

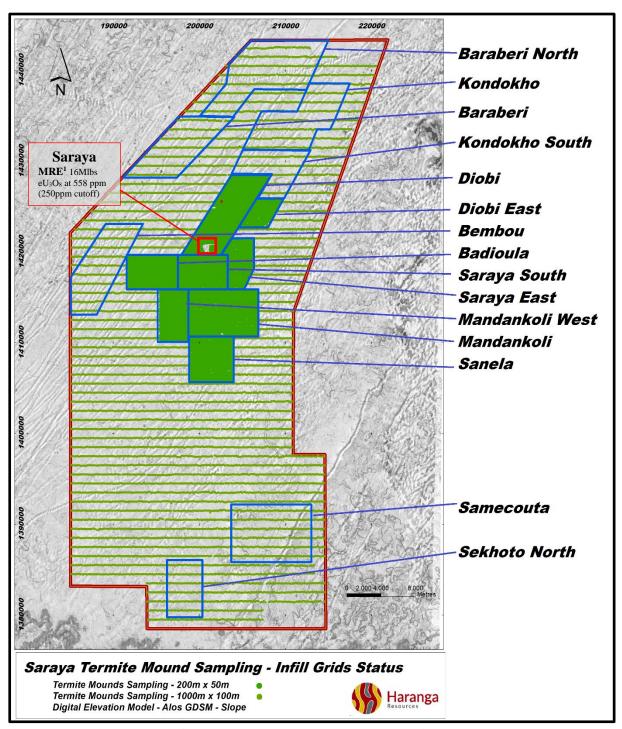
# INFILL TERMITE MOUND SAMPLING AT SARAYA DEFINES FURTHER URANIUM AUGER DRILL TARGETS

## **Highlights**

- Eight termite mound infill grids (200m x 50m) completed to date, out of 10 planned so far, adding new anomalies to the list of Auger drilling targets at the Company's Saraya Uranium Project in Senegal
- Infill termite mound sampling ("TMS") increases total number of auger drilling targets to eleven
- A total of 18,727 termite mound infill samples collected so far
- Six new infill grids proposed from regional scale TMS<sup>2</sup> results, taking the <u>total</u> number of targets for infill termite mound sampling to sixteen
- Company awaiting further auger drill results, as well as the mineral resource update

Cautionary Statement: The uranium results quoted in this announcement are acquired using the Company's in-house pXRF device. The device is an Olympus Vanta M Series pXRF analyzer and is measuring the U content. As explained below this is a semi-quantitative process and does not equate to a laboratory assay, despite the accuracy of the latest technological advances. Termite Mound Samples cannot be used in any resource estimation undertaken.

Haranga Resources Limited (ASX:HAR; FRA:65E0; 'Haranga' or 'the Company') is pleased to provide an update on activities and progress made recently.


Managing Director Mr. Peter Batten commented "We previously announced the completion of Stage 1 of our four stage exploration process. The results announced here are from the Stage 2 program and further illustrate the prospectivity of the Saraya permit, with 11 Auger drilling targets (Figure 1) produced from the 8 infill TMS grids (Figure 3) completed, with a further 7 infill grids still to be completed.

Equally exciting is the fact that five of the new TMS Infill targets are located on contacts between granite and Birimian age volcano-sedimentary units. This geological setting adds potential for granite contact shear hosted mineralisation to the Na metasomatic model of the Saraya corridor of uranium anomalism, where the Company has already defined an indicated/inferred mineral resource of 16Mlbs @  $558 \text{ ppm eU}_3O_8$ ."



## **Infill Termite Mound Sampling**

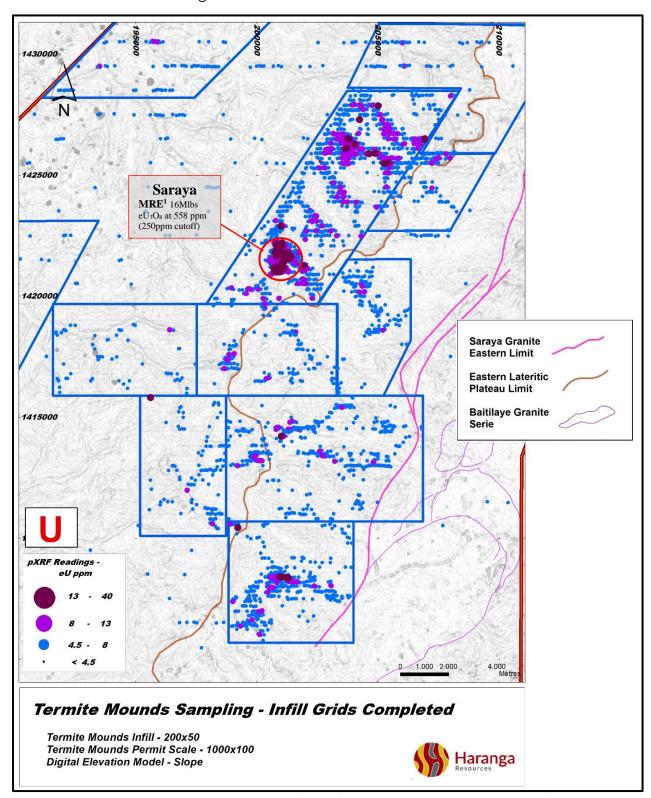
Following the completion of the regional scale surveys (1000m by 100m), ten new infill grids (200m by 50m) have been defined on regional anomalies.



**Figure 1:** Regional and infill TMS progress to date. Green points show the sampled and processed lines (pXRF)



| Project |                 | Planned | Actual | %      |     |
|---------|-----------------|---------|--------|--------|-----|
|         | Saraya NNE      | Sar-Ext | 3447   | 3390   | 98  |
|         | Saraya South    | Sar-Ext | 2166   | 2082   | 96  |
|         | Mandankoly      | Sar-Ext | 4186   | 4060   | 97  |
|         | Sanela          | Sar-Ext | 2525   | 2480   | 98  |
|         | Saraya Est      | Sar-Ext | 1614   | 1552   | 96  |
|         | Diobi Est       | Sar-Ext | 1155   | 1098   | 95  |
| _       | Badioula        | Sar-Ext | 2160   | 2158   | 100 |
| Infill  | Mandankoly West | Sar-Ext | 1943   | 1907   | 98  |
| _       | Kondokho North  | Sar-Ext | 4920   |        | 0   |
|         | Kondokho South  | Sar-Ext | 2900   |        | 0   |
|         | Baraberi North  | Sar-Ext | 6400   |        | 0   |
|         | Baraberi        | Sar-Ext | 4200   |        | 0   |
|         | Bembou          | Sar-Ext | 4500   |        | 0   |
|         | Samecouta       | Sar-Ext | 5800   |        | 0   |
|         | Sekhoto North   | Sar-Ext | 2600   |        | 0   |
|         | Saraya Infill   | Total   | 50,516 | 18,727 | 37  |


**Table 1:** Statistics of the infill TMS

A total of 18,727 infill TMS samples have been collected from the 50,516 planned samples. All samples have been prepared and analysed at the Saraya field camp using the Company's handheld pXRF analyser. Relative uranium and multi-element readings are summarised hereunder and also shown Figure 2.

- From the infill TMS a total of 11 auger drilling targets have been delineated.
- Equivalent Uranium readings ranged from 8 to 45ppm, up to 15 times higher than the background readings. About 445 samples yielded eU readings above 8 ppm.
- The majority of the anomalies are located within the +30km long NNE trending Uranium corridor, that also contains the Company's 16.1Mlb Uranium resource.
- Anomalies at Mandankoli, Sanela, Saraya East and South, as well as Diobi East, are all located on the Saraya Eastern Lateritic plateau, where thick colluvial and laterite cover mask any uranium mineralisation in the underlying rock. The anomalies detected in these areas may therefore under-represent the uranium concentration present in the underlying rocks.
- Three of the new grids Bembou, Baraberi and Baraberi North, are located in the western portion of the Saraya permit (Figure 1), over the sheared contact between the Saraya Granite and the Bembou Granite. This geological setting is prospective for shear hosted mineralisation.



- Similarly, two of the new grids Sekhoto North and Samecouta, are located to the southeast (Figure 1), along the contact position between the Saraya Granite and the Dar Salam Granite, where Cogema and Areva discovered some uranium bearing quartz vein in sedimentary units (black shales) at contact with these granites.



**Figure 2:** Equivalent Uranium distribution (pXRF) in the areas covered with infill TMS (ppm)



## **Auger Drilling**

The results of the TMS have delineated a total of 11 targets for auger drilling (Figure 2). This includes large and multiple anomalies at Diobi. Auger drilling at Diobi was partially completed before the wet season commenced in June 2024.

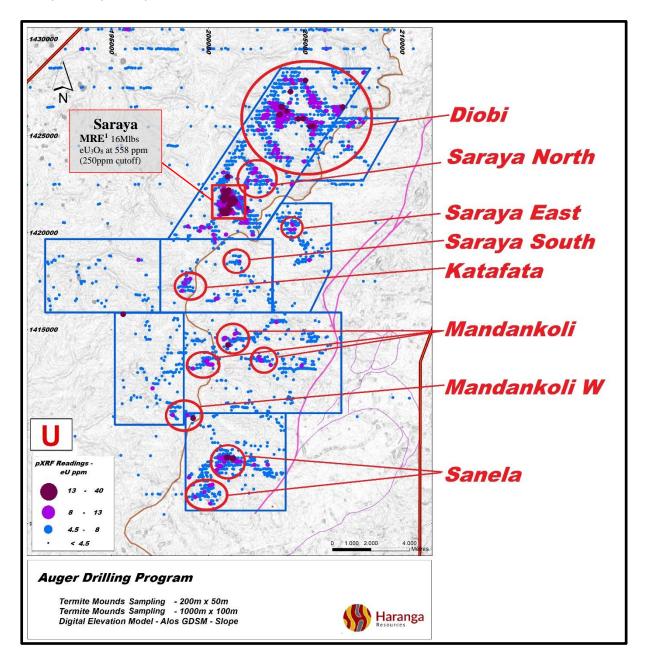



Figure 3: Location of the TMS anomalies prioritised for Auger drilling



| Auger Follow-Up |              |         |             |
|-----------------|--------------|---------|-------------|
| Location        | PlannedHoles | Drilled | % completed |
| Sanela          | 345          | 337     | 98          |
| Mandankoli W    | 80           | 0       | 0           |
| Mandankoly      | 600          | 117     | 20          |
| Katafata        | 200          | 0       | 0           |
| Saraya South    | 150          | 0       | 0           |
| Saraya East     | 150          | 0       | 0           |
| Saraya North    | 190          | 96      | 51          |
| Diobi           | 900          | 119     | 13          |
| Total           | 2615         | 669     | 26          |

**Table 2:** Planned Auger drillholes per delineated TMS anomalies. Auger drilling at Sanela, Mandankoly and Diobi has been partially completed

# Termite Mound Sampling Protocol and Use of pXRF Instrument Samples are:

- collected on termite mounds at surface (1 and 2 kg);
- sun-dried;
- crushed to pass 5mm on a jaw crusher;
- sieved to 180µ and riffle split to collect a 200gm sub-sample of fine fraction;
- collected in small PET plastic bags;
- assayed using the Olympus Vanta-M XRF device in a dedicated room kept at 24°C ambient temperature.

The XRF uses a graphene detector operating at -30°C with a silicon drift detector (SDD) for rapid and accurate elemental identification.

For the survey samples Haranga use the machine's "Geochem 3" Counting Mode that optimizes the detection for the 40 elements selected, enhancing the detection and counting of the particular elements that are of primary interest in Haranga's geochemical studies. The method allows for a 2-3 ppm lower limit of detection for Uranium.

## The assaying process include:

- 1. A programmed calibration test: a built-in process that calibrates the instrument using a Calibration Coin n°316, provided by the manufacturer. The assaying process cannot start without the preliminary calibration test. The operating team carry out two calibration tests per day.
- 2. A programmed Silicon Drift calibration: this calibration is programmed once a week or when the twice daily control of the blank is showing a drift. The procedure is a bult-in drift calibration to be made on a Silicon Blank provided by the manufacturer.
- 3. A twice daily quality control on CRMs: at the start of each assaying batch, a quality control is done on 3 CRMs provided by the manufacturer (Calibration Coin 316, Oreas70b and Silicon Blank). This quality control aims at verifying the SDD drift and to



recalibrate if out of range. It also verifies the low Uranium detection with the Calibration Coin.

- 4. A twice daily control on in house reference materials: 3 pulp samples have been selected from our store of core samples to verify the Uranium detection repeatability for grades around 300, 1000 and 2000 ppm Uranium.
- 5. A random quality control: once in a while, a set of 40 samples from our library of core samples are used to check a whole range of Uranium grades from 100ppm to 2500ppm. The reference materials from our pulp library have been selected from pulps prepared and assayed by certified laboratory ALS (Vancouver Canada).
- 6. Duplicates: for each prospect, a set of samples from the survey is duplicated to survey the repeatability of the Uranium grades from the termite mound survey. Repeatability has so far been excellent.

The pXRF assaying process is a semi-quantitative method used to highlight relative Uranium anomalism in termite mounds. Haranga relies on certified laboratory analysis to confirm and quantify any mineralisation intersected in RC and DD drilling or augering.

-ends

This ASX announcement has been authorised for release by the Board of Haranga Resources Limited.

FOR FURTHER INFORMATION PLEASE CONTACT:

#### PETER BATTEN

Managing Director

#### HARANGA RESOURCES LIMITED

E: info@haranga.com.au

#### **Competent Person's and Compliance Statement**

The information in this announcement that relates to Exploration Results and Exploration Targets is based on and fairly represents information and supporting documentation compiled by Mr Jean Kaisin working under the supervision of Mr Peter Batten, a Competent Person, who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM). Mr Batten has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Batten is the Managing Director of Haranga Resources Limited and consents to the inclusion in this announcement of the Exploration Results in the form and context in which they appear. Mr Kaisin is a full-time employee of Haranga Resources Limited.

The information in this announcement that is footnoted below (1 - 2) relates to exploration results and mineral resources that have been released previously on the ASX. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that, in the case of mineral resources estimates, all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially



changed. The Company confirms that the form and context in which the Competent Person's finding is presented have not been materially modified from the original market announcements.

#### Saraya - Mineral Resource

The Company confirms it is not aware of any new information or data that materially affects the information included in the Mineral Resource estimate and all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed when referring to its resource announcement made on 20 June 2024. The Company confirms that the form and context in which the Competent Person's finding is presented have not been materially modified from the original market announcements.

#### Saraya - Mineral Resource Estimate

The resource as reported at 20 June 2024 is as follows:

| Classification | Tonnage | Grade                              | Contained eU <sub>3</sub> 0 <sub>8</sub> |        |
|----------------|---------|------------------------------------|------------------------------------------|--------|
| Ciassilication | Mt      | eU <sub>3</sub> O <sub>8</sub> ppm | Mlbs                                     | tonnes |
| Indicated      | 3.65    | 752                                | 6.04                                     | 2,742  |
| Inferred       | 9.45    | 484                                | 10.07                                    | 4,570  |
| Inferred       | 13.1    | 558                                | 16.11                                    | 7,312  |

Table 1: Saraya Mineral Resource Estimate<sup>1</sup> – 250ppm cutoff, Indicator Kriging

#### ASX Announcements referenced to directly, or in the commentary of this release.

- 1. Mineral Resource Estimate results taken from the report titled "Saraya Uranium Mineral Resource Upgrade" released on the ASX on 20th of June 2024 and available to view on <a href="https://haranga.com/investors/asx-announcements/">https://haranga.com/investors/asx-announcements/</a>
- 2. Regional TMS results extracted from the report titled "Completion of the Regional Termite Mound Sampling Saraya Uranium" released on the ASX on 11<sup>th</sup> of July 2024 and available to view on <a href="https://haranga.com/investors/asx-announcements/">https://haranga.com/investors/asx-announcements/</a>

#### **Disclaimer**

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)", "potential(s)"and similar expressions are intended to identify forward-looking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Investors are cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and the Company does not undertake any obligation to revise and disseminate forward-looking statements to reflect events or



circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

#### **About Haranga Resources**

Haranga Resources is an African focused multi commodity company. The Company's most advanced project is the Saraya Uranium Project in Senegal, previously owned by Uranium giant Orano (previously Areva) and which has in excess of 65,000 m of historical drilling. In addition, Haranga has a brownfield gold project in Senegal within a prolific geological gold province in close proximity to well-defined resources and producing mines. Both projects are serviced from its 40-man exploration camp.

The Company has delivered its indicated/inferred mineral resource at the Saraya Uranium Project, 13.1Mt @ 558ppm eU<sub>3</sub>O<sub>8</sub> for 16.11 Mlbs contained eU<sub>3</sub>O<sub>8</sub> and is planning the drilling of the next anomalous prospect whilst further exploring the significant exploration potential for additional uranium mineralisation across this 1,650km<sup>2</sup> permit. In conjunction Haranga is exploring it's lbel South Gold Project, with the aim to define drill targets and execute a maiden drill program across this permit during the year.

Corporately, the Company is continuing to identify and assess additional acquisition targets across the African region, primarily focused on expanding its portfolio across the clean energy and gold sectors. Haranga's collective expertise includes considerable experience running ASX-listed companies and financing, operating and developing mining and exploration projects in Africa, Australia, and other parts of the world.

#### Haranga Resources Limited

**ABN** 83 141 128 841

Suite 7/63 Shepperton Road Victoria Park, 6100

T: +61 6158 9990

E: info@haranga.com.au

W: haranga.com

#### **Directors**

Peter Batten
Michael Davy
John Davis
Hendrik Schloemann

#### **Chief Operating Officer**

Jean Kaisin

#### **Trading Symbols**

**Australia:** ASX:HAR **Frankfurt:** FSE:65E0

## JORC CODE, 2012 EDITION – TABLE 1

#### **SECTION 1 SAMPLING TECHNIQUES AND DATA**

(Criteria in this section apply to all succeeding sections.)

| Criteria            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | Geochemical survey of termite mound sampling: Sampling grid on a 100m by 1000m permit scale. Sampling grid on a 50m by 200m for infill. Sample taken on large termite "cathedral" mounds by circular sampling around the mounds. Sample consist of 1.5kg of small clods of the mounds. Termite mounds samples are then prepared for XRF assaying (see below) |
| Drilling techniques | <ul> <li>Drill type (eg core, reverse circulation, open-hole<br/>hammer, rotary air blast, auger, Bangka, sonic,<br/>etc) and details (eg core diameter, triple or<br/>standard tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core is<br/>oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drilling did not form part of this geochemical surface sampling programme.                                                                                                                                                                                                                                                                                   |



| Criteria                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill sample recovery                          | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                      | Drilling did not form part of this geochemical surface sampling programme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Logging                                        | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                            | Drilling did not form part of this geochemical surface sampling programme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sub-sampling techniques and sample preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | Termite mounds samples have been prepared for XRF assaying. The preparation consists of crushing dry termite mounds samples using a jaw breaker, sieving the passing material to 180µm, collecting the passing material, and splitting to 2x150gm pulp samples. Pulps are packed in small transparent PET plastic bags for XRF assaying.  The jaw breaker crushing aims at breaking the clods of the termite mounds to dust, without pulverizing the particles. Sieving aims at removing the +180µm fraction consisting mainly of quartz sands to concentrate fine particles carrying the uranium mineralization. |



| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of assay data and laboratory tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>Pulp samples have been assayed using an Vanta M Olympus XRF analyzer.</li> <li>For infill grid sample: Samples have been assayed using "Geochem 3" on a 150 second assaying time (B1 90s; B2 30s; B3 30s).</li> <li>The XRF analyzer is calibrated at each start of the device using calibration tool provided by Olympus as well as with 6 in-house standards. Standards results are reviewed after each campaign and compared to previous analyses.</li> </ul> |
| Verification of sampling and assaying      | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                      | <ul> <li>XRF assaying verification.</li> <li>Sample pulps are divided and bagged by inhouse Haranga technicians.</li> <li>Sample bags are verified by XRF technicians and counted prior to assaying.</li> <li>Assay data produced by XRF device is directly downloaded to database. The Company geologist verifies the data via GIS, prior to interpretation.</li> </ul>                                                                                                  |
| Location of data points                    | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                                | Samples have been collected on pre-<br>established grids space by 100m by 1000m for<br>permit scale and 50m by 200m for infill grids.<br>Samples are taken on the nearest appropriate<br>termite mound sample to the pre-established<br>station. The location of the mound is collected<br>using handheld GPS consisting of Garmin<br>antennas deposited on the mounds and wired<br>to cellphones that record the information. Each                                       |



| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | termite mound is photographed with a GPS reference on the photo. Samples coordinates are edited on topographic map for visual control.                                                                                                                                                                                                                       |
| Data spacing and distribution                           | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                 | <ul> <li>Infill grids are at 50m by 200m line spacing.</li> <li>Permit scale grids are at 100m by 1000m line spacing</li> </ul>                                                                                                                                                                                                                              |
| Orientation of data in relation to geological structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>Regional structures are typically of Birimian orientation with a majority of known mineralized structure orientated around N20°E and N140°E.</li> <li>Regional sampling is based on East-West sampling lines to crosscut major N20E and N140E structures. Infill sampling based on the same structure, also on East-West sampling lines.</li> </ul> |
| Sample security                                         | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | Final 150gm pulp samples are duplicated and stored in plastic containers at 2 different sites. Rejects are re-bagged and stored at the site warehouse.                                                                                                                                                                                                       |
| Audits or reviews                                       | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                              | No information is available on reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                      |



## **SECTION 2 REPORTING OF EXPLORATION RESULTS**

|                                                  | the preceding section also apply to this section.)                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Mineral<br>tenement<br>and land<br>tenure status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | The exploration results presented fully relate to the Saraya Exploration Permit in Senegal number PR 02208 granted to Mandinga Resources via Decree N°012397/MMG/DMG of 05 June 2018 and renewed for 3 years via Decree N°012403/MMG/DMG of the 23 May 2022.  Haranga Resources has acquired 70% interest from Mandinga Resources who own 100% of the Saraya project. The Vendor has a 30% free carry to PFS. After PFS the Vendor will have to contribute to cost or dilute to royalty.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Exploration done by other parties                | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                      | Historical data from previous owners of the permit is partially available. Known historical exploration activities consisted in geochemistry of soil and termite mounds sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>The Saraya project Uranium Mineralization lies within the Saraya Granite, a late Birrimian leucocratic granite with traces of deuteric alteration associated to fractional crystallization fluids and late-stage alteration within the regional Birrimian tectonic setting.         Observations made during logging confirm a model of synto tardi-magmatic episyenitization followed by deuteric alteration. Original quartz is initially dissolved then filled with chloritized biotites followed by geodic automorphic second-generation quartz.         Uranium minerals in the form of small grains, seems to accompany or replace the initial chloritized biotite.     </li> <li>Historical data indicate that episyenitization, deuteric alteration and uranium mineralization at Saraya is structurally controlled and associated with brecciated lenses that strike mainly the NNE and dip sharply to the SE.</li> </ul> |  |



| Criteria                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>This is consistent with the dominant Birrimian structures.</li> <li>Geology at Saraya South Prospect is not well detailed: no previous historical work has been done over the prospect by previous owners. The prospect is mostly covered by the Eastern Lateritic plateau, a 2 to 8m thick lateritic plateau, masking the granitic substratum and possible mineralisations.</li> </ul>                   |
| Drill hole<br>Information      | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | Drilling did not form part of this geochemical surface sampling programme.                                                                                                                                                                                                                                                                                                                                         |
| Data<br>aggregation<br>methods | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                       | <ul> <li>Termite mound Uranium assay results have been reported as ranges on a GIS map. Grade ranges are 2; 4.5; 8; 13; 18 ppm. No specific treatment of the original data has been applied.</li> <li>Countering of uranium values for mapping purposes have been drawn at 4.5; 8;;13; 18 ppm. Contouring has been carried out by hand by on-screen digitizing and do not include gridding of any kind.</li> </ul> |
| Relationship<br>between        | These relationships are particularly important in the reporting of Exploration Results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drilling did not form part of this geochemical surface sampling programme.                                                                                                                                                                                                                                                                                                                                         |



| Criteria                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                      |                                                                                                                                                                                                                                                                                                                                                                                     |
| Diagrams                                             | <ul> <li>Appropriate maps and sections (with scales) and<br/>tabulations of intercepts should be included for any<br/>significant discovery being reported These should include,<br/>but not be limited to a plan view of drill hole collar locations<br/>and appropriate sectional views.</li> </ul>                                                                                 | Drilling did not form part of this geochemical surface sampling programme.                                                                                                                                                                                                                                                                                                          |
| Balanced reporting                                   | <ul> <li>Where comprehensive reporting of all Exploration Results is<br/>not practicable, representative reporting of both low and<br/>high grades and/or widths should be practiced to avoid<br/>misleading reporting of Exploration Results.</li> </ul>                                                                                                                             | Soil geochemistry assays have been presented as such on<br>surface elevation maps, without modification or alteration.                                                                                                                                                                                                                                                              |
| Other<br>substantive<br>exploration<br>data          | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | <ul> <li>Regional airborne geophysical data is available (Fugro 2007-2009).</li> <li>Regional geology map of Senegal is available at 1/200000 scale (1968 and 2010).</li> </ul>                                                                                                                                                                                                     |
| Further work                                         | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                   | Future work planned: - Exploration Auger Drilling to confirm the underlying source of the anomalous zone, multielement assaying using pXRF, Uranium assaying using SGS Lab XRF methodology Exploration Reverse Circulation Drilling to confirm mineralisation intercepts at depth, multielement assaying using XRF, Uranium chemical assaying using ALS lab fusion+XRF methodology. |