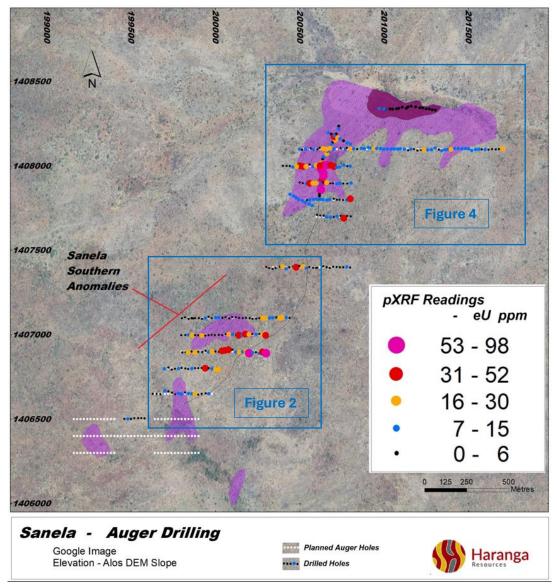


SANELA URANIUM PROSPECT SHAPING UP FOR NEW URANIUM DISCOVERY WITH AUGER DRILLING SUCCESS

Highlights

- Auger Drilling continued at Sanela: 337 auger holes (Annex 1) were drilled at the Sanela prospect
- **Significant Anomalism Identified:** The results have defined the north-eastern Sanela auger anomaly and a new set of anomalies in the south-east, along the NNE-SSW Sanela termite mound sampling (TMS) anomalous trend
- High Uranium Values: Out of the 337 auger holes drilled, <u>234 holes have</u> encountered uranium anomalism (pXRF), ranging from <u>5 to 45 times background</u>
- Potential Extensions Along Strike: Further auger drilling will be directed to test for extended uranium mineralisation along strike of the Sanela structure, a NNE-SSW trending and possibly sheared contact zone between sediments and granites
- **Previous RC Drilling Success²:** Recent RC drilling results at Sanela, included significant finds such as <u>8 m @ 311 ppm U₃O₈ from 35 m depth in hole 24-SAR-RC-019, including a high-grade section of 3 m @ 495 ppm U₃O₈ from 40 m</u>
- Discovery potential: <u>The Sanela uranium anomalism, over a 2km length</u>, has the
 potential to become the first new discovery at the Saraya project and will be
 subject to RC drilling later this year
- Growing Haranga's uranium mineral resource: With the Company planning to update the current Saraya Indicated and Inferred mineral resource¹ of 16.1Mlbs eU₃O₈ @ 558ppm shortly, the drilling success at Sanela is pointing to further uranium resources for Haranga and possibly more with 8 undrilled anomalies defined across the 1,650km² permit with potential for more

<u>Cautionary Statement:</u> The uranium results quoted in this announcement are acquired using our in-house pXRF device. The device is an Olympus Vanta M Series XRF analyzer and is measuring the U content. This is a semi-quantitative process and does not equate to a laboratory assay, despite the accuracy of the latest technological advances. These results will not be relied on in any resource estimation.


Haranga Resources Limited (ASX: HAR; FRA: 65E0; "Haranga" or "the Company") is pleased to report that the auger drilling efforts at the Sanela prospect have provided encouraging results, reinforcing the prospect's discovery potential for uranium mineralisation.

Mr. Peter Batten, Managing Director, commented on the progress: "It is reassuring to see the progress we are making in Senegal with our exploration process. We recently announced the completion of regional termite mound sampling (TMS) and the definition of an additional seven infill grids bringing that total to fifteen, not including the uranium deposit at Saraya. We have completed the infill at eight of these grids resulting in 11 new auger targets, eight of which have never seen a drillhole. From three of the fifteen partially explored TMS anomalies we have the Sanela prospect delivering auger anomalies and RC uranium intersects over a 2 kilometre strike length."

Sanela Prospect – Auger Drilling Continued Anomalism

A total of 337 auger holes have been drilled and processed (pXRF), with 279 holes drilled in Q2 2024. Out of a planned 22 lines of Auger, about 17 have been drilled and processed.

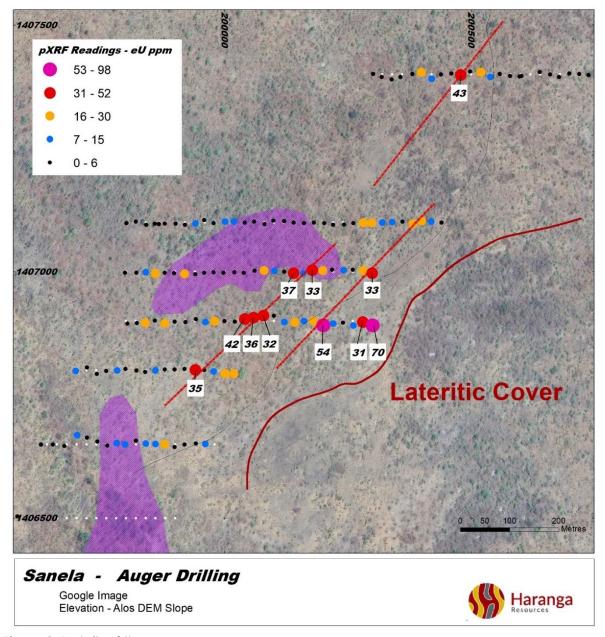


Figure 1: Results (pXRF) of the auger drilling at Sanela. Planned auger holes are shown as white dots. TMS uranium anomalies (pXRF) are shaded in purple.⁴

The auger drill lines are designed to intersect mineralisation beneath the laterite blanket, exploring for the potential source of the termite mound sampling (TMS) surface anomalism⁴ discovered during infill sampling. Out of the 337 holes drilled, 234 holes have encountered uranium anomalism using a **pXRF device**, ranging from 7 to 98 of eU in ppm.

The results of the auger drilling have delineated a second RC drill target in the SW of the Sanela prospect (Figures 1 and 2).

Figure 2: Details of the uranium anomalism in the southern portion of the Sanela Prospect. The map shows the pXRF readings of the main anomalous auger holes.

In this area uranium results of up to 70 ppm (pXRF) was intersected along three auger drill lines. The mineralisation remains open towards the east where thick

laterite covers the underlying rocks. The covered area will be subject to further exploration during the next dry season.

Sanela Prospect context

The Sanela prospect is in the southern part of the central **+30 km long uranium prospective corridor of the Saraya Granite**³ and consists of a set of NNE trending termite mound uranium anomalies (pXRF). These anomalies defined a 2.5 km long uranium prospective zone for follow-up exploration including auger drilling (Figure 3).

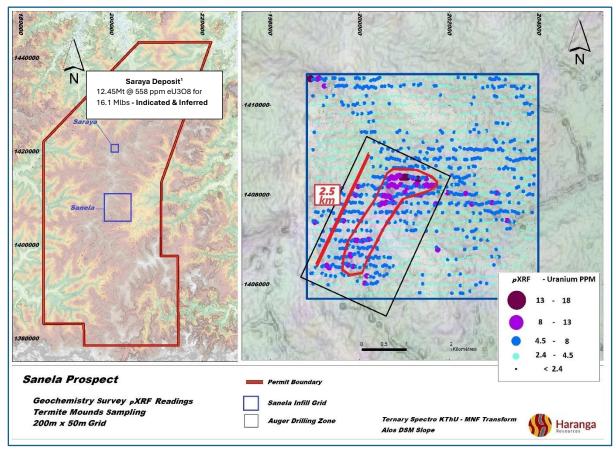
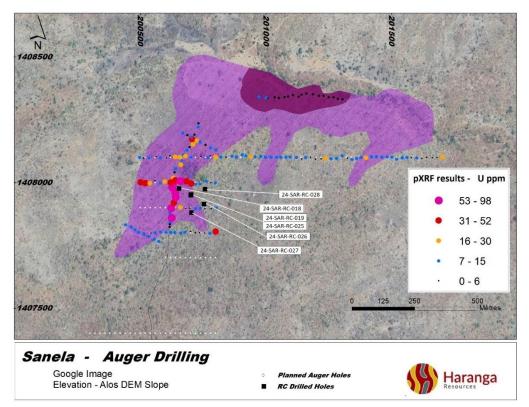
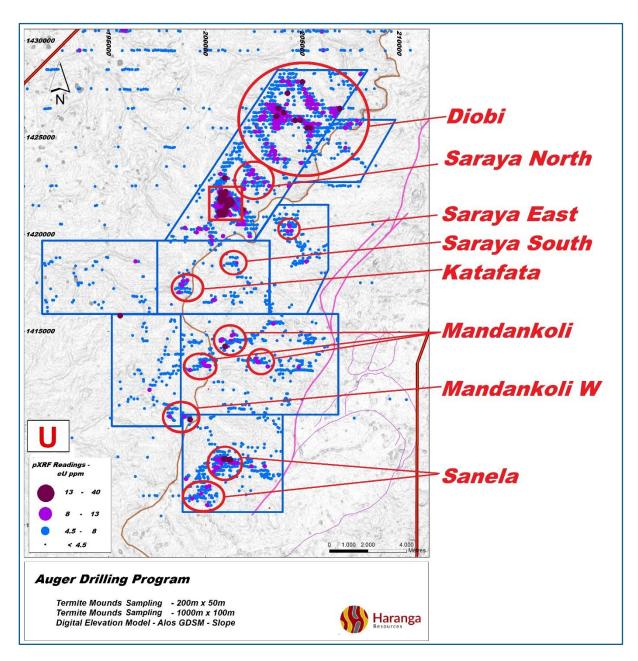



Figure 3: Location and TMS results (pXRF) for the Sanela Prospect and auger drilling target area 183

Initial auger drilling on the main TMS anomaly in the NNE of the Sanela prospect yielded positive results. Follow-up RC drilling in this area earlier this year² indicated the presence of a sheared and uranium prospective sleeve of sedimentary rocks within the Saraya granite intrusion. RC drilling results² (hole 24-SAR-RC-019) included 8 metres at 311 ppm U_3O_8 from a depth of 35 metres, including 3 metres at 495 ppm U_3O_8 from 40 metres.

Figure 4: Results of the auger drilling (pXRF) in the northern portion of the of Sanela Prospect. The locations of the RC holes drilled during late 2023 and early 2024 are also shown.

Ongoing Auger Drilling


The Sanela auger drilling forms part of the Company's four step exploration process designed for the Saraya permit. This includes regional termite mound sampling (1000m by 100m), in-fill termite mound sampling (200m by 50m), auger drilling and RC drilling. Based on the termite mound sampling Haranga has delineated eight prospects for auger follow up. The progress of auger drilling is summarised in Table 2.

Auger Fo	Auger Follow-Up					
Prospects	N° Holes planned	Drilled	%			
Sanela	345	337	98			
Mandankoly W	80	0	0			
Mandankoly	600	117	20			
Katafata	200	0	0			
Saraya South	150	0	0			
Saraya East	150	0	0			
Saraya North	190	96	51			
Diobi	900	119	13			
Total	2615	669	26			

Table 2: Progress of auger drilling. The majority (74 %) of surface uranium anomalies remain untested.

Auger drilling will recommence at the start of the next dry season in Q4 of 2024.

Figure 5: Overall results of regional and in-fill termite mound sampling (pXRF) with associated auger drilling targets.

Upcoming Mineral Resource (MRE) Update and Future Drilling

The MRE update is nearing completion, and results will be announced when available. The MRE model will be used to design the next drill campaign proposed to commence in Q4 of 2024. The primary focus of this drill program will be to extend the Saraya Uranium Resource ahead of potential studies to determine the pathway forward towards development.

pXRF Instrument

Auger Sampling Protocol and Use of pXRF Instrument

Samples are:

- collected from the drill collar at the bottom of the hole, BoH (1 and 2 kg);
- sun-dried;
- crushed to pass 5mm on a jaw crusher;
- sieved to 180µ and riffle split to collect a 200gm sub-sample of fine fraction;
- collected in small PET plastic bags;
- assayed using the Olympus Vanta-M XRF device in a dedicated room kept at 24°C ambient temperature.

The XRF uses a graphene detector operating at -30°C with a silicon drift detector (SDD) for rapid and accurate elemental identification.

For the survey samples Haranga use the machine's "Geochem 3" Counting Mode that optimizes the detection for the 40 elements selected, enhancing the detection and counting of the particular elements that are of primary interest in Haranga's geochemical studies. The method allows for a 2-3 ppm lower limit of detection for Uranium.

The assaying process include:

- 1. A programmed calibration test: a built-in process that calibrates the instrument using a Calibration Coin n°316, provided by the manufacturer. The assaying process cannot start without the preliminary calibration test. The operating team carry out two calibration tests per day.
- 2. A programmed Silicon Drift calibration: this calibration is programmed once a week or when the twice daily control of the blank is showing a drift. The procedure is a bult-in drift calibration to be made on a Silicon Blank provided by the manufacturer.
- 3. A twice daily quality control on CRMs: at the start of each assaying batch, a quality control is done on 3 CRMs provided by the manufacturer (Calibration Coin 316, Oreas70b and Silicon Blank). This quality control aims at verifying the SDD drift and to recalibrate if out of range. It also verifies the low Uranium detection with the Calibration Coin.
- 4. A twice daily control on in house reference materials: 3 pulp samples have been selected from our store of core samples to verify the Uranium detection repeatability for grades around 300, 1000 and 2000 ppm Uranium.
- 5. A random quality control: once in a while, a set of 40 samples from our library of core samples are used to check a whole range of Uranium grades from 100ppm to 2500ppm. The reference materials from our pulp library have been selected from pulps prepared and assayed by certified laboratory ALS (Vancouver Canada).

6. Duplicates: for each prospect, a set of samples from the survey is duplicated to survey the repeatability of the Uranium grades from the termite mound survey. Repeatability has so far been excellent.

The pXRF assaying process is a semi-quantitative method used to highlight relative Uranium anomalism in termite mound and auger drilled samples. Haranga relies on certified laboratory analysis to confirm and quantify any mineralisation intersected in RC and DD drilling or augering.

Further information on the calibration of the unit is in the JORC Tables below.

-ends

This announcement has been approved by the Board of Haranga Resources Limited.

Investor inquiries

Haranga Resources

Peter Batten, Managing Director

E: info@haranga.com.au

Annex 1 – Auger Drilling at Sanela

Auger	Х	Y	Z	Depth	Azimuth	Dip	U pXRF EOH
FNAug-001	200620	1407842	185	14.5	-	-90	11
FNAug-002	200625	1407860	189	14.5	-	-90	86
FNAug-003	200618	1407879	187	14.5	-	-90	7
FNAug-004	200623	1407898	188	14.5	-	-90	72
FNAug-005	200634	1407919	185	14.5	-	-90	47
FNAug-006	200641	1407042	183	14.5	-	-90	63
FNAug-007	200639	1407960	187	14.5	-	-90	75
FNAug-008	200627	1407981	190	14.5	-	-90	97
FNAug-009	200630	1407997	186	13.5	-	-90	66
FNAug-010	200632	1408018	184	4.9	-	-90	17
FNAug-011	200637	1408041	181	4.8	-	-90	3
FNAug-012	200640	1408055	181	3.9	-	-90	13
FNAug-013	200661	1408071	186	3.5	-	-90	18
FNAug-014	200665	1408088	180	4.9	-	-90	7
FNAug-015	200671	1408111	177	4.6	-	-90	7
FNAug-016	200686	1408129	189	5.9	-	-90	9
FNAug-017	200696	1408142	180	6.5	-	-90	3
FNAug-018	200711	1408152	183	6.2	-	-90	16
FNAug-019	200706	1408173	172	5.2	-	-90	50
FNAug-020	200716	1408191	170	5.9	-	-90	5
FNAug-021	200730	1408221	178	7.5	-	-90	8
FNAug-022	200732	1408236	179	5.5	-	-90	0
FNAug-023	201305	1408332	169	5.1	-	-90	SNR
FNAug-024	201286	1408333	169	6	-	-90	SNR
FNAug-025	201269	1408339	162	6.2	-	-90	SNR
FNAug-026	201250	1408339	164	5	-	-90	3
FNAug-027	201229	1408345	165	4.8	-	-90	4
FNAug-028	201211	1408345	167	5.5	-	-90	4
FNAug-029	201187	1408351	168	6.2	-	-90	2
FNAug-030	201161	1408355	157	5.4	-	-90	SNR
FNAug-031	201142	1408350	160	6.6	-	-90	4
FNAug-032	201131	1408342	168	3.5	-	-90	SNR
FNAug-033	201108	1408349	167	3	-	-90	SNR
FNAug-034	201088	1408343	167	3	-	-90	SNR
FNAug-035	201075	1408340	175	4.3	-	-90	SNR
FNAug-036	201052	1408337	160	5	-	-90	SNR
FNAug-037	201035	1408339	150	6.5	-	-90	SNR
FNAug-038	201007	1408336	166	6	-	-90	SNR
FNAug-039	201002	1408338	167	5.2	-	-90	11
FNAug-040	200973	1408341	162	5.9	-	-90	8
FNAug-041	200617	1407823	188	6.4	-	-90	6
FNAug-042	200618	1407834	185	10.5	-	-90	5

FNAug-043	200574	1407766	165	5.5	_	-90	11
FNAug-044	200556	1407775	185	14.5	_	-90	9
FNAug-045	200533	1407785	194	14.5	_	-90	8
FNAug-046	200515	1407795	187	14.5	_	-90	8
FNAug-047	200494	1407801	187	14.5	_	-90	10
FNAug-048	200479	1407812	190	14.5	_	-90	15
FNAug-049	200464	1407823	183	12.4	_	-90	10
FNAug-050	200442	1407832	185	6.8	-	-90	10
FNAug-051	200669	1408197	180	6.8	-	-90	8
FNAug-052	200688	1408189	173	7.5	-	-90	5
FNAug-053	200705	1408181	171	6	-	-90	13
FNAug-054	200726	1408166	181	14.5	-	-90	30
FNAug-055	200738	1408162	183	6.9	-	-90	7
FNAug-056	200760	1408150	183	14.5	-	-90	4
FNAug-057	200780	1408138	181	6.4	-	-90	7
FNAug-058	200800	1408130	187	5.7	-	-90	13
FNAug-059	201702	1408102	179	2.8	-	-90	SNR
FNAug-060	200820	1408102	179	2.3	-	-90	SNR
FNAug-061	200500	1407402	199	2.6	-	-90	SNR
FNAug-062	199867	1407097	198	5.7	-	-90	2
FNAug-063	199968	1407103	198	3.4	-	-90	SNR
FNAug-064	200498	1408100	177	4.5	-	-90	14
FNAug-065	200514	1408097	186	7.2	-	-90	0
FNAug-066	200535	1408099	193	8.6	-	-90	10
FNAug-067	200564	1408103	181	4.2	-	-90	6
FNAug-068	200580	1408098	159	4.8	-	-90	14
FNAug-069	200604	1408098	177	4.6	-	-90	5
FNAug-070	200618	1408106	180	7	-	-90	0
FNAug-071	200639	1408102	183	4.3	-	-90	17
FNAug-072	200659	1408100	177	4.2	-	-90	24
FNAug-073	200680	1408105	182	4.6	-	-90	21
FNAug-074	200702	1408101	186	4.9	-	-90	7
FNAug-075	200741	1408103	183	7.2	-	-90	0
FNAug-076	200769	1408100	181	4.6	-	-90	9
FNAug-077	200779	1408106	176	5.5	-	-90	3
FNAug-078	200801	1408101	183	4.5	-	-90	16
FNAug-079	200820	1408102	179	4.6	-	-90	9
FNAug-080	200841	1408100	180	5.1	-	-90	3
FNAug-081	200865	1408105	173	5	-	-90	10
FNAug-082	200883	1408103	185	5.9	-	-90	15
FNAug-083	200906	1408110	202	5	-	-90	10
FNAug-084	200920	1408106	210	5.8	-	-90	10
FNAug-085	200940	1408103	214	5.7	-	-90	22
FNAug-086	200957	1408103	219	5.5	-	-90	10
FNAug-087	200980	1408104	216	5.8	-	-90	7

FNAug-088	200998	1408100	219	5.5	_	-90	9
FNAug-089	201020	1408101	215	4.9	-	-90	7
FNAug-090	201042	1408101	217	4.7	-	-90	11
FNAug-091	201059	1408101	178	5.3	-	-90	8
FNAug-092	201080	1408101	172	5.2	-	-90	14
FNAug-093	201096	1408102	178	4.7	-	-90	15
FNAug-094	201121	1408100	181	5.3	-	-90	13
FNAug-095	201143	1408093	192	5.8	-	-90	5
FNAug-096	201158	1408100	181	4.9	-	-90	7
FNAug-097	201178	1408099	171	5.1	-	-90	6
FNAug-098	201198	1408092	174	5	-	-90	6
FNAug-099	201220	1408094	178	5.2	-	-90	5
FNAug-100	201238	1408096	174	5	-	-90	17
FNAug-101	201259	1408095	179	5.8	-	-90	9
FNAug-102	201281	1408097	179	5.6	-	-90	10
FNAug-103	201303	1408106	172	5.7	-	-90	12
FNAug-104	201324	1408097	182	5.9	-	-90	6
FNAug-105	201342	1408092	173	5.1	-	-90	10
FNAug-106	201361	1408097	173	4.8	-	-90	9
FNAug-107	201378	1408100	173	5.4	-	-90	10
FNAug-108	201398	1408098	172	4.5	-	-90	23
FNAug-109	201419	1408103	175	5.7	-	-90	15
FNAug-110	201440	1408103	173	4.3	-	-90	13
FNAug-111	201461	1408102	183	4.7	-	-90	7
FNAug-112	201482	1408103	173	4.8	-	-90	10
FNAug-113	201501	1408102	174	4.9	-	-90	14
FNAug-114	201520	1408093	157	4.7	-	-90	14
FNAug-115	201542	1408098	178	4.4	-	-90	7
FNAug-116	201561	1408100	166	4.4	-	-90	7
FNAug-117	201579	1408098	167	4.5	-	-90	4
FNAug-118	201600	1408098	168	4.3	-	-90	11
FNAug-119	201620	1408097	159	4.4	-	-90	5
FNAug-120	201640	1408100	160	4.5	-	-90	4
FNAug-121	201662	1408098	164	4.4	-	-90	4
FNAug-122	201681	1408099	166	4.4	-	-90	4
FNAug-123	201702	1408102	179	4.5	-	-90	30
FNAug-124	200502	1408001	181	4.5	-	-90	48
FNAug-125	200521	1407997	186	4.6	-	-90	33
FNAug-126	200538	1407997	203	4.8	-	-90	26
FNAug-127	200559	1408007	168	4.6	-	-90	6
FNAug-128	200579	1407998	180	4.3	-	-90	9
FNAug-129	200598	1408003	173	4.6	-	-90	29
FNAug-130	200622	1408000	173	4.4	-	-90	41
FNAug-131	200640	1408008	173	4.4	-	-90	31
FNAug-132	200660	1408006	182	7.5	-	-90	81

FNAug-133	200684	1408005	179	14.5	_	-90	43
FNAug-134	200704	1407996	188	7.1	_	-90	35
FNAug-135	200721	1407993	190	7.3	_	-90	15
FNAug-136	200738	1407995	188	6.8	_	-90	7
FNAug-137	200762	1408005	184	6.3	_	-90	9
FNAug-138	200781	1407999	187	4.5	-	-90	0
FNAug-139	200799	1407999	185	5.2	-	-90	7
FNAug-140	200543	1407799	180	5.9	-	-90	4
FNAug-141	200559	1407800	183	7.4	-	-90	9
FNAug-142	200582	1407803	184	7.3	-	-90	7
FNAug-143	200603	1407802	182	7.5	-	-90	9
FNAug-144	200621	1407802	180	5.2	-	-90	8
FNAug-145	200638	1407801	188	7.2	-	-90	9
FNAug-146	200661	1407799	188	7.5	-	-90	8
FNAug-147	200677	1407802	182	7.4	-	-90	7
FNAug-148	200701	1407805	182	7.5	-	-90	4
FNAug-149	200720	1407800	181	7.6	-	-90	4
FNAug-150	200737	1407800	182	7.7	-	-90	5
FNAug-151	200757	1407799	180	7.3	-	-90	6
FNAug-152	200778	1407798	189	7.4	-	-90	12
FNAug-153	200801	1407805	181	7.3	-	-90	39
FNAug-154	200804	1407900	181	4.5	-	-90	10
FNAug-155	200782	1407896	213	4.5	-	-90	5
FNAug-156	200758	1407896	215	4.7	-	-90	3
FNAug-157	200739	1407898	215	4.5	-	-90	14
FNAug-158	200720	1407896	216	4.4	-	-90	11
FNAug-159	200698	1407897	221	7.3	-	-90	6
FNAug-160	200681	1407897	216	7.4	-	-90	0
FNAug-161	200660	1407901	215	7.3	-	-90	24
FNAug-162	200639	1407901	216	7.4	-	-90	2
FNAug-163	200619	1407900	216	7.3	-	-90	8
FNAug-164	200499	1407902	220	6	-	-90	3
FNAug-165	200519	1407899	220	7.3	-	-90	5
FNAug-166	200539	1407898	216	7.4	-	-90	10
FNAug-167	200561	1407897	217	7.3	-	-90	51
FNAug-168	200578	1407898	216	7.4	-	-90	16
FNAug-169	200598	1407897	218	7.5	-	-90	21
FNAug-170	200602	1407710	179	7.4	-	-90	6
FNAug-171	200622	1407706	177	7.3	-	-90	6
FNAug-172	200642	1407705	181	7.2	-	-90	6
FNAug-173	200660	1407700	185	7.1	-	-90	10
FNAug-174	200681	1407697	187	7.3	-	-90	8
FNAug-175	200702	1407698	188	8.3	-	-90	3
FNAug-176	200720	1407703	184	7.2	-	-90	8
FNAug-177	200742	1407703	176	7	-	-90	5

FNAug-178	200763	1407690	163	7.4	_	-90	40
FNAug-179	200782	1407703	176	6.7	-	-90	2
FNAug-180	200802	1407701	178	7.3	-	-90	0
FNAug-181	200301	1407401	198	8.3	-	-90	5
FNAug-182	200319	1407395	202	7.3	-	-90	2
FNAug-183	200339	1407390	200	7.5	-	-90	4
FNAug-184	200357	1407395	193	7.3	-	-90	2
FNAug-185	200381	1407401	195	11.2	-	-90	5
FNAug-186	200399	1407404	202	8.1	-	-90	29
FNAug-187	200420	1407391	198	10.2	-	-90	12
FNAug-188	200439	1407400	195	10.6	-	-90	5
FNAug-189	200460	1407402	192	10.1	-	-90	6
FNAug-190	200479	1407399	194	10.3	-	-90	43
FNAug-191	200498	1407406	200	10.2	-	-90	4
FNAug-192	200520	1407404	194	10.1	-	-90	25
FNAug-193	200539	1407395	188	10.3	-	-90	13
FNAug-194	200558	1407401	203	8.8	-	-90	0
FNAug-195	200579	1407397	193	8.7	-	-90	2
FNAug-196	200598	1407396	193	8.6	-	-90	2
FNAug-197	200602	1407397	186	7.3	-	-90	5
FNAug-198	200639	1407405	189	7.1	-	-90	2
FNAug-199	200660	1407400	180	7.2	-	-90	2
FNAug-200	200678	1407395	194	8.1	-	-90	4
FNAug-201	200699	1407402	189	8.6	-	-90	0
FNAug-202	200719	1407401	194	8.7	-	-90	4
FNAug-203	200738	1407399	190	7.2	-	-90	5
FNAug-204	200759	1407400	188	8.4	-	-90	5
FNAug-205	200779	1407402	186	8.8	-	-90	8
FNAug-206	200799	1407398	179	7.3	-	-90	4
FNAug-207	200482	1407996	182	7.2	-	-90	20
FNAug-208	200459	1407994	177	6.8	-	-90	7
FNAug-209	200441	1407999	179	7.3	-	-90	2
FNAug-210	200422	1408000	183	6.1	-	-90	0
FNAug-211	200401	1408000	182	7.3	-	-90	0
FNAug-212	199801	1407099	194	6	-	-90	3
FNAug-213	199820	1407102	194	2.6	-	-90	0
FNAug-214	199841	1407095	189	7.2	-	-90	2
FNAug-215	199859	1407098	192	7.2	-	-90	3
FNAug-216	199879	1407098	191	7.1	-	-90	0
FNAug-217	199901	1407098	192	7.3	-	-90	5
FNAug-218	199920	1407095	188	7.2	-	-90	2
FNAug-219	199941	1407098	191	7.3	-	-90	15
FNAug-220	199959	1407105	191	7.1	-	-90	3
FNAug-221	199978	1407099	186	7.3	-	-90	5
FNAug-222	200001	1407102	193	7.2	-	-90	9

FNAug-223	200019	1407102	194	7.1	l -	-90	15
FNAug-224	200041	1407100	190	7.3	_	-90	4
FNAug-225	200060	1407102	191	7.1	_	-90	0
FNAug-226	200081	1407097	191	7.3	_	-90	3
FNAug-227	200099	1407104	193	7.2	_	-90	0
FNAug-228	200121	1407103	196	7.1	-	-90	0
FNAug-229	200140	1407100	190	7.3	_	-90	2
FNAug-230	200161	1407099	193	7.1	-	-90	4
FNAug-231	200181	1407100	186	7.3	-	-90	0
FNAug-232	200202	1407099	189	7.2	-	-90	5
FNAug-233	200220	1407095	194	8.7	-	-90	6
FNAug-234	200242	1407096	190	7.1	-	-90	2
FNAug-235	200261	1407099	192	7.1	-	-90	4
FNAug-236	200281	1407099	190	7.3	-	-90	20
FNAug-237	200298	1407099	188	8.6	-	-90	26
FNAug-238	200320	1407100	189	7.2	-	-90	11
FNAug-239	200340	1407101	187	7.3	-	-90	12
FNAug-240	200361	1407102	189	7.2	-	-90	2
FNAug-241	200382	1407097	188	7.3	-	-90	21
FNAug-242	200400	1407103	188	7.3	-	-90	17
FNAug-243	200419	1407102	188	7.2	-	-90	9
FNAug-244	200440	1407100	193	7.3	-	-90	3
FNAug-245	199798	1406998	185	7.1	-	-90	0
FNAug-246	199821	1406998	185	7.3	-	-90	3
FNAug-247	199840	1406999	188	7.2	-	-90	8
FNAug-248	199860	1406996	189	7.3	-	-90	17
FNAug-249	199879	1406998	180	7.4	•	-90	4
FNAug-250	199898	1406997	185	7.2	-	-90	4
FNAug-251	199919	1406995	185	7.1	-	-90	23
FNAug-252	199941	1406995	186	7	-	-90	0
FNAug-253	199959	1406998	180	7.2	-	-90	3
FNAug-254	199978	1406999	184	7.3	-	-90	5
FNAug-255	199998	1406998	182	7.2	-	-90	2
FNAug-256	200020	1406999	181	7.2	-	-90	2
FNAug-257	200039	1406998	183	7.3	-	-90	0
FNAug-258	200061	1407002	185	7.1	-	-90	2
FNAug-259	200080	1407002	187	7.2	-	-90	22
FNAug-260	200101	1407002	192	7.3	-	-90	13
FNAug-261	200121	1407000	188	7.2	-	-90	0
FNAug-262	200140	1406997	182	8.7	-	-90	37
FNAug-263	200159	1406997	184	6	-	-90	11
FNAug-264	200178	1407003	180	7.6	-	-90	33
FNAug-265	200199	1407002	185	7.3	-	-90	28
FNAug-266	200218	1407004	191	7.5	-	-90	4
FNAug-267	200241	1407003	176	7.4	-	-90	13

FNAug-268	200260	1407004	185	7.5	_	-90	2
FNAug-269	200281	1407002	185	7.6	-	-90	19
FNAug-270	200299	1406997	184	7.5	_	-90	33
FNAug-271	199803	1406895	199	7.7	-	-90	3
FNAug-272	199822	1406896	197	7.4	-	-90	0
FNAug-273	199839	1406896	191	7.6	-	-90	16
FNAug-274	199859	1406901	196	7.4	-	-90	3
FNAug-275	199879	1406895	197	7.4	-	-90	17
FNAug-276	199899	1406899	203	7.6	-	-90	0
FNAug-277	199921	1406898	203	7.4	-	-90	0
FNAug-278	199942	1406904	188	7.3	-	-90	0
FNAug-279	199961	1406898	195	7.5	-	-90	10
FNAug-280	199980	1406899	193	7.4	-	-90	18
FNAug-281	200000	1406900	188	7.6	-	-90	0
FNAug-282	200021	1406899	203	7.4	-	-90	0
FNAug-283	200041	1406904	187	7.5	-	-90	42
FNAug-284	200059	1406907	191	7.4	-	-90	36
FNAug-285	200079	1406911	190	7.5	-	-90	32
FNAug-286	200100	1406911	191	7.3	-	-90	4
FNAug-287	200121	1406898	182	7.5	-	-90	13
FNAug-288	200142	1406897	180	7.4	-	-90	22
FNAug-289	200161	1406900	197	7.6	-	-90	10
FNAug-290	200180	1406900	198	7	-	-90	24
FNAug-291	200200	1406891	194	7.3	-	-90	54
FNAug-292	200220	1406895	193	5.8	-	-90	7
FNAug-293	200240	1406897	181	6	-	-90	4
FNAug-294	200261	1406891	197	6.1	-	-90	13
FNAug-295	200280	1406898	200	6.2	-	-90	31
FNAug-296	200300	1406891	191	6.3	-	-90	70
FNAug-297	199698	1406799	187	7.3	-	-90	7
FNAug-298	199721	1406806	183	7.3	-	-90	5
FNAug-299	199741	1406793	182	7.5	-	-90	6
FNAug-300	199760	1406799	178	7.4	-	-90	0
FNAug-301	199782	1406800	181	7.2	-	-90	13
FNAug-302	199799	1406803	184	7.4	-	-90	0
FNAug-303	199821	1406800	179	7.1	-	-90	5
FNAug-304	199839	1406797	179	7.3	-	-90	0
FNAug-305	199721	1406664	177	3.2	-	-90	0
FNAug-306	199742	1406656	199	3	-	-90	5
FNAug-307	199762	1406648	176	4.2	-	-90	6
FNAug-308	199781	1406653	168	3.7	-	-90	13
FNAug-309	199860	1406800	185	7.2	-	-90	12
FNAug-310	199879	1406802	181	6	-	-90	4
FNAug-311	199899	1406802	181	7.4	-	-90	5
FNAug-312	199919	1406803	185	7.5	-	-90	0

FNAug-313	199941	1406801	181	7.3	-	-90	35
FNAug-314	199959	1406801	184	7.4	-	-90	0
FNAug-315	199978	1406798	182	7.2	-	-90	8
FNAug-316	200001	1406793	186	6	-	-90	16
FNAug-317	200019	1406793	183	7.4	-	-90	19
FNAug-318	199628	1406650	200	5.8	-	-90	4
FNAug-319	199652	1406650	182	5.3	-	-90	0
FNAug-320	199675	1406647	183	6	-	-90	0
FNAug-321	199701	1406669	180	4.4	-	-90	7
FNAug-322	199798	1406650	181	6	-	-90	8
FNAug-323	199820	1406658	184	6	-	-90	0
FNAug-324	199840	1406652	185	5.9	-	-90	15
FNAug-325	199860	1406651	181	6	-	-90	14
FNAug-326	199879	1406650	182	6	-	-90	20
FNAug-327	199899	1406645	179	6.1	-	-90	0
FNAug-328	199961	1406651	187	6	-	-90	13
FNAug-329	199919	1406650	188	5.9	-	-90	0
FNAug-330	199942	1406652	187	6.1	-	-90	0
FNAug-331	199460	1406502	186	6	-	-90	6
FNAug-332	199480	1406501	178	5.9	-	-90	14
FNAug-333	199500	1406502	180	4.2	-	-90	6
FNAug-334	199519	1406505	183	5.8	-	-90	6
FNAug-335	199542	1406505	189	5.9	-	-90	0
FNAug-336	199560	1406506	188	4	-	-90	2
FNAug-337	199580	1406504	180	6	-	-90	0

SNR - Saprock Not Reached - no sample taken

Annex 2 – RC Drilling at Sanela

Hole ID	Χ	Υ	Z	Azimuth	Dip	End of Hole (m)
24-SAR-RC-018	200645	1407970	174.4	300	-60	80
24-SAR-RC-019	200689	1407947	173	120	-60	173
24-SAR-RC-025	200693	1407949	183	300	-60	130
24-SAR-RC-026	200752	1407914	184	300	-60	120
24-SAR-RC-027	200718	1407875	191	300	-60	171
24-SAR-RC-028	200761	1407962	192	300	-60	168

Disclaimer

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)", "potential(s)"and similar expressions are intended to identify forward-looking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Investors are cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and the Company does not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

About Haranga

Haranga Resources is an African focused multi-commodity company. The Company's most advanced project is the Saraya uranium project in Senegal, previously owned by Uranium giant Orano (previously Areva) and which has in excess of 65,000 m of historical drilling. In addition, Haranga owns the gold-prospective lbel-South permit in Senegal within the prolific Kenieba Inlier of the Birimian Formation, where more than 40 Moz of gold has been discovered. Both projects are serviced from its well-established 40-man exploration camp.

The Company's immediate focus is the Saraya uranium project, where a 16.1Mlbs eU₃O₃ Indicated and Inferred mineral resource @ 558ppm has been defined and where further uranium anomalies are continuing to be realised across this 1,650km² permit. In conjunction, Haranga is exploring it's Ibel-South gold project, where the Company continues to define drill targets across this permit during 2024.

Corporately, the Company is continuing to identify and assess additional acquisition targets across the African region, primarily focused on expanding its portfolio across the clean energy and gold sectors. Haranga's collective expertise includes considerable experience running ASX-listed companies and financing and developing mining and exploration projects in Africa, Australia, and other parts of the world.

Haranga Resources Limited

ABN 83 141 128 841

Suite 7/ 63 Shepperton Road Victoria Park, 6100

T: +61 6158 9990

E: info@haranga.com.au

W: haranga.com

Directors

Michael Davy (Chairman)

Peter Batton (Managing Director)

John Davis (Non-executive Director)

Hendrik Schloemann (Non-executive director)

Chief Operating Officer

Jean Kaisin

Trading Symbols

Australia: ASX:HAR Frankfurt: FSE:65E0

Competent Person's Statement and Previously Reported information

The information in this announcement that relates to Exploration Results and Exploration Targets is based on and fairly represents information and supporting documentation compiled by Mr Jean Kaisin working under the supervision of Mr Peter Batten, a Competent Person, who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM). Mr Batten has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Batten is the Managing Director of Haranga Resources Limited and consents to the inclusion in this announcement of the Exploration Results in the form and context in which they appear. Mr Kaisin is a full-time employee of Haranga Resources Limited. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements as noted in footnotes 1-4. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ASX Announcements referenced in this release

- 1. Mineral Resource Estimate results taken from the report titled "Saraya Uranium Mineral Resource Upgrade" released on the ASX on 20th of June 2024 and available to view on https://haranga.com/investors/asx-announcements/
- 2. "RC Drill Results from Saraya Confirms Further Uranium Mineralisation Sanela Drilling Intersects Mineralisation" released on the ASX on 11th of April 2024 and available to view on https://haranga.com/investors/asx-announcements/
- 3. Regional TMS results extracted from the report titled "Completion of the Regional Termite Mound Sampling Saraya Uranium" released on the ASX on 11th of July 2024 and available to view on https://haranga.com/investors/asx-announcements/
- 4. Infill TMS results extracted from the report titled "Infill Termite Mound Sampling at Saraya Defines Further Auger Drill Targets" released on the ASX on 16th of July 2024 and available to view on https://haranga.com/investors/asx-announcements/

Saraya – Mineral Resource

The Company confirms it is not aware of any new information or data that materially affects the information included in the Mineral Resource Estimate and all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed when referring to its resource announcement made on 20 June 2024. The Company confirms that the form and context in which the Competent Person's finding is presented have not been materially modified from the original market announcements.

Saraya – Mineral Resource Estimate

The resource as reported at 20 June 2024 is as follows:

Classification	Tonnage	Grade	Contai	ned eU₃08
	Mt	eU₃0 ₈ ppm	Mlbs	tonnes
Indicated	3.65	752	6.04	2,742
Inferred	9.45	484	10.07	4,570
Inferred	13.1	558	16.11	7,312

Table 1: Saraya Mineral Resource Estimate¹ – 250ppm cutoff, Indicator Kriging

JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information. 	 Auger sampling is managed at the rig during drilling on a continuous basis. Rock chips are retrieved at the collar of the hole and placed on the side of the rig. A sample is collected per rod length of 1.5m as a function of the type of lithology. A minimum of two samples are collected: one in the laterite and one in the saprock. Holes are cleaned after each sample collected. All samples are assayed. Bottom of hole sample is used as reference for the hole. Samples are split to 200gm using a riffle splitter Samples are assayed using the Olympus Vanta-M recent XRF device (See below for explanation on pXRF)
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Auger drilling is the technique used for this drilling campaign with collar size of 120mm. The rig is mounted on a trailer and towed by car. Average depth of hole is 6m, depths range from 4m to 15m deep. Holes are drilled vertical.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No recovery measurement is done: the samples are collected for grades under lateritic cover.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging of the weathered and regolith profile is done at the rig site during drilling. Only two units are recorded: covering laterite and Saprolite/Saprock on granite. Logging is qualitative. No intersections are recorded: Auger is used as a geochemistry survey below lateritic cover. Level and quality of logging is not defined to establish a geological and structural model but to check and define potential source of surface termite mounds anomalous uranium samples.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples collected at the rig are +/- 3kg per unit (laterite, saprock on granite). Samples are riffle split at the workshop to 200/300gm collected in small PET plastic bags. pXRF analyses are done on the small sample bags. It is a non-destructive assaying process. Samples are stored for possible recheck. Collected samples are laid under the sun to extract any remaining moisture.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples are assayed using the Olympus Vanta-M recent XRF device in a dedicated room kept at 24°C ambient temperature. The XRF uses a graphene detector operating at -30°C with a silicon drift detector (SDD) for rapid and accurate elemental identification. For the survey samples Haranga use the machines Geochem3 counting mode specific to Olympus that optimizes the detection for the 40 elements selected, enhancing the detection and counting of the particular elements that are of

Criteria	JORC Code explanation	Commentary
		assaying team, a quality control is done on 3 CRMs provided by the manufacturer (Calibration Coin 316, Oreas70b and Silicon Blank). This quality control aims at verifying the SDD drift and to recalibrate if out of range. It also verifies the low Uranium detection with the Calibration Coin. 4. A twice daily control on in house reference materials: 3 pulp samples have been selected from our store of core samples to verify the Uranium detection repeatability for grades around 300, 1000 and 2000 ppm Uranium. 5. A random quality control: once in a while, a set of 40 samples from our library of core samples are used to check a whole range of Uranium grades from 100ppm to 2500ppm. The reference material from our pulp library have been selected based on pulps prepared and assayed by the certified laboratory ALS from Vancouver Canada. These 50cm core sample from our initial DD drilling on Saraya prospect have been crushed and ground to 75% passing 80µ then assayed for uranium using two methods: fusion digestion and XRF detection as well as 4 acid digestion and combo ICP-AES and ICP-MS. The fusion + XRF method has been repeated in a second laboratory in Vancouver (MSALab) for confirmation. Our library of 40 elements has been refereed assayed by XRF for comparison with ALS and MSA lab analyses. All 40 samples XRF survey falls within 0.5% of the Fusion + XRF assays provided by MSALab and within 3% of the Fusion+XRF assays provided by ALS Lab. The sampling and assaying team are trained and supervised by our Operation Manager and Project Manager. The managers have completed pXRF analyses on over 150.000 termite mounds samples, an extensive experience leading the geochemistry sampling and assaying team
Verification of sampling	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Significant anomalous samples are verified by the Project Manager involving re-assays of the higher Uranium Grades. Data are reviewed by the Project Manager and introduced in

Criteria	JORC Code explanation	Commentary
and assaying	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 our datasets. No adjustment is done on assay results: assay data is introduced in the GIS software for mapping and interpretation.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill holes have been located using a handheld GPS. The grid system is Universal Transverse Mercator, zone 28N (WGS84). A topographic control has been carried out using georeferenced high resolution satellite images of the site.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Auger drilling lines are planned on the maps to cover Termite Mounds geochemistry sampling positive assay results. Auger holes are drilled on a 20m spacing with some passes at 10m on areas defining Auger derived anomalies. The drilling is used to confirm the potential source of an exploration drilling target based on the Termite Mounds surface geochemistry survey. The spacing of the surface geochemistry survey is 50m and the drilling spacing of 20m is deemed sufficient to demonstrate the presence of saprock mineralization below the lateritic/colluvial cover.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Auger drilling is planned along E-W lines to crosscut the main NNE known mineralized trend. The shearing hosted alteration and mineralization is following the main Birrimian orientations of NNE and SES-NWN subvertical orientations. Auger holes drilled vertically at shallow depth do not aim at establishing the orientation of the mineralization at depth. Parallel Auger lines aim at highlighting potential structural alignment and trends of mineralization to guide RC drilling planning.
Sample security	The measures taken to ensure sample security.	All samples collected at the rig are stored in PET bags, sealed then stored in the vehicle prior to shipment to the workshop. In the workshop, split samples are collected into sealed plastic buckets for transport to the XRF workshop.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling technique and data management is reviewed by field management: Project Geologist and Operation Officer accompany and audit the process all along the drilling.

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Auger drilling assay results fully relate to the Saraya Exploration Permit in Senegal number PR 02208 granted to Mandinga Resources via Decree N°012397/MMG/DMG of 05 June 2018 and renewed for 3 years via Decree N°012403/MMG/DMG of the 23 May 2022. Haranga Resources has acquired 70% interest from Mandinga Resources who own 100% of the Saraya project. The Vendor has a 30% free carry to PFS. After PFS the Vendor will have to contribute to cost or dilute to royalty. There are no impediments known to the project.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 French Companies Cogema and Areva are known to have explored the area and produced significant historical data that has been acquired by Haranga. Significant drilling was carried out by both companies over the Saraya Prospect: Cogema worked over the Saraya region during the 70's until 1986. Cogema's logs record a total of 452 drillholes for 48,975 m at the project, including 441 holes at the Saraya Prospect. Areva drilled a total of 141 holes: 72 were completed at the Saraya prospect and a further 69 holes across several other prospects (Diobi, Kantafata, Samecouta).
Geology	Deposit type, geological setting and style of mineralization.	The Uranium Mineralization lies within the Saraya Granite, a late Birrimian leucocratic granite with traces of deuteric alteration associated to fractional crystallization fluids and late-stage alteration within the regional Birrimian tectonic setting.

Criteria	IOPC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth	Observations made during logging confirm a model of syn- to tardi-magmatic episyenitization followed by deuteric alteration. Original quartz is initially dissolved then filled with chloritized biotites followed by geodic automorphic second-generation quartz. Uranium minerals in the form of small grains, seems to accompany or replace the initial chloritized biotite. Historical data indicate that episyenitization, deuteric alteration and uranium mineralization at Saraya is structurally controlled and associated with brecciated lenses that strike mainly the NNE and dip sharply to the SE. This is consistent with the dominant Birrimian structures. Traces of episyenite and mineralisation outside of Saraya occurrence have been mentioned by previous exploration holders of the permits and in the literature. 91 Auger holes have been drilled by Haranga at the Sanela Prospect. A summary of hole locations, orientation and length is provided in Annexes of the present announcement.
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported grades are direct measurements from pXRF, no grades were cut. No interval has been calculated on the Auger drilling: the aim of the shallow campaign is to measure grades on saprock samples immediately below the laterite as a subsurface equivalent of surface geochemistry. No relevance for metal equivalent values
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralization is assumed subvertical for most of the targeted area for drilling. Auger drilling is aimed at capturing the surface expression of the mineralization and its lateral mushrooming. Full geometry of the mineralization over the different prospects is unknown. At Sanela, the mineralization seems associated to some sediments in a structural contact orientated NNE-SSW True width of the intercepted mineralization is unknown.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Saprock anomalies recorded are not yet part of intercepts nor significant discovery. Further RC drilling will be needed to transform Auger assay results into significant intercepts.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of all Exploration Results from this drilling program are detailed in this announcement.
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited to): 	Ground termite mounds geochemistry has yielded significant results to the extent of the Saraya Prospect and has been reported in previous announcements.

Criteria	JORC Code explanation	Commentary
exploration data	geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Ground spectrometry over the prospect of Saraya has been carried out using Nuvia PGIS2 Spectrometer, in which results have shown surface radio-isotopic activity to the extent of the known historical mineralization. Regional magnetic and spectrometry survey carried out by National Authorities have produced regional scale maps that details the regional tectonic setting. Historical data from Cogema and Areva have produced up to 60,000m of drilling over the prospect as well as surface trenching and diverse geochemical surveys. Historical data review has been presented by Haranga in previous announcements (2022-08-08: Significant Historical Drilling Results at Saraya; 2022-09-05: Significant Uranium Exploration Target Defined at Saraya).
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Extension of the Auger drilling campaign on parallel lines to establish surface orientation of the mineralisation. Definition of RC drilling sections over more promising Auger anomalies, for exploration of in-depth possible extensions. Continuation of surface termite mounds geochemistry sampling at permit scale and infill scale to define new anomalies for the Auger drilling.