28 April 2025

ASX: INF | FRA: 3PM

OPTION AGREEMENTS ON GOLD-COPPER-SILVER PROJECTS

KEY POINTS

- Option agreements for Acquisition (Mitta Mitta) and Earn-In Joint Venture (Corryong) over Gold-copper-silver exploration projects on granted tenements in the Lachlan Fold Belt, Victoria.
- Projects complement and adjoin existing portfolio assets and consolidate a significant historic gold field with significant high-grade drilling results to be followed up.

Mitta Mitta (Option to acquire 100%)

- Six granted, contiguous tenements which adjoin existing Infinity tenure and consolidate prospective geological host rocks and historic gold fields (Granite Flat and Sandy Creek goldfields that have produce in excess of 160,000 oz gold).
- Granite Flat provides a bulk tonnage gold-copper target with later, crosscutting high-grade gold veins.
- Significant intercepts include:
 - 19m @ 9.39 g/t gold incl. 3m @ 41.1 g/t gold, 19m @ 0.61% copper and 19.2 g/t silver from 28m (EMPRAB28)
 - 4m @ 3.23 g/t gold from 15m (EMPRAB29)
 - 9m @ 2.1 g/t gold from 12m (EMPRAB32)
- Sandy Creek is a historic very high-grade gold field which has had only one campaign of drilling/sampling programme conducted to date (RAB drilling).
 Significant intercepts include:
 - 5m @ 5.75 g/t gold from 18m incl. 3m @ 8.8 g/t gold from 18m (SRERAB32B)
 - 5m @ 3.96 g/t gold from 2m (SRERAB37)
 - 9m @ 1.75 g/t gold from 31m (SRERAB06)

CORPORATE DIRECTORY

ADRIAN BYASS Executive Chairman
JON STARINK Executive Director
RAMÓN JIMÉNEZ Executive Director
REMY WELSCHINGER Non-Executive Director

CONTACT

Level 3, 22 Railway Road Subiaco WA 6008 T: +61 (8) 6146 5325 E: admin@infinitylithium.com

ASX: INF | FRA: 3PM

• Acquisition required modest upfront consideration with payment weighted to shared success of exploration.

Corryong (Option to earn 80%)

- Mt Unicorn drilling shows extensive Cu-Ag-Mo porphyry mineralisation to depths over 700m below surface.
- Mt Unicorn shows the potential for additional porphyry style mineralisation within the Project.
- Several prospective targets defined by geochemical sampling and coincident geophysics to be investigated.

Corporate

- Exceptional exploration opportunities expand existing tenure and commodity focus.
- Low up front consideration with later payments linked to shared exploration success.
- Immediate exploration now activity possible whilst San Jose Lithium Project Mining Licence Application is being assessed.

Infinity Lithium Corporation Limited ('Infinity', or 'the Company') is pleased to announce that it has entered into option agreements in respect to the acquisition of a 100% interest in the Mitta Mitta Project ('Mitta Mitta') tenements held by Dart Mining N.L ('Dart' or 'Dart Mining') and an option to enter into an earn-in Joint Venture on the Corryong Project ('Corryong') tenements also held by Dart in the Lachlan Fold Belt, eastern Victoria (Figure 1). Dart is focussed on antimony and gold exploration in Queensland, enabling Infinity to enter into these agreements to potentially acquire/JV these prospective projects (see Schedule 1) for minimal upfront consideration.

Infinity Executive Chairman Mr Adrian Byass said "These agreements give Infinity the opportunity to carefully assess and if we decide, acquire a potentially significant gold project which immediately adjoins existing recently acquired tenure, thus allowing consolidation of a major goldfield and highly prospective geological unit (The Banimboola Quartz-Monzodiorite) that is associated with gold-copper mineralisation at Granite Flat (Mitta Mitta Project) and extends into EL7072 which is 100% owned by Infinity. That some project tenements under option immediately adjoin recently acquired existing tenure provides outstanding synergies.

ASX: INF | FRA: 3PM

We also have the ability to enter into an earn-in Joint Venture over the Corryong project which hosts significant porphyry-style gold-copper-molybdenum mineralisation (Mt Unicorn) which is proof of the potential for the rocks in the Project to host significant copper +/- silver, molybdenum, gold porphyry mineralisation and support the exploration model. Should we enter into the Joint Venture that we have the option over, there are compelling coincident geophysics and soil sampling targets to drill test.

The opportunity to potentially expand our existing gold-copper-silver portfolio with opportunities such as walk-up drill targets extending high-grade results in the Lachlan Fold Belt and combine our immediate exploration focus is highly attractive. "

The Option and Purchase Agreement and Option and Earn-in Joint Venture Agreement ('Agreements') are binding agreements which give Infinity a 60 day exclusivity period in which the Company can, at its sole election,

- elect to enter into a 100% Purchase Agreement in respect to the Mitta Mitta Project on the terms and conditions as contained in Schedule 2 and jointly or separately, at its sole election;
- enter into a Joint Venture earning up to 80% interest in the Corryong Project (Figure 1) on the terms and conditions as contained in Schedule 4.

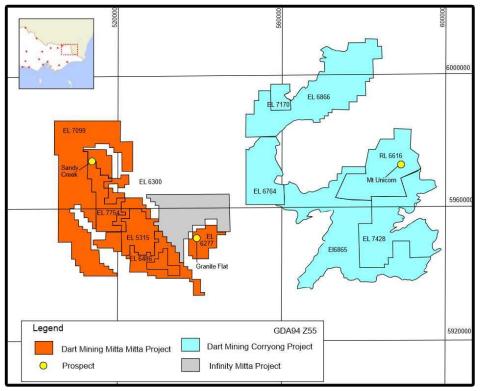


Figure 1: Tenements held by Infinity (Blue) and Tenements under Option Agreements with Dart Mining (orange)

ASX: INF | FRA: 3PM

1 Mitta Mitta Project

The Mitta Mitta Project is located in northeastern Victoria and adjoins Infinity's 100% owned Mitta Project (EL7072) (see Infinity ASX announcement 31 March 2025) as shown in Figure 2. The Mitta Mitta Project contains the advanced and highly prospective Granite Flat gold-copper-silver and the Sandy Creek gold Prospects.

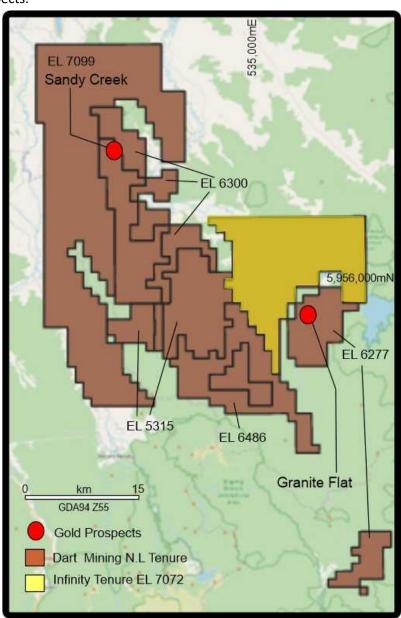


Figure 2: Mitta Mitta project with location of Granite Flat and Sandy Creek Prospects. Infinity (100%) tenure (EL 7072) shown, Tenure under Option Agreements with Dart Mining (brown).

ASX: INF | FRA: 3PM

1.1 Granite Flat

The Granite Flat Prospect is hosted within the Banimboola Quart-Monzodiorite that extends into Infinity's 100% owned adjoining tenement EL7072 (Mitta Project). Drilling to date by Dart at Granite Flat has focussed on readily accessible drill locations which require minimal permitting (Low Impact Exploration). These have targeted the two styles of mineralisation at Granite Flat (broad, bulk tonnage gold-copper target and later-stage, cross-cutting, high-grade gold +/- copper-silver structurally controlled veins). Drilling to date has returned the following significant results which include;

- 19m @ 9.39 g/t gold inc 3m @ 41.1 g/t gold, 19m @ 0.61% copper and 19.2 g/t silver from 28m (EMPRAB28)
- 4m @ 3.23 g/t gold from 15m (EMPRAB29)
- 9m @ 2.1 g/t gold from 12m (EMPRAB32)

in vein hosted settings and;

- 19.33m @ 0.72 g/t Au & 0.1% Zn from 72.07-91.40m, including 4.42m @ 1.2 g/t Au & 1m @ 0.74% Zn, and 12.93m @ 0.29% Cu \$ 13.2 g/t Ag from 72.07-85.0m EMDDH003
- 17.2m @ 1.2 g/t Au @ 2.9 g/t Ag from 46-63.3m, including 2.3m @ 5.6 g/t Au & 6.3m @ 5.6 g/t Ag, and 18.3m @ 0.24% Cu from 45-63m EMDDH004 (designed as a twin for EMPRAB28 drilled in 2021).

(Dart Mining ASX release dated 15th February 2022)

Infinity believes that Empress/Granite Flat represents a large Cu-Au in soil anomaly, both aerially (1.8x2.4km >100ppm Cu) and in tenor (Au up to 3g/t Au) (Figure 3) which has not been tested adequately due to a lack of infrastructure/access to test the best targets.

ASX: INF | FRA: 3PM

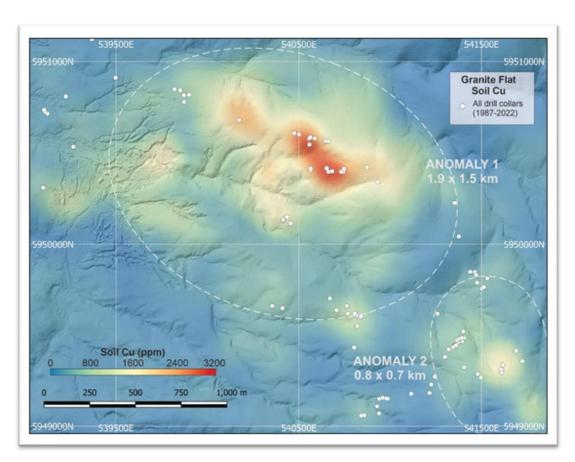


Figure 3: Granite Flat copper anomaly heat map showing drill collars completed to date (2022).

1.2 Sandy Creek

The Sandy Creek Goldfield is located 60 km south of Albury-Wodonga in Northeast Victoria along the northern section of the Dorchap Range near Eskdale. The Dorchap range also hosts Dart Mining's Lithium projects.

The Sandy Creek Goldfield is known for its historical production of exceptionally high-grade gold from narrow lodes (up to 3.5 kg/t ~112 oz/t Wodonga & Towong Sentinel, 1888) (Dart Mining ASX release dated 20th March 2024). Multiple zones of gold mineralisation are associated with altered granite at structural intersections within the Yabba Granite.

Gold mineralisation is associated with hydrothermal alteration of the Yabba Granite and extends into a metasedimentary roof pendant above the granite body. Detailed structural mapping has identified

ASX: INF | FRA: 3PM

an orthogonal fault system that has focused gold mineralisation on north-south and northwest-southeast oriented structures.

This is an exceptionally high-grade goldfield associated with multiple structures intersecting granitic intrusions. Records referenced by Dart Mining in ASX release dated 20 March 2024 indicate that 160,000 oz of gold was produced from 11,000 tonnes of ore between 1877 – 1915 from Sandy Creek reefs (Lanzer L.A, 1988). Included amongst this are reported head grades of 3562 g/t from the A1 Lloyds mine, although compiled contemporary newspaper reports indicate the average grade across the field was 77 g/t. Structures show potential for larger tonnage targets with disseminated gold in sulphides reported surrounding high-grade shoots.

Only one campaign of drilling has been completed and assayed at Sandy Creek. This utilised Rotary Air Blast (RAB) drilling and was conducted by Dart Mining (ASX release Dart Mining 16th February 2021). Whilst the drilling method (RAB) was suitable for the first-pass reconnaissance programme undertaken it was not able to penetrate fresh rock, nor penetrate past mining voids when it intersected several areas of historical workings and was not able to drill effectively below the water table. Dart Mining noted that follow-up drilling would have to be conducted using Reverse Circulation (RC) or Diamond drilling to accurately test mineralisation encountered and targets unable to be tested at the time (Dart Mining ASX release dated 7th December 2020).

Despite this, significant intercepts from the limited (1,308m from 43 holes RAB drilling campaign, Figure 4) included:

- 5m @ 5.75 g/t gold from 18m incl 3m @ 8.8 g/t gold from 18m (SRERAB32B)
- 5m @ 3.96 g/t gold from 2m (SRERAB37)
- 9m @ 1.75 g/t gold from 31m (SRERAB06)

ASX: INF | FRA: 3PM

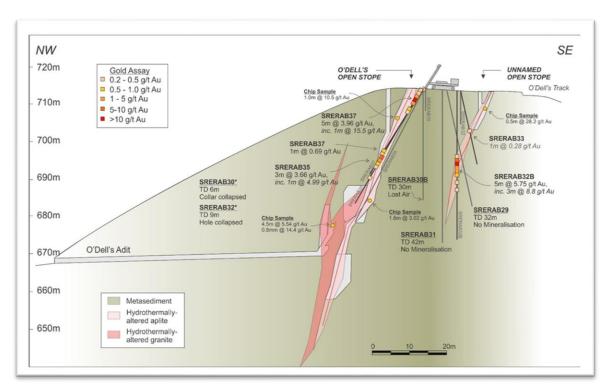


Figure 4: : Cross Section of drilling at Sandy Creek (O'Dells shaft) taken from Dart Mining ASX release 16th February 2021.

This drilling was designed to test the potential of a 'roof-pendant' model within granite and results were highly encouraging. The limited number of effective drill holes still returned several significant, high-grade results, even though the campaign was not effective as it was "hampered by the prevalence of un-mapped historical workings, a very high water table and steep, slippery terrain. Some holes did not reach the planned depth but did appear to be entering mineralisation zones upon termination. Future drilling at Sandy Creek will employ a drill rig that is capable of returning sample from below the water table and reaching greater depths than the exploratory RAB rig used on the first phase programme." (Dart Mining ASX release dated 7th December 2020).

There has been no follow up drilling at Sandy Creek after this campaign. Infinity believes this is a highly prospective target which requires immediate exploration attention as it has the potential based on results to date for significant high-grade gold mineralisation.

ASX: INF | FRA: 3PM

Lithium potential

The Mitta Mitta project tenure contains the Dorchap lithium project. Dart entered into an earn-in Joint Venture with Sociedad Quimica y Minera de Chile S.A (SQM), a major international lithium company for lithium minerals within the tenement package. SQM are earning up to 70% through the expenditure of \$12 million over 6 years of which \$3 million was to be spent before July 2025 (Dart Mining N.L ASX release 26 July 2922). At the time of this Agreement, SQM have conducted exploration activity but there has been no announcement as to the status of the earn-in and whether milestones thresholds have been met or the status of the JV (Dart Mining N.L ASX release 16th December 2022 and 30th May 2023). It is noted that SQM are still in their first earn-in period.

2 Corryong Project

Located in northeastern Victoria, approximately 20km south of the Corryong township, proximal to the Victoria – New South Wales border is the Mt Unicorn porphyry (Figure 5) located within a highly prospective region for porphyry targets. This project has been drill-tested (last drilling conducted in 2012) and contains significant copper-silver-molybdenum mineralisation (Dart Mining ASX release dated 18th December 2012). The surrounding area is prospective for repeat examples of porphyry style mineralisation with several prospects identified based on surface sampling, mapping and geophysics.

ASX: INF | FRA: 3PM

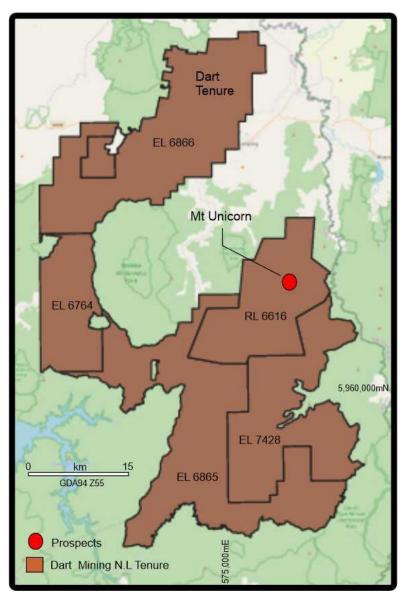


Figure 5: Corryong Project tenure under Option Agreement with Dart Mining shown in orange.

Dart Mining conducted exploration and delivered an economic assessment of Mt Unicorn (2012). The geological model held by Dart is that Mt Unicorn is analogous to the Henderson deposit in the U.S.A (Dart Mining ASX release 27th November 2012).

ASX: INF | FRA: 3PM

A schematic interpretation of Mt Unicorn is shown in Figure 6. This highlights the extensive depth of mineralisation confirmed by drilling and the zonation within the system that supports the Henderson comparison.

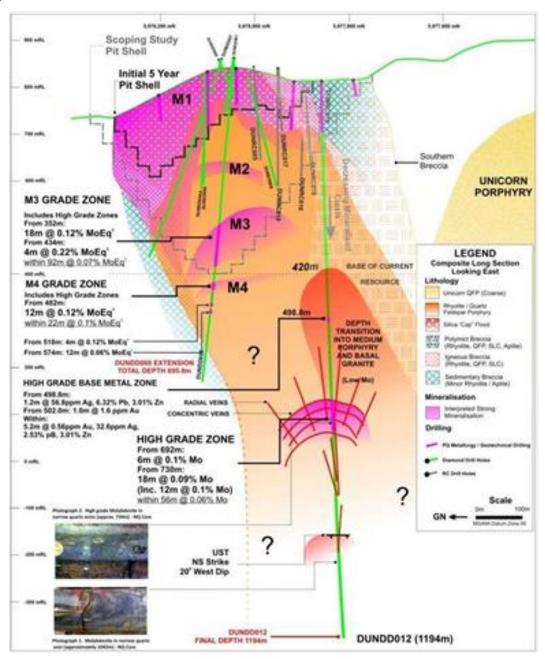


Figure 6: Schematic cross section showing geological model for porphyry system at Mt Unicorn. Taken from Dart Mining ASX release dated 18th December 2012.

ASX: INF | FRA: 3PM

Infinity is focussed on possible opportunities for other porphyry style mineralisation with several identified targets such as Gentle Annie and Stacey's within the tenure (Figure 7). These have potential for gold-copper-silver-molybdenum mineralisation in a porphyry setting (Dart Mining ASX release dated 21st February 2024).

Cautionary Statement: the Exploration Results in respect of the Corryong Project have not been reported in accordance with JORC 2012. A competent person has not done sufficient work to disclose the exploration results in accordance with JORC 2012. It is possible that following further exploration and evaluation that the confidence in the prior reported exploration results may be reduced when reported under JORC 2012, however, nothing has come to the attention of the Company that causes it to question the accuracy or reliability of the exploration results disclosed in this announcement

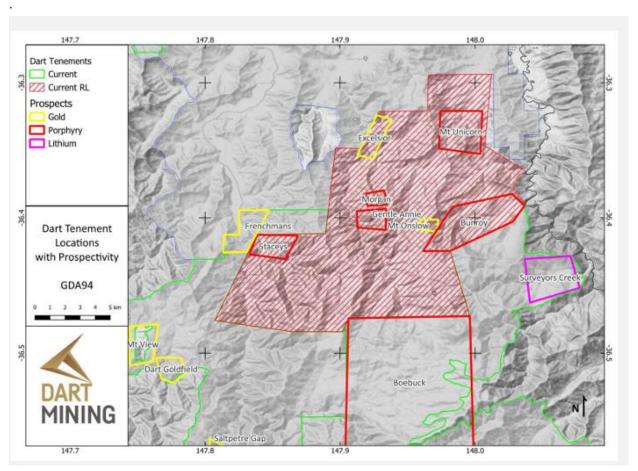


Figure 7: porphyry prospects and targets proximal to Mt Unicorn. Taken from Dart Mining ASX release 21st February 2024.

3 Agreements Summary

ASX: INF | FRA: 3PM

Infinity has entered into two binding option agreements with Dart;

- 1) Option and Purchase Agreement (Mitta Mitta Project)
- 2) Option and Earn-In Joint Venture Agreement (Corryong Project).

The agreements have been structured to incentive exploration success and reward for both parties (Schedule 2 and 4), with a \$25,001 exclusivity cash payment and a modest upfront payment when exercising the options, predominantly comprising consideration of a \$175,000 cash payment and 10,000,000 Ordinary Shares in Infinity ('Consideration Shares') therefore maximising the allocation of funds to exploration. The Consideration Shares will be issued within the Company's existing ASX Listing Rule 7.1 placement capacity.

35,000,000 Consideration performance rights, to be issued subject to shareholder approval at a meeting to be held as soon as practicable, will vest based on shared success resulting in increased exploration activity (drilling) and discovery (JORC mineral resource estimates).

If the Company opts to earn into the Joint Venture, the Company must contribute to the Joint Venture:

- 1) \$1 million over three years to earn a 51% interest; and
- 2) a further \$2.5 million over the next 2 years (\$3.5 million total within 5 years from the date of the agreement) to earn a further 29% interest (total 80% interest).

Key Terms of the acquisition agreement are detailed in Schedule 2 and 4 with the impact on capital structures shown in Schedules 3 and 5.

The Company is well funded to pursue both the permitting process in Spain and to advance exploration in Victoria (INF December Quarterly Report 29 January 2025). The Company intends to provide further information including a more detailed exploration programme shortly.

As noted above, the Company continues to work with regulators in the permitting process for San Jose in Spain. As noted in prior ASX announcements, public consultation as initially proposed was delayed and additional requirements prior to public consultation have been requested.

Trading Halt

This is the announcement referred to in the Trading Halt Request dated 23 April 2025.

This Announcement was authorised by the board of Infinity. For further enquiries please contact:

Infinity Lithium

ASX: INF | FRA: 3PM

Adrian Byass Executive Chairman T: +61 (8) 6146 5325

Competent Persons Statement

The information in this report that relates to Exploration Results is based on the information compiled or reviewed by Mr Adrian Byass, B.Sc Hons (Geol), B.Econ, FSEG, MAIG and an employee of Infinity. Mr Byass has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of Exploration Results, Exploration Targets, Mineral Resources and Ore Reserves. Mr Byass consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

In respect of the Corryong Project, Mr Adrian Byass has reviewed the information in the market announcement and confirms that it is an accurate representation of the available data and studies for the Corryong Project.

ASX: INF | FRA: 3PM

Schedule 1

Mitta Mitta Project Tenements (100% Dart Mining or wholly owned subsidiary)

Tenement Number	Holder	% Interest
EL 6277	Dart Mining NL	100
EL 6300	Dart Mining NL	100
EL 5315	Dart Mining NL	100
EL 6486	Dart Mining NL	100
EL 7099	Dart Mining NL	100
EL 7754	Dart Mining NL	100

Corryong Project Tenements (100% Dart Mining N.L or wholly owned subsidiary)

Tenement Number	Beneficial Holder	% Interest
RL 6616	Dart Mining NL	100
EL 6764#	Dart Mining NL	100
EL 6865	Dart Mining NL	100
EL 6866	Dart Mining NL	100
EL 7170	Dart Mining NL	100
EL 7428	Dart Mining NL	100

Held beneficially for Dart Mining by Mt Unicorn Holdings Pty Ltd Tenure shown in Figure 8.

Figure 8: Mitta Mitta and Corryong Project tenure with Infinity Mitta Project tenure shown in grey.

ASX: INF | FRA: 3PM

Schedule 2

Mitta Mitta Transaction terms and conditions

- Infinity will make an initial payment of \$25,000 cash to secure exclusivity and be granted the option ('Option')
- To exercise the Option and acquire a 100% interest in the Mitta Mitta project, Infinity will be required to pay \$175,000 cash and issue 10,000,000 ordinary shares to Dart.
- Subject to the exercise of the Option, Dart will receive a bonus payment of \$200,000 in cash or shares at Infinity's election should Infinity sell all or part of the Mitta Mitta project for \$1.2 million of more within 3 years of purchasing the Project.
- Subject to the exercise of the Option, Infinity will issue Performance Rights (Tranche A and B) for up to 35,000,000 shares are issued as outlined below;

Tranche	Consideration Performance Rights	Vesting Condition	Expiry Date
А	10,000,000	The Company announcing to ASX that it has completed at least 5,000 metres of drilling (excluding auger drilling) on the Project.	3 years from the date of issue
В	25,000,000	The Company announcing to ASX the definition of a JORC Code compliant Mineral Resource Estimate on a Tenement within the Project of 250,000 oz gold > 1.0 g/t or gold equivalent Au, Cu, Ag.	4 years from the date of issue

The issue of Performance Rights are subject to regulatory and shareholder approvals. At the time of exercising the Option, Infinity will determine whether the Performance Rights will be issued utilising available placement capacity under Listing Rule 7.1 or will be subject to shareholder approvals.

ASX: INF | FRA: 3PM

Schedule 3 Capital Structure post Mitta Mitta acquisition

	Pre Acquisition	Post Acquisition
Ordinary Shares	472,592,093	482,592,093
Options	22,950,000 ⁽¹⁾	22,950,000 ⁽¹⁾
Performance Shares	33,500,000 ⁽²⁾	68,500,000 ⁽³⁾
SARS	11,700,000	11,700,000

Notes (1) Options, (2) Performance Shares as per Highland Gold Acquisitions see ASX release dated 31st March 2025 Infinity Acquires Gold Projects, (3) Performance Shares as per Mitta Mitta Option and Purchase Agreement.

 Note 1 Options

 Number Granted
 Expiry Date
 Exercise Price

 3,000,000
 15/12/25
 \$0.25

 6,983,000
 4/12/26
 \$0.15

 12,967,000
 4/12/26
 \$0.25

ASX: INF | FRA: 3PM

Schedule 4

Corryong Transaction terms and conditions

- Infinity will make an initial payment of \$1 cash to secure exclusivity and be granted the option ('Option')
- In order to exercise the Option, Infinity will pay \$100,000 cash and will enter into an earn-in joint venture ('Joint Venture') on the following terms and conditions:
- (1) Infinity may earn 51% by spending \$1.0 million over 3 years;
- (2) Infinity may earn a further 29% (total 80%) by spending a further \$2.5 million over the next 2 years (\$3.5 million total within 5 years from the date of exercising the Option).
- (3) The Joint Venture will work with Infinity as the operator, managing and controlling all exploration activities and management of the Corryong project. During the Joint Venture period, Infinity may earn up to an 80% interest in the Corryong project. Upon reaching a financial investment decision (FID), Dart will be required to contribute pro rata or dilute to a 2% Net Smelter Royalty ('NSR').
- (4) Dart's interest will be free carried throughout the term of the joint venture until FID, when it can elect to contribute pro-rata in expenditure on the Project or dilute to a 2% NSR.
- (5) Subject to the exercise of the Option, Infinity be required to pay deferred consideration of \$2 million in cash or shares at Infinity' sole election upon the publishing of a 1 million oz gold or gold equivalent using gold, silver, copper and molybdenum JORC resource with a grade of no less than 0.5 g/t of gold or gold equivalent (at current share price equivalent to 100,000,000 shares are issued as outlined below;

Tranche	Consideration Fully paid ordinary shares in Infinity	Vesting Condition	Expiry Date
А	\$2 million cash or up to 100,000,000	The Company announcing to ASX the definition of a JORC Code compliant Mineral Resource Estimate on a Tenement within the Project in excess of 1,000,000 oz gold > 0.5 g/t or gold equivalent (as defined in the JORC Code) using Au, Ag, Cu and Mo.	4 years from the date of issue

Issue of Shares are subject to regulatory and shareholder approvals. Infinity will make an election upon the exercise of the option as to whether the deferred consideration shares will be subject to shareholder approval or will utilise placement capacity available as at the date of the exercise of the option.

ASX: INF | FRA: 3PM

Schedule 5 Capital Structure post Corryong earn-in and delineation of 1.0 million oz Au eqv JORC resource

	Pre-Acquisition	Post Acquisition	Post
	(assuming Mitta	(assuming Infinity	Acquisition
	Mitta consideration	elects to issue	(assuming
	has been issued)	deferred	Inifinity elects
		consideration as	to issue
		cash)	deferred
			consideration
			as Shares)
Ordinary Shares	482,592,093	482,592,093	484,592,093 ⁽⁴⁾
Options	22,950,000 ⁽¹⁾	22,950,000 ⁽¹⁾	22,950,000 (1)
Performance	68,500,000 ⁽³⁾	68,500,000	68,500,000
Rights			
SARS	11,700,000	11,700,000	11,700,000

Notes (1) Options, (2) Performance Shares as per Highland Gold Acquisitions see ASX release dated 31st March 2025 Infinity Acquires Gold Projects, (3) Performance Shares as per Mitta Mitta Option and Purchase Agreement.(4) Shares as per Corryong JV Agreement

Note 1 Options

 Number Granted
 Expiry Date
 Exercise Price

 3,000,000
 15/12/25
 \$0.25

 6,983,000
 4/12/26
 \$0.15

 12,967,000
 4/12/26
 \$0.25

Table A: Drill hole collars Mitta Mitta: Granite Flat

Hole ID	Easting (MGA 55)	Northing (MGA 55)	RL (m)	Azimuth (Grid)	Inclination	Depth (m)	Date Drilled
EMPRAB01	540835	5949600	568	192	-50	45	23/10/2020
EMPRAB02	540839	5949606	580	271	-65	17	30/10/2020
EMPRAB03	540815	5949611	576	93	-55	39	30/10/2020
EMPRAB04	540803	5949615	572	202	-60	39	31/10/2020
EMPRAB05	540807	5949622	574	25	-55	50	31/10/2020
EMPRAB06	540767	5949621	566	189	-55	39	31/10/2020
EMPRAB07	540767	5949621	566	189	-70	39	1/11/2020
EMPRAB08	540706	5949640	604	183	-60	44	2/11/2020
EMPRAB09	540354	5949663	560	12	-55	36	2/11/2020
EMPRAB10	540411	5949650	567	26	-70	24	3/11/2020
EMPRAB11	540564	5950405	554	350	-50	21	4/11/2020
EMPRAB12	540564	5950415	553	350	-50	47	4/11/2020
EMPRAB13	540652	5950419	582	344	-50	17	5/11/2020
EMPRAB14	540662	5950397	583	166	-50	48	5/11/2020
EMPRAB15	540652	5950415	582	160	-50	29	6/11/2020
EMPRAB16	540743	5950396	535	48	-50	47	6/11/2020
EMPRAB17	540731	5950397	534	330	-50	51	7/11/2020
EMPRAB18	540747	5950413	536	360	-90	40	8/11/2020
EMPRAB19	540434	5950150	539	208	-50	41	9/11/2020
EMPRAB20	540455	5950115	539	20	-50	20	9/11/2020
EMPRAB21	539118	5950722	362	360	-50	18	13/11/2020
EMPRAB22	539125	5950715	363	360	-70	12	13/11/2020
EMPRAB23	539112	5950724	359	360	-50	15	13/11/2020
EMPRAB24	539107	5950735	358	360	-90	21	14/11/2020
EMPRAB25	540556	5950578	494	240	-55	50	14/11/2020
EMPRAB26	540563	5950585	494	240	-55	39	15/11/2020
EMPRAB27	541437	5949849	633	80	-50	49	16/11/2020
EMPRAB28	541476	5949790	566	80	-80	47	17/11/2020
EMPRAB29	541463	5949848	518	75	-55	29	17/11/2020
EMPRAB30	541502	5949757	637	240	-45	32	18/11/2020
EMPRAB31	541692	5949417	651	210	-55	27	19/11/2020
EMPRAB32	541497	5949270	726	75	-55	21	19/11/2020
EMPRAB33	541478	5949289	737	44	-55	23	20/11/2020
EMPRAB34	541390	5949489	673	250	-50	19	20/11/2020
EMPRAB35	541390	5949490	672	60	-50	46	21/11/2020
EMPRAB36	541369	5949461	681	30	-45	24	21/11/2020
EMPRAB37	541351	5949445	682	240	-50	23	24/11/2020
EMPRAB38	541352	5949444	678	240	-50	22	24/11/2020
EMPRAB39	541299	5949383	683	60	-50	29	25/11/2020
EMPRAB40	541404	5949327	711	60	-50	18	25/11/2020
EMPRAB41	541394	5949470	682	90	-50	25	26/11/2020
EMPRAB42	541612	5949298	730	60	-50	36	27/11/2020

Table A: Drill hole collars Mitta Mitta: Sandy Creek

Hole ID	Azimuth (grid)	Inclination	Easting (MGA_55)	Northing (MGA_55)	RL (m)	Depth (m)	Date Drilled (Collared)	Prospect
SRERAB01	92	-50	512613	5977994	587	19	23/09/2020	Honeysuckle
SRERAB02	110	-40	512613	5977993	587	17	23/09/2020	Honeysuckle
SRERAB03	123	-79	512612	5977995	587	23	24/09/2020	Honeysuckle
SRERAB04	93	-79	512611	5977993	587	53	24/09/2020	Honeysuckle
SRERAB05	292	-50	512641	5977981	585	29	25/09/2020	Honeysuckle
SRERAB06	285	-60	512641	5977980	585	40	26/09/2020	Honeysuckle
SRERAB07	102	-30	512587	5977817	580	57	26/09/2020	IXL East
SRERAB08	144	-35	512591	5977819	580	35	27/09/2020	IXL East
SRERAB09	236	-40	512526	5977815	582	46	29/09/2020	IXL
SRERAB10	289	-80	512529	5977818	582	32	29/09/2020	IXL
SRERAB11	142	-65	512503	5977812	583	44	30/09/2020	IXL
SRERAB12	140	-45	512504	5977812	583	47	30/09/2020	IXL
SRERAB13	102	-35	512565	5977817	579	36	1/10/2020	IXL East
SRERAB14	57	-50	512774	5977187	676	27	2/10/2020	Morning Star
SRERAB15	68	-50	512784	5977191	677	20	2/10/2020	Morning Star
SRERAB16	23	-75	512792	5977193	677	23	2/10/2020	Morning Star
SRERAB17	332	-60	512799	5977190	677	15	3/10/2020	Morning Star
SRERAB18	100	-70	513368	5976792	833	17	9/10/2020	Shamrock
SRERAB19	76	-40	513365	5976792	832	66	10/10/2020	Shamrock
SRERAB20	93	-70	513369	5976788	834	6	11/10/2020	Shamrock
SRERAB21	120	-85	513369	5976788	834	36	11/10/2020	Shamrock
SRERAB22	113	-55	513368	5976786	835	11	11/10/2020	Shamrock
SRERAB23	100	-75	513368	5976787	835	39	12/10/2020	Shamrock
SRERAB24	360	90	513372	5976780	835	40	13/10/2020	Shamrock
SRERAB25	356	-70	513379	5976776	839	6	13/10/2020	Shamrock
SRERAB25B	336	-80	513378	5976777	838	7	13/10/2020	Shamrock
SRERAB26	332	-65	513389	5976796	848	21	14/10/2020	Shamrock
SRERAB27	332	-50	513388	5976797	848	13	14/10/2020	Shamrock
SRERAB28	332	-50	513389	5976790	848	24	14/10/2020	Shamrock
SRERAB29	122	-75	514264	5975020	828	32	16/10/2020	O'Dells
SRERAB30	127	-87	514262	5975022	828	6	16/10/2020	O'Dells
SRERAB30B	127	-88	514262	5975023	828	30	16/10/2020	O'Dells
SRERAB31	127	-88	514263	5975020	828	42	17/10/2020	O'Dells
SRERAB32	360	-90	514274	5975027	828	9	18/10/2020	O'Dells
SRERAB32B	360	-90	514272	5975027	828	40	18/10/2020	O'Dells
SRERAB33	150	-70	514275	5975028	828	21	18/10/2020	O'Dells
SRERAB34	335	-60	514270	5975033	828	42	19/10/2020	O'Dells
SRERAB35	10	-45	514273	5975037	828	45	19/10/2020	O'Dells
SRERAB36	345	-60	514263	5975031	828	34	20/10/2020	O'Dells
SRERAB37	358	-50	514264	5975029	828	24	20/10/2020	O'Dells
SRERAB38	233	-50	514262	5975025	828	44	21/10/2020	O'Dells
SRERAB39	294	-55	514262	5975022	827	2	21/10/2020	O'Dells
SRERAB39B	294	-55	514261	5975020	827	45	21/10/2020	O'Dells

Table B: Drill hole results Mitta Mitta: Granite Flat

Hole ID	Depth (m)	From (m)	To (m)	Significant Intersections	Comments
EMPRAB01	45	25	45	20m @ 0.21 g/t Au	Ended in mineralisation
		25	28	3m @ 9.24 ppm Ag; 3m @ 0.20% Zn	
		0	45	45m @ 0.12% Cu	
	including			8m @ 0.38% Cu	

EMPRAB02 17 7 17 10m @ 0.85 g/t Au & 10m @ Ended in mineralisation 11 ppm Ag 0 17 17m @ 0.15% Cu	
including 2 - 0 0 220/ Cu	
including 3m @ 0.32% Cu	
10 13 3m @ 496 ppm Mo & 3m @ 0.17% Pb	
EMPRAB03 39 7 27 20m @ 0.96 g/t Au Collared in mineralisation	
including 3m @ 3.46 g/t Au	
0 28 28m @ 0.35% Cu	
including 9m @ 0.73% Cu	
20 31 11m @ 0.30% Zn	
EMPRAB04 39 13 16 3m @ 4.1 g/t Au	
including 1m @ 8.45 g/t Au	
12 20 8m @ 0.21% Cu	
EMPRAB05 50 22 28 6m @ 0.25 g/t Au	
26 32 6m @ 0.14% Cu	
EMPRAB06 39 13 19 6m @ 0.91 g/t Au Ended in mineralisation	
11 21 10m @ 0.27% Cu	
including 2m @ 0.6% & 1m @ 0.43% Cu	
14 16 2m @ 15 ppm Ag	
EMPRAB07 39 21 25 4m @ 0.81 g/t Au	
including 1m @ 2.11g/t Au	
20 25 5m @ 40 ppm Ag	
including 1m @ 157 ppm Ag	
19 25 6m @ 1.38% Cu	
including 2m @ 3.5% Cu	
EMPRAB08 44 29 35 6m @ 0.4 g/t Au	
40 42 2m @ 0.6 g/t Au	
28 35 7m @ 0.28% Cu	
EMPRAB09 36 10 19 9m @ 0.17% Cu	
EMPRAB12 47 0 4 4m @ 0.22 g/t Au Collared & ended in minera	lisation
16 31 15m @ 0.26 g/t Au	
0 47 47m @ 0.1% Cu	
EMPRAB13 17 0 5 5m @ 0.3 g/t Au Collared in mineralisation	
0 12 12m @ 0.15% Cu	
EMPRAB14 48 37 43 5m @ 0.3 g/t Au	
36 43 6m @ 0.12% Cu	
EMPRAB15 29 0 4 4m @ 0.28 g/t Au Collared & ended in minera	lisation
23 29 6m @ 0.24 g/t Au	
0 29 29m @ 0.14% Cu	
EMPRAB16 38 0 38 38m @ 0.1% Cu Collared & ended in minera	lisation
EMPRAB17 51 0 36 36m @ 0.1% Cu Collared in mineralisation	
EMPRAB19 41 4 11 7m @ 0.65 g/t Au	

Hole ID	Depth	From	То	Significant Intersections	Comments
	(m)	(m)	(m)	3	
	including	2	12	2m @ 1.07 g/t Au	
		3	12	9m @ 0.20% Cu	Collared & ended in
EMPRAB25	50	0	50	50m @ 0.12% Cu	mineralisation
	including			14m @ 0.24% Cu	mineralisation
EMPRAB26	39	12	20	8m @ 0.27 g/t Au	Collared in mineralisation
2		0	39	39m @ 0.12% Cu	
	including			10m @ 0.2% Cu	
	<u> </u>				Ended in mineralisation.
EMPRAB28	47	28	47	19m @ 9.39 g/t Au, 19.2 ppm Ag & 0.61% Cu	Drilled at low angle to
				0.61% Cu	mineralisation
	including			3m @ 41.1 g/t Au, 92.9 ppm Ag &	
	including			1.52% Cu	
EMPRAB29	29	15	29	14m @ 1.1 g/t Au	Ended in mineralisation
	including			4m @ 3.23 g/t Au	
		10	19	9m @ 0.18% Cu	
EMPRAB31	27	25	27	2m @ 0.42 g/t Au	Ended in mineralisation
		25	27	2m @ 0.21% Cu	
EMPRAB32	21	12	21	9m @ 2.1 g/t Au	Ended in mineralisation
	including			3m @ 4.98 g/t Au	
		11	17	6m @ 0.27% Cu	
	including			1m @ 0.66% Cu	
EMPRAB33	23	18	23	5m @ 0.73 g/t Au	Ended in mineralisation
	including			1m @ 1.93 g/t Au	
		16	19	3m @ 0.17% Cu	
EMPRAB34	19	15	17	2m @ 0.94 g/t Au	
EMPRAB35	46	11	14	2m @ 3.81 g/t Au	
	including			1m @ 6.54 g/t Au	
		27	34	7m @ 1.3 g/t Au	
	including	27	24	4m @ 2.04 g/t Au	
ENADDA DOS	- 24	27	31	4m @ 0.21% Cu	Calle and in order and in order
EMPRAB36	24	0	11	11m @ 0.47 g/t Au	Collared in mineralisation
EMPRAB37	23	0	6	6m @ 0.7 g/t Au	Collared in mineralisation
		10	4.6	2m @ 1.62 g/t Au	
ENADDADAG	22	10	14	4m @ 0.44 g/t Au	Fadadia miassilisatas
EMPRAB38	22	19	22	3m @ 0.54 g/t Au	Ended in mineralisation
E14001000	7.0	19	22	3m @ 0.11% Cu	
EMPRAB39	30	24	26	2m @ 2.76 g/t Au & 2m @ 0.31% Cu	
ENADDADAG	including 10	11	12	1m @ 4.74 g/t Au & 1m @ 0.52% Cu	
EMPRAB40	18	11	13	2m @ 0.51 g/t Au	
		8	13	5m @ 0.12% Cu	Collared & ended in
EMPRAB41	25	0	25	25m @ 0.81 g/t Au	mineralisation
	including			1m @ 4.89 g/t Au	mmeransation
EMPRAB42	36	32	34	2m @ 1.13 g/t Au	
CITII TIMOTE	50	JE	54	ziii e zizo grena	

Hole ID	Depth (m)	From (m)	To (m)	Significant Intersections	Comments
		17	19	2m @ 0.13% Cu	17m @ 0.12% Cu with 11m internal dilution
		21	24	3m @ 0.28% Cu	
		31	34	3m @ 0.25% Cu	

Table B: Drill hole results Mitta Mitta: Sandy Creek

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB01	0	1	1	0.01
SRERAB01	1	2	1	0.02
SRERAB01	2	3	1	0.01
SRERAB01	3	4	1	<0.01
SRERAB01	4	5	1	0.01
SRERAB01	5	6	1	0.01
SRERAB01	6	7	1	0.01
SRERAB01	7	8	1	<0.01
SRERAB01	8	9	1	<0.01
SRERAB01	9	10	1	<0.01
SRERAB01	10	11	1	0.01
SRERAB01 SRERAB01	11	12	1	<0.01
SRERAB01	13	14	1	<0.01
SRERAB01	14	15	1	0.01
SRERAB01	15	16	1	0.01
SRERAB01	16	17	1	<0.01
SRERAB01	17	18	1	<0.01
SRERAB01	18	19	1	<0.01
SRERAB02	0	1	1	0.01
SRERAB02	1	2	1	0.01
SRERAB02	2	3	1	<0.01
SRERAB02	3	4	1	<0.01
SRERAB02	4	5	1	< 0.01
SRERAB02	5	6	1	< 0.01
SRERAB02	6	7	1	< 0.01
SRERAB02	7	8	1	<0.01
SRERAB02	8	9	1	< 0.01
SRERAB02	9	10	1	<0.01
SRERAB02	10	11	1	0.01
SRERAB02	11	12	1	0.16
SRERAB02	12	13	1	0.04
SRERAB02	13	14	1	0.01
SRERAB02	14	15	1	<0.01
SRERAB02	15	16	1	<0.01
SRERAB02	16	17	1	<0.01
SRERAB03	0	1	1	<0.01
SRERAB03	1	2	1	<0.01
SRERAB03	2	3	1	0.01
SRERAB03	3	4	1	0.02
SRERAB03	4	5	1	0.01
SRERAB03	5 6	- 6 - 7	1	< 0.01
SRERAB03	7	8	1	0.01
SRERAB03	_ /	8	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB03	8	9	1	0.86
SRERAB03	9	10	1	0.03
SRERAB03	11	12	1	0.03
SRERAB03	12	13	1	0.01
SRERAB03	13	14	1	0.01
SRERAB03	14	15	1	0.43
SRERAB03	15	16	1	0.26
SRERAB03	16	17	1	0.02
SRERAB03	17	18	1	0.01
SRERAB03	18	19	1	0.01
SRERAB03	19	20	1	< 0.01
SRERAB03	20	21	1	0.01
SRERAB03	21	22	1	0.03
SRERAB03	22	23	1	0.05
SRERAB04	0	1	1	0.01
SRERAB04	1	2	1	0.02
SRERAB04	2	3	1	0.01
SRERAB04	3	4	1	0.01
SRERAB04	4	5	1	0.01
SRERAB04	5	6	1	0.01
SRERAB04	6	7	1	<0.01
SRERAB04	7	8	1	<0.01
SRERAB04	8	9	1	0.01
SRERAB04	9	10	1	< 0.01
SRERAB04	10	11	1	0.02
SRERAB04	11	12	1	0.01
SRERAB04	12	13	1	0.01
SRERAB04	13	14	1	0.02
SRERAB04	14	15	1	<0.01
SRERAB04	15	16	1	<0.01
SRERAB04	16	17	1	<0.01
SRERAB04	17	18	1	<0.01
SRERAB04	18	19	1	0.01
SRERAB04	19	20	1	<0.01
SRERAB04	20	21	1	0.01
SRERAB04	21	22	1	0.01
SRERAB04	22	23	1	<0.01
SRERAB04	23	24	1	0.01
SRERAB04	24	25	1	<0.01
SRERAB04	25	26	1	0.01
SRERAB04	26	27	1	<0.01
SRERAB04	27	28	1	0.04
SRERAB04	28	29	1	0.01
SRERAB04	29	30	1	< 0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB04	30	31	1	<0.01
SRERAB04	31	32	1	<0.01
SRERAB04	32	33	1	<0.01
SRERAB04	33	34	1	<0.01
SRERAB04	34	35	1	<0.01
SRERAB04	35	36	1	<0.01
SRERAB04	36	37	1	<0.01
SRERAB04	37	38	1	0.03
SRERAB04	38	39	1	0.03
SRERAB04	39	40	1	0.01
SRERAB04	40	41	1	0.01
SRERAB04	41	42	1	0.07
SRERAB04	42	43	1	0.02
SRERAB04	43	44	1	0.1
SRERAB04	44	45	1	1.91
SRERAB04	45	46	1	0.42
SRERAB04	46	47	1	0.22
SRERAB04	47	48	1	0.04
SRERAB04	48	49	1	0.04
SRERAB04	49	50	1	0.02
SRERAB04	50	51	1	0.01
SRERAB04	51	52	1	0.04
SRERAB04	52	53	1	0.16
SRERAB05	0	1	1	<0.01
SRERAB05	1	2	1	<0.01
SRERAB05	2	3	1	<0.01
SRERAB05	3	4	1	0.01
SRERAB05	4	5	1	<0.01
SRERAB05	5	6	1	<0.01
SRERAB05	6	7	1	0.01
SRERAB05	7	8	1	<0.01
SRERAB05	8	9	1	<0.01
SRERAB05	9	10	1	<0.01
SRERAB05	10	11	1	<0.01
SRERAB05	11	12	1	0.01
SRERAB05	12	13	1	<0.01
SRERAB05	13	14	1	0.01
SRERAB05	14	15	1	<0.01
SRERAB05	15	16	1	<0.01
SRERAB05	16	17	1	<0.01
SRERAB05	17	18	1	<0.01
SRERAB05	18	19	1	<0.01
SRERAB05	19	20	1	<0.01
SRERAB05	20	21	1	0.03

	_		Interval	
Hole ID	From (m)	To (m)	Sampled	Au (ppm)
			(m)	
SRERAB05	21	22	1	<0.01
SRERAB05	22	23	1	<0.01
SRERAB05	23	24	1	0.51
SRERAB05	24	25	1	0.28
SRERAB05 SRERAB05	25 26	26 27	1	0.03
SRERAB05	27	28	1	<0.01
SRERAB06	0	1	1	V0.01
SRERAB06	1	2	1	<0.01
SRERAB06	2	3	1	<0.01
SRERAB06	3	4	1	< 0.01
SRERAB06	4	5	1	< 0.01
SRERAB06	5	6	1	< 0.01
SRERAB06	6	7	1	< 0.01
SRERAB06	7	8	1	<0.01
SRERAB06	8	9	1	<0.01
SRERAB06	9	10	1	<0.01
SRERAB06	10	11	1	<0.01
SRERAB06	11	12	1	<0.01
SRERAB06	12	13	1	0.02
SRERAB06	13	14	1	<0.01
SRERAB06	14 15	15	1	<0.01
SRERAB06 SRERAB06	16	16 17	1	<0.01
SRERAB06	17	18	1	<0.01
SRERAB06	18	19	1	<0.01
SRERAB06	19	20	1	<0.01
SRERAB06	20	21	1	<0.01
SRERAB06	21	22	1	< 0.01
SRERAB06	22	23	1	< 0.01
SRERAB06	23	24	1	< 0.01
SRERAB06	24	25	1	< 0.01
SRERAB06	25	26	1	0.01
SRERAB06	26	27	1	<0.01
SRERAB06	27	28	1	0.03
SRERAB06	28	29	1	0.01
SRERAB06	29	30	1	0.01
SRERAB06	30	31	1	<0.01
SRERAB06	31	32	1	0.62
SRERAB06 SRERAB06	32 33	33	1	1.33 3.87
	34	35	1	
SRERABO6	-		1	2.28
SRERAB06 SRERAB06	35 36	36 37	1	0.38
JIVENADO0	30	37	1	0.13

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB06	37	38	1	0.71
SRERAB06	38	39	1	1.03
SRERAB06	39	40	1	5.47
SRERAB07	0	1	1	0.01
SRERAB07	1	2	1	0.09
SRERAB07	2	3	1	0.04
SRERAB07	3	4	1	0.04
SRERAB07	4	5	1	0.01
SRERAB07	5	6	1	<0.01
SRERAB07	6	7	1	0.03
SRERAB07	7	8	1	0.03
SRERAB07	8	9	1	0.01
SRERAB07	9	10	1	0.01
SRERAB07	10	11	1	0.06
SRERAB07	11	12	1	0.01
SRERAB07	12	13	1	<0.01
SRERAB07	13	14	1	<0.01
SRERAB07 SRERAB07	14 15	15 16	1	0.01 <0.01
SRERAB07	16	17	1	<0.01
SRERAB07	17	18	1	<0.01
SRERAB07	18	19	1	<0.01
SRERAB07	19	20	1	<0.01
SRERAB07	20	21	1	0.01
SRERAB07	21	22	1	<0.01
SRERAB07	22	23	1	<0.01
SRERAB07	23	24	1	< 0.01
SRERAB07	24	25	1	< 0.01
SRERAB07	25	26	1	< 0.01
SRERAB07	26	27	1	0.02
SRERAB07	27	28	1	<0.01
SRERAB07	28	29	1	< 0.01
SRERAB07	29	30	1	<0.01
SRERAB07	30	31	1	<0.01
SRERAB07	31	32	1	< 0.01
SRERAB07	32	33	1	< 0.01
SRERAB07	33	34	1	<0.01
SRERAB07	34	35	1	0.01
SRERAB07	35	36	1	< 0.01
SRERAB07	36	37	1	<0.01
SRERAB07	37	38	1	<0.01
SRERAB07	38	39	1	<0.01
SRERAB07	39	40	1	<0.01
SRERAB07	40	41	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB07	41	42	1	<0.01
SRERAB07	42	43	1	< 0.01
SRERAB07	43	44	1	< 0.01
SRERAB07	44	45	1	<0.01
SRERAB07	45	46	1	<0.01
SRERAB07	46	47	1	<0.01
SRERAB07	47	48	1	<0.01
SRERAB07	48	49	1	<0.01
SRERAB07	49	50	1	0.05
SRERAB07	50	51	1	0.01
SRERAB07	51	52	1	<0.01
SRERAB07	52	53	1	<0.01
SRERAB07	53	54	1	<0.01
SRERAB07	54	55	1	<0.01
SRERAB07	55	56	1	<0.01
SRERAB07 SRERAB08	56	57	1	<0.01
	0	1	1	<0.01
SRERABO8 SRERABO8	2	2	1	<0.01
SRERABO8	3	4	1	<0.01
SRERABO8	4	5	1	<0.01
SRERAB08	5	6	1	<0.01
SRERAB08	6	7	1	<0.01
SRERAB08	7	8	1	<0.01
SRERAB08	8	9	1	<0.01
SRERAB08	9	10	1	<0.01
SRERAB08	10	11	1	< 0.01
SRERAB08	11	12	1	< 0.01
SRERAB08	12	13	1	< 0.01
SRERAB08	13	14	1	< 0.01
SRERAB08	14	15	1	< 0.01
SRERAB08	15	16	1	< 0.01
SRERAB08	16	17	1	0.02
SRERAB08	17	18	1	< 0.01
SRERAB08	18	19	1	< 0.01
SRERAB08	19	20	1	< 0.01
SRERAB08	20	21	1	<0.01
SRERAB08	21	22	1	<0.01
SRERAB08	22	23	1	0.01
SRERAB08	23	24	1	0.01
SRERAB08	24	25	1	0.01
SRERAB08	25	26	1	0.01
SRERAB08	26	27	1	0.01
SRERAB08	27	28	1	0.05

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB08	28	29	1	0.01
SRERAB08	29	30	1	0.01
SRERAB08	30	31	1	0.02
SRERAB08	31	32	1	0.02
SRERAB08	32	33	1	0.01
SRERAB08	33	34	1	0.01
SRERAB08	34	35	1	0.02
SRERAB09	0	1	1	0.01
SRERAB09	1	2	1	0.02
SRERAB09	2	3	1	0.01
SRERAB09	3	4	1	0.01
SRERAB09	4	5	1	0.02
SRERAB09	5	6	1	0.02
SRERAB09	6	7	1	0.01
SRERAB09	7	8	1	0.01
SRERAB09	8	9	1	0.01
SRERAB09	9	10	1	<0.01
SRERAB09	10 11	11	1	0.01
SRERAB09	12	13	1	<0.01
SRERAB09 SRERAB09	13	14	1	0.05
SRERAB09	14	15	1	0.03
SRERAB09	15	16	1	<0.01
SRERAB09	16	17	1	0.01
SRERAB09	17	18	1	<0.01
SRERAB09	18	19	1	0.01
SRERAB09	19	20	1	<0.01
SRERAB09	20	21	1	<0.01
SRERAB09	21	22	1	< 0.01
SRERAB09	22	23	1	< 0.01
SRERAB09	23	24	1	< 0.01
SRERAB09	24	25	1	< 0.01
SRERAB09	25	26	1	< 0.01
SRERAB09	26	27	1	< 0.01
SRERAB09	27	28	1	< 0.01
SRERAB09	28	29	1	< 0.01
SRERAB09	29	30	1	< 0.01
SRERAB09	30	31	1	< 0.01
SRERAB09	31	32	1	0.07
SRERAB09	32	33	1	0.13
SRERAB09	33	34	1	0.04
SRERAB09	34	35	1	< 0.01
SRERAB09	35	36	1	0.01
SRERAB09	36	37	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB09	37	38	1	<0.01
SRERAB09	38	39	1	<0.01
SRERAB09	39	40	1	<0.01
SRERAB09	40	41	1	<0.01
SRERAB09	41	42	1	< 0.01
SRERAB09	42	43	1	< 0.01
SRERAB09	43	44	1	0.01
SRERAB09	44	45	1	< 0.01
SRERAB09	45	46	1	0.01
SRERAB10	0	1	1	< 0.01
SRERAB10	1	2	1	< 0.01
SRERAB10	2	3	1	< 0.01
SRERAB10	3	4	1	< 0.01
SRERAB10	4	5	1	<0.01
SRERAB10	5	6	1	< 0.01
SRERAB10	6	7	1	< 0.01
SRERAB10	7	8	1	<0.01
SRERAB10	8	9	1	<0.01
SRERAB10	9	10	1	<0.01
SRERAB10	10	11	1	<0.01
SRERAB10	11	12	1	<0.01
SRERAB10	12	13	1	<0.01
SRERAB10	13	14	1	<0.01
SRERAB10	14	15	1	<0.01
SRERAB10	15	16	1	<0.01
SRERAB10	16	17	1	0.01
SRERAB10	17	18	1	<0.01
SRERAB10	18	19	1	<0.01
SRERAB10	19	20	1	<0.01
SRERAB10	20	21	1	0.01
SRERAB10	21	22	1	<0.01
SRERAB10	22	23	1	<0.01
SRERAB10	23	24	1	<0.01
SRERAB10	24	25	1	<0.01
SRERAB10	25	26	1	<0.01
SRERAB10	26	27	1	<0.01
SRERAB10	27	28	1	<0.01
SRERAB10	28	29	1	<0.01
SRERAB10	29	30	1	0.03
SRERAB10	30	31	1	0.02
SRERAB10	31	32	1	0.01
SRERAB11	0	1	1	<0.01
SRERAB11	1	2	1	<0.01
SRERAB11	2	3	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB11	3	4	1	0.01
SRERAB11	4	5	1	0.01
SRERAB11	5	6	1	0.02
SRERAB11	6	7	1	0.02
SRERAB11	7	8	1	0.02
SRERAB11	8	9	1	0.02
SRERAB11	9	10	1	0.01
SRERAB11	10	11	1	<0.01
SRERAB11	11	12	1	0.01
SRERAB11	12	13	1	0.23
SRERAB11	13	14	1	0.12
SRERAB11	14	15	1	0.01
SRERAB11	15	16	1	0.01
SRERAB11	16	17	1	0.01
SRERAB11	17	18	1	0.05
SRERAB11	18	19	1	0.12
SRERAB11	19	20	1	0.01
SRERAB11	20	21	1	0.01
SRERAB11	21	22	1	<0.01
SRERAB11	22	23	1	< 0.01
SRERAB11	23	24	1	< 0.01
SRERAB11	24	25	1	< 0.01
SRERAB11	25	26	1	< 0.01
SRERAB11	26	27	1	< 0.01
SRERAB11	27	28	1	< 0.01
SRERAB11	28	29	1	< 0.01
SRERAB11	29	30	1	< 0.01
SRERAB11	30	31	1	< 0.01
SRERAB11	31	32	1	< 0.01
SRERAB11	32	33	1	<0.01
SRERAB11	33	34	1	<0.01
SRERAB11	34	35	1	0.02
SRERAB11	35	36	1	< 0.01
SRERAB11	36	37	1	< 0.01
SRERAB11	37	38	1	<0.01
SRERAB11	38	39	1	0.06
SRERAB11	39	40	1	<0.01
SRERAB11	40	41	1	<0.01
SRERAB11	41	42	1	<0.01
SRERAB11	42	43	1	<0.01
SRERAB11	43	44	1	<0.01
SRERAB12	0	1	1	0.01
SRERAB12	1	2	1	<0.01
SRERAB12	2	3	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB12	3	4	1	0.01
SRERAB12	4	5	1	0.02
SRERAB12	5	6	1	0.01
SRERAB12	6	7	1	0.05
SRERAB12	7	8	1	0.04
SRERAB12	8	9	1	0.03
SRERAB12	9	10	1	0.04
SRERAB12	10	11	1	0.02
SRERAB12	11	12	1	0.03
SRERAB12	12	13	1	0.01
SRERAB12	13	14	1	0.03
SRERAB12	14	15	1	0.01
SRERAB12	15	16	1	0.01
SRERAB12	16	17	1	0.12
SRERAB12	17	18	1	0.07
SRERAB12	18	19	1	0.03
SRERAB12	19	20	1	0.28
SRERAB12	20	21	1	0.07
SRERAB12	21	22	1	0.03
SRERAB12	22	23	1	<0.01
SRERAB12	23	24	1	<0.01
SRERAB12	24	25	1	0.01
SRERAB12	25	26	1	0.01
SRERAB12	26	27	1	0.01
SRERAB12	27	28	1	0.01
SRERAB12	28	29	1	<0.01
SRERAB12	29	30	1	0.01
SRERAB12	30	31	1	<0.01
SRERAB12	31	32	1	<0.01
SRERAB12	32	33	1	<0.01
SRERAB12	33	34	1	<0.01
SRERAB12	34	35	1	<0.01
SRERAB12	35	36	1	<0.01
SRERAB12	36	37	1	<0.01
SRERAB12	37	38	1	<0.01
SRERAB12	38	39	1	<0.01
SRERAB12	39	40	1	<0.01
SRERAB12	40	41	1	<0.01
SRERAB12	41	42	1	<0.01
SRERAB12	42	43	1	<0.01
SRERAB12	43	44	1	<0.01
SRERAB12	44	45	1	<0.01
SRERAB12	45	46	1	0.02
SRERAB12	46	47	1	0.04

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB12	47	48	1	0.01
SRERAB13	0	1	1	< 0.01
SRERAB13	1	2	1	< 0.01
SRERAB13	2	3	1	< 0.01
SRERAB13	3	4	1	< 0.01
SRERAB13	4	5	1	< 0.01
SRERAB13	5	6	1	< 0.01
SRERAB13	6	7	1	< 0.01
SRERAB13	7	8	1	< 0.01
SRERAB13	8	9	1	0.01
SRERAB13	9	10	1	<0.01
SRERAB13	10	11	1	< 0.01
SRERAB13	11	12	1	0.01
SRERAB13	12	13	1	0.01
SRERAB13	13	14	1	< 0.01
SRERAB13	14	15	1	< 0.01
SRERAB13	15	16	1	< 0.01
SRERAB13	16	17	1	<0.01
SRERAB13	17	18	1	< 0.01
SRERAB13	18	19	1	<0.01
SRERAB13	19	20	1	< 0.01
SRERAB13	20	21	1	<0.01
SRERAB13	21	22	1	<0.01
SRERAB13	22	23	1	< 0.01
SRERAB13	23	24	1	<0.01
SRERAB13	24	25	1	< 0.01
SRERAB13	25	26	1	<0.01
SRERAB13	26	27	1	<0.01
SRERAB13	27	28	1	<0.01
SRERAB13	28	29	1	<0.01
SRERAB13	29	30	1	<0.01
SRERAB13	30	31	1	<0.01
SRERAB13	31	32	1	0.01
SRERAB13	32	33	1	<0.01
SRERAB13	33	34	1	< 0.01
SRERAB13	34	35	1	< 0.01
SRERAB13	35	36	1	<0.01
SRERAB14	0	1	1	0.01
SRERAB14	1	2	1	<0.01
SRERAB14	2	3	1	< 0.01
SRERAB14	3	4	1	< 0.01
SRERAB14	4	5	1	< 0.01
SRERAB14	5	6	1	<0.01
SRERAB14	6	7	1	< 0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB14	7	8	1	< 0.01
SRERAB14	8	9	1	< 0.01
SRERAB14	9	10	1	< 0.01
SRERAB14	10	11	1	0.03
SRERAB14	11	12	1	0.02
SRERAB14	12	13	1	< 0.01
SRERAB14	13	14	1	0.01
SRERAB14	14	15	1	<0.01
SRERAB14	15	16	1	<0.01
SRERAB14	16	17	1	<0.01
SRERAB14	17	18	1	0.01
SRERAB14	18	19	1	0.02
SRERAB14	19	20	1	<0.01
SRERAB14	20	21	1	<0.01
SRERAB14	21	22	1	<0.01
SRERAB14	22	23	1	<0.01
SRERAB14	23	24	1	<0.01
SRERAB14	24	25	1	<0.01
SRERAB14	25	26	1	<0.01
SRERAB14	26	27	1	< 0.01
SRERAB15	0	1	1	0.04
SRERAB15	1	2	1	0.01
SRERAB15	2	3	1	<0.01
SRERAB15	3	4	1	<0.01
SRERAB15	4	5	1	<0.01
SRERAB15	5	6	1	<0.01
SRERAB15	6	7	1	0.01
SRERAB15	7	8	1	<0.01
SRERAB15	9	_		0.01
SRERAB15	_	10	1	0.02
SRERAB15 SRERAB15	10 11	11	1	<0.01 0.01
	12		1	
SRERAB15 SRERAB15	13	13	1	0.01 <0.01
SRERAB15	14	15	1	<0.01
SRERAB15	15	16	1	0.05
SRERAB15	16	17	1	0.03
SRERAB15	17	18	1	0.04
SRERAB15	18	19	1	0.03
SRERAB15	19	20	1	0.02
SRERAB16	0	1	1	0.04
SRERAB16	1	2	1	<0.01
SRERAB16	2	3	1	<0.01
SRERAB16	3	4	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB16	4	5	1	< 0.01
SRERAB16	5	6	1	< 0.01
SRERAB16	6	7	1	< 0.01
SRERAB16	7	8	1	< 0.01
SRERAB16	8	9	1	< 0.01
SRERAB16	9	10	1	< 0.01
SRERAB16	10	11	1	0.01
SRERAB16	11	12	1	0.01
SRERAB16	12	13	1	< 0.01
SRERAB16	13	14	1	< 0.01
SRERAB16	14	15	1	< 0.01
SRERAB16	15	16	1	0.02
SRERAB16	16	17	1	0.12
SRERAB16	17	18	1	0.01
SRERAB16	18	19	1	0.02
SRERAB16	19	20	1	0.04
SRERAB16	20	21	1	0.04
SRERAB16	21	22	1	0.02
SRERAB16	22	23	1	0.02
SRERAB17	0	1	1	0.06
SRERAB17	1	2	1	0.02
SRERAB17	2	3	1	0.03
SRERAB17	3	4	1	0.01
SRERAB17	4	5	1	0.49
SRERAB17	5	6	1	0.02
SRERAB17	6	7	1	0.01
SRERAB17	7	8	1	<0.01
SRERAB17	8	9	1	0.01
SRERAB17	9	10	1	0.01
SRERAB17	10	11	1	0.01
SRERAB17	11	12	1	0.01
SRERAB17	12	13	1	0.04
SRERAB17	13	14	1	0.06
SRERAB17	14	15	1	0.11
SRERAB18	0	1	1	0.05
SRERAB18	1	2	1	0.08
SRERAB18	2	3	1	0.06
SRERAB18	3	4	1	0.02
SRERAB18	4	5	1	0.02
SRERAB18	5	6	1	0.03
SRERAB18	6	7	1	0.01
SRERAB18	7	8	1	<0.01
SRERAB18	8	9	1	<0.01
SRERAB18	9	10	1	0.01

			luta	
Hala ID	From	То	Interval	Au
Hole ID	(m)	(m)	Sampled (m)	(ppm)
SRERAB18	10	11	1	<0.01
SRERAB18	11	12	1	0.01
SRERAB18	12	13	1	< 0.01
SRERAB18	13	14	1	< 0.01
SRERAB18	14	15	1	< 0.01
SRERAB18	15	16	1	<0.01
SRERAB18	16	17	1	<0.01
SRERAB19	0	1	1	0.03
SRERAB19	1	2	1	0.02
SRERAB19	2	3	1	0.01
SRERAB19	3	4	1	0.01
SRERAB19	4	5	1	0.01
SRERAB19	5	6	1	<0.01
SRERAB19	6	7	1	<0.01
SRERAB19	7	8	1	0.01
SRERAB19	8	9	1	<0.01
SRERAB19	9	10	1	<0.01
SRERAB19	10	11	1	<0.01
SRERAB19	11	12	1	<0.01
SRERAB19 SRERAB19	12	13	1	
SRERAB19 SRERAB19	14	14 15	1	<0.01
SRERAB19	15	16	1	0.06
SRERAB19	16	17	1	0.67
SRERAB19	17	18	1	0.14
SRERAB19	18	19	1	0.35
SRERAB19	19	20	1	0.08
SRERAB19	20	21	1	0.02
SRERAB19	21	22	1	0.03
SRERAB19	22	23	1	0.01
SRERAB19	23	24	1	0.03
SRERAB19	24	25	1	0.02
SRERAB19	25	26	1	0.04
SRERAB19	26	27	1	0.02
SRERAB19	27	28	1	0.01
SRERAB19	28	29	1	0.01
SRERAB19	29	30	1	0.01
SRERAB19	30	31	1	0.02
SRERAB19	31	32	1	0.18
SRERAB19	32	33	1	0.02
SRERAB19	33	34	1	0.01
SRERAB19	34	35	1	0.07
SRERAB19	35	36	1	0.07
SRERAB19	36	37	1	0.01

Hole ID	From	To	Interval Sampled	Au (nnm)
	(m)	(m)	(m)	(ppm)
SRERAB19	37	38	1	0.01
SRERAB19	38	39	1	0.01
SRERAB19	39	40	1	0.01
SRERAB19	40	41	1	0.03
SRERAB19	41	42	1	0.01
SRERAB19	42	43	1	0.01
SRERAB19	43	44	1	0.09
SRERAB19	44	45	1	0.01
SRERAB19	45	46	1	0.01
SRERAB19	46	47	1	0.01
SRERAB19	47	48	1	0.01
SRERAB19	48	49	1	0.01
SRERAB19	49	50	1	0.01
SRERAB19	50	51	1	0.02
SRERAB19	51	52	1	0.01
SRERAB19	52	53	1	0.01
SRERAB19	53	54	1	0.02
SRERAB19	54	55	1	0.02
SRERAB19	55	56	1	0.01
SRERAB19	56	57	1	0.02
SRERAB19	57	58	1	0.01
SRERAB19	58	59	1	0.01
SRERAB19	59	60	1	0.01
SRERAB19	60	61	1	0.02
SRERAB19	61	62	1	0.01
SRERAB19	62	63	1	0.01
SRERAB19	63	64	1	0.01
SRERAB19	64	65	1	0.01
SRERAB19	65	66	1	0.01
SRERAB20	0	1	1	0.03
SRERAB20	1	2	1	0.03
SRERAB20	2	3	1	0.02
SRERAB20	3	4	1	0.03
SRERAB20	4	5	1	0.01
SRERAB20	5	6	1	0.01
SRERAB21	0	1	1	0.13
SRERAB21	1	2	1	0.02
SRERAB21	2	3	1	0.02
SRERAB21	3	4	1	0.06
SRERAB21	4	5	1	<0.01
SRERAB21	5	6	1	0.01
SRERAB21	6	7	1	0.01
SRERAB21	7	8	1	0.01
SRERAB21	8	9	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB21	9	10	1	0.01
SRERAB21	10	11	1	0.01
SRERAB21	11	12	1	0.01
SRERAB21	12	13	1	0.02
SRERAB21	13	14	1	0.01
SRERAB21	14	15	1	0.18
SRERAB21	15	16	1	0.18
SRERAB21	16	17	1	0.12
SRERAB21	17	18	1	0.02
SRERAB21	18	19	1	0.02
SRERAB21	19	20	1	0.01
SRERAB21	20	21	1	0.01
SRERAB21	21	22	1	0.02
SRERAB21	22	23	1	0.01
SRERAB21	23	24	1	< 0.01
SRERAB21	24	25	1	< 0.01
SRERAB21	25	26	1	< 0.01
SRERAB21	26	27	1	< 0.01
SRERAB21	27	28	1	0.01
SRERAB21	28	29	1	< 0.01
SRERAB21	29	30	1	0.02
SRERAB21	30	31	1	0.02
SRERAB21	31	32	1	< 0.01
SRERAB21	32	33	1	<0.01
SRERAB21	33	34	1	< 0.01
SRERAB21	34	35	1	< 0.01
SRERAB21	35	36	1	0.01
SRERAB22	0	1	1	0.06
SRERAB22	1	2	1	0.01
SRERAB22	2	3	1	0.01
SRERAB22	3	4	1	0.01
SRERAB22	4	5	1	< 0.01
SRERAB22	5	6	1	0.01
SRERAB22	6	7	1	0.01
SRERAB22	7	8	1	0.01
SRERAB22	8	9	1	0.12
SRERAB22	9	10	1	1.1
SRERAB22	10	11	1	0.42
SRERAB23	0	1	1	0.04
SRERAB23	1	2	1	0.01
SRERAB23	2	3	1	0.01
SRERAB23	3	4	1	<0.01
SRERAB23	4	5	1	<0.01
SRERAB23	5	6	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB23	6	7	1	0.03
SRERAB23	7	8	1	0.04
SRERAB23	8	9	1	0.02
SRERAB23	9	10	1	0.02
SRERAB23	10	11	1	0.02
SRERAB23	11	12	1	0.01
SRERAB23	12	13	1	0.02
SRERAB23	13	14	1	0.03
SRERAB23	14	15	1	0.03
SRERAB23	15	16	1	0.01
SRERAB23	16	17	1	0.06
SRERAB23	17	18	1	0.09
SRERAB23	18	19	1	0.15
SRERAB23	19	20	1	3.56
SRERAB23	20	21	1	0.39
SRERAB23	21	22	1	0.32
SRERAB23	22	23	1	0.06
SRERAB23	23 24	24	1	0.04
SRERAB23		25	1	0.03
SRERAB23 SRERAB23	25 26	26 27	1	0.02
SRERAB23	27	28	1	0.01
SRERAB23	28	29	1	0.01
SRERAB23	29	30	1	<0.01
SRERAB23	30	31	1	0.02
SRERAB23	31	32	1	< 0.01
SRERAB23	32	33	1	0.01
SRERAB23	33	34	1	0.02
SRERAB23	34	35	1	0.01
SRERAB23	35	36	1	0.01
SRERAB23	36	37	1	0.01
SRERAB23	37	38	1	0.01
SRERAB23	38	39	1	0.01
SRERAB24	0	1	1	0.1
SRERAB24	1	2	1	0.02
SRERAB24	2	3	1	0.02
SRERAB24	3	4	1	0.02
SRERAB24	4	5	1	0.01
SRERAB24	5	6	1	0.01
SRERAB24	6	7	1	0.01
SRERAB24	7	8	1	0.01
SRERAB24	8	9	1	0.01
SRERAB24	9	10	1	0.01
SRERAB24	10	11	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB24	11	12	1	0.17
SRERAB24	12	13	1	0.14
SRERAB24	13	14	1	1.86
SRERAB24	14	15	1	1.81
SRERAB24	15	16	1	0.36
SRERAB24	16	17	1	0.08
SRERAB24	17	18	1	0.06
SRERAB24	18	19	1	0.48
SRERAB24	19	20	1	0.05
SRERAB24	20	21	1	0.07
SRERAB24	21	22	1	0.1
SRERAB24	22	23	1	0.03
SRERAB24	23	24	1	0.04
SRERAB24	24	25	1	0.26
SRERAB24	25	26	1	0.14
SRERAB24	26	27	1	0.08
SRERAB24	27	28	1	0.08
SRERAB24	28	29	1	0.05
SRERAB24	29	30	1	0.38
SRERAB24	30	31	1	0.05
SRERAB24	31	32	1	0.03
SRERAB24	32	33	1	0.02
SRERAB24	33	34	1	0.02
SRERAB24	34	35	1	0.02
SRERAB24	35	36	1	0.01
SRERAB24	36	37	1	0.03
SRERAB24	37	38	1	0.02
SRERAB24	38	39	1	0.04
SRERAB24	39	40	1	0.06
SRERAB25	0	1	1	0.03
SRERAB25	1	2	1	0.02
SRERAB25	2	3	1	0.02
SRERAB25	3	4	1	0.01
SRERAB25B	0	1	1	0.01
SRERAB25B	1	2	1	0.02
SRERAB25B	2	3	1	0.02
SRERAB25B	3	4	1	0.01
SRERAB25B	4	5	1	0.01
SRERAB25B	5	6	1	< 0.01
SRERAB25B	6	7	1	< 0.01
SRERAB25B	7	8	1	< 0.01
SRERAB26	0	1	1	
SRERAB26	1	2	1	0.03
SRERAB26	2	3	1	0.01

SRERAB26 3 4 1 <0.01 SRERAB26 4 5 1 0.01 SRERAB26 6 7 1 0.01 SRERAB26 6 7 1 0.01 SRERAB26 7 8 1 0.01 SRERAB26 8 9 1 0.01 SRERAB26 9 10 1 <0.01 SRERAB26 10 11 1 0.01 SRERAB26 11 12 1 0.02 SRERAB26 12 13 1 0.01 SRERAB26 13 14 1 0.03 SRERAB26 14 15 1 0.11 SRERAB26 15 16 1 0.05 SRERAB26 16 17 1 0.01 SRERAB26 17 18 1 0.01 SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01 SRERAB26 19 10 0.02 SRERAB27 0 1 1 0.02 SRERAB27 1 2 1 0.02 SRERAB27 1 0.01 SRERAB27 3 4 1 0.01 SRERAB27 4 5 1 0.01 SRERAB27 6 7 1 0.01 SRERAB27 7 8 1 0.01 SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.02 SRERAB27 1 0.02 SRERAB27 1 0.01 SRERAB27 1 0.02 SRERAB27 1 0.02 SRERAB27 1 0.02 SRERAB27 1 0.03 SRERAB27 1 0.00 SRERAB27 1 0.00 SRERAB27 1 0.01 SRERAB27 1 0.00 SRERAB27 1 0.00 SRERAB27 1 0.00 SRERAB27 1 0.00 SRERAB27 1 0 1 0.00 SRERAB28 1 0 1 0.00 SRERAB28 1 0 0.00 SRERAB28 1 0 0.01 SRERAB28 8 9 1 0.001 SRERAB28 8 9 1 0.001 SRERAB28 9 10 1 0.001 SRERAB28 8 9 1 0.001 SRERAB28 8 9 1 0.001 SRERAB28 9 10 1 0.001 SRERAB28 8 9 1 0.001 SRERAB28 9 10 1 0.001 SRERAB28 8 9 1 0.001 SRERAB28 9 10 1 0.001 SRERAB28 10 11 1 0.002	Hole ID	From	То	Interval Sampled	Au
SRERAB26 3 4 1 <0.01 SRERAB26 4 5 1 0.01 SRERAB26 5 6 1 0.01 SRERAB26 6 7 1 0.01 SRERAB26 7 8 1 0.01 SRERAB26 8 9 1 0.01 SRERAB26 9 10 1 <0.01 SRERAB26 10 11 1 0.01 SRERAB26 11 12 1 0.02 SRERAB26 12 13 1 0.01 SRERAB26 12 13 1 0.01 SRERAB26 13 14 1 0.03 SRERAB26 13 14 1 0.03 SRERAB26 15 16 1 0.01 SRERAB26 15 16 1 0.01 SRERAB26 17 18 1 0.01 SRERAB26	Hole ID	(m)	(m)		(ppm)
SRERAB26 5 6 1 0.01 SRERAB26 6 7 1 0.01 SRERAB26 7 8 1 0.01 SRERAB26 8 9 1 0.01 SRERAB26 9 10 1 <0.01 SRERAB26 10 11 1 0.01 SRERAB26 11 12 1 0.02 SRERAB26 12 13 1 0.01 SRERAB26 12 13 1 0.01 SRERAB26 14 15 1 0.11 SRERAB26 14 15 1 0.01 SRERAB26 15 16 1 0.05 SRERAB26 17 18 1 0.01 SRERAB26 19 20 1 <0.01 SRERAB26 19 20 1 <0.02 SRERAB27 0 1 1 0.02 SRERAB27	SRERAB26	3	4		< 0.01
SRERAB26 6 7 1 0.01 SRERAB26 7 8 1 0.01 SRERAB26 8 9 1 0.01 SRERAB26 9 10 1 <0.01	SRERAB26	4	5	1	0.01
SRERAB26 7 8 1 0.01 SRERAB26 8 9 1 0.01 SRERAB26 9 10 1 <0.01	SRERAB26	5	6	1	0.01
SRERAB26 8 9 1 0.01 SRERAB26 9 10 1 <0.01	SRERAB26	6	7	1	0.01
SRERAB26 9 10 1 <0.01		7	8	1	0.01
SRERAB26 10 11 1 0.01 SRERAB26 11 12 1 0.02 SRERAB26 12 13 1 0.01 SRERAB26 13 14 1 0.03 SRERAB26 14 15 1 0.11 SRERAB26 15 16 1 0.05 SRERAB26 16 17 1 0.01 SRERAB26 16 17 1 0.01 SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01	SRERAB26	8	9	1	0.01
SRERAB26 11 12 1 0.02 SRERAB26 12 13 1 0.01 SRERAB26 13 14 1 0.03 SRERAB26 14 15 1 0.11 SRERAB26 15 16 1 0.05 SRERAB26 16 17 1 0.01 SRERAB26 16 17 1 0.01 SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01		-		_	
SRERAB26 12 13 1 0.01 SRERAB26 13 14 1 0.03 SRERAB26 14 15 1 0.11 SRERAB26 15 16 1 0.05 SRERAB26 16 17 1 0.01 SRERAB26 16 17 1 0.01 SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01					
SRERAB26 13 14 1 0.03 SRERAB26 14 15 1 0.11 SRERAB26 15 16 1 0.05 SRERAB26 16 17 1 0.01 SRERAB26 17 18 1 0.01 SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01				_	
SRERAB26 14 15 1 0.11 SRERAB26 15 16 1 0.05 SRERAB26 16 17 1 0.01 SRERAB26 17 18 1 0.01 SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01					
SRERAB26 15 16 1 0.05 SRERAB26 16 17 1 0.01 SRERAB26 17 18 1 0.01 SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01					
SRERAB26 16 17 1 0.01 SRERAB26 17 18 1 0.01 SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01					
SRERAB26 17 18 1 0.01 SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01					
SRERAB26 18 19 1 0.02 SRERAB26 19 20 1 <0.01					
SRERAB26 19 20 1 <0.01					
SRERAB26 20 21 1 0.02 SRERAB27 0 1 1 0.03 SRERAB27 1 2 1 0.02 SRERAB27 2 3 1 0.02 SRERAB27 3 4 1 0.01 SRERAB27 4 5 1 0.02 SRERAB27 5 6 1 0.01 SRERAB27 6 7 1 0.01 SRERAB27 7 8 1 0.01 SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 <td></td> <td></td> <td></td> <td></td> <td></td>					
SRERAB27 0 1 1 0.03 SRERAB27 1 2 1 0.02 SRERAB27 2 3 1 0.02 SRERAB27 3 4 1 0.01 SRERAB27 4 5 1 0.02 SRERAB27 5 6 1 0.01 SRERAB27 6 7 1 0.01 SRERAB27 7 8 1 0.01 SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB28 0 1 1 0.05 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.02 SRERAB28 3				_	
SRERAB27 1 2 1 0.02 SRERAB27 2 3 1 0.02 SRERAB27 3 4 1 0.01 SRERAB27 4 5 1 0.02 SRERAB27 5 6 1 0.01 SRERAB27 6 7 1 0.01 SRERAB27 7 8 1 0.01 SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 4 <td></td> <td></td> <td></td> <td>_</td> <td></td>				_	
SRERAB27 2 3 1 0.02 SRERAB27 3 4 1 0.01 SRERAB27 4 5 1 0.02 SRERAB27 5 6 1 0.01 SRERAB27 6 7 1 0.01 SRERAB27 7 8 1 0.01 SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB28 0 1 1 0.09 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 5				_	
SRERAB27 3 4 1 0.01 SRERAB27 4 5 1 0.02 SRERAB27 5 6 1 0.01 SRERAB27 6 7 1 0.01 SRERAB27 7 8 1 0.01 SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 1 2 1 0.02 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 5 6 1 0.04 SRERAB28 6				_	
SRERAB27 4 5 1 0.02 SRERAB27 5 6 1 0.01 SRERAB27 6 7 1 0.01 SRERAB27 7 8 1 0.01 SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 0 1 1 0.09 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.04 SRERAB28 5 6 1 0.01 SRERAB28 7					
SRERAB27 5 6 1 0.01 SRERAB27 6 7 1 0.01 SRERAB27 7 8 1 0.01 SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7			_		
SRERAB27 6 7 1 0.01 SRERAB27 7 8 1 0.01 SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 9					
SRERAB27 8 9 1 0.03 SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 9 1 <0.01	SRERAB27	6	7	1	
SRERAB27 9 10 1 0.09 SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 9 1 <0.01	SRERAB27	7	8	1	0.01
SRERAB27 10 11 1 0.74 SRERAB27 11 12 1 0.34 SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 9 1 <0.01	SRERAB27	8	9	1	0.03
SRERAB27 11 12 1 0.34 SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01	SRERAB27	9	10	1	0.09
SRERAB27 12 13 1 0.89 SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01	SRERAB27	10	11	1	0.74
SRERAB28 0 1 1 0.05 SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01	SRERAB27	11	12	1	0.34
SRERAB28 1 2 1 0.09 SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01	SRERAB27	12	13	1	0.89
SRERAB28 2 3 1 0.02 SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01		0			
SRERAB28 3 4 1 0.02 SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01					
SRERAB28 4 5 1 0.03 SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01					
SRERAB28 5 6 1 0.04 SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01					
SRERAB28 6 7 1 0.12 SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01					
SRERAB28 7 8 1 0.01 SRERAB28 8 9 1 <0.01		_			
SRERAB28 8 9 1 <0.01 SRERAB28 9 10 1 0.01 SRERAB28 10 11 1 0.02					
SRERAB28 9 10 1 0.01 SRERAB28 10 11 1 0.02					
SRERAB28 10 11 1 0.02					
3NENADZO 11 12 1 0.02					
SRERAB28 12 13 1 0.01					

			Interval	
Hole ID	From	To	Sampled	Au (nnm)
	(m)	(m)	(m)	(ppm)
SRERAB28	13	14	1	<0.01
SRERAB28	14	15	1	0.01
SRERAB28	15	16	1	0.01
SRERAB28	16	17	1	0.03
SRERAB28	17	18	1	0.64
SRERAB28	18	19	1	0.5
SRERAB28	19	20	1	0.2
SRERAB28	20	21		0.11
SRERAB28 SRERAB28	22	23	1	0.12
SRERAB28	23	24	1	0.04
SRERAB29	0	1	1	0.03
SRERAB29	1	2	1	0.01
SRERAB29	2	3	1	0.02
SRERAB29	3	4	1	0.02
SRERAB29	4	5	1	<0.01
SRERAB29	5	6	1	< 0.01
SRERAB29	6	7	1	< 0.01
SRERAB29	7	8	1	< 0.01
SRERAB29	8	9	1	0.01
SRERAB29	9	10	1	< 0.01
SRERAB29	10	11	1	< 0.01
SRERAB29	11	12	1	< 0.01
SRERAB29	12	13	1	< 0.01
SRERAB29	13	14	1	< 0.01
SRERAB29	14	15	1	<0.01
SRERAB29	15	16	1	<0.01
SRERAB29	16	17	1	0.02
SRERAB29	17	18	1	< 0.01
SRERAB29	18	19	1	<0.01
SRERAB29	19	20	1	<0.01
SRERAB29	20	21	1	0.01
SRERAB29	21			<0.01
SRERAB29 SRERAB29	22	23	1	<0.01 <0.01
SRERAB29 SRERAB29	24 25	25 26	1	<0.01
SRERAB29	26	27	1	<0.01
SRERAB29	27	28	1	<0.01
SRERAB29	28	29	1	<0.01
SRERAB29	29	30	1	<0.01
SRERAB29	30	31	1	<0.01
SRERAB29	31	32	1	< 0.01
SRERAB30	0	1	1	0.01

Hole ID	From	To	Interval Sampled	Au
	(m)	(m)	(m)	(ppm)
SRERAB30	1	2	1	0.01
SRERAB30	2	3	1	< 0.01
SRERAB30	3	4	1	< 0.01
SRERAB30	4	5	1	<0.01
SRERAB30	5	6	1	<0.01
SRERAB30B	0	1	1	<0.01
SRERAB30B	1	2	1	0.01
SRERAB30B	2	3	1	0.01
SRERAB30B	3	4	1	0.01
SRERAB30B	4	5	1	0.01
SRERAB30B	5	6	1	0.01
SRERAB30B	6	7	1	0.01
SRERAB30B	7	8	1	<0.01
SRERAB30B	8	9	1	0.01
SRERAB30B	9	10	1	< 0.01
SRERAB31	0	1	1	0.01
SRERAB31	1	2	1	0.01
SRERAB31	2	3	1	0.01
SRERAB31	3	4	1	0.02
SRERAB31	4	5	1	< 0.01
SRERAB31	5	6	1	0.02
SRERAB31	6	7	1	0.01
SRERAB31	7	8	1	0.01
SRERAB31	8	9	1	0.01
SRERAB31	9	10	1	< 0.01
SRERAB31	10	11	1	<0.01
SRERAB31	11	12	1	< 0.01
SRERAB31	12	13	1	<0.01
SRERAB31	13	14	1	< 0.01
SRERAB31	14	15	1	<0.01
SRERAB31	15	16	1	<0.01
SRERAB31	16	17	1	<0.01
SRERAB31	17	18	1	<0.01
SRERAB31	18	19	1	0.01
SRERAB31	19	20	1	0.01
SRERAB31	20	21	1	0.01
SRERAB31	21	22	1	0.01
SRERAB31	22	23	1	0.01
SRERAB31	23	24	1	0.01
SRERAB31	24	25	1	0.03
SRERAB31	25	26	1	0.02
SRERAB31	26	27	1	0.02
SRERAB31	27	28	1	<0.01
SRERAB31	28	29	1	< 0.01

	From	То	Interval	Au
Hole ID	(m)	(m)	Sampled (m)	(ppm)
SRERAB31	29	30	1	<0.01
SRERAB31	30	31	1	0.01
SRERAB31	31	32	1	< 0.01
SRERAB31	32	33	1	<0.01
SRERAB31	33	34	1	< 0.01
SRERAB31	34	35	1	<0.01
SRERAB31	35	36	1	< 0.01
SRERAB31	36	37	1	<0.01
SRERAB31	37	38	1	< 0.01
SRERAB31	38	39	1	<0.01
SRERAB31	39	40	1	<0.01
SRERAB31	40	41	1	<0.01
SRERAB32	0	1	1	0.11
SRERAB32	1	2	1	0.01
SRERAB32	2	3	1	0.01
SRERAB32	3	4	1	<0.01
SRERAB32	4	5	1	<0.01
SRERAB32	5 6	7	1	<0.01
SRERAB32	7	8	1	0.01
SRERAB32 SRERAB32	8	9	1	<0.01
SRERAB32B	0	1	1	0.1
SRERAB32B	1	2	1	0.02
SRERAB32B	2	3	1	0.02
SRERAB32B	3	4	1	0.02
SRERAB32B	4	5	1	0.02
SRERAB32B	5	6	1	0.02
SRERAB32B	6	7	1	0.01
SRERAB32B	7	8	1	0.02
SRERAB32B	8	9	1	0.01
SRERAB32B	9	10	1	0.02
SRERAB32B	10	11	1	0.01
SRERAB32B	11	12	1	0.01
SRERAB32B	12	13	1	0.01
SRERAB32B	13	14	1	0.01
SRERAB32B	14	15	1	0.03
SRERAB32B	15	16	1	0.01
SRERAB32B	16	17	1	0.01
SRERAB32B	17	18	1	0.2
SRERAB32B	18	19	1	6.96
SRERAB32B	19	20	1	15.75
SRERAB32B	20	21	1	3.7
SRERAB32B	21	22	1	1.69
SRERAB32B	22	23	1	0.65

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB32B	23	24	1	0.13
SRERAB32B	24	25	1	0.17
SRERAB32B	25	26	1	0.1
SRERAB32B	26	27	1	0.33
SRERAB32B	27	28	1	0.11
SRERAB32B	28	29	1	0.05
SRERAB32B	29	30	1	0.08
SRERAB32B	30	31	1	0.11
SRERAB32B	31	32	1	0.04
SRERAB32B	32	33	1	0.04
SRERAB32B	33	34	1	0.05
SRERAB32B	34	35	1	0.04
SRERAB32B	35	36	1	0.05
SRERAB32B	36	37	1	0.04
SRERAB32B	37	38	1	0.05
SRERAB32B	38	39	1	0.04
SRERAB32B	39	40	1	0.05
SRERAB33	0	1	1	0.01
SRERAB33	1	2	1	< 0.01
SRERAB33	2	3	1	0.01
SRERAB33	3	4	1	0.01
SRERAB33	4	5	1	0.02
SRERAB33	5	6	1	0.01
SRERAB33	6	7	1	0.01
SRERAB33	7	8	1	< 0.01
SRERAB33	8	9	1	0.01
SRERAB33	9	10	1	0.01
SRERAB33	10	11	1	0.08
SRERAB33	11	12	1	0.28
SRERAB33	12	13	1	0.05
SRERAB33	13	14	1	0.03
SRERAB33	14	15	1	0.04
SRERAB33	15	16	1	0.02
SRERAB33	16	17	1	0.01
SRERAB33	17	18	1	0.01
SRERAB33	18	19	1	0.01
SRERAB33	19	20	1	0.01
SRERAB33	20	21	1	0.02
SRERAB34	0	1	1	0.19
SRERAB34	1	2	1	0.08
SRERAB34	2	3	1	0.04
SRERAB34	3	4	1	0.02
SRERAB34	4	5	1	0.01
SRERAB34	5	6	1	0.01

	From	То	Interval	Au
Hole ID	(m)	(m)	Sampled (m)	(ppm)
SRERAB34	6	7	1	0.01
SRERAB34	7	8	1	0.01
SRERAB34	8	9	1	0.01
SRERAB34	9	10	1	0.01
SRERAB34	10	11	1	< 0.01
SRERAB34	11	12	1	< 0.01
SRERAB34	12	13	1	< 0.01
SRERAB34	13	14	1	< 0.01
SRERAB34	14	15	1	< 0.01
SRERAB34	15	16	1	< 0.01
SRERAB34	16	17	1	< 0.01
SRERAB34	17	18	1	< 0.01
SRERAB34	18	19	1	< 0.01
SRERAB34	19	20	1	< 0.01
SRERAB34	20	21	1	< 0.01
SRERAB34	21	22	1	< 0.01
SRERAB34	22	23	1	< 0.01
SRERAB34	23	24	1	< 0.01
SRERAB34	24	25	1	< 0.01
SRERAB34	25	26	1	< 0.01
SRERAB34	26	27	1	0.01
SRERAB34	27	28	1	0.13
SRERAB34	28	29	1	0.05
SRERAB34	29	30	1	0.01
SRERAB34	30	31	1	0.01
SRERAB34	31	32	1	< 0.01
SRERAB34	32	33	1	< 0.01
SRERAB34	33	34	1	< 0.01
SRERAB34	34	35	1	< 0.01
SRERAB34	35	36	1	< 0.01
SRERAB34	36	37	1	< 0.01
SRERAB34	37	38	1	< 0.01
SRERAB34	38	39	1	< 0.01
SRERAB34	39	40	1	0.01
SRERAB34	40	41	1	< 0.01
SRERAB34	41	42	1	< 0.01
SRERAB35	0	1	1	0.03
SRERAB35	1	2	1	0.01
SRERAB35	2	3	1	0.01
SRERAB35	3	4	1	0.01
SRERAB35	4	5	1	0.01
SRERAB35	5	6	1	< 0.01
SRERAB35	6	7	1	< 0.01
SRERAB35	7	8	1	< 0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB35	8	9	1	0.01
SRERAB35	9	10	1	< 0.01
SRERAB35	10	11	1	< 0.01
SRERAB35	11	12	1	< 0.01
SRERAB35	12	13	1	< 0.01
SRERAB35	13	14	1	< 0.01
SRERAB35	14	15	1	< 0.01
SRERAB35	15	16	1	< 0.01
SRERAB35	16	17	1	< 0.01
SRERAB35	17	18	1	< 0.01
SRERAB35	18	19	1	< 0.01
SRERAB35	19	20	1	< 0.01
SRERAB35	20	21	1	< 0.01
SRERAB35	21	22	1	< 0.01
SRERAB35	22	23	1	< 0.01
SRERAB35	23	24	1	< 0.01
SRERAB35	24	25	1	0.01
SRERAB35	25	26	1	< 0.01
SRERAB35	26	27	1	0.09
SRERAB35	27	28	1	4.99
SRERAB35	28	29	1	2.33
SRERAB35	29	30	1	0.96
SRERAB35	30	31	1	0.32
SRERAB35	31	32	1	0.13
SRERAB35	32	33	1	0.05
SRERAB35	33	34	1	0.04
SRERAB35	34	35	1	0.02
SRERAB35	35	36	1	0.17
SRERAB35	36	37	1	0.01
SRERAB35	37	38	1	0.07
SRERAB35	38	39	1	<0.01
SRERAB35	39	40	1	0.02
SRERAB35	40	41	1	0.03
SRERAB35	41	42	1	0.01
SRERAB35	42	43	1	0.01
SRERAB35	43	44	1	0.03
SRERAB35	44	45	1	<0.01
SRERAB36	0	1	1	NSS
SRERAB36	1	2	1	0.24
SRERAB36	2	3	1	0.13
SRERAB36	3	4	1	0.09
SRERAB36	4	5	1	0.04
SRERAB36	5	6	1	0.02
SRERAB36	6	7	1	0.02

			Intomol	
Hole ID	From (m)	To (m)	Interval Sampled	Au (ppm)
			(m)	
SRERAB36	7	8	1	0.01
SRERAB36	8	9	1	<0.01
SRERAB36	9	10	1	0.01
SRERAB36	10	11	1	0.01
SRERAB36	11	12	1	0.02
SRERAB36	12	13	1	0.02
SRERAB36	13	14	1	0.01
SRERAB36	14	15	1	0.02
SRERAB36	15	16	1	0.01
SRERAB36	16	17	1	0.01
SRERAB36	17	18	1	0.02
SRERAB36	18	19	1	0.01
SRERAB36	19	20	1	0.01
SRERAB36	20	21	1	0.01
SRERAB36	21	22	1	<0.01
SRERAB36	22	23	1	0.02
SRERAB36	23	24	1	0.01
SRERAB36	24	25	1	0.01
SRERAB36	25	26	1	0.01
SRERAB36	26	27	1	<0.01
SRERAB36 SRERAB36	27 28	28 29	1	<0.01
SRERAB36	29	30	1	0.02
	_		1	
SRERAB36 SRERAB36	30 31	31	1	0.02
SRERAB36	32	33	1	0.01
SRERAB36	33	34	1	0.01
SRERAB37	0	1	1	0.16
SRERAB37	1	2	1	0.10
SRERAB37	2	3	1	2.2
SRERAB37	3	4	1	15.5
SRERAB37	4	5	1	1.14
SRERAB37	5	6	1	0.13
SRERAB37	6	7	1	0.84
SRERAB37	7	8	1	0.19
SRERAB37	8	9	1	0.04
SRERAB37	9	10	1	0.05
SRERAB37	10	11	1	0.05
SRERAB37	11	12	1	0.02
SRERAB37	12	13	1	0.11
SRERAB37	13	14	1	0.02
SRERAB37	14	15	1	0.03
SRERAB37	15	16	1	0.03
SRERAB37	16	17	1	0.01

Hole ID	From (m)	To (m)	Interval Sampled	Au (ppm)
			(m)	
SRERAB37	17	18	1	0.1
SRERAB37	18	19	1	0.04
SRERAB37	19	20	1	0.06
SRERAB37	20	21	1	0.06
SRERAB37	21	22	1	0.69
SRERAB37 SRERAB37	22	23	1	0.19
SRERAB38 SRERAB38	0	2	1	0.03
SRERAB38	2	3	1	0.02
SRERAB38	3	4	1	0.01
SRERAB38	4	5	1	0.02
SRERAB38	5	6	1	0.01
SRERAB38	6	7	1	0.01
SRERAB38	7	8	1	0.01
SRERAB38	8	9	1	0.01
SRERAB38	9	10	1	0.01
SRERAB38	10	11	1	0.01
SRERAB38	11	12	1	0.01
SRERAB38	12	13	1	0.01
SRERAB38	13	14	1	0.01
SRERAB38	14	15	1	0.01
SRERAB38	15	16	1	0.01
SRERAB38	16	17	1	0.01
SRERAB38	17	18	1	0.01
SRERAB38	18	19	1	0.01
SRERAB38	19	20	1	0.01
SRERAB38	20	21	1	0.01
SRERAB38	21	22	1	0.01
SRERAB38	22	23	1	0.01
SRERAB38	23	24	1	0.01
SRERAB38	24	25	1	0.01
SRERAB38	25	26	1	0.02
SRERAB38	26	27	1	0.01
SRERAB38	27	28	1	0.01
SRERAB38	28	29	1	0.01
SRERAB38	29	30	1	0.01
SRERAB38	30	31	1	0.01
SRERAB38	31	32	1	0.01
SRERAB38	32	33	1	0.01
SRERAB38	33	34	1	0.01
SRERAB38	34	35	1	0.01
SRERAB38	35	36	1	0.01
SRERAB38	36	37	1	0.01

	F====	т.	Interval	Au
Hole ID	From (m)	To (m)	Sampled	(ppm)
SRERAB38	37	38	(m) 1	0.01
SRERAB38	38	39	1	0.01
SRERAB38	39	40	1	0.01
SRERAB38	40	41	1	<0.01
SRERAB38	41	42	1	< 0.01
SRERAB38	42	43	1	0.01
SRERAB38	43	44	1	0.01
SRERAB38	0	1	1	0.04
SRERAB38	1	2	1	0.05
SRERAB38	2	3	1	0.05
SRERAB39B	0	1	1	0.02
SRERAB39B	1	2	1	0.03
SRERAB39B	2	3	1	0.03
SRERAB39B	3	4	1	0.02
SRERAB39B SRERAB39B	4	5	1	0.02
	5 6	6	1	0.01
SRERAB39B SRERAB39B	7	7 8	1	0.02
SRERAB39B	8	9	1	0.02
SRERAB39B	9	10	1	<0.01
SRERAB39B	10	11	1	0.01
SRERAB39B	11	12	1	0.01
SRERAB39B	12	13	1	0.01
SRERAB39B	13	14	1	0.04
SRERAB39B	14	15	1	0.01
SRERAB39B	15	16	1	0.01
SRERAB39B	16	17	1	0.01
SRERAB39B	17	18	1	0.01
SRERAB39B	18	19	1	<0.01
SRERAB39B	19	20	1	<0.01
SRERAB39B	20	21	1	0.04
SRERAB39B	21	22	1	<0.01
SRERAB39B SRERAB39B	22	23	1	<0.01
SRERAB39B	23	24 25	1	<0.01
SRERAB39B	25	26	1	<0.01
SRERAB39B	26	27	1	<0.01
SRERAB39B	27	28	1	<0.01
SRERAB39B	28	29	1	<0.01
SRERAB39B	29	30	1	< 0.01
SRERAB39B	30	31	1	0.01
SRERAB39B	31	32	1	< 0.01
SRERAB39B	32	33	1	0.01
SRERAB39B	33	34	1	<0.01

Hole ID	From (m)	To (m)	Interval Sampled (m)	Au (ppm)
SRERAB39B	34	35	1	< 0.01
SRERAB39B	35	36	1	< 0.01
SRERAB39B	36	37	1	< 0.01
SRERAB39B	37	38	1	0.02
SRERAB39B	38	39	1	0.01
SRERAB39B	39	40	1	0.01
SRERAB39B	40	41	1	0.01
SRERAB39B	41	42	1	< 0.01
SRERAB39B	42	43	1	< 0.01
SRERAB39B	43	44	1	< 0.01
SRERAB39B	44	45	1	0.03

ASX: INF | FRA: 3PM

Appendix 1 – JORC 2012 Table 1

Section 1: Sampling Techniques and Data Mitta Mitta Project

Granite Flat and Mitta Mitta Sand Creek Prospects

- **Granite Flat** All information pertaining to sampling techniques and data taken verbatim from Dart Mining ASX release 8/3/2021 and taken as read. Infinity has no reason to doubt information as provided by Dart Mining N.L.
- Sandy Creek All information pertaining to sampling techniques and data taken verbatim from Dart Mining ASX release 16/2/2021 and taken as read. Infinity has no reason to doubt information as provided by Dart Mining N.L.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Granite Flat and Sandy Creek Rotary Air Blast (RAB) drilling was used to obtain bulk samples (~15kg) which were collected in plastic bags and examined for lithological logging purposes. Samples off the cyclone were split via riffle splitter and collected in a calico bag, which was removed every 1m to produce a 1m composite sample (~1.5kg). The cyclone was cleaned out at the end of each hole and periodically during drilling. In interpreted mineralized or altered zones, 1m samples were submitted for analysis. In interpreted unmineralized zones, 2m sample composites were submitted. Samples submitted to ALS were whole sample crushed to 70% <2mm, riffle split/rotary split off 1kg, pulverised to >85% passing 75 microns, then assayed by ALS method AU-226 (50g sample aliquot by fire assay). Certified Reference Material OREAS 235, OREAS 237 and OREAS 245 as well as CRM blank OREAS C27c were inserted every 10 samples as part of the QA/QC system.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Granite Flat 42 RAB drillholes were drilled by EDrill Pty Ltd over the strike extent of mineralized structures. Sandy Creek 43 RAB drillholes were drilled by EDrill Pty Ltd over the strike extent of mineralized structures. Granite Flat and Sandy Creek Face sampling 90mm RAB drilling.

Criteria	JORC Code explanation	Commentary
		 Holes surveyed using a Eastman single shot camera for collar shots. Verified using clinometer and compass survey rods. All drill-related data are referenced to the original ASX report by date published. All details appear in the original report.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Granite Flat and Sandy Creek Each 1m sample was weighed and results recorded to monitor sample recovery - a high average recovery was achieved in all holes. Experienced geologists ensured best drilling and sampling practices were maintained. Experienced drillers ensured best drilling and sampling practices were maintained, including pausing drilling between sample intervals to ensure all sample is out of the system and regular cleaning of the sampling equipment. There was no observable relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Granite Flat and Granite Flat Drill chips were geologically logged at 1m intervals for lithology (including quartz types and percentages) alteration and mineralisation, and drilling conditions. Representative chips from each metre were collected in chip trays. Chip trays were photographed. 100% of the drilling was logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being 	 Granite Flat and Sandy Creek Samples were collected from a riffle splitter from the bulk sample bag after removal from the cyclone. Samples from all intervals were collected as 1m composite samples at the splitting stage at the drill site. 12.5% of the sample was split with the remainder collected in the residue bags. The majority of samples were dry in the shallow holes, there were 4 wet samples collected during the program. The sampling procedure is appropriate for the mineralisation style of disseminated gold. The samples were sent to ALS Laboratories, Pooraka S.A.

Criteria	JORC Code explanation	Commentary
	sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Granite Flat Samples were submitted to ALS Chemex and analysed for gold using ALS Method AU-AA26 (fire assay is considered a total extraction technique for gold) and ME-MS61 (four acid digest is considered a total extraction technique for copper exploration), Cu-OG62 (ore grade copper by three acid digest and HCl leach) and Ag-OG62 (ore grade silver by three acid digest and HCl leach). These techniques are appropriate and considered a total extraction technique for Au and Cu. Samples were whole sample crushed pulverised and assayed by ALS method AU-AA26, ME-MS61, Cu-OG62 and Ag-OG62. Au standards OREAS 235, OREAS 237 and OREAS 245 as along with porphyry copper standards OREAS 503d, OREAS 504c and OREAS 605, as well as rhyodacite blanks (OREAS C27e) were included every 10 samples as part of the internal QA/QC system. All results are within expected confidence limits. Sandy Creek Samples were submitted to ALS Chemex and analysed for gold using ALS Method AU-AA26 (fire assay is considered a total extraction technique for gold). Thes techniques are appropriate and considered a total extraction technique for Au. Samples were whole sample crushed, pulverised and assayed by ALS method AU-AA26. Au standards OREAS 235, OREAS 237 and OREAS 245 as well as rhyodacite blanks (OREAS C27c) were included every 10 samples as part of the internal QA/QC system. All results are within expected confidence limits. Granite Flat and Sandy Creek A field duplicate sample was collected every 10 samples and analysed within the same sample run. ALS conducted their own internal laboratory checks. Laboratory blanks, standards are reviewed per batch to monitor accuracy and precision.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Granite Flat and Sandy Creek The laboratory supplies all assay data in an export to a CSV file. Ther aw data is edited to separate duplicates and CRM results ot a QA/QC tab in the CSV file reviewed. Verification of significant intersections were made by alternative company personnel. No independent review of assay data has been carried out. Data were logged onto paper and transferred to a spreadsheet and checked. Electronic-only assay data is imported into a spreadsheet from the laboratory's electronic data. No holes were twinned at this early exploration stage. Below detection limit data is identified using < character followed by a detection limit.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Granite Flat The location of drill hole collars and geological mapping used a Garmin 66i GPS using the MGA94 Grid Datum (Zone 55) with the topographic control taken from the GPS. Accuracy is variable but maintained <3m during the mapping process with constant visual quality assessment conducted. Sandy Creek The location of drill hole collars and geological mapping used a Garmin 62S GPS using the MGA94 Grid Datum (Zone 55) with the topographic control taken from the GPS. Accuracy is variable but maintained <5m during the mapping process with constant visual quality assessment conducted. Hand held GPS is used to survey a control point and drill collar positions are then measured by tape and compass relative to the GPS control. The accuracy between holes is <2m but absolute accuracy is relative to the original GPS control point at <10m. Granite Flat and Sandy Creek Because of the high probability of RAB hole collapse, and the short length of holes, collar shots were used to survey hole orientation. All maps, plans and data are on an MGA datum

Criteria	JORC Code explanation	Commentary
		 Elevation is established from the GPS control point.
Data spacing and distribution Orientation of data in relation to geological structure	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Granite Flat and Sandy Creek Drill sites were restricted to existing tracks. It was not intended to establish a drill spacing for resource estimation although these holes may be used at a later date. 1m assay composites were collected at the splitter on the drill site. This sample interval is considered appropriate for the style of gold mineralisation tested. All drill related data are referenced to the original ASX report by date published. All details appear in the original report. Granite Flat and Sandy Creek Drilling was restricted to existing tracks. However in all cases it was possible to drill at a high angle to the host structures, and achieve a suitable orientation that cross-cuts the mineralisation. True width intersections are provided in cross sections, there appears to be no relationship between drill orientation and mineralisation grades. Due to the steep grade of tracks and topography, hole orientation was limited or dictated by landscape physiology in some
Sample security Audits or reviews	 The measures taken to ensure sample security. The results of any audits or reviews of sampling techniques and data. 	 Granite Flat and Sandy Creek All samples submitted for analysis are placed in sealed poly-weave bags and delivered to a commercial transport company for delivery to the laboratory. Any evidence of sample damage or tampering is immediately reported by the laboratory to the company and a decision is made as to the integrity of the samples and the remaining samples within the damaged/tampered bags. Granite Flat and Sandy Creek An internal review of procedures, operations

ASX: INF | FRA: 3PM

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Granite Flat All tenements were in good standing at time of reporting (March 2021, February 2022, April 2024) and upon inspection of GeoVic public reporting portal at time of this release (April 2025). Sandy Creek All tenements were in good standing at time of reporting (February 2021) and upon inspection of GeoVic public reporting portal at time of this release (April 2025).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Granite Flat Granite Flat reef claims first date to 1856, with most lodged 1877-1878. Between 1986 and 1988 the Granite Flat area was worked by Meltech Ltd, with soil sampling identifying strong geochemical anomalies and six diamond holes were completed. From 1990 to 1995 CRA Exploration (now Rio Tinto) completed extensive exploration in the search for a bulk mineable resource. This included 18 costeans, 32 RC drillholes and 13 diamond drillholes, along with aeromagnetic, ground magnetic and Induce Polarity (IP) surveys of the site. In 1994 Perseverance Mining Ltd entered into a joint-venture agreement with CRA Exploration, working the prospect from 1996 to 1999, completing an additional 20 RC drill holes. Minor stream sediment and soil sampling was completed by Synergy Metals Ltd and Glen Wills Gold Mines NL between 2006-2016. Sandy Creek The Sandy Creek goldfield has previously been explored to establish the remaining alluvial potential and limited effort tot review reef style historic mines with surface and underground mapping and sampling carried out (EL 873) BHP Minerals Ltd, 1980-1982: EL1463. Tallangalook Ltd, 1984-1988: EL3574, Exminco, 1993-1994: EL4039, Northern Copper Ltd, 1996-1997: EL4812,

Criteria	JORC Code explanation	Commentary
		Goldsearch Ltd, 2004-2008: EL5241, Golden Deeps Ltd, 2009-2011). All previous exploration efforts have focused on narrowveing quartz potential, with very little focus on Alteration within the granite and minro structural analysis. Dart Mining is the first explorer to recognize the roof pendant style of mineralisation and assesses the structural control on the distribution of mineralisation. Tallangalook Ltd and Goldsearch Ltd undertook some basic geological maping of the Sandy Crek area. Tallangalook Ltd dug and sampled costeans across the workings. Goldsearch Ltd drilled 3 short diamond holes but terminated the holes before hitting mineralisation.
Geology	Deposit type, geological setting and style of mineralisation.	 Granite Flat EL6277 is located in the Omeo structural zone of the Lachlan Fold Belt in eastern Victoria. The EL is underlain by metamorphosed lower Ordovician Pinnak Sandstone and its higher grade metamorphic equivalents Omeo Metamorphic Complex to the south. The Banimboola Quart Monzodiorite (BQM) intruded during the early Devonian and is a highly magnetic I-type composite pluton that has been placed in the Boggy Plain Supersuite. Aeromagnetic data from Geo Vic database indicates that BQM is a composite pluton with a variable magnetic signature. Sandy Creek The Sandy Creek goldfield was a traditional narrow vein, high grade (free gold) reef style with a minor alluvial gold footprint. Dart Mining recognized some gold mineralisation is related to disseminated sulphides in altered granites along structurally controlled intersections within a metasedimentary roof pendant above the Yabba Granite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level 	 Granite Flat Appendix 1 provides drill hole locations and hole orientation data in the body of the report. All downhole weighted average gold data was quoted as significant intersections provided down hole widths and calculated using a lower cut-off grade of 0.2 g/t Au and

Criteria	JORC Code explanation	Commentary
	 elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 1000ppm Cu, with no more than 2m of internal dilution. Sandy Creek Appendix 1 provides all drillhole information. All downhole weighted average gold data was quoted as significant intersections provided down hole widths and calculated using a lower cut-off grade of 0.5 g/t Au and no more than 1m of internal dilution. Granite Flat and Sandy Creek All drill -related data are referenced to the original ASX report by date published. All details appear in the original report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Granite Flat All downhole weighted average gold data was quoted as significant intersections provided down hole widths and calculated using a lower cut-off grade of 0.2 g/t Au and 1000ppm Cu, with no more than 2m of internal dilution in each drill hole. Gold, copper, silver and zinc assay data is tabulated in Table B for all holes. assay data is tabulated in Appendix A for all holes. The nominal sample length is potentially mineralized intervals is 1m with any 1m sample lengths in unmineralized sections requiring a length weighted average technique to be used for reporting intersections. Sandy Creek All downhole weighted average gold grade data quoted as significant intersections is calculated using a lower cut-off grade of 0.5 g/t Au and no more than 1m internal dilution in each drill hole. Gold assay data is tabulated in Appendix A for all holes. The nominal sample length is potentially mineralized intervals is 1m with any 2m sample lengths in unmineralized sections requiring a length weighted average technique to be used for reporting intersections.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the 	 Granite Flat and Sandy Creek The relationship between the drill hole and the geometry of the mineralized structures is clearly presented in a series of summary cross sections and drill plans. The angle between the drill hole, down hole average grades are also represented on these drill sections and are representative of current

Criteria	JORC Code explanation	Commentary
	down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	geological interpretation, this interpretation may change over time as more drilling information becomes available. Structural interpretation is constrained with surface geological mapping and downhole lithology logging
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Granite Flat Maps showing the tenement locations, drill holes and rock chip samples are included in the body of this report. Sandy Creek Maps showing the tenement locations, drill holes and rock chip samples are included in the body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Granite Flat Both summary (weighted average) grade intersections and full assay data is provided as cross sections and tabulated data reference in the body of the report. Sandy Creek Both summary (weighted average) grade intersections and full assay data is provided as cross sections and tabulated data reference in the body of the report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Granite Flat A full data compilation of all historic exploration programs has not yet been conducted by Infinity, as this ongoing work is conducted, any material results uncovered will be reported by the Company. Sandy Creek A full data compilation of all historic exploration programs has not yet been conducted by Infinity, as this ongoing work is conducted, any material results uncovered will be reported by the Company.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is 	 Granite Flat Infinity will review all information and make an assessment on whether it will elect to exercise the Option to Purchase. Sandy Creek Infinity will review all information and make an assessment on whether it will elect to exercise the Option to commence Earn-In Joint Venture.

ASX: INF | FRA: 3PM

Criteria	JORC Code explanation	Commentary	
not commercially sensitive.			

Figures 9-11 show drill collar locations for Granite Flat and Sand Creek Projects and cross section of drilling at Granite Flat.

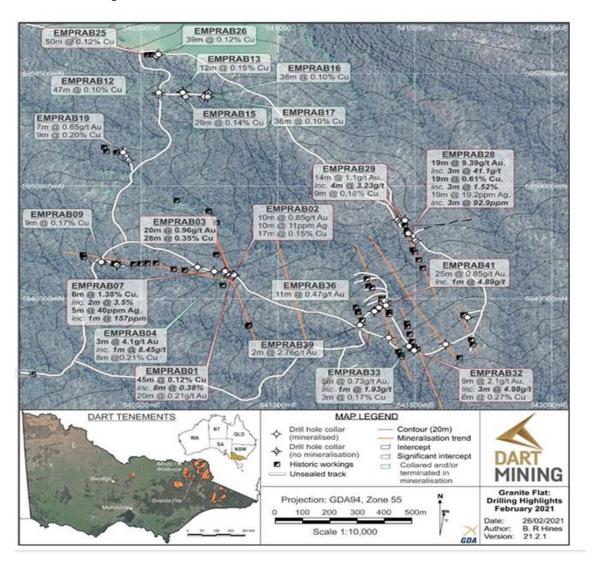


Figure 9: Collar plan Granite Flat Source ASX release Dart Mining

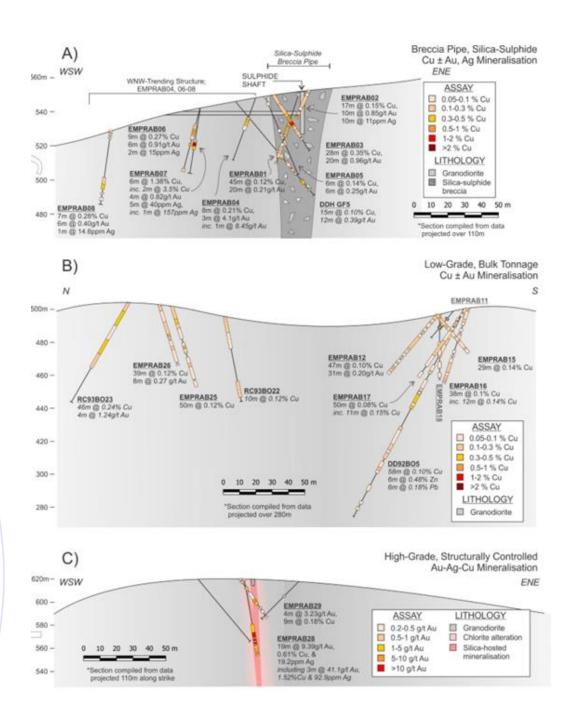


Figure 10: Cross Sections Granite Flat Source ASX Release Dart Mining

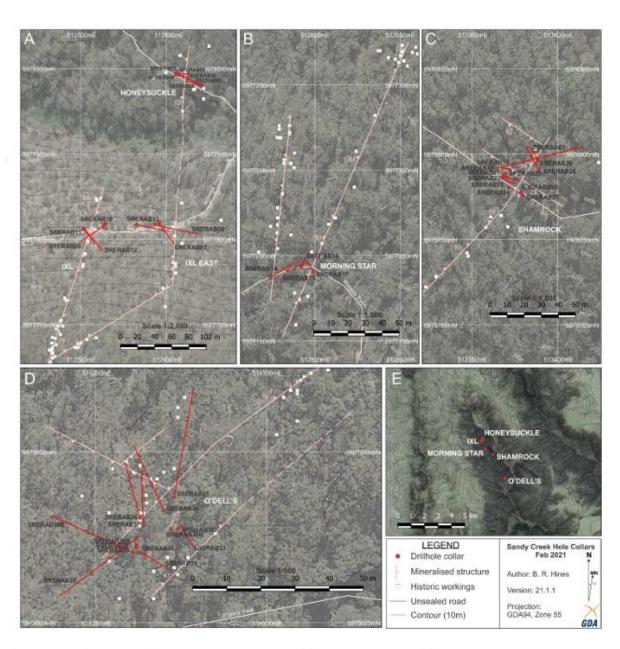


Figure 11:Location plan of drill collars from Sandy Creek drilling. taken from Dart Mining ASX release dated 16th February 2021. Image A) Honeysuckle, IXL and IXL East prospects, B) Morning Star propsect, C) Shamrock prospects, D) O'Dell's prospect, E) relative positions of Sandy Creek prospects.

ASX: INF | FRA: 3PM

Table C Drilling Location and Survey Details Corryong

Hole Dip	Hole Azimuth	MGA	MGA	RL	Total
	(MGA Grid)	East	North	AHD	Depth
		(m)	(m)	(m)	(m)
-60.3	267.6	588,918.9	5,978,105.5	805.4	185
-70	265	588,900.5	5,978,285.8	812.0	186
-70.6	275.9	588,968.9	5,978,043.9	807.3	252
-55.7	259.4	589,023.5	5,977,961.2	818.9	252
-72.4	276.4	588,877.5	5,978,038.7	843.9	253
-49.1	77.1	588,928.3	5,978,106.7	804.7	140
-49.8	91.0	588,908.6	5,978,206.0	813.8	110
-63.6	265.7	589,012.3	5,977,891.7	857.8	216
-46.3	262.5	588,864.6	5,977,898.5	847.8	252
-67.6	264.4	588,866.3	5,977,898.5	847.9	252
-46.1	263.5	588,800.8	5,977,950.1	840.0	192
-88.6	109.4	588,804.2	5,977,950.1	840.3	253
-52.4	269.6	588,791.3	5,977,856.2	814.5	175
-86.6	80.9	588,826.7	5,978,004.0	859.2	253
	-60.3 -70 -70.6 -55.7 -72.4 -49.1 -49.8 -63.6 -46.3 -67.6 -46.1 -88.6 -52.4	(MGA Grid) -60.3 267.6 -70 265 -70.6 275.9 -55.7 259.4 -72.4 276.4 -49.1 77.1 -49.8 91.0 -63.6 265.7 -46.3 262.5 -67.6 264.4 -46.1 263.5 -88.6 109.4 -52.4 269.6	(MGA Grid) East (m) -60.3 267.6 588,918.9 -70 265 588,900.5 -70.6 275.9 588,968.9 -55.7 259.4 589,023.5 -72.4 276.4 588,877.5 -49.1 77.1 588,928.3 -49.8 91.0 588,908.6 -63.6 265.7 589,012.3 -46.3 262.5 588,864.6 -67.6 264.4 588,866.3 -46.1 263.5 588,800.8 -88.6 109.4 588,804.2 -52.4 269.6 588,791.3	(MGA Grid) East North (m) (m) -60.3 267.6 588,918.9 5,978,105.5 -70 265 588,900.5 5,978,285.8 -70.6 275.9 588,968.9 5,978,043.9 -55.7 259.4 589,023.5 5,977,961.2 -72.4 276.4 588,877.5 5,978,038.7 -49.1 77.1 588,928.3 5,978,106.7 -49.8 91.0 588,908.6 5,978,206.0 -63.6 265.7 589,012.3 5,977,891.7 -46.3 262.5 588,864.6 5,977,898.5 -67.6 264.4 588,866.3 5,977,898.5 -66.6 265.5 588,800.8 5,977,950.1 -88.6 109.4 588,804.2 5,977,950.1 -52.4 269.6 588,791.3 5,977,856.2	(MGA Grid) East North AHD -60.3 267.6 588,918.9 5,978,105.5 805.4 -70 265 588,900.5 5,978,285.8 812.0 -70.6 275.9 588,968.9 5,978,043.9 807.3 -55.7 259.4 589,023.5 5,977,961.2 818.9 -72.4 276.4 588,877.5 5,978,038.7 843.9 -49.1 77.1 588,928.3 5,978,106.7 804.7 -49.8 91.0 588,908.6 5,978,206.0 813.8 -63.6 265.7 589,012.3 5,977,891.7 857.8 -46.3 262.5 588,864.6 5,977,898.5 847.8 -67.6 264.4 588,866.3 5,977,898.5 847.9 -46.1 263.5 588,800.8 5,977,950.1 840.0 -88.6 109.4 588,804.2 5,977,950.1 840.3 -52.4 269.6 588,791.3 5,977,856.2 814.5

Taken from Dart Mining ASX release 5th August 2012

ASX: INF I FRA: 3PM

Table D Drilling Results Corryong

Hole	From	То	Significant Intersections	Significant Intersections	Significant Intersections	Significant Intersections
No.	(m)	(m)	MoEq1	(Mo)	(Cu)	(Ag)
1101	()	()		()	(00)	11-97
DUNRC006	0	185	185m @ 0.1%	185m @ 0.04%	185m @ 0.12%	185m @ 4.70 ppm
2011110000	0	82	Inc. 82m @ 0.14%	Inc. 82m @ 0.06%	Inc. 82m @ 0.2%	Inc. 82m @ 5.75 ppm
	48	84			Inc. 36m @ 0.4%	
	68	88				Inc. 20m @ 11.30 ppm
DUNRC008	0	186	186m @ 0.06%	186m @ 0.02%	186m @ 0.13%	186m @ 2.39 ppm
	14	124	Inc. 110m @ 0.08%	Inc. 110m @ 0.02% Mo	Inc. 110m @ 0.2% Cu	Inc. 110m @ 2.96 ppm
	14	44	Inc. 30m @ 0.18%			Inc. 30m @ 5.60 ppm
2	22	130			Inc. 108m @ 0.20%	
4	22	42			Inc. 20m @ 0.70%	
DUNRC009	0	252	252m @ 0.05%	252m @ 0.02%	252m @ 0.02%	252m @ 1.39 ppm
	0	186	Inc. 186m @ 0.06%			
	52	110	Inc. 58m @ 0.07%	Inc. 58m @ 0.06%		Inc. 58m @ 2.89 ppm
	248	250	Inc. 2m @ 0.10%	Inc. 2m @ 0.09%		
DUNRC010	0	252	252m @ 0.05%	252m @ 0.04%	252m @ 0.02%	252m @ 1.24 ppm
DUNRC011	0	253	253m @ 0.06%	253m @ 0.03%	253m @ 0.04%	253m @ 2.65 ppm
10. h	0	86	Inc. 86m @ 0.09%	Inc. 86m @ 0.06%	Inc. 86m @ 0.08%	Inc. 86m @ 4.34 ppm
151	0	64	Inc. 64 m @ 0.10%	Inc. 86m @ 0.07%	Inc. 86m @ 0.07%	Inc. 86m @ 3.96 ppm
	64	86	Inc 22m @ 0.07%		Inc. 22m @ 0.11%	Inc. 22m @ 5.40 ppm
	250	253	Inc. 3m @ 0.05%	Inc. 3m @ 0.05%		
DUNRC012	6	140	134m @ 0.05%	134m @ 0.03%	134m @ 0.03%	134m @ 1.80 ppm
	6	72	Inc. 66m @ 0.06%	Inc. 66m @ 0.04%		Inc. 66m @ 2.33 ppm
DUNRC013	0	110	110m @ 0.05%	110m @ 0.02%	110m @ 0.08%	110m @ 2.71 ppm
	26	66	Inc. 40m @ 0.08%		Inc. 40m @ 0.17%	Inc. 40m @ 4.54 ppm
DUNRC014	0	216	216m @ 0.05%	216m @ 0.03%	216m @ 0.03%	216m @ 1.94 ppm
DUNRC015	4	252	248m @ 0.06%	248m @ 0.03%	248m @ 0.05%	248m @ 3.90 ppm
	4	32	Inc. 28m @ 0.07%			
\bigcirc	46	106				Inc. 60m @ 5.64 ppm
\leq	156	190	Inc. 34m @ 0.08%	Inc 34m @ 0.04%	Inc. 34m 0.07%	Inc. 34m @ 4.02 ppm
DUNRC016	0	252	252m @ 0.05%	252m @ 0.03%	252m @ 0.04%	252m @ 3.47 ppm
	20	186	Inc. 166m @ 0.06%	Inc. 166m @ 0.04%	Inc. 166m @ 0.04%	Inc. 166m @ 4.08 ppm
	20	54	Inc. 34m @ 0.08%			
	34	70				Inc. 36m @ 7.49 ppm
8	126	150	Inc. 24m @ 0.07%	Inc. 24m @ 0.05%		
/	172	174	400 0 0 0 0	400	400	Inc. 2m @ 24.9 ppm
DÚŃRC017	6	192	186 m @ 0.07%	186m @ 0.03%	186m @ 0.07%	186m @ 5.40 ppm
	36	58 148	Inc. 22m @ 0.10%	Inc. 22m @ 0.04%	Inc. 22m @ 0.09%	Inc. 22m @ 9.72 ppm
19	58 70	148	Inc. 90m @ 0.08%	Inc. 90m @ 0.03%	Inc. 90m @ 0.09%	Inc. 90m @ 7.07 ppm
 	134	146				Inc. 10m @ 11.22 ppm Inc. 12m @ 10.43 ppm
TOUNDOOSE	134	253	253m @ 0.05%	252m @ 0.000/	253m @ 0.04%	
DUNRC018	20	253 94	Inc. 74m @ 0.05%	253m @ 0.03% Inc. 74m @ 0.04%	Inc. 74m @ 0.05%	253m @ 2.80 ppm Inc. 74m @ 4.79 ppm
	16	56	1110. 74111 @ 0.0776	1110. 74111 @ 0.0476	inc. 74iii @ 0.05%	Inc. 40m @ 6.31 ppm
	160	170				Inc. 10m @ 6.66 ppm
DUNRC019	4	174	170m @ 0.05%	170m @ 0.02%	170m @ 0.06%	170m @ 4.04 ppm
DOM/CO19	8	56		17011 @ 0.0270	Inc. 48m @ 0.07%	17011 @ 4.04 ppn
)	150	174	Inc. 24m @ 0.07%	Inc. 24m @ 0.03%	Inc. 24m @ 0.06%	Inc. 24m @ 4.84 ppm
DUND CO202	96	253	157m @ 0.04%	157m @ 0.03%	157m @ 0.02%	
DUNRC020 ²	96	152				157m @ 1.20 ppm
	246	253	Inc. 7m @ 0.04%	Inc. 56m @ 0.03%	Inc. 56m @ 0.03%	Inc. 56m @ 2.40 ppm
	240	253	mc. /m @ 0.04%			

ASX: INF | FRA: 3PM

Appendix 2 - JORC 2012 Table 1

Section 1: Sampling Techniques and Data Corryong Project

- Corryong Project All information pertaining to sampling techniques and data taken verbatim from Dart
 Mining ASX release 23 April 2012, 5 August 2012 and 18 December 2012 and taken as read. Infinity has no reason
 to doubt information as provided by Dart Mining. Work was conducted in accordance with JORC 2004 reporting
 standards which were relevant at the time by Dart Mining.
- Information required under JORC FAQ 36:
 - The information has been reported by the former owner (Dart Mining) rather than Infinity.
 - The information was previously released by Dart on 23 April 2012, 5 August 2012 and 18 December 2012 and is available on the Dart Mining ASX Market Announcement Platform (ASX:DTM).
 - The previous announcements were prepared under JORC 2004 and not JORC 2004.
 - The Company has reviewed and compiled the relevant information and set out the available qualify assurance and quality control measures assessed to date. The Company has not to date identified any instances which causes it to question the reliability of the information provided by Dart Mining.
 - No more recent exploration results or data pertaining to the Corryong Project are known to the Company.
 - The Company will determine what further exploration and evaluation work is required after undertaking further desktop diligence determining whether or not to exercise the Option.
 - The Competent Person, Mr Adrian Byass has reviewed the information in the market announcement and confirms that it is an accurate representation of the available data and studies for the Corryong Project.
 - A cautionary statement is included earlier in the announcement.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual 	 Corryong The methods of collection for all the historical rock chip samples and drilling is unknown. Infinity has not assessed measures taken to ensure sample representivity. Work was conducted un JORC 2004 reporting standards and reported to the ASX 18th December 2012 by Dart Mining. Infinity has not assessed aspects of the determination of mineralisation that are Material to the Public Report.

Criteria	JORC Code explanation	Commentary
	commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Corryong The drill holes reported here were completed by Dart Mining by 2012. A Revers Circulation (RC) and a diamond drill rig was used.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Corryong Infinity has not assessed the drilling recovery results from the historical drilling campaigns. Infinity has not assessed the measures taken to maximise sample recovery and ensure representative nature of the samples. Infinity has not assessed the relationship between sample recovery and grade and whether sample bias may have occurred.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Corryong Geological and geotechnical logging was completed, but details on drill logging techniques were not assessed. There are no JORC 2012 Mineral Resources reported for any of the tenements. A historic JORC 2004 Mineral Resource was estimated but is not reported in this release Infinity has not assessed the nature of the drill logging. Infinity has not assessed the total length and percentage of the relevant intersections logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half 	 Corryong Infinity has not assessed the sub-sampling techniques and sample preparation used for any of the geochemical exploration and drilling campaigns.

Criteria	JORC Code explanation	Commentary
	 sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Corryong Infinity has not assessed the quality of the assay data and laboratory tests for any of the geochemical exploration and drilling campaigns.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Corryong Infinity has not verified sampling and assaying data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Corryong Infinity has not assessed the accuracy and quality of surveys used to locate sample sites and drillholes. The grid system used is GDA94 (Zone 55). No Mineral Resource estimates are presented in this report and the quality of topographic control is not material to the review.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Corryong Data spacing for reporting varies for different sampling methods e.g. soil sampling and stream sediment sampling. No Mineral Resource estimates are presented in this report. No sample compositing has been applied.

ASX: INF | FRA: 3PM

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Corryong The historical geochemical surface sampling programs were commonly oriented perpendicular to the prevailing strike of the geological rocks. Infinity has not assessed the relationship between the drilling orientation and the orientation of key mineralised structure.
Sample security	 The measures taken to ensure sample security. 	 Corryong Infinity has not assessed measures taken to ensure sample security.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Corryong Infinity has not assessed results of any audits or reviews of sampling techniques and data.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Corryong Inifinity Lithium has entered into an Option to commence an earn-in Joint Venture over the following tenements. All public information has been taken from Geo Vic online portal. The ELs are centred approximately 20km south of the town of Corryong, approximately 350 km east-northeast of Melbourne. The ELs largely lie within farming country and State Forest of eastern Victoria. Several Victorian Government reserves and restricted areas are in the region, including the Alpine National Park. The tenements are in active and registered on Geo Vic online portal, no known impediments exist. Infinity will be conducting due diligence as to the status of the tenements including Retention Licence 6616.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Corryong Many historical exploration programs have been undertaken on the ELs between 1965 and 2012.

Criteria	JORC Code explanation	Commentary
		 Historical exploration sampling programs include soil sampling surveys, stream sediment surveys, rock chip sampling, auger drilling, RAB drilling, air core drilling, percussion drilling and diamond drilling.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Corryong The ELs lie within the northeastern portion of the Palaeozoic Lachlan Fold Belt (LFB) of eastern Australia, which is host to historical mining prospects and mineral fields. The mineral occurrences targeted are intrusive porphyry targets likened to the Henderson-Climax molybdenum rich type (USA). The tenement package was acquired to explore for economic gold and base metal porphyry style mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Corryong Collar information for drill holes reported in this release are contained in Tables A & B. Infinity is not aware of the methods used to confirm down hole survey, collar location.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical 	 Corryong Infinity has not assessed data aggregation methods used by previous tenement holders to report Exploration Results. The drilling results presented in this report have been length weighted. No data aggregation is included in this report. No metal equivalents are reported here.

Criteria	JORC Code explanation	Commentary
	 examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Corryong Infinity is not able to comment on the true widths of intercepts. As above
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Corryong Maps showing the tenement locations, drill holes are included in the body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Corryong A full data compilation of all historic exploration programs has not yet been conducted by Infinity, as this ongoing work is conducted, any material results uncovered will be reported by the Company.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Corryong A full data compilation of all historic exploration programs has not yet been conducted by Infinity, as this ongoing work is conducted, any material results uncovered will be reported by the Company.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or 	 Corryong Infinity is undertaking due diligence and will make a decision within 60 days if it wishes to

ASX: INF | FRA: 3PM

Criteria	JORC Code explanation	Commentary
	large-scale step-out drilling). • Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	exercise the Option and enter into an earn-in Joint Venture on the tenements and undertake porphyry exploration.

Drill collar locations for Mt Unicorn shown in Figure 12.

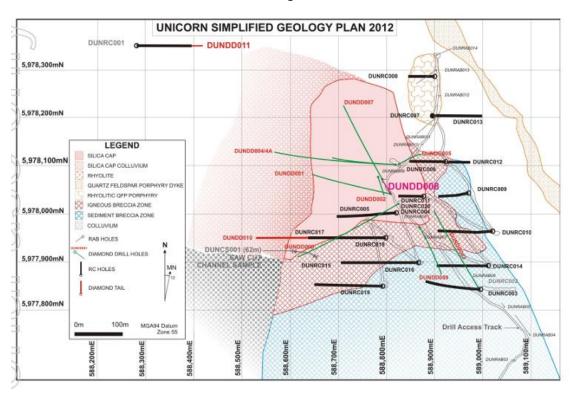


Figure 12: Corryong drill collar plan (ASX release dated 27th November 2012) Dart Mining.