

Building the pre-eminent vertically integrated Lithium business in Ontario, Canada

SEYMOUR RESOURCE CONFIDENCE INCREASED AHEAD OF PRELIMINARY ECONOMIC ASSESSMENT

HIGHLIGHTS

- 13% increase in the indicated category for Seymour project's mineral resource to 10.3Mt @ 1.03% Li₂0
- A combined global resource base across the Company's eastern and western hubs in Ontario of 24.9Mt @ 1.13% Li₂0
- A 7,736 metre, 58 hole diamond drilling program to further upgrade North and South Aubry Deposit at Seymour is currently underway
- 13 holes for 3,000 metres is complete with assays pending
- Further significant growth opportunities exist at the Eastern Hub with drilling planned at the highly prospective, recently acquired Junior Lithium Project in 01 2024

Green Technology Metals Limited (ASX: GT1) (GT1 or the Company), a Canadian-focused multi-asset lithium business, is pleased to provide an updated Seymour Mineral Resource Estimate (MRE).

Project	Tonnes (Mt)	Li ₂ 0(%)
Root Project		
Root Bay		
Indicated	9.4	1.30
Inferred	0.7	1.14
McCombe		
Inferred	4.5	1.01
Total	14.6	1.21
Seymour Project		
North Aubry		
Indicated	6.1	1.25
Inferred	2.1	0.8
South Aubry		
Inferred	2.0	0.6
Total	10.3	1.03
Combined Total	24.9	1.13

 Table 1: Combined Lithium Mineral Resources - 0.2% Li20 cut-off - Numbers in the Mineral Resource table have been rounded

17 November 2023

"We are pleased with the mineral resource and confidence increase to our Flagship Seymour Project a result of a refined geological interpretation. We eagerly anticipate further enhancements to the resource as we continue our ongoing +7,000-meter drilling program and with the commencement of drilling at the newly acquired Junior Lithium Project in Q1 2024.

- GT1 Chief Executive Officer, Luke Cox

SEYMOUR MINERAL RESOURCE UPDATE

The revised Mineral Resource Estimate (MRE) encompasses two deposits situated within the Aubry complex at Seymour, North Aubry and South Aubry. GT1 has undertaken drilling activities over these target areas for a total of 163 diamond holes for 34,728m of which 47 holes for 15,210m were used to constrain the updated mineral resource.

While the revised MRE largely aligns with the December 2022 Interim MRE update, notable improvements have been made, encompassing improved geological confidence achieved through additional peripheral holes and a comprehensive geological reinterpretation from Bayside Geoscience.

The models have been constrained to pit shells generated through the Micromine Pit Optimiser module. Pegmatite tonnes and grade are reported above a 0.2% Li₂O cut-off within the pit shell on a dry basis.

		2023 MRE (0.2% Li₂0 cut-off)	
Deposit	Tonnes (Mt)	Li ₂ 0 (%)	Ta₂O₅ (ppm)
North Aubry			
Indicated	6.1	1.25	149
Inferred	2.1	0.8	108
North Aubry total	8.3	1.13	139
South Aubry			
Inferred	2.0	0.6	91
South Aubry total	2.0	0.6	91
Global Seymour total	10.3	1.03	129

1. MRE produced is reported in accordance with the 2012 Edition of the Australasian Code for Reporting of Mineral Resources and Ore Reserves.

2. Figures constrained to US\$4,000/t SC6 open pit shell and reported above a 0.2% Li₂0 cut-off; numbers have been rounded.

Table 2: Seymour updated 2023 Mineral Resource Estimate

	Interim 2023 MRE					
Grade cut-off (% Li ₂ 0)	Tonnes (Mt)	Li ₂ 0 (%)				
0.0	10.7	0.99				
0.2	10.3	1.03				
0.4	8.4	1.18				
0.6	6.9	1.33				

Table 3: Seymour 2023 MRE Grade-Tonnage Data

17 November 2023

North Aubry Deposit

The Seymour deposit comprises of two principal areas North and South Aubry, featuring nine interpreted stacked pegmatite units of varying thicknesses - seven in North Aubry and two in South Aubry.

The Northern area of the deposit spans a maximum horizontal extent of 800m, is 390m wide and exhibits thickness variations ranging from 2m up to 43m. Seven mineralised pegmatites that have been interpreted down to a depth of 350m below surface remain open at depth. The Pegmatites dip approximately 30-35 degrees to the northeast.

The North Aubry deposit is dominated by a single, large, consistent unit that has the attributes to mine very well with minimal dilution. The dominant feature of the pegmatite outcrops is the presence of spodumene in all exposures. The North Aubry pegmatite consists of up to 10 zones and is classified as an LCT Complex spodumene subtype pegmatite.

The North Aubry pegmatites have been interpreted to extend down dip up to 800m (350m below surface) at shallow-tomoderate angles to the northeast with potential for further expansion down dip and to the north. GT1 drilling has already extended the North Aubry deposit over 350m from the deepest previous drill holes in this area.

Drilling has confirmed that the pegmatite extends down-dip under cover and the actual strike length may be about 300m although it extends at least 800m down-dip. The true thickness of the main North Aubry pegmatite exceeds 40 m in parts but the modal true thickness is about 10 m – 15 m.

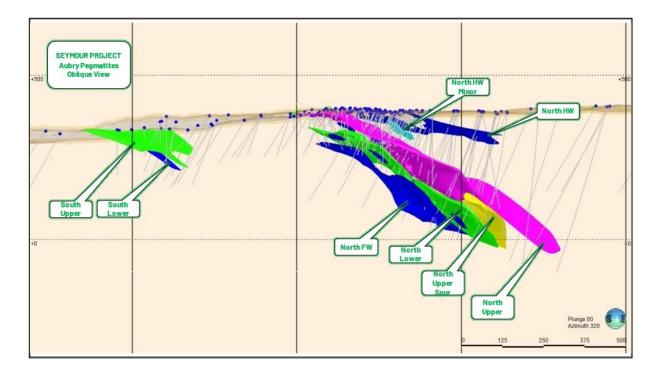


Figure 1: Seymour Project - Aubry Pegmatites North West Oblique View

South Aubry Deposit

The Southern area consists of an Upper and a Lower Pegmatite. The Upper Pegmatite is continuous over the entire extent of the southern deposit whilst the Lower Pegmatite is broken into a northern and southern half. The southern area extends up to 740m along a 330° strike direction, up to 170m across, with the pegmatite thickness varying from sub 1m to 22m, with a maximum depth of 130m below surface.

17 November 2023

Seymour Mineral Resource Estimate details

Regional Geology

The Seymour Lake Property occurs within the Superior Province of the Canadian Shield, proximal to the subprovincial boundary between the English River (north) and Wabigoon (south) subprovinces. Specifically, the Property is located within the Caribou Lake Greenstone Belt which trends east-northeast along the north shore of Lake Nipigon, extending eastward to the Onamon-Tashota Greenstone Belt (C. Jeffs 2018).

Property Geology

Ontario government mapping shows the western part of the Property is underlain by mostly Willet Assemblage mafic volcanic-dominated rocks, with lesser units of Toronto Assemblage mafic volcanics, and minor Marshall Assemblage dacite tuffs and related sediments. The eastern part of the Property is underlain by a tonalite to granite to granodiorite pluton, thought to be the parental intrusion to the rare metal pegmatite dikes and sills exposed at the North and South Aubry showings. All Assemblages have been crosscut by felsic to mafic dikes of various ages and rock types, including the target pegmatite sills and dikes. The most volumetrically significant post-mineralization intrusive rocks are Proterozoic Nipigon mafic sills, which form the caps of the prominent "mesa-like" hills in the Lake Nipigon area (C. Jeffs 2018).

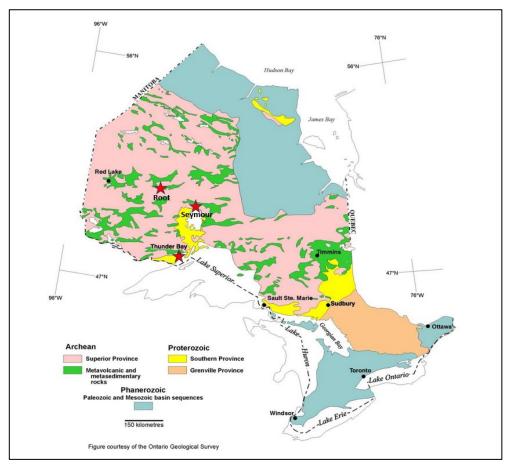


Figure 2: Geology Map of Ontario

17 November 2023

Bedrock Geology

The bedrock is best exposed along the flanks of steep-sided valleys scoured by glaciers during the recent ice ages. Glacial cover is patchy over the deposit and varies in thickness from zero to over 10m, but averages around 3m thickness.

There are four main lithologies within the Seymour Lake Project area. The eastern side of the project is dominated by Archean Granites. The southwest is mostly made up of a large elongate dolerite intrusions.

The central and northwest of the project area are dominated by a folded suite of meta-volcanics.

Based on geological mapping in the region the meta volcanics represent the metamorphosed amphibolite's and pillow basalt and intruded by dolerites and intercalated with volcanic-clastic sediments. Meta-sediments also occur in the far northwestern corner of the project area.

The Seymour Lake area is also crosscut by several north south trending dolerite dykes. These dykes likely follow preexisting lines of weakness which may indicate faults.

The exposed bedrock is commonly metamorphosed basaltic rock, of which some varieties have well-preserved pillows that have been intensely flattened in areas of high tectonic strain. The rocks have been metamorphosed from greenschist to amphibolite grade and can include garnet and hornblende. Intercalated between layers of basalt are lesser amounts of schists derived from sedimentary rocks and lesser rocks having felsic volcanic protoliths. "These rocks are typical of the Wabigoon Subprovince, host to most of the pegmatites in the region", (after Phil Jones et al 2019).

Ore Geology

Pegmatites are reasonably common in the region intruding the enclosing host rocks after metamorphism, evident from the manner in which the pegmatites cut across the well-developed foliation within the metamorphosed host rocks. This postdating relationship is supported by radiometric dating; an age of 2666 + 6 Ma is given for the timing of intrusion of the pegmatites (Breaks, et al., 2006).

The pegmatites in North Aubry have a north eastly plunge direction with a dip varying from 10 to 35 degrees from horizontal, up to 800m downdip extent and 250-350m strike. The North Upper and North Upper high-grade component, higher grade portion within, appears to wedge towards the southeast but is still open down dip and to the northwest.

Southern pegmatites are thinner and less well developed with higher muscovite and albite content and north-westerly trend and dip moderately to the east. These pegmatites are also hosted in pillow basalts.

The pegmatites are zoned with better developed spodumene crystal appearing as clusters, with radiating spodumene crystals often radiating in from the country rock contact.

The main ore bearing mineral is Spodumene, followed by minor Petalite and Lepidolite.

Associated minerals include quartz, muscovite, microcline, hornblende, albite and other feldspars, tourmaline, with minor carbonate, chlorite, biotite and hematite. Sulphide species are predominantly minor disseminated pyrite and trace pyrrhotite usually hosted by the surrounding basalt.

The updated Seymour Mineral Resource estimate was compiled by John Winterbottom, a fulltime employee of Green Technology Metals and a member of the Australasian Institute of Geoscientists. Mr Winterbottom has extensive experience in Mineral Resource estimation techniques and their application and worked in a wide range of spheres within the mining industry.

17 November 2023

Indigenous Partners Acknowledgement

We would like to say Gchi Miigwech to our Indigenous partners. GT1 appreciates the opportunity to work in their Traditional Territory and is committed to the recognition and respect of those who have lived, travelled, and gathered on the lands since time immemorial. Green Technology Metals is committed to stewarding Indigenous heritage and remains committed to building, fostering, and encouraging a respectful relationship with Indigenous Peoples based upon principles of mutual trust, respect, reciprocity, and collaboration in the spirit of reconciliation.

This ASX release has been approved for release by the Board.

KEY CONTACTS

Investors Luke Cox Chief Executive Officer info@greentm.com.au

+61 8 6557 6825

Media Jacinta Martino Investor Relations and Media ir@greentm.com.au +61 430 147 046

Green Technology Metals (ASX:GT1)

GT1 is a North American-focussed lithium exploration and development business with a current global Mineral Resource estimate of 24.9Mt at 1.13% Li₂O. The Company's main 100% owned Ontario lithium projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison, Falcon, Gathering, Junior, Pennock and Superb) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada. All sites are proximate to excellent existing infrastructure (including clean hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality. Targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, *Interim Seymour Mineral Resource Doubles to 9.9Mt*. For full details of the Root Mineral Resource estimate, see GT1 ASX release dated 18 October 2023, *Significant resource and confidence level increase at Root, Global Resource Inventory now at 24.5Mt*. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Mineral Resource Estimation is based on information reviewed by Mr John Winterbottom (Member AIG). Mr Winterbottom has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Winterbottom consents to the inclusion of the data in the form and context in which it appears in this release. Mr Winterbottom is the General Manager of Technical Services for the Company and holds securities in the Company.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been crossreferenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Root Project is extracted from the Company's ASX announcement dated 17 October 2023. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GTI's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forwardlooking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence.

APPENDIX A: JORC CODE, 2012 EDITION – Table 1 Report

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary					
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or 	the present. Diamond dril	ling was used t ed using a dian in the core tra roximately 2.5l	o obtain nominally nond saw with ½ th y. kg in weight with a l	1m downhole sam e core placed in nu minimum weight c	ples of core. umbered sample ba of 500grams.	ber of operators from 2002 to ags for assaying and the other saying to reduce potential
	 systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	Company	Period	Туре	Holes	Metres	
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Linear Resources	2002 2009 Total	DDH DDH	32 19 51	1,865.5 2,568.5 4,434.0	
		Ardiden	2016 2016 2017 2018	СН DDH DDH DDH	13 35 70 38	48.7 2,231.0 7,987.3 6,714.7	
		Green Technology Metals Grand Total Drilling Note :	Total 2021 2022 2021 2022 2023 Total	СН СН DDH DDH DDH	156 7 12 1 137 25 163 370	16,982 43.0 158.1 331.0 29,320.8 5,076.0 34,728 56,143	
		Type field legend o CH – Char	nel Sample				

Criteria	JORC Code explanation	Commentary				
		o DDH – Diamond Drill hole				
		Metallurgy				
		Metallurgical samples from the North Aubry deposit within a USD2500 pit design were selected from 57 historic and GT1 drill hole 1/4 core reserves for 888m.				
		No core was available from the South Aubry deposit.				
		Historic Grab Samples				
		Grab samples were not used in the MRE				
		Historic Channel Samples				
		 Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmatite structures. Samples were cut across the pegmatite with a diamond saw perpendicular to strike. Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with QAQC procedures. Sampling continued past the Spodumene -Pegmatite zone, even if it is truncated by Mafic Volcanic a later intrusion. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag. 				
		As recorded, procedures were consistent with normal industry practices.				
		Channel samples were used to aid the pegmatite interpretation but were not used in the estimate.				
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 HQ drilling was undertaken through the thin overburden prior to NQ or BTW diamond drilling through the primary rock.11 holes were drilled by Ardiden using HQ core. 221 diamond holes were used to constrain the Mineral Resource estimate for 34,633.6 metres including 47 holes drilled by GT1 for 15,209.6. 16 holes were rejected from the estimate mainly from 2009 and 2002 due to missing lithology logging and assay data or re-drills or poor orientation to the pegmatite attitude. Some of the earlier North Aubry holes were drilled vertically until it was released the pegmatite strike 130. The majority of holes were drilled to the southwest approximately perpendicular to the pegmatite orientation. 				
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No core was recovered through the overburden HQ section of the hole (top 5m of the hole) Core recovery through the primary rock and mineralised pegmatite zones was over 95% and considered satisfactory. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run. No observable relationship has been noted between core recovery and Li₂O grade. 				
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock. Logging is qualitative in nature based on visual estimates of mineral species and geological features. 				

Criteria	JORC Code explanation	Commentary
	 The total length and percentage of the relevant intersections logged. 	
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The bulk of the core is NQ diameter core with some BTK and HQ core drilled by Linear and Ardiden. All recent drilling has been NQ diameter core Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. The sample preparation process is considered representative of the whole core sample. Metallurgy ½ core reserve samples were further 1/4 core cut using a diamond saw and composited into like pegmatite units based on previous geological logging and interpretation and lithium, iron and potassium grades.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Prior to 2016 little QAQC was performed other than some duplicate core sampling and verification laboratory internal standards. Whilst the results appear acceptable the lack of QAQC was a concern. A spatial sampling pairing review was undertaken comparing Ardiden and Linear samples located within 8m of each other within the pegmatite domains. The results were inconclusive but hinted at the Linear Li20 results being biased slightly lower than Ardiden's results. It is unclear as to why this would be the case: Company Field Minimum Maximum No of Points Points Variance Std Dev Coeff. of Variation Variation Ardiden 1i20_ppm 105.4 53609.7 200 12,483 1.64E+08 12819.8 1.027 Difference -11% As the Linear drilling makes up only 12% of the meterage included in the mineral resource the bias is not considered material to the estimate. In 2016 Ardiden employed a single Li20 standard (CGL 128) certified by the Mongolian Central Geological Laboratory derived from the wolfram-lithium deposit located in the Arbayan area, Sukhbaatar province of Mongolia in April 2012. Ardiden used the standard from 2016 to 2018 until it was superseded by more reliable OREAS standards. The control charts produced over this time period for CGL 128 suggest occasional poor precision and a cluster of low grade assay returns. However, the OREAS standards, overlapping some of 2018 how no obvious bias and better precision from AGAT Laboratories. All the Ardiden drill samples were analysed by AGAT for lithium and a suite of other elements, using Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish (method# 201-378). Sodium Peroxide F

Criteria	JORC Code explanation	Commentary
		the pegmatite minerals while the ICP-MS ionizes chemical species and sorts the ions based on their mass-to-charge ratio.
		All GT1 drill samples were submitted to Actlabs Thunder Bay for analysis for sample preparation before forwarding the pulps to their Ancaster laboratory in Ontario Canada for analysis using Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish. GT1 inserted certified lithium standards of varying grade and blanks into each batch submitted to Actlabs to monitor precision and bias performance at a rate of 1:20. Actlabs also inserted internal standards, blanks and pulp duplicates within each sample batch as part of their own internal monitoring of quality control. All GT1 Li results were within acceptable tolerances. Controls samples revealed no significant bias with precision levels generally within acceptable limits

Criteria	JORC Code explanation	Commentary										
		Standar	Standards & Blanks									
		Seymour		Valid	Raw Mean	Ce	rtified Valu	es		Fails		
		2018		Records			-	UCL	Min	Max	% Fails	
		OREAS 147	Li_ppm	19	2,325	2,268	1,938	2,598		0 (0 0%	
		OREAS 149	Li_ppm	20	10,209	10,282	9,382	11,182		-	0 0%	
		Blank	Li_ppm	50	1	-	- 100	25			0 0%	
		CGL 128	Li_ppm`	7	2,714	2,685	2,476	2,894		0 0	0 0%	
		Seym	1	Valid	Raw Mean		rtified Valu			Fails	04 5-11-	
		2017 Blank	Li ppm	Records 72	Li_ppm - 100	Li_ppm -	LCL - 100	UCL 25	Min	Max 0 0	% Fails 0 0%	
		CGL 128	Li ppm`	72	2,697	2,685	2,476	2,894			0 7%	
		001 120	1PP	,5	2,037	2,005	2,470	2,034	1	<u> </u>	770	
		Seym	nour	Valid	Raw Mean	Ce	rtified Valu	es		Fails		
		2016		Records	Li_ppm	Li_ppm		UCL	Min	Max	% Fails	
		Blank	Li_ppm	26	- 100	-	- 100	25		0 (0 0%	
		CGL 128	Li_ppm`	24	2,804	2,685	2,476	2,894		0 0	0 0%	
		scatter plo above 1% L Most Li ind appears to The same 0 were not ic standards, OREAS 751 OREAS 753	t revealed i. The issu i. The issu i. The issu i. The issu i. The issue i. The issu	certified re na field swa nonomic leve 20ppm. ere generall which had a	n Li results a been rectifi 	above 1%. ed. ta returns cantalum. V um. The ce le albeit wi ified value	On invest were with Whilst this ertified Ta th a sligh s of 20pp	in accept provideo intalum re t negative m tantalu	able lin some esults f bias (m sho	mits with no control on t for OREAS 7 4ppm on ave	AT laborato significant the tantalur 53 and 751, erage). uixed result	2 2022 GT1 drill results. The ries had a calibration issue bias. One blank sample that n results the grade ranges both primarily lithium

Criteria	JORC Code explanation	Commentary
		Laboratory cross checks between AGAT and Actlabs did not indicate a significant bias but did suggest laboratory precision needs to be improved.
		 The major element oxides and trace elements including Rb, Cs, Nb, Ta and Be were analyzed by FUS-ICP and FUS-MS (4Litho-Pegmatite Special) analytical codes which uses a lithium metaborate tetraborate fusion with analysis by ICP and ICPMS. Historic specific gravity testwork was determined for every 10th sample by RX17-GP analytical code measured on the pulp by a gas pycnometer. More recently GT1 submitted 339 samples for water immersion test work by Actlabs prior to samples preparation.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Ardiden drilled 17 diamond holes within 8m of hole drilled by the previous owner, Linear, in 2016 and 2017. The results were discussed in the previous section, Quality of assay data and laboratory tests. Whilst the result was erratic Ardiden were able to confirm the presence of high grade LCT pegmatites. Further drilling undertaken by GT1 has also confirmed the high grade nature of the main pegmatite (North Upper – HG). The majority of laboratory assay results have been sourced directly from the laboratory and the laboratory file directly imported into GT1's SQL database. All recent north seeking gyroscope surveys are uploaded directly from the survey tool output file and visually validated. Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical errors. No adjustment to laboratory assay data was made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 A GPS reading was taken for each sample location using UTM NAD83 Zone16 (for Seymour); waypoint averaging or dGPS was performed when possible. The project area was flown using LIDAR equipment in October 2021 by KBM Resources Group Inc. from Thunder Bay using a Riegl 680i LiDAR system, coupled to a Applanix POSAV 510 positioning system. The topographic mapping produced is

Criteria	JORC Code explanation	Commentary
	 Specification of the grid system used. Quality and adequacy of topographic control. 	 extremely accurate and well suited for resource modelling. All drilling collars coordinates were compared to the Lidar elevation data to ensure no erroneous coordinates were present in the database. Some collar RL's were adjusted to the Lidar elevation where they differed by more than 3m. GT1 employed a calibrated Reflex SprintlQ North Seeking Gyroscopic tool on all 2021 and 2022 drill holes and surveyed the holes in their entirety with readings downhole every 5m. North Seeking gyroscopes have a typical azimuth accuracy of +/-0.75 degrees and +/-0.15 degrees for dip.
		All collars are picked up and stored in the database in North American Datum of 1983 (NAD83) Zone 16 horizontal and geometric
		control datum projection for the United States.
		Metallurgy
		Location of the North Aubry metallurgical samples coloured by assigned ore type within a USD2500 pit design:
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral 	 The Seymour pegmatites in the North and South areas of the deposit have variable drill spacing from 20mEx20mN in the shallower areas (<150m) of the deposit to 50mE x 50mN at lower depths (150-250m) and greater than 80m spacing below this depth. The drill spacing is sufficient to support the various levels of Mineral Resource classification applied to the estimate.

Criteria	JORC Code explanation	Commentary
	Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied.	 Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths. Im compositing was applied to the Seymour Mineral Resource update based on a review of sample interval lengths.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 GT1 drill samples were drilled close to perpendicular to the strike of the pegmatite unit and sampled the entire length of the pegmatite as well including several metres into the mafic country rock either side of the pegmatite. Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite. Older holes from Linear Resources and some of Ardiden's earlier drilling were vertical and only approximated the true widths of the pegmatites.
Sample security	The measures taken to ensure sample security.	 All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to Actlabs in Thunder Bay for cutting, preparation and analysis. Metallurgy Historic and GT1½ core was either cut in GT1's Thunder Bay core storage facility or delivered under GT1 supervision to Diamond Daves', Thunder Bay, a core cutting contractor. Samples were ¼ core cut using a diamond saw and composited into nominally 1m lengths retained in numbered calico bags themselves grouped into labelled poly weave bags for delivery to the metallurgical laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No independent audits or reviews have been undertaken on this Mineral Resource estimate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material 	 Green Technology Metals (ASX:GT1) owns 100% interest in the Ontario Lithium Projects (Seymour, Junior, Root and Wisa). Seymour Lithium Asset consists of 744 Cell Claims (Exploration Licences) with a total claim area of 15,140 ha. GT1 have acquired several additional claims around Seymour, Root, Allison Lake and Landore since listing on the ASX in November 2021.

Criteria	JORC Code explanation	Commentary
	 issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 As of the effective date of this report, all subject lands are in good standing and all claims are currently held 100% by Green TM Resources (Canada) Ltd (a subsidiary of Green Technology Metals Ltd). As the claims are on Crown Land, surface access is guaranteed under the Mining Act of Ontario. All Cell Claims are in good standing An Active Exploration Permit exists over the Seymour Lithium Assets An Exploration Agreement is current with the Whitesand First Nation who are supportive of GT1 exploration activities.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Regional exploration for lithium deposits commenced in the 1950's. In 1957, local prospector, Mr Nelson Aubry, discovered the North Aubry and the South Aubry pegmatites. Geological mapping by the Ontario Department of Mines commenced in 1959 and was completed in 1962 (Pye, 1968), with the publication of "Map 2100 Crescent Lake Area" in 1965. From the late 1950's to 2002, exploration by the Ontario Department of Mines was generally restricted to geological mapping and surface sampling, although some minor drilling was completed to test the North Aubry pegmatite in late 1957 (Rees, 2011). In 2001, Linear Resources Inc. ("Linear Resources") obtained the Seymour Lake Project with an initial focus on the project's tantalum potential. In 2002, a 23-diamond drill-hole campaign was completed at North Aubry, and a further 8 diamond drill-holes at South Aubry. In 2008, Linear Resources completed a regional soil-sampling program which resulted in the identification of a number soil geochemical anomalies. Based on these anomalies, another drilling campaign (completed in 2009), with 12 diamond drill-holes at North Aubry, 2 diamond drill-holes at South Aubry, and further 5 diamond drill-holes peripheral to the Aubry prospects designed to test the main 2008 soil geochemical anomalies. Little work was undertaken between 2010 and 2016 until Ardiden acquired the project from Linear Resources in 2016. Further drilling was carried out by Ardiden between 2017 and 2018 resulting in the completion of an updated mineral resource estimate of the Aubry pegmatites in 2018. Ground Penetrating Radar (GPR) was also undertaken by Ardiden in 2018 to test any further exploration potential beyond the current Aubry pegmatite delineating numerous targets.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Regional Geology: The general geological setting of the Seymour Lithium Asset consists of the Precambrian Canadian Shield that underlies approximately 60% of Ontario. The Shield can be divided into three major geological and physiographic regions, from the oldest in the northwest to the youngest in the southeast. Local Geology: The Seymour Lithium Asset is located within the eastern part of the Wabigoon Subprovince, near the boundary with the English River Subprovince to the north. These subprovinces are part of the Superior Craton, comprised mainly of Archaean rocks but also containing some Mesoproterozoic rocks such as the Nipigon Diabase. Bedrock Geology: The bedrock is best exposed along the flanks of steep-sided valleys scoured by glaciers during the recent ice ages. The exposed bedrock is commonly metamorphosed basaltic rock, of which some varieties have well-preserved pillows that have been intensely flattened in areas of high tectonic strain. Intercalated between layers of basalt are lesser amounts of schists derived from sedimentary rocks and lesser rocks having felsic volcanic protoliths. These rocks are typical of the Wabigoon Subprovince, host to most of the pegmatites in the region. Ore Geology: Pegmatites are reasonably common in the region intruding the enclosing host rocks after metamorphism, evident from the manner in which the pegmatites cut across the well-developed foliation within the metamorphosed host rocks. This post-dating relationship is supported by radiometric dating; an age of 2666 + 6 Ma is given for the timing of intrusion of the pegmatites (Breaks, et al., 2006). The pegmatites in North Aubry have a northeast plunge direction varying from 10 to 35 degrees from horizontal some 800m downdip extent and 250-300m strike. The North Upper and North Upper high grade component within, appears to wedge towards the south east and is still open down dip and to the north west. Southern pegmatites are thinner and les

Criteria	JURC Code explanation	Commentary					
		 The pegmatites are zoned with better developed spoduthe pegmatite. The dominant economic minerals are spodumene with The adjacent pillow basalts contain minor disseminated 	varying proport	ions of mus		5	,
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	 A total of 221 diamond holes, on a variable grid, ranging defined areas of the mineral resource. have. A total of 1 some of which were excluded from this estimate due to The 2018 Ardiden drilling was completed by Rugged Avi The earlier drill holes were either vertical or inclined townorth-east, the later drill holes were inclined towards the Drilling within Block Model Extents 	33 holes were d missing loggin ation Inc. using wards the west.	rilled by Arc g, assay reli BTW coring	liden, with t ability or re requipment	he previous owners -drills. producing 4.20 cm	Linear drilling 41 holes, diameter core.
 elevation or RL (Reduced Level elevation above level in metres) 		Company	Period	Туре	Holes	s Metres	Proportion %
elevation above sea level in metres) of th			2002	DDH		29 1647.5	
		Linear Resources	2009	DDH		12 1573.5	
	drill hole collar ○ dip and azimuth of		Total			41 3221	9%
	the hole		2016	DDH		29 1950	
	 down hole length and 	Ardiden	2017	DDH		69 7864.3	
	interception depth	Ardiden	2018	DDH		35 6388.7	
	○ hole length.		Total		1	33 16203	47%
	 If the exclusion of this information is justified on 		2021	DDH		1 331	
	the basis that the	Green Technology Metals	2022	DDH		46 14878.6	
	information is not		Total			47 15209.6	44%
	Material and this	Grand Total			2	21 34633.6	
	exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	were drilled in and around the Aubry deposits with 25 h	pacings of 20x20m to broader 100x100m in less well- Ardiden, with the previous owners Linear drilling 41 hole reliability or re-drills. ing equipment producing 4.20 cm diameter core. e pegmatite was determined to be dipping towards the e Holes Metres Proportion % 29 1647.5 12 12 1573.5 9% 29 1950 9% 29 1950 69 69 7864.3 7 133 16203 47 133 16203 47 133 16203 47 133 16203 47 133 16203 47 133 16203 47 133 16203 47 133 16203 47 133 16203 6 0ur tenements since December 2021 for 34,728 m. 47 ho 44 12 34633.6 44 0ur tenements, with the following collar coordinates: 46 1 31 - 1 80 372 1 80 372 6 78 201 - -	. A total of 179 holes were ensions of the deposit as			
		North HOLEID g	in Eastin g	RL Azi	Dip De	pth	
		GTDD-21- 5,585 0004 2		388 213	- 74 331		
		GTDD-21- 5,585 0005 0	,40 397,27	351 221	-		
		GTDD-22- 5,585 0001 4		379 276	- 78 201		
		GTDD-22- 5,585 0002 0		336 191	- 75 312		

Criteria	JORC Code explanation	Commentary									
			GTDD-22- 0003	5,585,45 1	397,136	391	194	- 77	403		
			GTDD-22- 0006	5,585,36 1	397,313	387	219	- 69	341		
			GTDD-22- 0007	5,585,30 1	397,36 7	389	227	- 69	336		
			GTDD-22- 0008	5,585,47 3	397,29 4	389	226	- 76	345		
			GTDD-22- 0009	5,585,42 3	397,36 0	347	219	- 81	342	4	
			GTDD-22- 0010	5,585,37 2	397,40 0	389	224	- 69	395		
			GTDD-22- 0011	5,585,41 3	397,46 1	398	224	- 69	453	4	
			GTDD-22- 0012	5,585,47 5	397,20 3	392	217	- 81	401		
			GTDD-22- 0013	5,585,40 4	397,27 8	389	37	- 80	389		
			GTDD-22- 0014	5,585,50 1	397,25 0	386	229	- 81	450		
			GTDD-22- 0015	5,585,47 5	397,20 3	392	217	- 75	395		
			GTDD-22- 0016	5,585,42 2	397,25 6	388	224	- 77	350		
			GTDD-22- 0019	5,585,67 0	397,54 8	404	222	- 75	525		
			GTDD-22- 0064	5,584,62 3	396,85 6	372	216	- 60	162		
			GTDD-22- 0066	5,584,97 0	396,96 4	398	214	- 60	135		
			GTDD-22- 0068	5,584,94 2	396,99 5	398	210	- 59	102		
			GTDD-22- 0093	5,584,81 1	396,62 1	347	220	- 60	220		
			GTDD-22- 0108	5,585,20 8	396,817	338	220	- 60	133		
			GTDD-22- 0111	5,584,69 5	396,83 3	379	216	- 60	183		

Criteria	JORC Code explanation	Commentary									
			GTDD-22- 0127	5,585,61 4	397,60 7	367	218	- 61	302		
			GTDD-22- 0128	5,585,68 9	397,33 9	344	209	- 72	474		
			GTDD-22- 0129	5,585,70 4	397,77 6	370	218	- 60	312		
			GTDD-22- 0136	5,584,27 2	396,49 9	344	220	- 62	249		
			GTDD-22- 0181	5,585,44 9	397,69 0	369	217	- 60	299		
			GTDD-22- 0317	5,585,45 1	397,136	391	234	- 81	396		
			GTDD-22- 0318	5,585,45 1	397,136	391	227	- 64	372		
			GTDD-22- 0319	5,584,51 4	396,82 3	368	220	- 59	330		
			GTDD-22- 0320	5,585,67 0	397,54 8	404	230	- 65	531		
			GTDD-22- 0323	5,585,55 1	397,21 4	345	216	- 70	412		
			GTDD-22- 0327	5,585,58 4	397,179	350	229	- 80	420		
			GTDD-22- 0328	5,585,72 0	397,27 2	346	219	- 75	420		
			GTDD-22- 0329	5,585,58 4	397,179	350	265	- 73	387		
			GTDD-22- 0330	5,585,72 1	397,07 2	339	219	- 75	374		
			GTDD-22- 0331	5,584,23 3	396,81 0	357	215	- 65	152		
			GTDD-22- 0332	5,585,53 4	397,071	341	213	- 71	344		
			GTDD-22- 0333	5,585,48 3	397,00 1	331	219	- 65	272		
			GTDD-22- 0334	5,585,39 1	396,97 3	320	215	- 66	287		
			GTDD-22- 0335	5,585,34 7	396,90 2	325	215	- 66	254		

Criteria JORC Code explanation Commen	tary
---------------------------------------	------

GTDD-22- 0336	5,585,30 6	396,85 6	329	217	- 65	290
GTDD-22- 0337	5,585,34 7	396,90 2	325	331	- 46	135
GTDD-22- 0338	5,584,48 7	396,78 8	379	331	- 71	150
GTDD-22- 0339C	5,585,50 1	397,41 8	349	178	- 84	470
GTDD-22- 0357	5,585,91 1	397,34 1	338	273	- 67	302

All GT1 diamond holes were NQ diameter holes.

Metallurgy

57 holes within the North Aubry USD2500 pit design were used for metallurgical work, with the following collar coordinates:

HoleId	Northing	Easting	RL	Depth	Azi	Dip
ASD001	5,585,210	397,034	395	158	89	- 89
ASD002	5,585,29 4	397,017	378	156	200	- 70
ASD003	5,585,33 6	397,067	375	201	202	- 73
ASD004	5,585,36 4	397,114	379	228	195	- 71
ASD005	5,585,36 4	397,114	379	291	202	- 85
ASD006	5,585,29 8	397,174	388	200	201	- 75
ASD007	5,585,29 7	397,173	388	251	201	- 85
ASD008A	5,585,35 3	397,224	390	240	206	- 72
ASD009	5,585,35 3	397,225	390	258	219	- 85
ASD010	5,585,40 5	397,164	391	264	196	- 72
ASD011	5,585,40 5	397,164	391	330	196	- 86

Criteria	JORC Code explanation	Commentary							
			ASD012	5,585,33 4	397,069	375	201	197	- 54
			ASD013	5,585,33 4	397,069	375	189	185	- 61
			ASD015	5,585,111	397,116	386	96	52	- 85
			ASD017	5,585,211	397,199	388	159	203	- 69
			ASD019	5,585,28 7	397,261	389	201	201	- 70
			GTDD-21- 0004	5,585,45 2	397,241	388	341	213	- 74
			GTDD-21- 0005	5,585,40 0	397,275	351	372	221	- 80
			GTDD-22- 0001	5,585,30 4	397,013	379	201	276	- 78
			GTDD-22- 0002	5,585,39 0	397,048	336	312	191	- 75
			GTDD-22- 0003	5,585,451	397,136	391	403	194	- 77
			GTDD-22- 0015	5,585,47 5	397,203	392	395	217	- 75
			GTDD-22- 0016	5,585,42 2	397,256	388	350	224	- 77
			SL-16-49	5,585,113	396,997	400	52	271	- 60
			SL-16-57	5,585,111	396,912	385	50	267	- 60
			SL-16-58	5,585,115	396,937	387	51	263	- 59
			SL-16-62	5,585,177	396,967	395	105	260	- 60
			SL-16-63	5,585,167	396,994	397	105	266	- 62
			SL-16-71	5,585,169	397,028	397	102	258	- 60
			SL-16-72	5,585,154	396,858	379	101	116	- 80
			SL-17-05	5,585,107	396,913	385	131	94	- 61
			SL-17-06	5,585,09 4	396,915	384	111	99	- 59
			SL-17-11	5,585,165	396,885	378	107	89	- 60

Criteria	JORC Code explanation	Commentary								TECHNOLO
			SL-17-13	5,585,20 8	396,887	377	121	88	- 61	
			SL-17-14	5,585,20 6	396,954	396	118	203	- 59	
			SL-17-21	5,585,211	397,019	396	144	199	- 59	-
			SL-17-22	5,585,22 5	396,938	390	123	153	- 58	
			SL-17-24	5,585,27 5	396,897	377	140	142	- 60	-
			SL-17-37	5,585,26 7	397,008	389	140	211	- 60	
			SL-17-42	5,585,179	397,076	384	123	219	- 61	-
			SL-17-45	5,585,214	397,105	384	125	197	- 59 -	-
			SL-17-49	5,585,196	397,137	392	120	201	- 58 -	-
			SL-17-50	5,585,167	397,128	389	114	198	61	-
			SL-17-53	5,585,23 0	397,091	385	114	207	- 59	-
			SL-17-57	5,585,23 0	397,133	391	120	191	- 62	
			SL-17-60	5,585,261	397,123	390	129	199	- 60	-
			SL-17-62	5,585,25 0	397,145	393	129	201	- 59	
			SL-17-63	5,585,27 7	397,058	379	120	199	- 62	-
			SL-17-65	5,585,26 5	397,186	393	150	203	- 60	_
			SL-17-66	5,585,27 5	397,147	392	141	200	- 61	
			SL-17-67	5,585,29 8	397,113	389	153	202	- 61	
			SL-17-69	5,585,317	397,100	387	156	199	- 61	
			SL-17-71	5,585,30 9	397,142	387	165	196	- 64	
			SL-17-72	5,585,110	397,110	387	120	263	- 61	

Criteria	JORC Code explanation	Commentary	
			-
		SL-17-75 5,585,125 397,130 388 108 26	<u>63</u>
		SL-17-76 5,585,143 397,088 385 81 26	64
		SL-17-77 5,585,147 397,066 388 75 24	
Data aggregation	 In reporting Exploration 	Iength weighted averages and all resource estimates are tonnage weighted averages	
methods	 Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be stown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Grade cut-offs have not been incorporated. No metal equivalent values are quoted. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not length, true width not 	 The historic reported results are stated as down hole lengths. The historic pierce angle of the drilling with the pegmatite varies hole by hole so all inters The resource modelling considers the intersections in 3D and adjusts accordingly. Holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendic intercepts reported are approximately equivalent to the true width of the mineralisation. Trenches are representative widths of the exposed pegmatite outcrop. Some exposure m pegmatite width due to recent glacial deposit cover limiting the available material to be says and the statement of the	icular to strike, and therefore, the downhole nay not be a complete representation of the total
Diagrams	 known'). Appropriate maps and sections (with scales) and tabulations of intercepts 	The appropriate maps are included in the announcement.	

Criteria	JORC Code explanation	Commentary
	should be included for any significant discovery	
	being reported These	
	should include, but not be limited to a plan view of	
	drill hole collar locations	
	and appropriate sectional views.	

Balanced reporting	 Where comprehensive reporting of all Exploration Results is r 	reported see	GT1 pegmatite downhole interval summary with associated assay results are listed below (all historic drill intercepts have been previously reported see 23 June 22 ASX mineral resource estimate announcement):											
	practicable, representative reportir	Hole	Easting	Northing	Dip	Azi	Hole Depth	From	То	Interval	Li20%	Includin		
	of both low and high	GTDD-21-0004	397,241	5,585,452	-74	213	341	91.7	92.3	0.6	0.01			
	grades and/or widths should be practiced to avoid misleading reporting of Exploratio	GTDD-21-0004	397,241	5,585,452	-74	213	341	243.5	286.2	42.7	1.45	5.0m @ 2.75 % Li20 fror 245.0m		
	Results.	GTDD-21-0004	397,241	5,585,452	-74	213	341	338.0	341.0	3.0	0.01			
		GTDD-21-0005	397,280	5,585,396	-80	221	372	75.1	75.5	0.4	0.04			
		GTDD-21-0005	397,280	5,585,396	-80	221	372	242.9	251.8	8.9	1.46	6 m @ 2.06% Li20 fro 245.0m		
		GTDD-21-0005	397,280	5,585,396	-80	221	372	251.8	273.6	21.8	0.18			
		GTDD-21-0005	397,280	5,585,396	-80	221	372	340.0	342.7	2.7	0.73			
		GTDD-22-0001	397,013	5,585,304	-78	276	201	123.2	134.4	11.2	1.68	7.0m@ 2.11% Li20 fro 124.0m		
		GTDD-22-0002	397,050	5,585,389	-75	191	312	173.2	183.7	10.5	0.60			
		GTDD-22-0002	397,050	5,585,389	-75	191	312	233.8	236.0	2.2	0.35			
		GTDD-22-0002	397,050	5,585,389	-75	191	312	286.1	293.8	7.6	0.28			
		GTDD-22-0003	397,130	5,585,453	-77	194	403	230.9	251.9	21.0	2.03	9.7m @ 2.95% Li20 fro 253.3m		
		GTDD-22-0003	397,130	5,585,453	-77	194	403	308.5	310.8	2.3	1.58			
		GTDD-22-0003	397,130	5,585,453	-77	194	403	332.7	335.6	2.9	1.48	2.0m @ 1.86 % Li20 fro 332.7m		
		GTDD-22-0006	397,313	5,585,361	-69	219	341	69.7	70.5	0.8	0.02			
		GTDD-22-0006	397,313	5,585,361	-69	219	341	201.2	203.4	2.2	0.04			
		GTDD-22-0006	397,313	5,585,361	-69	219	341	309.6	322.4	12.8	0.34			
		GTDD-22-0006	397,313	5,585,361	-69	219	341	310.0	313.1	3.1	0.79	1.58% @ 1.11% Li from 310.0m		
		GTDD-22-0007	397,367	5,585,301	-69	227	336	191.9	196.4	4.5	0.30			
		GTDD-22-0007	397,367	5,585,301	-69	227	336	282.7	292.7	10.0	0.01			
		GTDD-22-0008	397,294	5,585,473	-76	226	345	270.9	276.5	5.6	0.14			
		GTDD-22-0008	397,294	5,585,473	-76	226	345	296.3	298.4	2.1	0.23			

JLUGI										
	0.31	9.0	294.0	285.0	342	219	-81	5,585,423	397,360	GTDD-22-0009
	0.50	2.0	293.0	291.0	342	219	-81	5,585,423	397,360	GTDD-22-0009
	0.03	0.9	294.9	294.0	342	219	-81	5,585,423	397,360	GTDD-22-0009
	0.01	1.5	73.8	72.3	395	224	-69	5,585,372	397,400	GTDD-22-0010
	0.02	1.1	269.4	268.4	395	224	-69	5,585,372	397,400	GTDD-22-0010
5.3m@ 2.85 % Li20 fron 316.6m	2.22	8.2	321.9	313.7	395	224	-69	5,585,372	397,400	GTDD-22-0010
	0.04	0.6	373.4	372.8	395	224	-69	5,585,372	397,400	GTDD-22-0010
	0.03	1.2	322.9	321.7	453	224	-69	5,585,413	397,461	GTDD-22-0011
	0.03	1.6	386.4	384.8	453	224	-69	5,585,413	397,461	GTDD-22-0011
2.3m@ 1.21% Li2 from 238.0m	0.68	5.7	240.3	234.6	401	217	-81	5,585,475	397,203	GTDD-22-0012
	0.56	3.0	278.0	275.0	401	217	-81	5,585,475	397,203	GTDD-22-0012
	0.47	6.0	356.5	350.5	401	217	-81	5,585,475	397,203	GTDD-22-0012
	0.36	5.4	370.4	365.0	401	217	-81	5,585,475	397,203	GTDD-22-0012
	0.01	14.4	100.0	85.6	389	37	-80	5,585,404	397,278	GTDD-22-0013
3.1m @ 2.05 % Li20 fron 309.4m	0.91	24.5	323.7	299.2	389	37	-80	5,585,404	397,278	GTDD-22-0013
	0.45	1.5	332.8	331.3	389	37	-80	5,585,404	397,278	GTDD-22-0013
	0.61	4.5	255.2	250.7	450	229	-81	5,585,501	397,250	GTDD-22-0014
	0.23	2.4	311.5	309.1	450	229	-81	5,585,501	397,250	GTDD-22-0014
9.0m @ 1.34 % Li20 fron 238.0m	1.24	10.0	247.0	237.0	395	217	-75	5,585,475	397,203	GTDD-22-0015
2.4m@ 1.57 % Li20 fron 260.7m	1.35	3.2	263.8	260.7	395	217	-75	5,585,475	397,203	GTDD-22-0015
	0.83	1.3	348.0	346.7	395	217	-75	5,585,475	397,203	GTDD-22-0015
	0.51	2.8	378.7	375.9	395	217	-75	5,585,475	397,203	GTDD-22-0015
	0.01	0.9	83.5	82.6	350	224	-77	5,585,422	397,256	GTDD-22-0016
34.3m @ 1.32% Li20 fror 244.0m & 3.6m @ 2.40 %	1.22	37.6	280.6	243.0	350	224	-77	5,585,422	397,256	GTDD-22-0016

									IECUNI	
										Li20 fror 271.9m
TDD-22-0016	397,256	5,585,422	-77	224	350	337.1	340.1	3.0	0.01	
TDD-22-0019	397,548	5,585,670	-74.73000336	221.9899902	525	78.7	80.7	2.1	0.12	
TDD-22-0093	396,621	5,584,811	-60.38000107	221.5	220	68.5	73.1	4.6	1.29	
TDD-22-0128	397,339	5,585,689	-72.41999817	209.0799866	474	252.3	258.7	6.4	0.75	2.9m@ 1.48 % Li20 from 253.4m
TDD-22-0128	397,339	5,585,689	-72.41999817	209.0799866	474	312.0	334.9	22.9	0.40	
TDD-22-0128	397,339	5,585,689	-72.41999817	209.0799866	474	312.0	334.9	22.9	0.40	
TDD-22-0128	397,339	5,585,689	-72.41999817	209.0799866	474	416.4	421.2	4.8	0.11	
TDD-22-0317	397,130	5,585,453	-81	234	396	214.1	222.9	8.8	0.24	
TDD-22-0317	397,130	5,585,453	-81	234	396	248.9	251.1	2.2	0.07	
TDD-22-0318	397,130	5,585,453	-64	227	372	219.6	225.4	5.8	0.21	
TDD-22-0320	397,542	5,585,678	-65	230	531	458.2	468.9	10.7	1.49	7.0m@ 1.65 % Li20 fro 461.0m
TDD-22-0323	397,214	5,585,551	-70.15000153	215.8399963	412	218.0	235.9	17.9	0.70	6.1m @ 1.37 % Li20 fro 218.9m
TDD-22-0323	397,214	5,585,551	-70.15000153	215.8399963	412	370.8	373.3	2.5	0.05	
TDD-22-0323	397,214	5,585,551	-70.15000153	215.8399963	412	377.9	385.6	7.7	0.93	3.6m @ 1 % Li20 from 378.4m
TDD-22-0327	397,179	5,585,584	-80.13999939	228.7799988	420	213.6	223.9	10.3	0.28	
TDD-22-0329	397,179	5,585,584	-72.51000214	264.9499817	387	184.4	186.7	2.3	0.08	
TDD-22-0334	396,973	5,585,391	-65.65000153	215.8500061	287	170.0	174.2	4.2	0.05	
TDD-22-0335	396,902	5,585,347	-65.65000153	215.7899933	254	121.3	123.4	2.1	0.29	
TDD-22-0339C	397,418	5,585,501	-84.43000031	178.2799988	470	366.8	369.4	2.6	0.59	
TDD-22-0339C	397,418	5,585,501	-84.43000031	178.2799988	470	399.9	403.6	3.7	0.65	

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 GT1 completed a fixed wing single sensor magnetic/radiometric/VLF airborne geophysical survey. Survey details, 1191 line-km, 75m line spacing, direction 90 degrees to cross cut pegmatite strike, 70m altitude. Final images have been received for Total Count Radiometric, Total Magnetics and VLF from MPX. Interpretation has been by Southern Geoscience Green Technology Metals conducted geological field investigations and mapping on the Seymour property throughout the second half of the 2023 field season. Efforts were focused on finding new pegmatite occurrences, while mapping the bedrock geology, minerals and structure, across the property. A crew of four collected 194 rock samples and mapped 196 outcrop stations, mainly in the north half of the Seymour property as well as the area immediately NW of the North Aubry deposit. No significant discoveries were made.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further Geological field mapping of anomalies and associated pegmatites at Seymour and regional claims incorporating auger sampling to better test bedrock potential. Further drill targeting around neighbouring tenements (Junior Lake) followed by diamond drilling over the next 24 months. Continuation of detailed mining studies

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data was imported into the database directly from source geology logs and laboratory csv files. Was then passed through a series of validation checks before final acceptance of the data for downstream use.
Site visits	 Comment on any site visits undertaken by the Competent 	 A site visit was undertaken by the Competent Person (John Winterbottom) between 8th and 9th June and 3-4 October 2022; general site layout, drilling sites, diamond drilling operations were viewed, plus diamond core in the storage facility Thunder Bay.

Green Technology Metals

JORC Code explanation	Commentary
Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	
 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 There is good confidence in the geological interpretation of the deposit in most areas; there are some areas of uncertainty at the outer limits of the deposit where drill spacing is sparse. Interpretation was made directly from pegmatites noted in geological logs and confirmation through core photographs. Alternative geological interpretation would have a minimal effect on the resource estimate. Pegmatite intrusions were used to constrain the mineral resource estimation. Continuity of grade and geology is strongly tied to pegmatite thickness that varies considerably throughout the deposit due to structural elongation and dilation dynamics.
 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The deposit consists of a number of stacked pegmatite units of varying thicknesses. The deposit consists of two principal areas North and South The Northern area of the deposit has a maximum horizontal extent of 800m, 390m wide and varies from 2m up to 43m in thickness. 7 mineralised pegmatites that have been interpreted down to a depth of 350m below surface and is still open at depth. Pegmatites dip approximately 30-35 degrees to the northeast. Only 3 of the North Aubry pegmatites were deemed potentially economic. The Southern area consists of an Upper and a Lower pegmatite. The Upper pegmatite is continuous over the entire extent of the Southern deposit whilst the Lower pegmatite is broken into a northern and southern half. The Southern area extends up to 740m along a 330 strike direction, up to 170m across with thickness varying from 0 to 22m, with a maximum depth of 130m below surface.
 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a 	 An Ordinary Kriging (OK) grade estimation methodology has been used for Li₂O in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review. OK was also applied to important potential bi-product or deleterious elements (Ta₂O₅, S, K, Fe) Secondary elements were not exhaustively assayed for in the historic areas of the resource and therefore are only approximations at this stage and have not been included in the Mineral Resource figures. Leapfrog software was used for interpretation, estimation, statistical and geostatistical data analysis. A previous estimate of the deposit was made by John Winterbottom, an employee of GT1 in June 2022.
	 Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of

Ouitouia	IOPO Orde combraction	0										TECI	
Criteria	JORC Code explanation	Commen											
	method was chosen include a description of computer software	 Geold 	ogical units	were inter	rpreted in Le	apfrog 202	3.1.0 softw	vare from geo	ological logs a	nd core ph	otography	references.	
	and parameters used.					Democritic			Volum	e			
	 The availability of check estimates, previous estimates and/or mine 					Pegmatite		Wireframe	Model	% Diff	% Prop.		
	, production records and whether				South Upp	ber:		667,630	667,567	0.0%	15.4%		
	the Mineral Resource estimate takes appropriate account of such				South Lov	ver:		136,000	135,789	-0.2%	3.1%		
	data.				North Upp	er:		2,729,900	2,729,713	0.0%	63.1%		
	 The assumptions made regarding recovery of by-products. 				North Low	/er:		547,600	547,484	0.0%	12.7%		
	 Estimation of deleterious elements 				North HW	: (Not estimat	ed)	51,711	50,051	-3.2%	1.2%		
	or other non-grade variables of economic significance (eg sulphur				North Min	or: (Not estim	ated)	3861.4	3,512	-9.0%	0.1%		
	for acid mine drainage characterisation).				North Upp	er spur: (Not	estimated)	97,321	97,273	0.0%	2.2%		
	 In the case of block model 				North FW			82,510	79,075	-4.2%	1.9%		
	interpolation, the block size in relation to the average sample				North HW	Minor:		10,968		-100.0%	0.3%		
	 spacing and the search employed. Any assumptions behind modelling 				Total			4,327,501	4,310,464	-0.4%	100%		
	 interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	Explo Some cuttir	e light top-c	cutting was s were bas	s applied to sed on histo	specific dor	nain and/o		f interest. clamping resti riation values a				
							Statistics w	veighting: Len	gth-weighted				
							J K	e			т.		s pos
			Name	Count	Length	Std	Coeff. Of Variation	Variance	Min L Quart	Med	U Quart	Max	Modelled
								North FW					

Criteria	JORC Code explanation	Com	mentary													
			Ta205_ppm	29	25	130	139	1.07	19,192	23.7	50	97	137	817		
			Cut_Li20ppm	29	25	4,779	5,622	1.18	31,603,406	30.0	409	2,540	6,458	19,589	NIL	4,774
			Cut_Ta205ppm	29	25	119	91	0.77	8,353	23.7	50	97	137	400	400	102
								Nort	h Lower (combin	ned dom	ains)					
			Li20_ppm	280	272	8,922	11,127	1.25	123,803,692	30.0	648	3,552	14,767	46,600		
			Ta205_ppm	280	272	186	250	1.34	62,494	0.2	85	140	219	3,370		
			Cut_Li20ppm	280	272	8,814	10,854	1.23	117,806,758	30.0	648	3,552	14,767	40,000	20 & 40K	8,887
			Cut_Ta205ppm	280	272	177	164	0.93	26,879	0.2	85	140	219	1,000	1,000	143
								Nort	th Upper (combir	ned dom	ains)					
			Li20_ppm	1797	1,762	12,514	11,912	0.95	141,886,230	10.0	2,600	9,400	19,094	60,000		
			Ta205_ppm	1797	1,762	171	447	2.61	199,710	0.1	62	100	177	9,744		
			Cut_Li20ppm	1797	1,762	12,502	11,867	0.95	140,830,509	10.0	2,600	9,400	19,094	55,000	30 & 55K	11,433
			Cut_Ta205ppm	1797	1,762	167	378	2.26	143,056	0.1	62	100	177	6,000	500 & 6K	138
					.,				South Low							
			Li20_ppm	70	66	10,800	9,883	0.92	97,672,675	30.0	1,690	10,400	18,600	32,900		
			Ta205_ppm	70	66	107	131	1.23	17,198	0.5	48	80	134	1,070		
			Cut_Li20ppm	70	66	10,800	9,883	0.92	97,672,675	30.0	1,690	10,400	18,600	32,900	NIL	10,246
			Cut_Ta205ppm	70	66	101	96	0.94	9,154	0.5	48	80	134	600	600	94
				70	00	101	00		th Upper (combin			00	10 1	000		01
			Li20_ppm	227	225	5,978	5,977	1.00	35,723,062	30.0	2,105	3,900	7,750	30,137		
			Ta205_ppm	227	225	114	86	0.75	7,357	0.5	59	89	144	581		
			Cut_Li20ppm	227	225	5,977	5,974	1.00	35,693,462	30.0	2,105	3,900	7,750	30,000	15 & 30K	4,913
			Cut_Ta205ppm	227		113	84	0.74	7,025	0.5	59	89	144	581	250 & NIL	85

Criteria	JORC Code explanation	Commentary	
		<figure><figure><figure><figure></figure></figure></figure></figure>	polation.
			gen tr Vall, gen Vala.
		General Direction Spherical Structure 1	Spherical Structure 2
		Aariodram Name Dip Azi. Normalised Nugget Normalised Sill Major Semi-major Semi-major	Normalised sill Major Semi-major Minor
		Ca_ppm Basalt 30 69 68 0.05 0.16 172 35 52	0.78 371 318 300
		Ca_ppm Felsic Porphyry 40 39 0 0.12 0.34 100 100 3	0.54 203 200 4
			0.38 46 45 18
		Ca_ppm North HW 20 40 5 0.13 0.26 35 25 5	0.61 69 61 14
		Ca_ppm North Lower 43 40 5 0.13 0.24 35 30 5	0.64 69 68 14
		Ca_ppm North Minor 35 40 5 0.13 0.26 35 25 5	0.61 69 61 14
		Ca_ppm North Upper HG 35 40 5 0.13 0.48 28 19 5	0.40 49 43 9

Criteria	JORC Code explanation	Commentary	1												
			Ca_ppm North Upper Spur	43	31	103	0.13	0.47	12	26	12	0.40	60	60	18
			Ca_ppm North Upper	35	40	5	0.13	0.35	23	42	12	0.52	61	61	15
			Ca_ppm Sediment	88	310	68	0.12	0.24	22	22	21	0.65	93	100	32
			Ca_ppm South Lower	35	54	-	0.13	0.22	84	23	4	0.65	84	68	10
			Ca_ppm South Upper HG	32	76	5	0.13	0.23	38	26	10	0.65	57	35	17
			Ca_ppm South Upper	32	76	5	0.13	0.31	32	17	6	0.57	61	47	7
			Fe_ppm North FW	33	31	173	0.13	0.50	27	12	12	0.38	46	45	18
			Fe_ppm North HW	20	40	5	0.13	0.43	25	19	12	0.45	50	45	18
			Fe_ppm North Lower HG	43	40	5	0.13	0.47	14	22	7	0.40	42	41	14
			Fe_ppm North Lower	43	40	5	0.13	0.37	20	30	7	0.51	45	30	9
			Fe_ppm North Minor	35	40	5	0.13	0.24	21	12	2	0.63	45	25	8
			Fe_ppm North Upper HG	35	40	5	0.13	0.43	27	40	8	0.44	76	76	24
			Fe_ppm North Upper Spur	43	31	103	0.13	0.47	32	12	12	0.40	46	45	18
			Fe_ppm North Upper	35	40	5	0.13	0.43	7	22	11	0.44	45	55	18
			Fe_ppm South Lower	35	54	-	0.13	0.25	49	39	4	0.62	90	91	10
			Fe_ppm South Upper HG	32	77	5	0.13	0.20	38	27	15	0.67	52	37	22
			Fe_ppm South Upper	32	76	5	0.13	0.28	53	5	10	0.60	61	35	14
			HG S_ppm in Basalt	32	11	117	0.14	0.68	156	61	26	0.18	187	73	31
			HG S_ppm in Sediment	88	310	70	0.10	0.70	50	50	50	0.20	59	60	60
			HGS Ca_ppm in Basalt	32	11	117	0.15	0.85	141	108	63				
			HGS Ca_ppm in Sediment	88	310	70	0.10	0.68	50	50	50				
			HGS Mg_ppm in Basalt	32	11	117	0.10	0.90	74	37	25				
			HGS Mg_ppm in Sediment	88	310	70	0.10	0.68	50	50	50				
			K_ppm North FW	33	31	173	0.13	0.48	35	12	12	0.39	43	45	18
			K_ppm North HW	20	40	5	0.13	0.43	25	19	12	0.45	50	50	18
			K_ppm North Lower HG	43	40	5	0.13	0.47	14	22	7	0.40	42	41	14
			K_ppm North Lower	43	40	5	0.13	0.37	20	30	7	0.51	64	64	14
			K_ppm North Minor	35	40	5	0.13	0.24	21	12	2	0.63	45	25	8

Criteria	JORC Code explanation	Commentary													
			K_ppm North Upper HG	35	40	5	0.13	0.53	27	24	5	0.34	65	59	12
				43						12	12				18
			K_ppm North Upper Spur		31	103	0.13	0.47	32			0.40	46	26	
			K_ppm North Upper	35	40	5	0.13	0.46	7	18	7	0.41	45	43	18
			K_ppm South Lower	35	54	-	0.13	0.25	49	39	4	0.62	90	91	10
			K_ppm South Upper HG	32	76	5	0.13	0.23	38	20	10	0.65	52	23	14
			K_ppm South Upper	32	76	5	0.13	0.28	53	5	10	0.60	61	35	14
			Li20_ppm North FW	33	31	173	0.13	0.49	27	12	6	0.38	46	45	18
			Li20_ppm North HW	20	40	5	0.13	0.43	25	19	12	0.45	46	45	18
			Li20_ppm North Lower HG	43	40	5	0.13	0.46	8	12	7	0.41	25	25	14
			Li20_ppm North Lower	43	40	5	0.13	0.45	9	14	7	0.43	35	35	14
			Li20_ppm North Minor	35	40	5	0.13	0.36	12	12	2	0.51	45	45	8
			Li20_ppm North Upper HG	35	40	5	0.13	0.50	41	24	3	0.37	65	64	39
			Li20_ppm North Upper Spur	43	31	103	0.13	0.47	32	12	12	0.40	46	45	18
			Li20_ppm North Upper	35	40	5	0.13	0.48	7	10	5	0.40	28	55	14
			Li20_ppm South Lower	35	54	-	0.13	0.21	45	56	2	0.66	80	85	4
			Li20_ppm South Upper HG	32	76	5	0.13	0.23	38	26	10	0.65	70	35	17
			Li20_ppm South Upper	32	77	5	0.13	0.25	67	17	6	0.62	67	54	11
			Mg_ppm Basalt: Mg Basalt	80	313	112	0.05	0.24	61	35	11	0.71	401	318	62
			Mg_ppm Felsic Porphry: Mg Felsic Porphyry	40	39	0	0.12	0.34	100	100	3	0.54	203	200	4
			Mg_ppm North FW	33	31	173	0.13	0.50	27	12	12	0.38	46	45	18
			Mg_ppm North HW	20	40	5	0.13	0.26	35	25	5	0.61	69	61	14
			Mg_ppm North Lower	43	40	5	0.13	0.26	35	25	5	0.61	69	61	14
			Mg_ppm North Minor	35	40	5	0.13	0.26	35	25	5	0.61	69	61	14
			Mg_ppm North Upper HG	35	40	5	0.13	0.48	28	19	5	0.40	49	43	9
			Mg_ppm North Upper Spur	43	31	103	0.13	0.47	12	26	12	0.40	60	60	18
			Mg_ppm North Upper	35	40	5	0.13	0.39	23	19	5	0.49	61	61	14
			Mg_ppm Sediment: Mg Sediment	88	310	68	0.12	0.24	22	22	21	0.65	93	100	32
			Mg_ppm South Lower	35	54	-	0.13	0.28	54	23	4	0.60	76	68	10

Criteria	JORC Code explanation	Commentary													
			Mg_ppm South Upper HG	32	76	5	0.13	0.23	38	26	10	0.65	57	35	17
			Mg_ppm South Upper	32	76	5	0.13	0.31	32	17	6	0.57	61	47	40
			Rb20_ppm North FW	33	31	173	0.13	0.39	23	19	5	0.49	61	61	14
			Rb20_ppm North HW	20	40	5	0.13	0.26	35	25	5	0.61	69	61	14
			Rb20_ppm North Lower	43	40	5	0.13	0.36	25	19	5	0.51	111	98	14
			Rb20_ppm North Minor	35	40	5	0.13	0.26	35	25	5	0.61	69	61	14
			Rb20_ppm North Upper HG	35	40	5	0.13	0.48	28	19	5	0.40	49	43	9
			Rb20_ppm North Upper Spur	43	31	103	0.13	0.47	12	26	12	0.40	60	60	18
			Rb20_ppm North Upper	35	40	5	0.13	0.39	23	19	5	0.49	61	61	14
			Rb20_ppm South Lower	35	54	-	0.13	0.22	84	23	4	0.65	137	68	10
			Rb20_ppm South Upper HG	32	76	5	0.13	0.23	38	26	10	0.65	57	35	17
			Rb20_ppm South Upper	32	76	5	0.13	0.31	32	17	6	0.57	61	47	40
			S_ppm Basalt: S Basalt	80	313	112	0.05	0.29	172	35	11	0.67	371	318	62
			S_ppm Felsic Porphry: S Felsic Porphyry	40	39	0	0.12	0.34	100	100	3	0.54	203	200	4
			S_ppm North FW	33	31	173	0.13	0.37	50	79	6	0.51	154	154	10
			S_ppm North HW	20	40	5	0.13	0.49	12	26	7	0.38	25	45	12
			S_ppm North Lower HG	43	40	5	0.13	0.47	12	26	12	0.40	25	45	18
			S_ppm North Lower	43	40	5	0.13	0.48	12	26	5	0.40	25	45	11
			S_ppm North Upper HG	35	40	5	0.13	0.19	58	48	15	0.68	121	122	40
			S_ppm North Upper Spur	43	31	103	0.13	0.47	12	26	12	0.40	25	26	18
			S_ppm North Upper	35	40	5	0.13	0.13	77	91	11	0.75	106	134	47
			S_ppm Sediment: S Sediment	88	310	68	0.12	0.24	22	22	21	0.65	93	100	32
			Ta205_ppm North FW	33	31	173	0.13	0.47	12	26	12	0.40	45	45	18
			Ta205_ppm North HW	20	40	5	0.13	0.48	25	26	5	0.40	45	45	13
			Ta2O5_ppm North Lower HG	43	40	5	0.13	0.43	20	20	5	0.45	31	42	7
			Ta205_ppm North Lower	43	40	5	0.13	0.13	80	14	8	0.74	105	124	25
			Ta205_ppm North Minor	35	40	5	0.13	0.47	12	30	12	0.40	45	45	18
			Ta205_ppm North Upper HG	35	40	5	0.13	0.26	25	25	5	0.62	70	80	11

														TECI	INCL	
Criteria	JORC Code explanation	Commentary														
			Ta205_ppm North Upper Spur	44	31	103	0.13	0.47	32	12	12	0.40	46	45	18	
			Ta205_ppm North Upper	35	40	5	0.13	0.36	32	25	4	0.52	70	113	10	
			Ta205_ppm South Lower	35	54	-	0.13	0.27	49	39	4	0.61	90	90	10	
			Ta205_ppm South Upper HG	32	77	5	0.13	0.29	18	25	14	0.58	56	58	30	
			Ta205_ppm South Upper	32	77	5	0.13	0.36	22	12	15	0.52	39	33	23	
		Analysis (Q 5.0mRL rot block sizes blocks to p • Model dime for the block of the form for the block of the bl	Autors X Y Z © 10 0 5 0	Arene Meder A	ed, Ño is of th es were 4 - BA Seymour A 1 Triggers Ex 1 10 1 10	<pre>chadry about the second s</pre>	d South. osit. The gned to f c) 10 c) 10 c	The Nc e South the moc	rorthern me del usin 2 del usin 2	a mode odel us ng sub	x [°]	d blocks DmE x 10 ks upto	s 10mE 0m N x 1/10 o	E x 10m 5.0m F f the pa	N x RL arent	n Aubry as
			Bi-product and del elements	eterio	ous											
			Reported within \$L above 0.2% Li ₂ O cu Deleterious elements significant figures	it-off		C										
			Tonnes			8.3M	t									
			Li ₂ O			1.13%	6									
			Ta ₂ O ₅			9 ppm										
			Fe			0 ppm										
			K			0 ppm										
			S		10	1 ppm	1									
		 Multiple pa 	sses were used to ensure blocks are f	illed in	n areas	s with s	sparser	drilling.								

Criteria	JORC Code explanation	Commentary						
		 Searches of 50m, 100, 150m and 250m with applied anisotropy and orientation to the search ellipsoid based on the trend model were made. None of the 250m radius search estimates were used in the final reported figures. Searches used a variable orientation aligning with the local geometry orientation of each domain Sample data was composited to 1m down-hole composites, while honouring geological contacts. 						
		Validation was carried out in several ways, including:						
		 Visual inspection section, plan and 3D Swath plot validation Model vs composite statistics 						

Criteria	JORC Code explanation	Commentary
		Histogram of LegiNotit Upper HG Ta205 Histogram of LegiN
		View of the second seco
		No reconciliation data is available.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Tonnages are estimated on a dry basis
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The Seymour Mineral Resource is reported using open-pit mining constraints. The open-pit Mineral Resource is only the portion of the resource that is constrained within a US\$4,000 / t SC6 optimised shell and above a 0.2% Li ₂ O cut-off grade. The optimised open pit shell was generated using: \$4/t mining cost \$15.19/t processing costs Mining loss of 5% with no mining dilution 55 degree pit slope angles 75% Product Recovery
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects 	 The 2023 Mineral Resource Estimate is reported above 0.2% Li₂O cut-off. The cut-off is based on lowest potential grade at which a saleable product might be extracted using a conventional DMS and / or flotation plant and employing a TOMRA Xray sorter (or equivalent) on the plant feed. A number of pegmatites outcrop at surface thus the mineral resource is likely to be extracted using a conventional drill and blast, haul and dump mining fleet.

	Commentary
for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimatin Mineral Resources may not alwa be rigorous. Where this is the ca this should be reported with an explanation of the basis of the mining assumptions made.	
Metallurgical factors or assumptions The basis for assumptions or predictions regarding metallurg amenability. It is always necessa as part of the process of determining reasonable prospect for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatme processes and parameters mad when reporting Mineral Resource may not always be rigorous. What this is the case, this should be reported with an explanation of basis of the metallurgical assumptions made.	 spodumene ore originating from GTI's Seymour North Aubry deposit. This test work program was conducted at the Saskatchewan Research Council Geoanalytical Laboratories located at 2901 Cleveland Avenue, Saskatoon, Saskatchewan. Three composite blends were generated: Medium High Grade (MHG), Medium Low Grade (MLG) and Low Grade (LG) from 60 drill hole core samples which represented the proposed mine ore zones. Preliminary test work was completed with HLS to establish appropriate crush size and SG cut points for a two-stage DMS circuit on the MHG and MLG composites. All three composites subsequently underwent DMS on a pilot-sized unit where sufficient mass was available, or Bulk HLS at the selected SG cut points where sample mass was insufficient. BENCH SCALE HLS VARIABILITY TESTWORK RESULTS All material was stage crushed to -12.5 mm and screened at 0.85 mm, generating a fines bypass (<0.85 mm) fraction which reported to tailings.

Criteria	JORC Code explanation	Commentary					
		Manufacturing Co. This process resulted in the removal of 29.5% to 31.6% of the global iron distribution. However, it also led to a lithium loss ranging from 4.1% to 6.7% of the global lithium distribution. Further testwork is planned for vendor equipment testing to better understand wet magnetic separator performance for DMS concentrates for plant scale-up.					
		CONCLUSIONS					
		 Metallurgical results from HLS and DMS test work from the Seymour North Aubry deposit generated concentrates at a quality that achieved the proposed market grade (i.e., 5.5 % Li20 and <1.2 % Fe203), with Li20 grades between 6.5 to 6.8% Li20 and Fe203 grades <1.0. Furthermore, lithium recoveries ranged between 62.7 to 71.6%. These recoveries compare with other benchmarked DMS projects, HLS test data. DMS only recovery may decrease globally depending on the mass reporting and Li20 deportment to the fines bypass, which will vary in an operational context from the lab scale crushing reported herein. Results summarised include those from HLS, which are known to bias high, so a drop in recovery during bulk DMS piloting may occur. Primero recommended, to reduce initial CAPEX, that a DMS only flowsheet which consists of two size range DMS trains, with two stages of processing per train and a recrush of the coarse secondary stage floats (middlings) be considered. The flowsheet shall include magnetic separation to generate final spodumene concentrate. Additional testwork is planned for wet magnetic separation for DMS concentrate using vendor equipment to assess separation efficiency and performance. From a metallurgical standpoint, the results to date support further development of the project. Primero recommended additional HLS testing of a broader variability feed grade range across the deposit. Specifically testing at a larger scale ie DMS pilot work, composites that represent the intended mine plan with a representative dilution factor (as determined by the mine design) to further develop and gain confidence in the project. 					
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 The design of the ARD/ML program was based on the general requirements outlined in the Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials (MEND, 2009), as mandated in Ontario Regulation 240/00, as amended. GT1 have sampled ½ NQ diamond core samples over the entire North Aubry deposit on a semi regular 100 x 100m grid and submitted them for multi-elemental analysis, including Nickel and Sulphur, testwork at Actlabs in Thunder Bay Ontario. A total of 4,000 samples representing Im downhole lengths were submitted for preparation. Pulped samples (-108um) were composited by the laboratory to create approximately 700 x 100gram samples each representing 5m downhole composite lengths whilst honouring geological contacts. These 5m composites were then tested for multielement analysis using sodium peroxide fusion - ICP-OES/MS techniques. From the 700 x 5m composite intervals noted above, 308 of the composites, proportionately representing each of the various rock types encountered in the likely open pit design, were selected for further testwork and inclusion in 1.5kg coarse sample composites. The samples were weighed by Actlabs and submitted to SGS analytical laboratory located in Lakefield, Ontario for static testing (modified acid base accounting, shake flask extraction, Net Acid Generation (NAG) pH (pending) and mineralogy (pending), and kinetic humidity cell testing (three preliminary samples). Total sulphur analysis was carried out using sodium peroxide fusion - ICP-OES/MS (504 multielement analysis samples) and Leco Furnace (318 acid base accounting (ABA) samples). Analytical results were screened against criteria for assessing acid generation risk based on acid base accounting data (MEND, 2009), and against criteria to assess leachate chemistry (MOE, 1994 and MDMER, 2022, as amended). A plot of total sulphur showed a reasonable correlation between the total sulphur concentrations at up to around 2%wt. based on multielement dat					

Criteria	JORC Code explanation	Commentary					
		 in most waste rock samples being classified as NPAG, with only a few of the higher sulphur samples classified as having an uncertain risk or acid generation. Image: The second seco					
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 2.079 density measurements exist in the database of which 339 are from recent water immersion testwork undertaken by Actlabs Thunder Bay Ontario on ½ NQ core samples with intervals consistent with the assay intervals submitted to the laboratory (nominally Im). 1181 results are from laboratory pycnometer tests and the remainder are unrecorded. No obvious bias was noted between the measurements based on method, however samples whose test method was not recorded were excluded from the data analysis process. These were typically older samples with unknown test conditions applied. Previous mineral resource estimates have determined pegmatite bulk densities of 2.78 and country rock, mainly meta-basalts, to be approximately 3.0. 766 density measurement are within the interpreted pegmatite boundaries the bulk within the North Upper HG domain. This domain confirmed previous bulk density values of 2.78. Fresh waste rocks averaged 3.0 consistent with basalt and sediment averages. No bulk density data is available for the largely glacial cover over the deposit due to the difficulty in recovering this material in the drilling process. This material is volumetrically negligible ranging in depths from 0 to14m and averaging around 3m. An assumed bulk density of 2.2 was used for overburden. There is a weak correlation between bulk density and Li20 grade (Correlation Coefficient 40%) and so an assumed average pegmatite bulk density was used as previously. The values generally supported the values used in the 2019 MRE and were adopted for this estimate as well. 					

Criteria	JORC Code explanation	Commentary									
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Mineral Resources have been classified as Indicated and Inferred based on drill spacing and geological continuity and modifying factor confidence levels The Resource model uses a classification scheme based upon drill hole spacing plus block estimation parameters, including kriging variance, number of composites in search ellipsoid informing the block cell and average distance of data to block centroid. The results of the Mineral Resource Estimation reflect the views of the Competent Person. 									
				Indicated		Inferred			Total		
		Deposit	Tonnes (Mt)	Li2O(%)	Ta₂O₅ (ppm)	Tonnes (Mt)	Li2O(%)	Ta₂O₅ (ppm)	Tonnes (Mt)	Li2O(%)	Ta₂O₅ (ppm)
		North Aubry	6.1	1.25	149	2.1	0.8	108	8.3	1.13	139
		South Aubry	-	-	-	2.0	0.6	91	2.0	0.60	91
		Total	6.5	1.20	149	3.7	0.7	94	10.3	1.03	129
Audits or reviews • The results of any audits or reviews of Mineral Resource estimates. • No audits have been completed to date. Discussion of relative accuracy/ confidence • Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource as being in line with 2012 JORC Code. • The results of confidence due demed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the relative accuracy of the resource within stated confidence limits, or, if such an • The results of any audits or reviews of Mineral Resource as being in line with 2012 JORC Code.						e due to the pot	ential				
	 approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. 										

Criteria	JORC Code explanation	Commentary
	 These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	