29%	-28%	100%	



Criteria	JORC Code explanation	Commentary									
		Sppm	-12%	-21%	-15%	-7	%	48%	54%	35%	-14% 100%
				Table 10 F	Root Bay El	ement Corr	elation				
		Field Name	Li2O ppm	Ta2O5 ppm	Rb2O ppm	Cs2O ppm	Ca ppm	Fe ppm	Mg ppm	K ppm	S ppm
		Correlation Matrix									
		Li2O ppm	100%								
		Ta2O5 ppm	-22%	100%							
		Rb2O ppm	14%	17%	100%						
		Cs2O ppm	20%	36%	72%	100%					
		Ca ppm	-38%	-9%	-31%	-21%	100%				
		Fe ppm	-26%	-12%	-33%	-19%	83%	100%			
		Mg ppm	-34%	-6%	-35%	-19%	88%	94%	100%		
		K ppm	7%	-21%	75%	29%	-33%	-34%	-36%	100%	
		S ppm	-16%	-6%	-15%	-11%	35%	52%	40%	-14%	100%
		 Data statistics was evalua Most domains showed a lo sub-domain was generate Pegmatite using Leapfrog Histograms below demons 	g normal distribu d in an attempt t numerical mode	ıtion. John I o better cor Iling to bett	Pegmatite, nfine the tv er sub-dor	, the thicke vo populati main the hig	st unit, sh ons. A 0.5 gher-grad	owed a bin % Li ₂ 0 env e zones wi	nodal distri velope was o thin the peo	bution of Li ₂ created with gmatite.	O. A high-grad

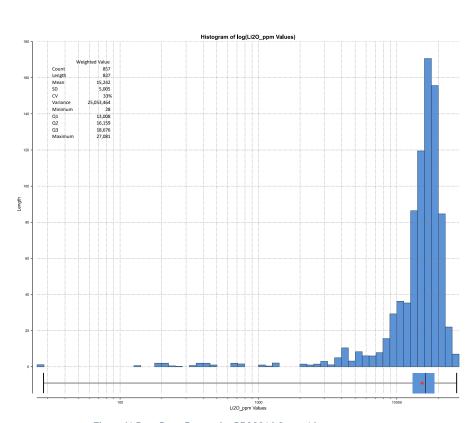
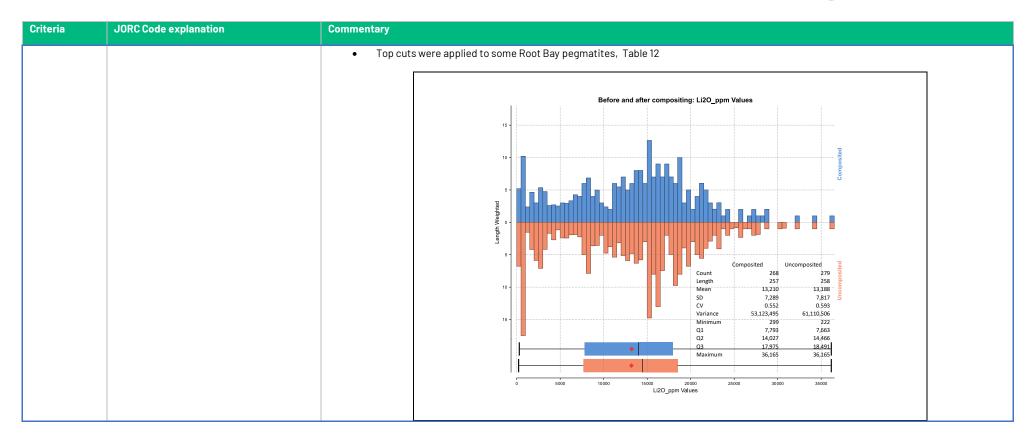
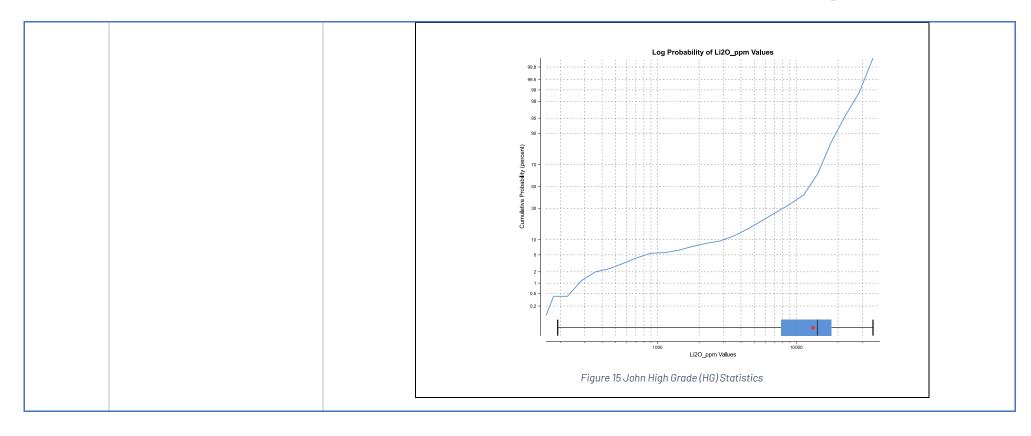


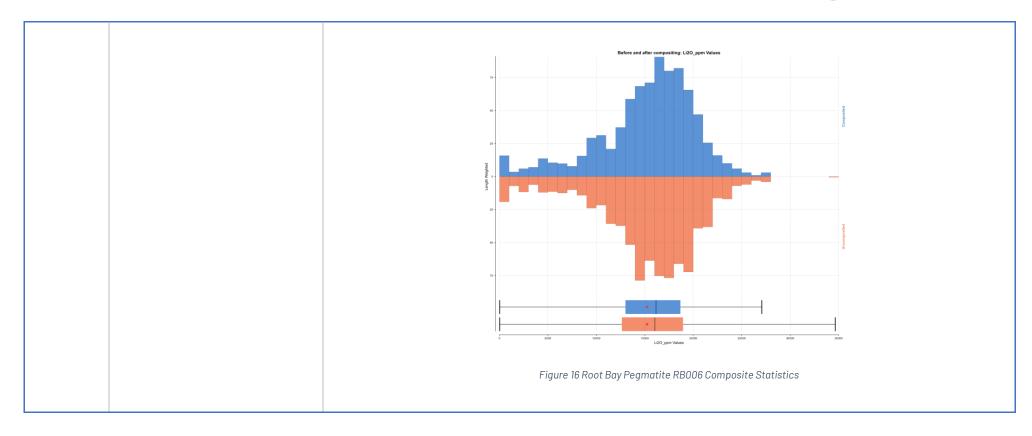
Figure 14 Root Bay – Pegmatite RB006 Li₂O ppm histogram


Sample data was composited to 1m down-hole composites, while honouring geological contacts at both deposits. Residual lengths were distributed evenly across the interval.

• Variography was carried out to define the variogram models for the Ordinary Kriging (OK) interpolation.

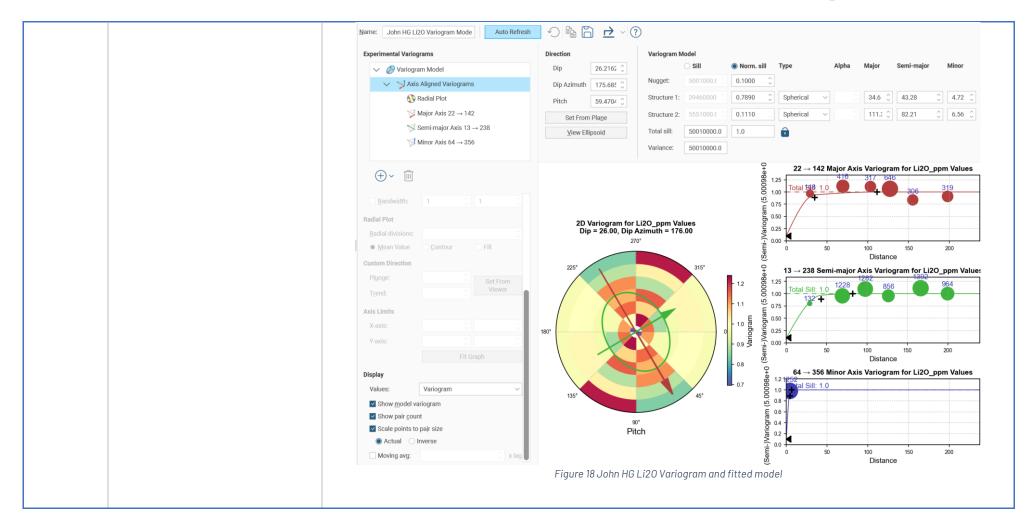

_Top cu

Top cut analysis was carried out to identify extreme outliers, using a combination of plots, and histograms and coefficient of variation. No top cuts have been applied to estimated elements. Instead, outlier values were clamped at 50% of the variogram range above the identified outlier cut-off for each element within each domain.



Criteria	JORC Code explanation	Commentary							
			Parts:	1	2	1	1	1	1
			Closed:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
			Consistent:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
			Manifold:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
			points:	23	162	64	268	18	150
			Number of Values:	23	162	64	268	18	150
			Min Value:	257	160	69	299	415	77
			Lower Quartile:	483	1,270	483	7,000	2,613	258
			Median:	4,284	7,319	749	13,756	7,313	1,938
			Upper Quartile:	10,753	18,592	2,725	17,836	15,551	13,849
			Max Value:	25,422	40,556	20,924	36,165	21,528	32,721
			Clamped	N/A	35000	18000	30000	N/A	25000
			Mean:	6,297	10,778	3,155	12,835	8,848	6,891
			Cut: Mean	6,297	10,778	3,155	12,835	8,848	6,891
			Declustered Mean	5,960	8,965	2,480	11,607	7,518	6,545
			C+4	7,199	10,122	5,092	7,406	7,094	8,521
			Variance:	51,821,300	102,444,000	25,932,000	54,855,800	50,320,800	72,608,700

Criteria	JORC Code explanation	Comm	entary											
			Statistics weighting: Length weighted	l-			Ct-J				1			
			Name	Count	Length	Mean	Std deviation	CoV	Variance	Min	Lower quartile	Median	Upper quartile	Max
			Pegmatite_RB001	303	277									
			Li2O_ppm	303	277	12,537	5,863	0.47	34,375,719	77	9,063	13,648	16,985	23,034
			Cut_Li2O_ppm	303	277	12,537	5,863	0.47	34,375,719	77	9,063	13,648	16,985	23,034
			Pegmatite_RB002	97	86									
			Li2O_ppm	97	86	10,987	6,426	0.58	41,299,436	301	6,393	11,302	15,693	27,554
			Cut_Li2O_ppm	97	86	10,911	6,263	0.57	39,226,334	301	6,393	11,302	15,693	23,000
			Pegmatite_RB003	122	107									
			Li2O_ppm	122	107	9,501	7,274	0.77	52,912,098	22	1,010	10,118	15,305	22,388
			Cut_Li2O_ppm	122	107	9,501	7,274	0.77	52,912,098	22	1,010	10,118	15,305	22,388
			Pegmatite_RB004	48	40									
			Li2O_ppm	48	40	10,812	7,262	0.67	52,735,903	118	3,251	12,894	17,307	22,172
			Cut_Li2O_ppm	48	40	10,751	7,181	0.67	51,561,724	118	3,251	12,894	17,307	19,000
			Pegmatite_RB005	33	28									
			Li2O_ppm	33	28	11,156	6,096	0.55	37,156,579	250	6,824	9,450	16,554	21,268
			Cut_Li2O_ppm	33	28	11,156	6,096	0.55	37,156,579	250	6,824	9,450	16,554	21,268
			Pegmatite_RB006	923	871									
			Li2O_ppm	887	837	15,230	5,438	0.36	29,576,241	28	12,636	16,037	18,943	34,658
			Cut_Li2O_ppm	887	837	15,184	5,348	0.35	28,598,250	28	12,636	16,037	18,943	24,000
			Pegmatite_RB007	163	147									
			Li2O_ppm	152	138	12,571	6,340	0.50	40,201,600	32	8,503	14,121	17,307	26,693
			Cut_Li2O_ppm	152	138	12,533	6,263	0.50	39,223,917	32	8,503	14,121	17,307	24,000
			Pegmatite_RB008	28	24									



Criteria	JORC Code explanation	Comm	entary											
			Li2O_ppm	28	24	7,051	4,924	0.70	24,247,577	187	2,073	8,374	11,000	15,714
			Cut_Li2O_ppm	28	24	7,051	4,924	0.70	24,247,577	187	2,073	8,374	11,000	15,714
			Pegmatite_RB009	17	16									
			Li2O_ppm	17	16	6,991	5,640	0.81	31,811,418	189	2,497	4,973	12,098	16,102
			Cut_Li2O_ppm	17	16	6,991	5,640	0.81	31,811,418	189	2,497	4,973	12,098	16,102
			Pegmatite_RB010	7	5									
			Li2O_ppm	7	5	2,204	2,707	1.23	7,327,937	95	508	721	4,391	7,362
			Cut_Li2O_ppm	7	5	1,944	2,163	1.11	4,679,064	95	508	721	4,391	5,400
			Pegmatite_RB011	42	30									
			Li2O_ppm	41	30	4,044	4,697	1.16	22,063,782	41	359	1,888	6,652	17,415
			Cut_Li2O_ppm	41	30	3,965	4,480	1.13	20,068,687	41	359	1,888	6,652	15,000
			Pegmatite_RB012	34	45									
			Li2O_ppm	32	23	2,960	3,520	1.19	12,391,903	121	387	947	5,016	12,916
			Cut_Li2O_ppm	32	23	2,862	3,272	1.14	10,705,324	121	387	947	5,016	10,000
			Pegmatite_RB013	80	71									
			Li2O_ppm	75	67	11,834	6,594	0.56	43,478,628	187	6,781	12,701	16,339	26,693
			Cut_Li2O_ppm	75	67	11,776	6,474	0.55	41,911,593	187	6,781	12,701	16,339	24,000
			Pegmatite_RB014	13	10									
			Li2O_ppm	13	10	8,235	6,201	0.75	38,454,082	73	1,012	10,354	11,323	17,996
			Cut_Li2O_ppm	13	10	8,235	6,201	0.75	38,454,082	73	1,012	10,354	11,323	17,996
			Pegmatite_RB015	23	20									
			Li2O_ppm	23	20	14,041	5,473	0.39	29,957,786	3,961	9,622	14,789	17,243	26,047
			Cut_Li2O_ppm	23	20	13,945	5,266	0.38	27,734,378	3,961	9,622	14,789	17,243	24,000
			Pegmatite_RB016	13	11									
			Li2O_ppm	13	11	6,876	5,105	0.74	26,060,211	41	2,011	8,288	10,268	16,167

Criteria	JORC Code explanation	Comm	entary												
			Cut_Li2O_ppm	13	11	6,876	5,105	0.74	26,060,211	41	2,011	8,288	10,268	16,167	
			Pegmatite_RB017	33	28										Ì
			Li2O_ppm	33	28	8,183	7,262	0.89	52,737,507	396	911	6,092	14,186	23,464	İ
			Cut_Li2O_ppm	33	28	8,139	7,170	0.88	51,405,975	396	911	6,092	14,186	22,000	1
			Pegmatite_RB018	50	44										
			Li2O_ppm	50	44	6,634	5,870	0.88	34,451,282	105	945	5,016	10,785	19,352	İ
			Cut_Li2O_ppm	50	44	6,634	5,870	0.88	34,451,282	105	945	5,016	10,785	19,352	j
		in Tabl	_Variography rams models were constru e 13 for McCombe and Tabl sted to each pegmatite's or	e 14 fc	r Root E	Bay. Domai	ns that ha	d poorer d	ata support us	ed vario	grams fron	•			

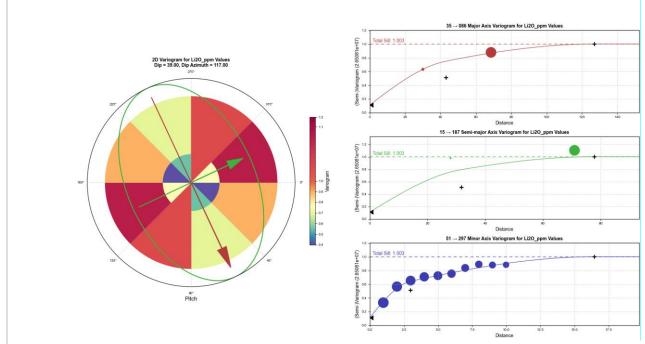


Figure 20 – Root Bay Pegmatite RB006 Li₂O Variogram and fitted model

Variogram model parameters

Table 13 McCombe Variogram models

General	Dire	ction			Struct	ure 1				Struct	ure 2			
Variogram Name	Dip	Dip Azimuth	Pitch	Normalised Nugget	Normalised sill	Structure	Major	Semi-major	Minor	Normalised sill	Structure	Major	Semi-major	Minor
Fe_ppm Pegmatite														
- Amy	41	216	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4

Criteria	JORC Code explanation	Commentary														
		Fe_ppm Pegmatite														
		- Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Fe_ppm Pegmatite	00	170		0.10	0.00	0		110	_	0.07		100	110	
		- John HG Fe_ppm Pegmatite	26	176	59	0.10	0.66	Spherical	55	112	5	0.24	Spherical	129	116	7
		- John	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		Fe_ppm Pegmatite														
		- Luke	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Fe_ppm Pegmatite - Nathan	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Fe_ppm	21	170		0.14	0.44	Oprierical	30	70		0.42	Oprierical	130	100	+-
		Pegmatite-														
		Breanne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
		K_ppm Pegmatite - Amy	49	217	16	0.10	0.38	Spherical	9	39	5	0.52	Spherical	67	67	7
		K_ppm Pegmatite	49	217	10	0.10	0.36	Sprierical	9	39	5	0.52	Sprierical	67	67	+'-
		- Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		K_ppm Pegmatite														
		- John HG	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		K_ppm Pegmatite - John	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		K_ppm Pegmatite	20	170	- 00	0.10	0.00	Орпопоа	01	12		0.00	Орпенои	107	110	+ -
		- Luke	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		K_ppm Pegmatite	0.7	450	00	0.1/			F0			0.40		150	100	1,
		- Nathan K_ppm Pegmatite-	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Breanne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
		Li20_ppm														
		Pegmatite - Amy	49	217	16	0.10	0.44	Spherical	37	42	5	0.46	Spherical	87	51	7
		Li20_ppm Pegmatite -														
		Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Li20_ppm	0,			0111	0111	opiloriou.			_	57.2	op.ioriou.		100	
		Pegmatite - John														
		HG	26	176	59	0.10	0.79	Spherical	35	43	5	0.11	Spherical	111	82	7
		Li20_ppm Pegmatite - John	26	176	66	0.19	0.29	Spherical	34	27	7	0.52	Spherical	120	138	10
		Li20_ppm	20	170	- 00	0.10	0.20	Opticitodi	0 1	21	,	0.02	Оргистича	120	100	10
		Pegmatite - Luke	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Li20_ppm														
		Pegmatite - Nathan	27	170	22	N 14	n 44	Spherical	50	46	2	0.42	Spherical	150	100	4

Criteria	JORC Code explanation	Commentary
		Li20_ppm Pegmatite- Breanne 69 169 8 0.10 0.03 Spherical 64 80 2 0.87 Spherical 104 102 5
		Mg_ppm Pegmatite - Nathan 27 170 22 0.14 0.44 Spherical 50 46 2 0.42 Spherical 150 100 4
		S_ppm Pegmatite - Amy
		- Andrea 67 157 17 0.14 0.44 Spherical 50 46 2 0.42 Spherical 150 100 4 S_ppm Pegmatite - John HG 26 176 59 0.10 0.60 Spherical 64 42 5 0.30 Spherical 137 115 7
		S_ppm Pegmatite
		S_ppm Pegmatite
		- Nathan 27 170 22 0.14 0.44 Spherical 50 46 2 0.42 Spherical 150 100 4 S_ppm Pegmatite-Breanne 69 169 8 0.10 0.03 Spherical 64 80 2 0.87 Spherical 104 102 5
		Ta205_ppm Pegmatite - Amy 49 217 16 0.10 0.44 Spherical 37 42 5 0.46 Spherical 67 51 7 Ta205_ppm
		Pegmatite -
		Pegmatite - John HG 26 176 59 0.10 0.59 Spherical 64 46 6 0.31 Spherical 137 115 11 Ta205_ppm
		Pegmatite - John 26 176 66 0.19 0.29 Spherical 34 27 7 0.52 Spherical 120 138 10 Ta205_ppm Pegmatite - Luke 67 157 17 0.14 0.44 Spherical 50 46 2 0.42 Spherical 150 100 4
		Ta205_ppm Pegmatite - Nathan 27 170 22 0.14 0.44 Spherical 50 46 2 0.42 Spherical 150 100 4
		Ta205_ppm Pegmatite- Breanne 69 169 8 0.10 0.03 Spherical 64 80 2 0.87 Spherical 104 102 5
		Table 14 Root Bay Variogram model parameters
		General Direction Nugget Structure 1 Structure 2 Spherical Spherical

Criteria	JORC Code explanation	Commentary												
		Variogram Name	Dip	Dip Azi.	Pitch		Sill	Major	Semi- major	Minor	Sill	Major	Semi- major	Minor
		Ca_ppm Pegmatite_RB001	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Ca_ppm Pegmatite_RB002	38	113	79	0.11	0.32	72	94	3	0.57	120	120	6
		Ca_ppm Pegmatite_RB003	34	120	72	0.08	0.43	72	61	5	0.49	104	97	6
		Ca_ppm Pegmatite_RB004	30	108	82	0.11	0.30	38	13	1	0.59	122	67	6
		Ca_ppm Pegmatite_RB005	39	117	71	0.11	0.30	38	13	1	0.59	122	67	6
		Ca_ppm Pegmatite_RB006	39	117	65	0.11	0.37	58	32	3	0.52	145	108	5
		Ca_ppm Pegmatite_RB007	52	119	71	0.11	0.29	58	13	1	0.60	113	103	1
		Ca_ppm Pegmatite_RB008	32	128	59	0.11	0.56	58	13	0	0.33	71	50	1
		Ca_ppm Pegmatite_RB009	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Ca_ppm Pegmatite_RB010	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Ca_ppm Pegmatite_RB011	36	127	57	0.11	0.31	58	38	2	0.58	143	103	4
		Ca_ppm Pegmatite_RB012	39	121	69	0.11	0.30	58	33	1	0.59	113	103	3
		Ca_ppm Pegmatite_RB013	19	96	79	0.11	0.29	58	36	1	0.60	113	103	2
		Ca_ppm Pegmatite_RB014	13	135	71	0.11	0.37	30	60	3	0.52	100	150	5
		Ca_ppm Pegmatite_RB015	33	116	65	0.11	0.39	58	32	2	0.50	87	81	5
		Ca_ppm Pegmatite_RB016	25	102	65	0.11	0.36	58	32	3	0.53	101	76	5
		Ca_ppm Pegmatite_RB017	33	137	50	0.11	0.37	102	61	5	0.52	102	71	9
		Ca_ppm Pegmatite_RB018	68	108	81	0.11	0.37	102	61	5	0.52	104	95	9
		Cs20_ppm Pegmatite_RB001	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Cs20_ppm Pegmatite_RB002	38	113	79	0.11	0.32	72	94	3	0.57	120	120	6
		Cs20_ppm Pegmatite_RB003	34	120	72	0.08	0.43	72	61	5	0.49	104	97	6
		Cs20_ppm Pegmatite_RB004	30	108	82	0.11	0.30	38	13	1	0.59	122	67	6

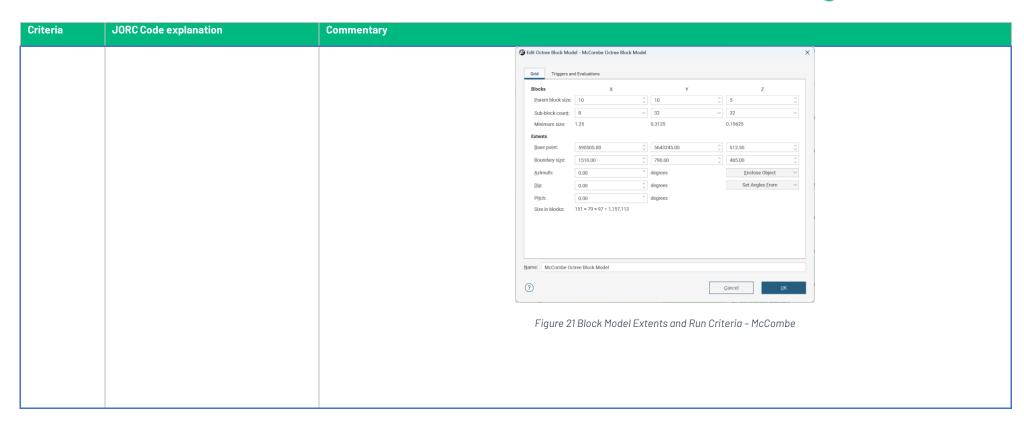
Criteria	JORC Code explanation	Commentary												
		Cs20_ppm Pegmatite_RB005	39	117	71	0.11	0.30	38	13	1	0.59	122	67	6
		Cs20_ppm Pegmatite_RB006	39	117	65	0.11	0.37	58	32	3	0.52	145	108	5
		Cs20_ppm Pegmatite_RB007	52	119	71	0.11	0.29	58	13	1	0.60	113	103	1
		Cs20_ppm Pegmatite_RB008	32	128	59	0.11	0.56	58	13	0	0.33	71	50	1
		Cs20_ppm Pegmatite_RB009	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Cs20_ppm Pegmatite_RB010	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Cs20_ppm Pegmatite_RB011	36	127	57	0.11	0.31	58	38	2	0.58	143	103	4
		Cs20_ppm Pegmatite_RB012	39	121	69	0.11	0.30	58	33	1	0.59	113	103	3
		Cs20_ppm Pegmatite_RB013	19	96	79	0.11	0.29	58	36	1	0.60	113	103	2
		Cs20_ppm Pegmatite_RB014	13	135	71	0.11	0.37	30	60	3	0.52	100	150	5
		Cs20_ppm Pegmatite_RB015	33	116	65	0.11	0.39	58	32	2	0.50	87	81	5
		Cs20_ppm Pegmatite_RB016	25	102	65	0.11	0.36	58	32	3	0.53	101	76	5
		Cs20_ppm Pegmatite_RB017	33	137	50	0.11	0.37	102	61	5	0.52	102	71	9
		Cs20_ppm Pegmatite_RB018	68	108	81	0.11	0.37	102	61	5	0.52	104	95	9
		Fe_ppm Pegmatite_RB001	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Fe_ppm Pegmatite_RB002	38	113	79	0.11	0.32	72	94	3	0.57	120	120	6
		Fe_ppm Pegmatite_RB003	34	120	72	0.08	0.43	72	61	5	0.49	104	97	6
		Fe_ppm Pegmatite_RB004	30 39	108	82	0.11	0.30	38	13	1	0.59	122	67	6
		Fe_ppm Pegmatite_RB005		117	71	0.11	0.30	38	13	1	0.59	122	67	6
		Fe_ppm Pegmatite_RB006	39	117	65	0.11	0.37	58	32	3	0.52	145	108	5
		Fe_ppm Pegmatite_RB007	52	119	71	0.11	0.29	58	13	1	0.60	113	103	1
		Fe_ppm Pegmatite_RB008 Fe_ppm Pegmatite_RB009	32 39	128	59	0.11	0.56	58	13	0	0.33	71	50	1
			39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Fe_ppm Pegmatite_RB010	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6

Criteria	JORC Code explanation	Commentary												
		Fe_ppm Pegmatite_RB011	36	127	57	0.11	0.31	58	38	2	0.58	143	103	4
		Fe_ppm Pegmatite_RB012	39	121	69	0.11	0.30	58	33	1	0.59	113	103	3
		Fe_ppm Pegmatite_RB013	19	96	79	0.11	0.29	58	36	1	0.60	113	103	2
		Fe_ppm Pegmatite_RB014	13	135	71	0.11	0.37	30	60	3	0.52	100	150	5
		Fe_ppm Pegmatite_RB015	33	116	65	0.11	0.39	58	32	2	0.50	87	81	5
		Fe_ppm Pegmatite_RB016	25	102	65	0.11	0.36	58	32	3	0.53	101	76	5
		Fe_ppm Pegmatite_RB017	33	137	50	0.11	0.37	102	61	5	0.52	102	71	9
		Fe_ppm Pegmatite_RB017	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Fe_ppm Pegmatite_RB018	68	108	81	0.11	0.37	102	61	5	0.52	104	95	9
		K_ppm Pegmatite_RB001	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		K_ppm Pegmatite_RB002	38	113	79	0.11	0.32	72	94	3	0.57	120	120	6
		K_ppm Pegmatite_RB003	34	120	72	0.08	0.43	72	61	5	0.49	104	97	6
		K_ppm Pegmatite_RB004	30	108	82	0.11	0.30	38	13	1	0.59	122	67	6
		K_ppm Pegmatite_RB005	39	117	71	0.11	0.30	38	13	1	0.59	122	67	6
		K_ppm Pegmatite_RB006	39	117	65	0.11	0.37	58	32	3	0.52	145	108	5
		K_ppm Pegmatite_RB007	52	119	71	0.11	0.29	58	13	1	0.60	113	103	1
		K_ppm Pegmatite_RB008	32	128	59	0.11	0.56	58	13	0	0.33	71	50	1
		K_ppm Pegmatite_RB009	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		K_ppm Pegmatite_RB010	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		K_ppm Pegmatite_RB011	36	127	57	0.11	0.31	58	38	2	0.58	143	103	4
		K_ppm Pegmatite_RB012	39	121	69	0.11	0.30	58	33	1	0.59	113	103	3
		K_ppm Pegmatite_RB013 K_ppm Pegmatite_RB014	19	96	79	0.11	0.29	58	36	1	0.60	113	103	2
				135	71	0.11	0.37	30	60	3	0.52	100	150	5
		K_ppm Pegmatite_RB015	33	116	65	0.11	0.39	58	32	2	0.50	87	81	5

Criteria	JORC Code explanation	Commentary												
		K_ppm Pegmatite_RB016	25	102	65	0.11	0.36	58	32	3	0.53	101	76	5
		K_ppm Pegmatite_RB017	33	137	50	0.11	0.37	102	61	5	0.52	102	71	9
		K_ppm Pegmatite_RB017	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		K_ppm Pegmatite_RB018	68	108	81	0.11	0.37	102	61	5	0.52	104	95	9
		K_ppm Pegmatite_RB018	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Li20_ppm Pegmatite_RB001	33	115	67	0.11	0.39	102	41	5	0.50	300	71	9
		Li20_ppm Pegmatite_RB002	38	113	79	0.11	0.32	72	94	3	0.57	96	82	6
		Li20_ppm Pegmatite_RB003	34	120	72	0.08	0.43	72	61	5	0.49	170	119	7
		Li20_ppm Pegmatite_RB004	30	108	82	0.11	0.30	38	13	1	0.59	122	67	6
		Li20_ppm Pegmatite_RB005	39	117	71	0.11	0.30	38	13	1	0.59	122	67	6
		Li20_ppm Pegmatite_RB006	39	117	65	0.11	0.40	43	32	3	0.49	127	78	16
		Li20_ppm Pegmatite_RB007	52	119	71	0.11	0.20	58	13	3	0.69	113	103	5
		Li20_ppm Pegmatite_RB008	32	128	59	0.11	0.56	58	13	0	0.33	71	50	1
		Li20_ppm Pegmatite_RB009	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Li20_ppm Pegmatite_RB010	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Li20_ppm Pegmatite_RB011	36	127	57	0.11	0.31	58	38	2	0.58	143	103	4
		Li20_ppm Pegmatite_RB012	39	121	69	0.11	0.30	58	33	1	0.59	113	103	3
		Li20_ppm Pegmatite_RB013	19	96	79	0.11	0.29	58	36	1	0.60	113	103	2
		Li20_ppm Pegmatite_RB014	13	135	71	0.11	0.37	30	60	3	0.52	100	150	5
		Li20_ppm Pegmatite_RB015	33	116	65	0.11	0.39	58	32	2	0.50	87	81	5
		Li20_ppm Pegmatite_RB016	25	102	65	0.11	0.36	58	32	3	0.53	101	76	5
		Li20_ppm Pegmatite_RB017	33	137	50	0.11	0.37	102	61	5	0.52	102	71	9
		Li20_ppm Pegmatite_RB018	68	108	81	0.11	0.37	102	61	5	0.52	104	95	9
		Li20_ppm Pegmatite_RB018	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9

Criteria	JORC Code explanation	Commentary												
		Mg_ppm Pegmatite_RB001	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Mg_ppm Pegmatite_RB002	38	113	79	0.11	0.32	72	94	3	0.57	120	120	6
		Mg_ppm Pegmatite_RB003	34	120	72	0.08	0.43	72	61	5	0.49	104	97	6
		Mg_ppm Pegmatite_RB004	30	108	82	0.11	0.30	38	13	1	0.59	122	67	6
		Mg_ppm Pegmatite_RB005	39	117	71	0.11	0.30	38	13	1	0.59	122	67	6
		Mg_ppm Pegmatite_RB006	39	117	65	0.11	0.37	58	32	3	0.52	145	108	5
		Mg_ppm Pegmatite_RB007	52	119	71	0.11	0.29	58	13	1	0.60	113	103	1
		Mg_ppm Pegmatite_RB008	32	128	59	0.11	0.56	58	13	0	0.33	71	50	1
		Mg_ppm Pegmatite_RB009	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Mg_ppm Pegmatite_RB010	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Mg_ppm Pegmatite_RB011	36	127	57	0.11	0.31	58	38	2	0.58	143	103	4
		Mg_ppm Pegmatite_RB012	39	121	69	0.11	0.30	58	33	1	0.59	113	103	3
		Mg_ppm Pegmatite_RB013	19	96	79	0.11	0.29	58	36	1	0.60	113	103	2
		Mg_ppm Pegmatite_RB014	13	135	71	0.11	0.37	30	60	3	0.52	100	150	5
		Mg_ppm Pegmatite_RB015	33	116	65	0.11	0.39	58	32	2	0.50	87	81	5
		Mg_ppm Pegmatite_RB016	25	102	65	0.11	0.36	58	32	3	0.53	101	76	5
		Mg_ppm Pegmatite_RB017	33	137	50	0.11	0.37	102	61	5	0.52	102	71	9
		Mg_ppm Pegmatite_RB017	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Mg_ppm Pegmatite_RB018	68	108	81	0.11	0.37	102	61	5	0.52	104	95	9
		Mg_ppm Pegmatite_RB018	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Rb20_ppm Pegmatite_RB001	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Rb20_ppm Pegmatite_RB002	38	113	79	0.11	0.32	72	94	3	0.57	120	120	6
		Rb20_ppm Pegmatite_RB003	34	120	72	0.08	0.43	72	61	5	0.49	104	97	6
		Rb20_ppm Pegmatite_RB004	30	108	82	0.11	0.30	38	13	1	0.59	122	67	6

Criteria	JORC Code explanation	Commentary												
		Rb20_ppm Pegmatite_RB005	39	117	71	0.11	0.30	38	13	1	0.59	122	67	6
		Rb20_ppm Pegmatite_RB006	39	117	65	0.11	0.37	58	32	3	0.52	145	108	5
		Rb20_ppm Pegmatite_RB007	52	119	71	0.11	0.29	58	13	1	0.60	113	103	1
		Rb20_ppm Pegmatite_RB008	32	128	59	0.11	0.56	58	13	0	0.33	71	50	1
		Rb20_ppm Pegmatite_RB009	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Rb20_ppm Pegmatite_RB010	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		Rb20_ppm Pegmatite_RB011	36	127	57	0.11	0.31	58	38	2	0.58	143	103	4
		Rb20_ppm Pegmatite_RB012	38	121	62	0.11	0.30	58	33	1	0.59	114	103	3
		Rb20_ppm Pegmatite_RB013	19	96	79	0.11	0.29	58	36	1	0.60	113	103	2
		Rb20_ppm Pegmatite_RB014	13	135	71	0.11	0.37	30	60	3	0.52	100	150	5
		Rb20_ppm Pegmatite_RB015	33	116	65	0.11	0.39	58	32	2	0.50	87	81	5
		Rb20_ppm Pegmatite_RB016	25	102	65	0.11	0.36	58	32	3	0.53	101	76	5
		Rb20_ppm Pegmatite_RB017	33	137	50	0.11	0.37	102	61	5	0.52	102	71	9
		Rb20_ppm Pegmatite_RB017	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Rb20_ppm Pegmatite_RB018	68	108	81	0.11	0.37	102	61	5	0.52	104	95	9
		Rb20_ppm Pegmatite_RB018	33 86	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		S_ppm Black Shale S_ppm Black Shale	68	359	153	0.11	0.37	102	30	5	0.52	126	89	9
		S_ppm Pegmatite_Halo	39	108	81	0.11	0.37	102	61	5	0.52	104	95	9
		S_ppm Pegmatite_Halo	33	117	65	0.11	0.37	58	32	3	0.52	145	108	5
		S_ppm Pegmatite_RB001	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		S_ppm Pegmatite_RB002	38	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		S_ppm Pegmatite_RB003	34	113	79	0.11	0.32	72	94	3	0.57	120	120	6
		S_ppm Pegmatite_RB004	30	120	72	0.08	0.43	72	61	5	0.49	104	97	6
		5_ppiii r egillatite_R5004	JU	108	82	0.11	0.30	38	13	1	0.59	122	67	6



Criteria	JORC Code explanation	Commentary												
		S_ppm Pegmatite_RB005	39	117	71	0.11	0.30	38	13	1	0.59	122	67	6
		S_ppm Pegmatite_RB006	39	117	65	0.11	0.37	58	32	3	0.52	145	108	5
		S_ppm Pegmatite_RB007	52	119	71	0.11	0.29	58	13	1	0.60	113	103	1
		S_ppm Pegmatite_RB008	32	128	59	0.11	0.56	58	13	0	0.33	71	50	1
		S_ppm Pegmatite_RB009	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		S_ppm Pegmatite_RB010	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6
		S_ppm Pegmatite_RB011	36	127	57	0.11	0.31	58	38	2	0.58	143	103	4
		S_ppm Pegmatite_RB012	38 19	121	62	0.11	0.30	58	33	1	0.59	114	103	3
		S_ppm Pegmatite_RB013 S_ppm Pegmatite_RB014	13	96	79	0.11	0.29	58	36	1	0.60	113	103	2
		S_ppm Pegmatite_RB014 S_ppm Pegmatite_RB015	33	135	71	0.11	0.37	30	60	3	0.52	100	150	5
		S_ppm Pegmatite_RB016	25	116	65	0.11	0.39	58	32	2	0.50	87	81	5
		S_ppm Pegmatite_RB017	33	102	65	0.11	0.36	58	32	3	0.53	101	76	5
		S_ppm Pegmatite_RB017	33	137	50	0.11	0.37	102	61	5	0.52	102	71	9
		S_ppm Pegmatite_RB018	68	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		S_ppm Pegmatite_RB018	33	108	81	0.11	0.37	102	61	5		104	95	9
		Ta205_ppm Pegmatite_RB001	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Ta205_ppm Pegmatite_RB002	38	115	67	0.11	0.37	102	61	5	0.52	221	130	9
		Ta205_ppm Pegmatite_RB003	34	113	79	0.11	0.32	72	94	3	0.57	120	120	6
		Ta205_ppm Pegmatite_RB004	30	120 108	72 82	0.08	0.43	72 38	61 13	<u>5</u> 1	0.49	104	97 67	6
		Ta205_ppm Pegmatite_RB005	39	117	71	0.11	0.30	38	13	1	0.59	122	67	6
		Ta205_ppm Pegmatite_RB006	39	117	65	0.11	0.37	58	32	3	0.59	145	108	5
		Ta205_ppm Pegmatite_RB007	52	119	71	0.11	0.29	58	13	1	0.60	113	103	1
		Ta205_ppm Pegmatite_RB008	32	128	59	0.11	0.56	58	13	0		71	50	1

Criteria	JORC Code explanation	Commentary													
		Ta205_ppm Pegmatite_RB009	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6	
		Ta205_ppm Pegmatite_RB010	39	117	65	0.11	0.20	58	13	2	0.69	120	103	6	
		Ta205_ppm Pegmatite_RB011	36	127	57	0.11	0.31	58	38	2	0.58	143	103	4	
		Ta205_ppm Pegmatite_RB012	39	121	69	0.11	0.30	58	33	1	0.59	113	103	3	
		Ta205_ppm Pegmatite_RB013	19	96	79	0.11	0.29	58	36	1	0.60	113	103	2	
		Ta205_ppm Pegmatite_RB014	14	124	-	0.11	0.37	58	32	3	0.52	145	108	5	
		Ta205_ppm Pegmatite_RB015	39	117	65	0.11	0.37	58	32	3	0.52	145	108	5	
		Ta205_ppm Pegmatite_RB016	21	102	65	0.11	0.37	58	32	3	0.52	145	108	5	
		Ta205_ppm Pegmatite_RB017	33	137	50	0.11	0.37	102	61	5	0.52	102	71	9	
		Ta205_ppm Pegmatite_RB017	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9	
		Ta205_ppm Pegmatite_RB018	68	108	81	0.11	0.37	102	61	5	0.52	104	95	9	
		Ta205_ppm Pegmatite_RB018	33	115	67	0.11	0.37	102	61	5	0.52	221	130	9	
		McCombe pegmatites • The Root Bay block mo	 The McCombe block model used block sizes 10mE x 10mN x 5.0mRL unrotated. Due to the variability of the spatial orientation of the McCombe pegmatites an optimal block size that suited each pegmatite was not possible. The Root Bay block model used 5mE x 10mN x 5mRL unrotated. 												

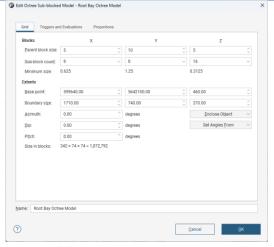
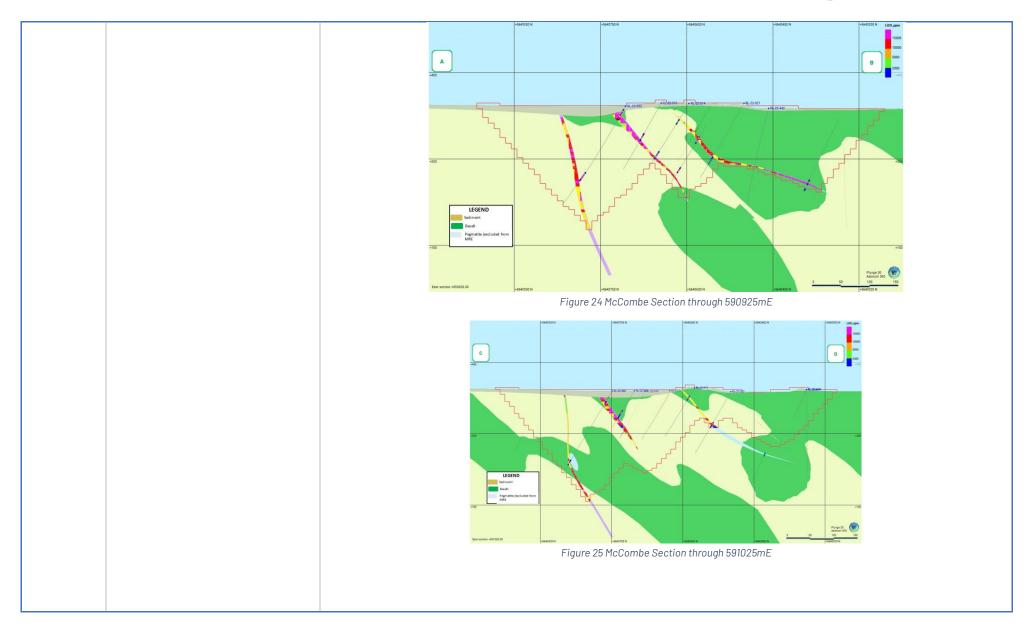


Figure 22 Block Model Extents and Run Criteria – Root Bay

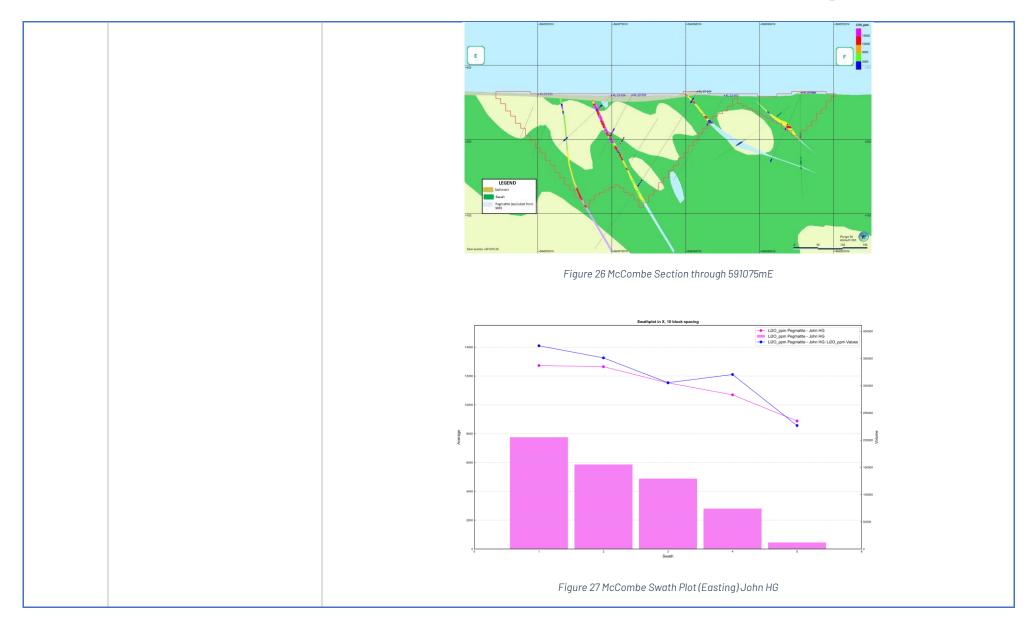
- Variable Orientation searches were used for each pegmatite.
- Two passes were used to ensure blocks are filled in areas with sparser drilling.
- At McCombe searches of 150m x 150m and 20m with applied anisotropy and orientation to the search ellipsoid based on the trend model were made. A final 250m search radii was applied to all the pegmatite blocks. Blocks outside the limits of the second search were not estimated. This final estimation run only accounted for 2% of the tonnes at McCombe within the pit optimisation shell. 98% of blocks within the constraining pit shell were estimated within the first estimation run.
- Root Bay also used two searches the first at 100m x 100m x 25m and a second at 150m search radii with all blocks filled after the second pass. Root Bay used a smaller search radius due to its more predictable geometry and closer spaced drilling.

Table 0-15 – Proportion of MRE by Estimation Run

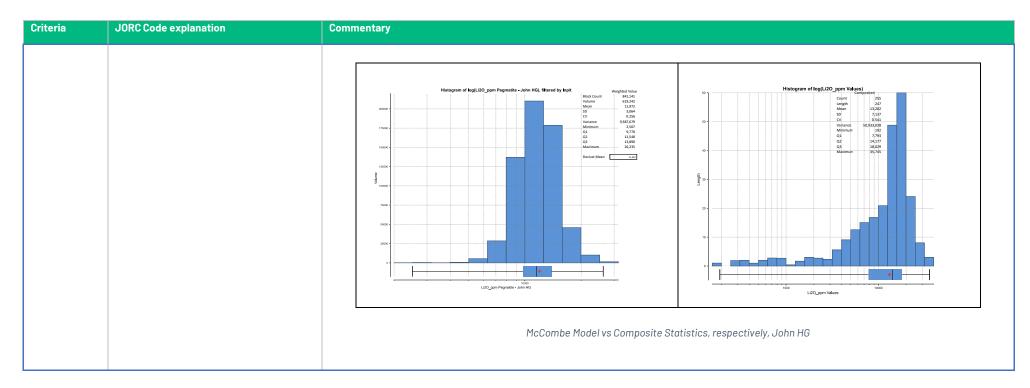
Estimation Run	% of Reported McCombe Total Tonnes	% of Reported Root Bay Total Tonnes
Run 1	98%	96%
Run 2	2%	4%
Total	100%	100%

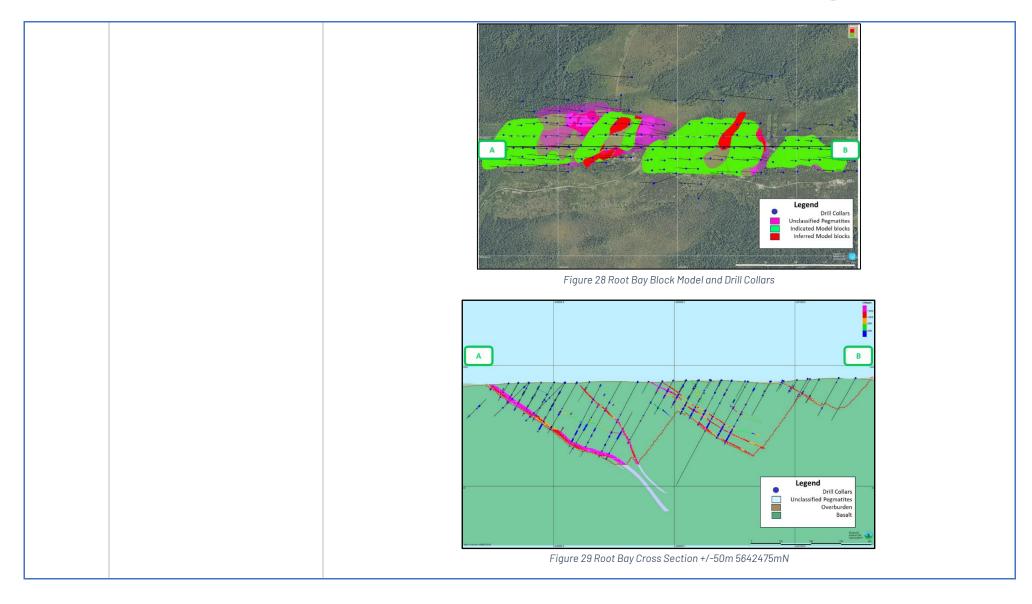


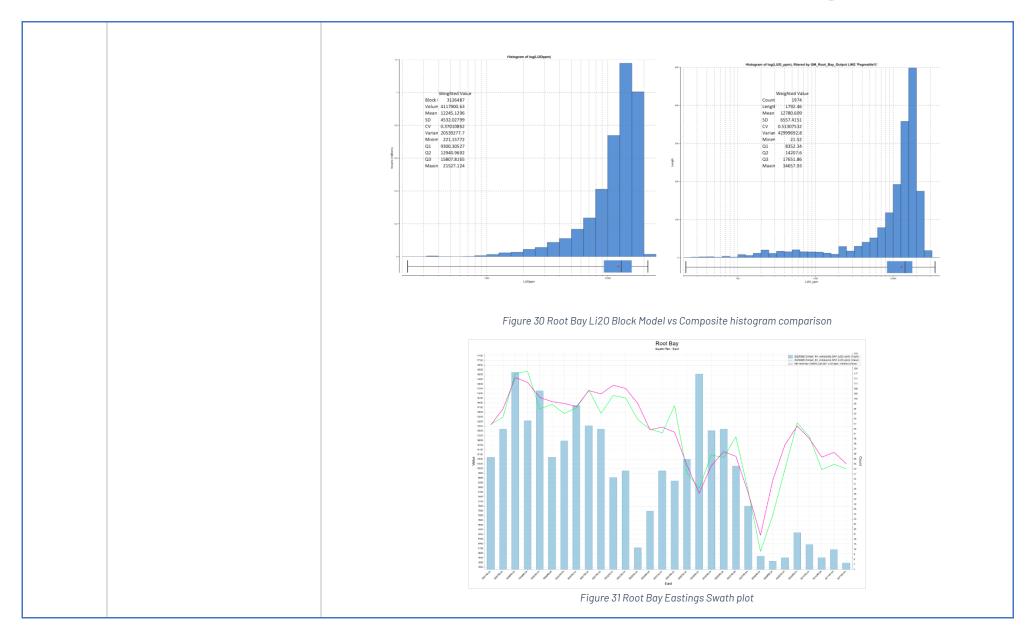
Criteria	JORC Code explanation	Commentary					
		 Recovery of by-products will be determined following detailed metallurgical testwork. Estimated averages for bi product and deleterious elements for McCombe are tabulated below. 					
		Table 0-16 – McCombe Approximate figures for biproduct and deleterious elements					
		Bi-product and deleterious elements Reported within \$US4000 pit design above 0.2% Li ₂ O cut-off Deleterious elements reported to 2 significant figures					
		Tourse (200)					
		Tonnes (Mt) 4.5 Li ₂ O % 1.01					
		Ta ₂ O ₅ ppm 106					
		Fe ppm 8,500					
		K ppm 18,000					
		S ppm 160					
		Table 0-17 – Root Bay - Approximate figures for biproduct and deleterious elements					
		Bi-product and deleterious elements Reported within \$US4000 pit design above 0.2% Li ₂ O cut-off Deleterious elements reported					
		to 2 significant figures Tonnes (Mt) 10.1					



Criteria	JORC Code explanation	Commentary
		Li ₂ O % 1.30
		Ta ₂ O ₅ ppm 43
		Fe ppm 8,900
		K ppm 21,000
		S ppm 120
		Validation Validation was carried out in several ways, including visual inspection in plan and cross-section comparing block estimates to composite values, Swath plots and model and composite statistical comparison. Figure 23 McCombe plan showing block model, Pegmatite interpretations, collar locations and section lines







Criteria	JORC Code explanation	Commentary
		No reconciliation data is available.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry basis
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resources are reported using open-pit mining constraints. The open-pit Mineral Resource is only the portion of the resource that is constrained within a US\$4,000 / t SC6 optimised shell and above a 0.2% Li ₂ 0 cut-off grade. The optimised open pit shell was generated using: S4/t mining cost S15.19/t processing costs Mining loss of 5% with no mining dilution S5 degree pit slope angles 75% Product Recovery
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The September 2023 Mineral Resource Estimate is reported above 0.2% Li₂0 cut-off. The cut-off is based on lowest potential grade at which a saleable product might be extracted using a conventional DMS and / or flotation plant and employing a TOMRA Xray sorter (or equivalent) on the plant feed. A number of pegmatites outcrop at surface thus the mineral resource is likely to be extracted using a conventional drill and blast, haul and dump mining fleet.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters	No metallurgical work has been carried on the Root Lake project mineralised pegmatites to date.

Criteria	JORC Code explanation	Commentary
	made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Waste rock characterization work has not begun at the Root Lake project to date.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	 At McCombe 1,599 bulk density measurements were made by GT1 on ½ NQ core 20cm billets using water immersion (Archimedes) techniques. 217 of the measurements were directly on pegmatite core. 2 pegmatite measurements were rejected as being anomalously low, 1.3 and 1.96. GT1 also tested 2,993 bulk densities on Root Bay ½ NQ drill core with 890 measurements made directly on pegmatite core. Results were similar to those measured at McCombe.

GT1's Bulk Density Apparatus

McCombe Bulk Density results

Rock Type	Length	Bulk Density
Pegmatite	94.58	2.70
Felsic	10.49	2.76
Sediment	238.39	3.03
Basalt	133.95	2.97
Overburden*	0	2.20

^{*} Estimated

Table 18Root Bay Bulk Density results

Rock Type	Length	Bulk Density
Pegmatite	143.10	2.70
BIF	5.19	2.96
Sediment	116.46	2.77
Basalt	292.85	3.05
Overburden*	0	2.20

Criteria JORC Code explanation	Commentary
	*Estimated • McCombe and Root Bay pegmatites bulk density measurements averaged 2.70. • No bulk density data is available for the largely glacial cover over the deposit due to the difficulty in recovering this material in the drilling process. This material is volumetrically negligible ranging in depths from 0 to 24m and averaging around 5m. An assumed bulk density of 2.2 was used for overburden. • There is a weak to moderate correlation between bulk density and Li20 grade (Correlation Coefficient 53%) and so an assumed average pegmatite bulk density was used. **MCCombe Rock Type** Bulk Density** Bulk Density** Bulk Density** MCGember Rock Type** Bulk Density** Bulk Density** SG (Basalt) SG (Basalt) MCCombe Bulk Density Breakdown
	<u> </u>

Criteria	JORC Code explanation	Commentary								
			19% 19% 19% 19% 19% 19% 19% 19% 19% 19%	6 28 3 32 SG (Basalt) 26 27 28 SG (Sediment_No	276 276 2776 2776 2776 2776 2776 2776 2	oot Bay Rock T Bulk Density 255 26 286 27 2 SG (Pegmatite) 3 32 24 SG (BIF)	78 28 285 0 26 30% 26 3	SG (sediment) 26 27 28 SG (Black Shall	29	
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	 The Mineral Resources have been classified Inferred based on drill spacing and geological continuity and modifying factor confidence level The Resource models uses a classification scheme based upon drill hole spacing plus block estimation parameters, including kriging variar number of composites in search ellipsoid informing the block cell and average distance of data to block centroid. The results of the Mineral Resource Estimation reflect the views of the Competent Person. Table 19cSeptember 2023 Mineral Resource Estimate Figures Indicated Inferred Total								
	Whether the result appropriately reflects the Competent Person's view of the deposit.		Deposit	Tonnes (Mt)	Li ₂ O (%)	Tonnes (Mt)	Li ₂ O (%)	Tonnes (Mt)	Li ₂ O (%)	
			McCombe	0	0	4.5	1.0	4.5	1.0	

Criteria	JORC Code explanation	Commentary								
			Root Bay	9.4	1.30	0.7	1.1	10.1	1.29	
			Total	9.4	1.30	5.2	1.0	14.6	1.20	
			1. Mineral Resource produced in accordance with the 2012 Edition of the Australian Code for Reporting of Mineral Resources and Ore Reserves (JORC 2012) 2. Figures constrained to US\$4,000 open pit shell and reported above a 0.2% cut-off grade. 3. Numbers in the mineral resource table have been rounded.							
			Table 20 McCombe Grade Tonnage Table							
				McCombe						
				Cut Off Grade (%Li₂O		Tonne	s Gra	ade (%		

0%

0.2%

0.4%

0.6%

Table 21 Root Bay Grade Tonnage Table

(Mt)

4.6

4.5

4.2

3.6

Li₂O)

1.01

1.01

1.07

1.15

	Ro	ot Bay
Cut Off Grade (%Li₂O	Tonnes (Mt)	Grade (% Li₂O)
0%	10.1	1.29
0.2%	10.1	1.29
0.4%	9.8	1.30
0.6%	9.4	1.35

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No audits or reviews have been undertaken by GT1
Discussion of relative accuracy/confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	 The relative accuracy of the Mineral Resource is reflected in the reporting of the Mineral Resource as being in line with the guidelines of the 2012 JORC Code. The statement relates to local estimates of tonnes and grade, with reference made to resources above a certain cut-off that are intended to assist mining studies.