

Zopkhito Antimony-Gold Project

ASX:KTA

DISCLAIMER

The presentation has been prepared by Krakatoa Resources Limited (Krakatoa, KTA, or the Company) based on information from its own and third-party sources and is not a disclosure document. No party other than the Company has authorized or caused the issue, lodgement, submission, dispatch or provision of this presentation, or takes any responsibility for, or makes or purports to make any statements, representations or undertakings in this presentation. Except for any liability that cannot be excluded by law, the Company and its related bodies corporate, directors, employees, servants, advisers, agents (Affiliates) disclaim and accept no responsibility or liability for any expenses, losses, damages or costs incurred by you relating in any way to this presentation including, without limitation, the information contained in or provided in connection with it, any errors or omissions from it however caused, lack of accuracy, completeness, currency or reliability or you or any other person placing any reliance on this presentation, its accuracy, completeness or reliability. This presentation is not a prospectus, disclosure document, or other offering document under Australian law or under any other law. It is provided for information purposes and is not an invitation nor offer of shares or recommendation for subscription, purchase or sale in any jurisdiction. This presentation does not purport to contain all the information that a prospective investor may require in connection with any potential investment in the Company. Each recipient must make its own independent assessment of the Company before acquiring any shares in the Company (Shares).

FORWARD LOOKING INFORMATION

This document may include forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of the Company. Actual values, results or events may be materially different to those expressed or implied in this document. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. No representation is made that, in relation to the tenements the subject of this presentation, the Company has now or will at any time in the future develop resources or reserves within the meaning of the JORC Code 2012.

Any forward-looking statements in this document speak only at the date of issue of this document. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and, unless required by applicable law, the Company is not under any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

This presentation may contain a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to: (i) those relating to the interpretation of channel sampling, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

COMPETENT PERSONS STATEMENT

The information in this presentation that relates to new exploration results (refer to Appendix A to C) is based on and fairly represents information reviewed and compiled by Mark Major, Krakatoa Resources CEO, who is a Member of the Australasian Institute of Mining and Metallurgy and a full-time employee of Krakatoa Resources. Mr Major has sufficient experience relevant to the styles of mineralisation and types of deposit under consideration, and to the activity which he has undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Major consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

The information in this presentation that relates to exploration results previously announced by the Company have been extracted from the Company's announcements to the ASX from 9 December 2024 to the 13 February 2025 (see footer in Appendix A). The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements.

CAUTIONARY STATEMENT

The foreign estimate and foreign exploration results in this presentation were first released by the Company in an announcement titled "Option to Acquire Major Antimony and Gold Project" on 9 December 2024 ("Announcement") and are not reported in accordance with the JORC Code 2012. A competent person has not done sufficient work to classify the foreign estimate as a Mineral Resource, or disclose the foreign exploration results, in accordance with the JORC Code 2012. It is uncertain that following evaluation and/or further exploration work the foreign estimate will be able to be reported in accordance with the JORC Code 2012, and it is possible that following further evaluation and/or exploration work that the confidence in the reported foreign exploration results may be reduced when reported under the JORC Code 2012. The Company confirms that the supporting information provided in the Announcement continues to apply and has not materially changed.

CORPORATE OVERVIEW

KTA ASX Code

Shares on issue

\$5.3m

35m Performance Rights

Colin Locke EXECUTIVE CHAIRMAN

Mr Locke brings over 30 years' mining related experience with business management, capital markets and international exploration success.

Mark Major CHIEF EXECUTIVE OFFICER

Mr Major has over 30 years' mineral exploration, ranging from grassroots programs to mine development. He has extensive experience working with corporate transactions, project acquisitions and project generation.

David Palumbo NON-EXECUTIVE DIRECTOR

Mr Palumbo is a Chartered Accountant with over 15 years' experience across company secretarial, corporate advisory and financial management and reporting of ASX listed companies.

Tim Hogan NON-EXECUTIVE DIRECTOR

Mr Hogan has approximately 27 years' experience in the stockbroking industry in Australia and is currently a Director of Barclay Wells Limited.

ZOPKHITO PROJECT Antimony-Gold

WHY ZOPKHITO?

Right Commodities, Right Time

Antimony and Gold are at or near record prices. The future for both are very favourable

Highly Strategic Location

Positioned at the gateway to Europe and Central Asia

Known Resource

High Grade foreign resource estimate⁽¹⁾ of: 225Kt @ 11.6% Sb = 26,000 tonnes (contained Sb) & 7.1Mt @ 3.7g/t = 815,119 oz of gold

Unlimited Growth Upside

Extensive near-mine potential, with significant growth upside as historical exploration focus has been on small area. Antimony vein has 3-5m gold rich alteration halo into footwall and hanging wall

(1)

Well Understood Geology

Foreign resource estimate, 27km of exploration adits, over 20,000 geochemical samples, decades of mapping, metallurgical testing.

First Mover Advantage

Establishing a presence and in-country team allow for further exploration and development opportunities in the region

Cautionary statement: The foreign estimate and foreign exploration results in this presentation were first released by the Company in an announcement titled "Option to Acquire Major Antimony and Gold Project" on 9 December 2024 ("Announcement") and are not reported in accordance with the JORC Code 2012. A competent person has not done sufficient work to classify the foreign estimate as a Mineral Resource, or disclose the foreign exploration results, in accordance with the JORC Code 2012. It is uncertain that following evaluation and/or further exploration work the foreign estimate will be able to be reported in accordance with the JORC Code 2012, and it is possible that following further evaluation and/or exploration work that the confidence in the reported foreign exploration results may be reduced when reported under the JORC Code 2012. The Company confirms that the supporting information provided in the Announcement continues to apply and has not materially changed.

THE PROJECT

- Project is located in the Racha area of Georgia.
- License area covers 1,779 hectares with an active exploration-mining licence valid until March 2042
- Discovered in 1929 and explored by Soviet Government until 1979.
 Additional exploration from 2006-2019.
- Historic exploration activity includes:

RAKATOA

- 27km of underground adit exploration drives have been developed during the Soviet-era
- Over 15,000 geochemical samples taken mostly as channel samples
- Antimony foreign resource estimate completed and a Gold foreign resource estimate
- ✓ LiDAR survey and IP geophysics completed
- KTA has an option to acquire 80% of the project

KTA is now aggressively advancing Zopkhito

FOREIGN RESOURCE ESTIMATE

51	Resource Classification (Russian GKZ)	Grade (Sb%)	Tonnes (t)	Number of veins	Mean vein thickness (m)	Contained Sb Metal (t)
Sh	В	12.32	9,479	3	0.35	1,231
SD	C1	11.71	69,715	16	0.34	8,492
Antimony	C2	11.41	137,668	14	0.33	15, 874
121.760	Р	11.54	7,673	8	0.28	523
1211/00	Total ⁽¹⁾	11.63	224,535	17	0.34	26,120

79	Resource Classification (Russian GKZ)	Ore Tonnes (t)	Grade Au (ppm)	Au (kg)	Au (oz)	
	C2	1,994,500	4.2	8,377	269,323	
Gold	P1	2,907,150	3.0	8,721	280,401	
196.967	P2	2,358,491	3.5	8,255	265,395	
	TOTAL ⁽¹⁾	7,260,141	3.7	25,353	815,119	

(1) Cautionary statement: The foreign estimate and foreign exploration results in this presentation were first released by the Company in an announcement titled "Option to Acquire Major Antimony and Gold Project" on 9 December 2024 ("Announcement") and are not reported in accordance with the JORC Code 2012. A competent person has not done sufficient work to classify the foreign estimate as a Mineral Resource, or disclose the foreign exploration results, in accordance with the JORC Code 2012. It is uncertain that following evaluation and/or further exploration work the foreign estimate will be able to be reported in accordance with the JORC Code 2012, and it is possible that following further evaluation and/or exploration work that the confidence in the reported foreign exploration results may be reduced when reported under the JORC Code 2012. The Company confirms that the supporting information provided in the Announcement continues to apply and has not materially changed.

PROJECT GEOLOGY

Geological setting: Area is part of the Great Caucasus Thrust Belt, with the Lower Jurassic thick slate sequence is seated on the Palaeozoic granite.

It is part of the highly prospective Tethyan Metallogenic Belt spreading from the Carpathians in the west to northern Iran; one of the world's major metal producing belts.

Deposit type: The Zopkhito deposit is an orogenic Antimony-Gold deposit linked to the Mesozoic/Cenozoic genesis.

Host rock geology: The deposit is hosted within a mainly siliciclastic comprising Jurassic basal conglomerates overlain by sandstones, polymictic breccias, sandy and carbonaceous shales as well as slates.

Mineralisation: Sb-Au mineralisation of the Zopkhito deposit is associated with narrow quartz-stibnite veins hosted by carbonaceous shales and slates.

Veining is associated with a wider hydrothermally alteration zone surrounding the Sb-Au-rich veins. Alteration includes silicification and sulphidisation of the shales and slates with increasing proportions of pyrite and/or arsenopyrite.

Gold enrichment: The alteration halo shows elevated concentrations of minerals and metals of economic interest, particularly Au hosted with arsenopyrite. The Au rich halo extends metres into the hanging- and footwall of the veins.

Mineralised zones: two distinct mineralised zones identified at the project. A main narrow (typically 0.4m) quartz vein that is dominated by Sb with associated gold and a secondary broader (typically 3-5m thick) alteration gold zone within the foot and hanging walls bounding the main Sb dominated vein.

REMARKABLE GRADES

KRAKATOA RESOURCES LTD.

Antimony (Sb)

- Over 15000 verified geochemical samples taken (channel, surface, pit & rise)
- Over 3200 returned greater than 2% Sb
- Some significant channel intercepts
 - **82.8% Sb** Vein 2 (0.3m) (#777 V-2 A-21-1940)
 - **51.8% Sb** Vein 2 (0.5m) (#8545 V-2 A-21-2014)
 - **45.1% Sb** Vein 6 (0.8m) (#5633 V-6 A-80-1954)
 - o 37.1% Sb Vein 6 (1m) (#5199 V-6 A-80-2014)

Gold (Au)

- Gold found in footwall, hanging wall (alteration zones) and within the Quartz-Antinomy Vein
- Over 5,700 channel samples were assayed for gold, with over 1,400 returning > 2g/t Au
- Significant channel intercepts
 - **58.4g/t Au** Footwall (0.5m) (#59
 - **37.2g/t Au** Hanging-wall (1m) (#4349 V-6A-10-2014)
 - **35.7g/t Au** Footwall (0.8m) (#5984 V-28A-10-2014)
- Gold was never a focus in the Soviet period

See Appendix A, B and C for additional information and channel sample details

SIMPLE PROCESSING OPTIONS

Simple Floatation Flowsheet achieved suitable grade Sb concentrate

RΔΚΔΤΟΔ

- Sb Rougher concentrate recovery >90%
- 56% Sb con achieved for bulk sample with slightly more advance test work one cleaning stage

- Majority of Au was captured in the tails and arsenic concentrate (96%), not in Sb con – has ability to be treated by a separate gold extraction method/process circuit.
- Further hydrometallurgical optimisation could maximise return and the use of multistage cleaning may further reduce the As content within the Sb product.
- Nature of Au and recovery to be examined for all Au geological domains – Metallurgical test work will consist of fine grind, POX, and low pH pressure cyanidation.
- Other metals known to occur but have not been investigated are Ag, Ni and Zn.

BLUE SKY OPPORTUNITY

Mineralisation remains open with major upside

Open areas between historical adits – not all have been connected, and veins modeling has stopped at lowest adit

Areas of outcropping Sb along strike and on other side of valley known but never followed up

RAKATOA

Only 17 veins been considered out of a known 60 identified at surface

Areas identified below outcropping zones – tested by IP geophysics – extensions open

No drilling undertaken so areas between adits may hold additional mineralisation sets

DEVELOPMENT STRATEGY AND NEXT STEPS

- Exploration to include additional mapping, drilling (first for project) of known vein systems to advance to JORC classification standards, initially from surface and later from underground.
- Drilling of blue-sky areas near mine
- Advance metallurgical test work and design for Sb and Au processes
- Aim to develop a mineable resource with a scaled-up plant option to get into operation quickly
- Initial steps are to complete JORC MRE and PEA

	Quarter	1Q25	2Q25	3Q25	4Q25	1Q26	2Q26					
	Surface Mapping & Sampling											
	Maiden Diamond Drilling	(
	Metallurgy Sampling & Test work											
Next	Adit Development & Geophysics											
steps	Drilling Phase 2											
	JORC Review											
	Process Review											
	Drilling Phase 3											
	PEA Studies											

Georgia is an investor-friendly nation strategically positioned as a trade gateway between Europe and Asia.

Population of 3.7 million

In 2023, GDP was USD 30.5 billion, with a GDP per capita of USD 8,210. Georgia had annual GDP growth of 5.2% (2012 to 2023), with a 7.5% growth rate in 2023.

Georgia is globally rated*:

- #7 for ease of doing business and protecting minority investors
- #2 in starting a business
- #12 in enforcing contracts
- #1 in budget transparency

Georgia has an extensive network of free trade agreements (FTAs) and preferential trade regimes.

Georgia has two major mining operations:

- RMG (rich metal Group) operate a Cu-Ag-Au mine and export concentrates from the Georgian Poti port on the back sea
- Georgian Manganese has been operating under various names for well over 100 years.

Georgia – a mining-friendly jurisdiction:

- Skilled and affordable workforce
- Developed road, rail and port system with exportation of resources
- European infrastructure and legal frameworks
- Ample & cheap hydro electric power
- Low corruption levels and transparent business practices
- Low corporate tax rate (15%)
- Foreign investor friendly the Georgian Government actively supports foreign entities via several initiatives
- KTA has a well connected and active in-country partner

SUMMARY

Option to acquire 80% Two-year period – time to complete full technical assessment

Located in Upper Racha Georgia – part of the Tethyan Belt

Zopkhito to Poti port = 262-290km

- 30km gravel road
- 100-115km to railhead (two options)
- Poti port already established for exporting concentrates (Cu and Au)

High-grade Sb vein with complementary, extensive Au throughout the surrounding alteration zone

Well known mineralisation with extensive historical exploration already undertaken – starting from a well establish level

WELL-PLACED FOR GROWTH & SUCCESS

- Developing unique, high-value metal project at the right time
- Well known Sb and Au system with tremendous historical database
- Prospective mineral belt with existing support infrastructure close by
- Exciting project with significant expansion potential, underpinned by a Foreign MRE of 225Kt @ 11.6% Sb = 26,000 tonnes (contained Sb) & 7.1Mt @ 3.7g/t for 815,119 oz of gold

- Blue sky focus on further extension shown by near mineralisation geophysics and geological extensions yet to be explored
- Development pathway de-risked through positive metallurgical results, blue sky with optimisation of Sb and Au flowsheets

Krakatoa working towards advancing through to development phase with aim to convert to a JORC standard in 2025

"Krakatoa are committed to acquiring and developing high value critical metal projects to be a prominent precious and critical metals producer"

ENQUIRIES Mark Major mark.major@ktaresources.com

www.ktaresources.com

KTA.ASX

Appendix A

Additional Information relating to new Exploration Results reported in Appendices B and C of this presentation and company ASX material references and information used in this presentation

		Criteria	Commentary
JORC Code, 201 Criteria	Commentary Channel Sampling Soviet period • Sampling was carried out by the Soviet State Geological Department • Sampling at exploration drive face advances. • Samples were taken across the Antimony vein (full width of vein) • Samples were taken at 1m intervals. • Toal of 20,228 sample (Sb) were taken. • Samples were submitted to a State run laboratory in Tbilisi (Central Laboratory of Georgia) JSCCM 2013/14 channel sampling.	Logging	 Detailed geological logging has been carried out as part of the soviet exploration programme with details recorded including (tabulated): channel sample dimensions and type (channel, pit, surface, riser, etc). Basic rock description i.e. Shale, quartz-antimony, vein, etc. Orientation of the sample and vein detailing dip and dip direct Basic geological logging has been carried out as part of the JSCCM 2013/14 and 2019 exploration programme with details recorded including:
Sampling techniques	 Re-sampling of 6 veins from 7 exploration drives. Taken on the wall of the exploration drive, at 1m intervals for the first 500m and at 5m intervals thereafter. Three samples taken at each location; a sample across the vein interval (across the full mineralised interval, multiple samples taken where the vein exceeds 1m), a sample from the hanging wall (1m length) and a sample from the footwall (1m length). Samples taken with a hammer and chisel producing a channel cross section of 5cm x 10cm with a maximum length of 1m. A consultant site visit (28 to 30 May 2014) was undertaken and the sampling method was reviewed and deemed to be robust for the style of mineralisation encountered at Zopkhito. Samples are assayed for antimony and gold. Total of 6,272 Sb samples taken over selected adit (5), veins (3) and zone intervals. Channel samples were cut 0.2x0.1m dimensions, encapsulating the sulphide bearing quartz vein. Some surface oxidation of the sulphides was noted. Samples were submitted to ALS laboratory in Loughrea, Ireland (September 2019). Samples underwent high grade four acid digest with ICP-AES (ME-ICP61a) finish in addition to Ore grade Sb (Sb-OG62). Gold was not assayed. 	Sub-sampling techniques and sample preparation	 Soviet (1939-1979) Sub-sample and sample preparation are unknown but are concluded to be typically of the time and Soviet techniques. All samples have a recorded weight Based on the results and similar results returned from other sampling near these location it is the authors opinion that they are considered to be typical grades as reported. JCSCM Channel sampling: Photographs taken of sample sites. Samples are prepared by Caucasian Minerals Mining Group Ltd at a sample preparation facility located at Bolnisi. A chain of custody document is utilised with every shipment of samples from Zopkito to the sample preparation facility. The average sample weight received is 9.13kg. Samples are dried at 120°C for 24 hours. Samples are then left to cool for 1 hour before they are re-weighed. The dried samples are then crushed to 4-5mm using a Turkish made jaw crusher before being passed onto one of two ESSA JC2501 jaw crushers where material is crushed to 90% passing <2mm. Out of every 100 samples crushed a total of 5 of the samples are checked for grain size to ensure samples are being adequately crushed. Sample size is reduced by passing the crushed sample material through a Jones Splitter to produce a 1kg sub sample for further processing. Sub sample is pulverised using an ESSA LM-2-P disk pulveriser until 95% passes <74µm (200 mesh). Wet sieve analysis is carried out at least twice per day to ascertain suitable grinding is taking place. The 2013/14 samples collected a 200 g sub samples for submission to the SGS Lakefield laboratory in Canada.; 2019 samples collected an 80g sub sample for submission to ALS laboratory in Loughrea, Ireland A consultant site visit was conducted during both sampling periods to inspect the sample preparation facility was found to be well maintained with equipment in excellent condition. 2013/14 went to the SGS Lakefield laboratory were the samples are pulverised to 7
Drilling techniques	Not applicable – no drilling reported		 GE_ICP90A for Sb <10%;
Drill sample recovery	Not applicable – no drilling reported <i>Related released ASX Material References December 2024 Ontion to Acquire Major Antimony and Cold Project</i>		 GE_ICP90A with XRF finish for Sb >10%; GO_FAA303 for Au; and GE_AAS42E for Ag. • 2019 samples went to ALS and samples underwent high grade four acid digest with ICP-AES (ME-ICP61a) finish in addition to Ore grade Sb (Sb-OG62). Gold was not assaved

9 December 2024 – Option to Acquire Major Antimony and Gold **5 February 2025** – IP Indicates Continuance of Zopkhito Sb-Au Mineralisation

•Based on the style of mineralisation and the typical grades reported historically at Zopkhito, the CP and the

consultants are of the opinion that the assay methods employed are suitable.

Appendix A cont.

RESOURCES LTD.

JORC Code, 2012 Edition – Table 1: Section 1 Cont.

Criteria	Commentary	Criteria	Commentary
Quality of assay data and laboratory tests	 Soviet (1939-1979) Approximately 10% of sample batch was sent as duplicate external samples for QA/QC checks in Yerevan, Armenia. Additional QA/QC duplicate check assays were also carried out in Moscow. No CRM have been used 2013/14 & 2019 channel sampling: Caucasian Minerals insert blanks, certified reference materials (CRMs) and duplicates into the sample stream. Samples are assayed at each respective laboratory. Blank sample submissions show that the vast majority of assay results are below detection limits (72% for Sb, 69% for Au). CRMs have been only used for Au assays and show reasonable levels of accuracy. The CRMs used for Au are deemed to be representative of the grades encountered at Zopkhito. CRMs have not been submitted for Sb. 	Data spacing and distribution	 Soviet (1939-1979) Antimony samples typically taken at 1m intervals, perpendicular to the vein at exploration drive face. No hanging wall or footwall sampling was taken until after 1950. All sampling was taken over selected geological units, not a standard distance. Gold samples, typically taken at 10m intervals (18 veins). No compositing is known. 2013/14 channel sampling: Samples taken at 1m intervals for the first 500m and at 5m intervals thereafter (re-sampling of 6 veins from 7 exploration drives). The density of sampling at Zopkhito demonstrates sufficient continuity in both geological and grade continuity. 2019 channel sampling: Samples taken at 1m or 0.5 intervals for the length of vein sampled
Verification of sampling	 Lab duplicates demonstrate that the analytical methods provide repeatable and precise assay measurements. Verification of several amount of data has been undertaken with the digitised information and the Soviet documents. Correlations with other data is considered suitable for this style of mineralisation Compared historical channel samples to the 2013/14 and 2019 channel samples show some individual samples correlation, however it appears poor in many cases, however in comparing drive areas there is a good correlation. Correlation between the 2013/14 and 2019 samples is strong. 	Orientation of data in relation to geological structure	 Exploration drives at Zopkhito follow the strike of the mineralisation. Historic soviet (1929-1979) channel sampling was taken perpendicular to the antimony vein mineralisation during adit production. 2013/14 and 2019 channel sampling, Due to the way the exploration drives trace the mineralised veins the samples are taken on the wall of the adit or exploration drive, with separate samples taken for the antimony veins, hanging wall and footwall. Antimony vein samples are taken as close to perpendicular to the vein as possible
and assaying	 Caucasian Minerals digitised historic sample data, underground surveys and surface topography from sections and plans held in the state archive. The spatial position of historic sample data was also back calculated with reference to base stations at the entrance to each drive, to verify the spatial positioning. 		 Soviet (1939-79) No reference to sample security is known, however it is known by discussions with local geologist who worked in the Soviet system that all samples were labelled and transported by staff to the state laboratories at selected periods of time.
Location of data points	 Principal drives were scanned with LIDAR, creating point clouds with known reference points at the drive entrances. The topography of the site was remodelled using an RTK drone survey with a base station, and rover-based surveying of the entries of the main drives. The entire programme provided a set of 3D models supported by high-resolution imagery, which allowed the construction of accurate drive midlines (generally to within 20 cm xyz). The Soviet sample data from the 1957 reports, as well as two later reports from the 1970s was freshly transcribed, and remodelled along the new midline base in order to support a high accuracy 3D model When imported into visual software, some errors were noted: Some channel samples show differing horizontal spatial positions. These were corrected by the others and is of the opinion that this has been adequately dealt with. Samples from raises often do not accurately intersect the corresponding drives. It is likely a 	Sample security	 2013/14 channel sampling: Samples are stored at the drive portals before being transported to the exploration camp. At the exploration camp samples are stored in an old semi enclosed oil tank. Samples are transported by truck to the sample preparation facility at Bolnisi. A chain of custody document is utilised with every shipment. Samples are transported to Caucasian Minerals office in Bolnisi and are then dispatched to SGS Lakefield laboratory in Canada. Details regarding the sample security and transport to the Lakefield laboratory, Canada are unknown. Samples received by Lakefield laboratory are checked against the sample submission sheets 2019 channel sampling Followed the same process as 2013/14, but the pulp samples were dispatched to ALS laboratory in Loughrea, Ireland in one batch. All samples receive were checked and weight on reaching the laboratory
	 degree of error has occurred due to the complexity of back calculating these co-ordinates A number of channel samples show dip orientations parallel to the dip directions of the veins. Channel sample dip and dip direction were corrected such that the channel samples are 	Audits or reviews	No audits have been completed to date by the Company.
	 perpendicular to the vein. A local grid using Latitude and Longitude and additional data uses a Pilkovo 1942 GraussKruger Zone 8 coordinate system in Soviet period. Some minor displacements on the coordinates have been seen and all data will be converted to UTM 		
KRAKA	WGS84 system.		18

Appendix A cont.

JORC Code, 2012 Edition – Table 1: Section 2 Reporting of Exploration Results

Criteria	Commentary	Criteria	Commentary
Mineral tenement and land tenure status	 The mineral license (License Number: 1001467 and 1000477) is wholly owned by JSCCM. License was awarded on 14 March 2012 and is valid for a period of 30 years with an expiry date of 15 March 2042. At the end of an initial exploration period of 5 years JSCCM are required to submit a report to the National Environmental Agency (NEA) detailing the completion of the exploration works. JSCCM are currently in the process of obtaining an extension to the exploration period. The Company understands from JSCCM that the extension should be granted. Exploration rights are not restricted to specific minerals thus allowing JSCCM to explore and extract antimony, gold and other ferrous, noble and rare minerals. 	Exploration done by other parties	 It has been reported that in the 1980s some repeat sampling was carried out at Zopkhito on 4 veins in the central part of the deposit. Whilst a summary of the results has been provided to us no specific details on the methods or the direct results have been located by JSCCM. In 2005 Eastern Mediterranean Resources Public Ltd (EMED) acquired the rights to Zopkhito and carried out some additional exploration. It is reported that over 800 new channel samples were taken by EMED. Reports by EMED have been shown to support the historical GKZ resource reporting for antimony and increased the gold resources (Soviet classification) as this was a major focus of EMED. EMED mining are a public listed company now trading under Atalaya Mining. JSCCM have also completed resampling, geophysics and LIDAR surveying of the adits and topography.
Exploration done by other parties	 Initial exploration at Zopkhito occurred between 1929 and 1979 with exploration works carried out by the State. Between 1929 and 1932 exploration was focussed on developing underground exploration drives along the strike of the antimony veins. No channel samples were taken during this period. Following the end of World War II up until 1956 the exploration drives were extended and channel samples were taken on each 1m face advance with samples taken perpendicular to the vein. In places samples were also assayed for gold typically with a face spacing of 10m. In 1957 a Mineral Resource estimate for both antimony and gold was submitted to the Russian State Commission for Reserves (Gosudarstvennaya Komissia po Zapasam) – GKZ, at which point the potential of gold mineralisation was flagged up. Between 1966 and 1978 exploration continued with channel sampling of underground exploration drives with focus on antimony and to a slightly lesser extent gold. Based on review of the historical 1929-1978 exploration data, the Competent Person is of the opinion that the exploration activity was systematic and it adequately defined the geological continuity of the antimony veins 	Geology	 The Zopkhito deposit represents a Phanerozoic Orogenic Sb-Au deposit related to convergent plate boundaries. Tectonic activity in the development of the Caucasus Mountains resulted in the development of the fold thrust belt of the Greater Caucasus which comprises three zones, Fore, Main and Southern Slope with the Zopkhito deposit situated in the Southern Slope zone. The deposit is underlain by Jurassic sedimentary rocks, the lowermost unit of which comprises basal conglomerates. Overlying the basal conglomerates are Jurassic-Cretaceous flysch sequences of alternating coarse sandstones, polymictic sandstones, sandy shales, and black slates. Fractures cut through the slates and shales and have acted as mineralisation pathways leading to the formation of the Sb-Au veins. To date there are around 60 known veins with variable strike orientations ranging from N-S to E-W, with the dominant strike orientation to the NE. Vein dips ranges from 30°-70° predominantly dipping to the NW. Surrounding the veins are alteration halos with the host slates and shales having undergone silicification and sulphidisation. The alteration zones are enriched in purite, arsenopyrite, antimony and oold
	although the limited assaying and assessment of gold mineralisation lowers the confidence that can be place	Drill hole Information	N/A – no drilling is being reported.
	 on the spatial extents and associations of the gold mineralisation. No historical QA/QC data is available for the 1929-1978 channel samples therefore JSCCM undertook a programme of resampling in 2013/14 to provide support to the historical channel samples. The results of the JSCCM resampling show a high level of support for the historical sample data. 	Data aggregation methods	 No metal equivalents have been used at Zopkhito. Channel sample lengths represent either the full thickness of the antimony vein mineralisation or where samples of hanging wall and footwall material have been taken, represent a single sample to either side of the vein. As such samples have not been aggregated Resampling of the underground exploration drives by JSCCM in 2013/14 and 2019 was limited to sampling
	·	Relationship between mineralisation widths and intercept lengths	the drives walls or roof, as such samples of the antimony veins are slightly off perpendicular to the veins thus not true width. It is our opinion that the amount of deviation between sample length and true vein width is minimal and will not materially affect the nature of the numbers.

•

work.

Diagrams

Pertinent map and a summary assay table included in the body of the report are appropriate for this stage of

Appendix A cont.

JORC Code, 2012 Edition – Table 1: Section 2 Reporting of Exploration Results

Criteria	Commentary	Criteria	Commentary
	 Given the quantity of channel samples it is not practicable to include detailed reporting in this section. Soviet 1939/79 samples (4995 samples) Minimum channel length 0.00m; Maximum channel length 39.5m; Average channel length 0.27m; Minimum Sb % grade 0.0% Sb; Maximum Sb % grade 82.9% Sb; Average Sb % grade 4.68% Sb. 	Other substantive exploration data	 Density measurements have been carried out historically as part of the 2019-1978 exploration works and comprised taking 38 sample blocks from antimony veins (size and locations unknown) from which 22 of the blocks were tested for density, with three samples taken for each of the 22 blocks and an average recorded. Some metallurgical testwork was carried out. The GSK metallurgical testwork reports are currently stored in the state archive and the Company aims to review the reports in detail as part of the ongoing exploration works. All other exploration reports details are presented in this report.
Balanced reporting	 Minimum Au grade 0.0 ppm Maximum Au grade 37 ppm; Average Au grade 2.6ppm JSCCM 2013/14 antimony vein samples: Minimum channel length 0.00m; Maximum channel length 1.35m; Average channel length 0.40m; Minimum Sb % grade 0.005% Sb; Maximum Sb % grade 51.8% Sb; Average Sb % grade 0.94% Sb. JSCCM 2019 antimony vein samples 	Further work	 The Company plans as part of its exploration efforts to conduct the following activities: Additional re-sampling of underground drives in areas not previously covered and those not covered. Density testwork. Underground or surface fan drilling to test extents of current mineralised veins and to better delineate mineral associations, and potential of blind veins between the current known vein mineralisation. Metallurgical testwork to assess antimony and gold recoveries. Development of a JORC compliant mineral resource estimate. Further reconnaissance mapping and surface sampling to examine and further refine areas of possible mineralisation are warranted.
	 Minimum channel length 0.07m; Maximum channel length 1.31m; Average channel length 0.53m; Minimum Sb % grade 0.006% Sb; Maximum Sb % grade 10.4% Sb; Average Sb % grade 1.33% Sb JSCCM 2013/14 gold samples: Minimum gold grade 0.01ppm Au: Maximum gold grade 58.4 ppm Au; Average gold grade 1.7 ppm Au. 		

Appendix B – Significant Antimony Channel Samples >15% Sb

Sample ID	Drive	Vein	Sb (%)	Length	Sample ID	Drive	Vein	Sb (%)	Length	Sample ID	Drive	Vein	Sb (%)	Length	Sample ID	Drive	Vein	Sb (%)	Length
777_V-2_A-21_1940	21	2	82.88	0.3	5637_V-6_A-80_1954	80	6	34.34	0.2	95_V-7_A-7_1955	7	7	29.88	0.15	889_V-2_A-33_1941	33	2	26.87	0.13
1278_V-2_A-35_1942	35	2	70.26	0.3	5742_V-6_A-52_1954	52	6	34.34	0.15	96.74_V-7_A-7_1935	7	7	29.88	0.15	5497 V-6 A-80 1954	80	6	26.79	0.2
8545_V-2_A-21_2014	21	2	51.8	0.5	5742_V-6_A-80_1954	80	6	34.34	0.5	733_V-2_A-2_1940	2	2	29.78	0.35	6497 V-6 A-80 1953	80	6	26.79	0.2
5739_V-6_A-80_1954	80	6	47.89	0.2	6637 V-6 A-80 1953	80	6	34.34	0.2	733_V-2_A-21_1950	21	2	29.78	0.35	5477 V-6 A-52 1954	52	6	26.73	0.5
8548_V-2_A-21_2014	21	2	47.6	0.3	4430 V-33 A-62 1953	62	33	34.3	0.5	8927_V-2_A-42_1950	42	2	29.55	0.32	5477 V-6 A-80 1954	80	6	26.73	0.5
8929_V-2_A-42_1950	42	2	46.82	0.3	6375 V-2 A-35 1951	35	2	34.27	0.25	632_V-2_A-30_1940	30	2	29.5	0.2	8541 V-2 A-21 2014	21	2	26.7	0.6
5738_V-6_A-52_1954	52	6	46.53	0.4	566 V-29 A-27 1940	27	29	34.23	0.13	355_V-2_A-21_1940	21	2	29.33	0.4	1469 V-2 A-29 1942	29	2	26.67	0.13
57380_V-6_A-80_1954	80	6	46.53	0.4	7875 V-33 A-62 1955	62	33	34.04	0.29	753_V-2_A-21_1940	21	2	29.33	0.25	914 V-2 A-33 1941	33	2	26.66	0.25
5633_V-6_A-80_1954	80	6	45.12	0.8	4168 V-6 A-35 1952	35	6	33.8	0.15	8922_V-2_A-42_1950	42	2	29.3	0.28	3245 V-2Δ Δ-41 1948	41	24	26.63	0.36
3921_V-6_A-45_1951	45	6	44.13	0.35	9133 V-2 A-21 1950	21	2	33.75	0.35	1150_V-29_A-34_1941	34	29	29.29	0.25	8538 V-2 Δ-21 2014	21	2	26.6	0.8
776_V-2_A-21_1940	21	2	42.67	0.35	8574 V-2 A-21 2014	21	2	33.7	0.4	8381_V-28_A-24_2014	24	28	29.1	0.3	6093 V-2 A-35 1951	35	2	26.59	0.15
8551_V-2_A-21_2014	21	2	42	0.3	5753 V-2 A-35 1951	35	2	33 65	0.4	5484_V-2_A-35_1951	35	2	29.09	0.2	5700 V-2 A-41 1050	41	2	26.55	0.15
5632_V-6_A-80_1954	80	6	41.8	0.8	1769 V-2 A-41 1943	41	2	33.6	0.15	5761 V-6 A-80 1954	80	6	28.99	0.6	5755 V-6 A-80 1054	80	6	26.33	0.25
8925 V-2 A-42 1950	42	2	41.25	0.25	5634 V-6 Δ-80 1954	80	6	33.37	0.15	8480 V-2 A-40 1950	40	2	28.89	0.45	5755_V-0_A-80_1954	80	6	20.41	0.5
5912 V-52 A-88 1954	88	52	41.21	0.15	8926 V-2 Δ-42 1950	42	2	33.28	0.0	6995 V-28 A-24 1954	24	28	28.77	0.2	5705_V-0_A-80_1954	25	2	20.41	0.0
8360 V-9 A-106 1955	106	9	41	0.2	5808 V-6 A-80 1954	80	6	33.06	0.5	5648 V-9 A-59 1953	59	9	28.76	0.15	0004_V-2_A-35_1951	35	2	20.32	0.4
4010 V-6 A-45 1952	45	6	39.34	0.35	7167 V-26-27 A-86 1054	86	26-27	33.00	0.4	568 V-29 A-27 1940	27	29	28.7	0.15	5379_V-2_A-53_1954	53	2	26.18	0.3
5550 V-28 A-35 1953	35	28	39.34	0.25	/10/_V-20-2/_A-00_1904	62	20-27	22.02	0.4	6989 V-26-27 A-86 1954	86	26-27	28.7	0.7	5879_V-2_A-53_1952	53	2	26.18	0.3
2766 V-2 A-42 1948	42	2	38.91	0.25	$76 = 4 \times 0$	0Z E A		22.00	0.5	6357 V-2 A-35 1951	35	2	28.52	0.15	5521_V-33_A-62_1953	62	33	26.17	0.8
8534 V-2 A-21 2014	21	2	38.9	0.9	70.34_V-9_A-3A_1933	OA OA	9	22.00	0.25	732 V-2 A-21 1950	21	2	28.4	0.35	4005_V-6_A-45_1952	45	6	26.16	0.25
755 V-2 A-21 1940	21	2	38,42	0.2	5/50_V-0_A-00_1954	00	6	22.02	0.5	6633 V-2 A-35 1951	35	2	28.38	0.15	5923_V-6_A-57_1954	5/	6	25.93	0.4
8070 V-6 A-80 1954	80	6	38.36	0.25	2113_V-0_A-00_2014	00	2	22.0	0.35	732 V-2 A-2 1940	2	2	28.3	0.3	5768_V-6_A-80_1954	80	6	25.88	0.6
4553 V-33 A-61 1953	61	33	38.2	0.3	9132_V-2_A-21_1950	21	2	32.50	0.5	7871 V-33 A-62 1955	62	33	28.27	0.2	1105_V-6_A-35_1942	35	6	25.7	0.2
535 V-2 A-30 1940	30	2	37.86	0.15	5/9/_V-0_A-80_1955	80	0	32.34	0.4	8344 V-28 A-24 2014	24	28	28.1	0.35	6399_V-26-27_A-62_2014	62	26-27	25.7	0.3
3998 V-6 A-45 1952	45	6	37.5	0.35	6619_V-2_A-35_1951	35	2	32.12	0.15	3844 V-6 A-45 1961	45	6	28.08	0.4	3090_V-6_A-80_2014	80	6	25.6	0.3
5199 V-6 A-80 2014	80	6	37.1	1	6631_V-2_A-35_1951	35	2	31.99	0.15	7529 V-2 A-21 2014	21	2	28	0.35	5902_V-28_A-117_2014	117	28	25.6	1
5489 V-2 A-35 1951	35	2	36.78	0.2	2781_V-2_A-42_1948	42	2	31.98	0.12	5197 V-6 A-80 2014	80	6	28	0.9	6608_V-2_A-35_1951	35	2	25.54	0.3
5478 V-6 A-80 1954	80	6	36.6	0.6	976_V-2_A-29_1952	29	2	31.86	0.15	6498 V-6 A-80 1953	80	6	27.88	0.2	519_V-2_A-30_1940	30	2	25.5	0.15
413 V-2 A-21 1940	21	2	36.5	0.15	5/38_V-6_A-80_1954	80	6	31.86	0.1	69720 V-2 A-35 1951	35	2	27.88	0.25	8632_V-2_A-21_2014	21	2	25.3	0.4
6048 V-33 A-62 1953	62	33	36.3	0.6	5/41_V-6_A-80_1954	80	6	31.66	0.25	6977 V-2 A-35 1954	35	2	27.86	0.25	5488_V-2_A-35_1951	35	2	25.27	0.2
5203 V-6 A-80 2014	80	6	36.3	0.3	/864_V-33_A-62_1955	62	33	31.44	0.3	5498 V-6 A-80 1954	80	6	27.83	0.2	2768_V-2_A-42_1948	42	2	25.25	0.2
6377 V-2 A-35 1951	35	2	35.96	0.2	9092_V-55_A-90_1955	90	55	31.36	0.3	2197 V-28 A-35 1944	35	28	27.82	0.3	8092_V-6_A-80_1955	80	6	25.25	0.2
6596 V-2 A-35 1951	35	2	35.57	0.4	59/1_V-28_A-11/_2014	11/	28	31.1	0.3	6245 V-52 A-92 1954	92	52	27.81	0.55	8093_V-6_A-80_1954	80	6	25.25	0.2
4636 V-33 A-62 1953	62	33	35.56	0.6	885_V-2_A-33_1941	33	2	31.04	0.25	357 V-2 A-21 1940	21	2	27.8	0.45	449_V-29_A-27_1940	27	29	25.2	0.08
754 V-2 A-21 1940	21	2	35.5	0.25	5164_V-33_A-62_1953	62	33	31	0.5	6354 V-2 A-35 1951	35	2	27.78	0.15	446000_V-29_A-27_1954-56	27	29	25.2	0.1
7238 V-56 A-71 1954	71	56	35.27	0.35	115.93_V-8_A-8_1935	8	8	30.89	0.23	5789 V-6 A-80 1954	80	6	27.65	0.4	6688_V-52_A-92_2014	92	52	25.1	0.25
5490 V-2 A-35 1951	35	2	35.13	0.2	735_V-2_A-21_1950	21	2	30.85	0.25	1270 V-2 A-35 1942	35	2	27.52	0.3	6964_V-2_A-35_1951	35	2	24.92	0.25
2109 V-6 A-80 2014	80	6	35.1	0.3	4034_V-6_A-45_1952	45	6	30.69	0.1	4155 V-6 A-35 1952	35	6	27.49	0.3	6954 V-2 A-35 1954	35	2	24.9	0.25
5767 V-6 A-80 1954	80	6	34.77	0.6	475_V-2_A-28_1940	28	2	30.6	0.2	478 V-2 A-28 1940	28	2	27.33	0.35	6456 V-26-27 A-86 2014	86	26-27	24.9	0.2
3997 V-6 A-45 1951	45	6	34.71	0.45	1151_V-29_A-34_1941	34	29	30.59	0.2	2322 V-7 A-93 1946	93	7	27.32	0.12	4634 V-33 A-62 1953	62	33	24 78	0.5
2023 V-2A A-41 1945	41	2A	34.66	0.08	5496_V-6_A-80_1954	80	6	30.57	0.6	2227 V-7 A-93 1946	93	7	27.32	0.4	6966 V-26-27 A-86 1954	86	26-27	24 77	0.4
5938 V-2 A-41 1954	41	2	34.54	0.25	6829_V-52_A-88_2014	88	52	30.5	0.4	2228 V-7 A-93 1946	93	7	27 32	0.3	7868 V-33 A-62 1955	62	20 27	24.76	0.1
4223 V-6 A-35 1952	35	6	34.34	0.12	6047_V-33_A-62_1953	62	33	30.48	0.6	2323 V-7 A-93 1946	93	7	27.32	0.1	4988 V-2 A-117 2014	117	2	24.70	0.5
					5352_V-26-27_A-86_1953	86	26-27	30.46	0.25	2324 V-7 A-93 1946	93	7	27 32	0.1	1500_V-2_A-11/_2017	11/	2	27./	0.2
					53520_V-26-27_A-86_1954-56	86	26-27	30.44	0.25	7923 V-6 A-80 1954	80	6	27.17	0.3					
🖊 ΚΚΑΚΑΊ	UА				735_V-2_A-2_1940	2	2	30.35	0.25	4556 V-33 A-61 1953	61	33	27.16	0.2					21
											01	00		0.2					

Appendix B – Significant Antimony Channel Samples >15% Sb

RESOURCES LTD.

Sample ID	Drive	Vein	Sb (%)	Length	Sample ID	Drive	Vein	Sb (%)	Length	Sample ID	Drive	Vein	Sb (%)	Length	Sample ID	Drive	Vein	Sb (%)	Length
1285_V-2_A-35_1942	35	2	24.6	0.5	4108_V-6_A-9_1952	9	6	23.14	0.1	2473_V-3_A-22_1946	22	3	21.52	0.1	5519_V-52_A-88_1953	88	52	20.25	0.2
658_V-2_A-28_1940	28	2	24.6	0.3	7842_V-33_A-62_1955	62	33	23.01	0.2	2474_V-3_A-22_1946	22	3	21.52	0.09	4705_V-26-27_A-62_1953	62	26-27	20.23	0.4
7908_V-6_A-80_1954	80	6	24.52	0.35	8921_V-2_A-42_1950	42	2	22.95	0.35	2475 V-3 A-22 1946	22	3	21.52	0.08	4000 V-6 A-45 1952	45	6	20.22	0.35
7908_V-6_A-80_1955	80	6	24.52	0.35	8571_V-2_A-21_2014	21	2	22.9	0.4	2476 V-3 A-22 1946	22	3	21.52	0.08	3174 V-28 A-35 1948	35	28	20.2	0.25
764_V-2_A-21_1940	21	2	24.5	0.4	6472_V-52_A-88_1954	88	52	22.83	0.12	1186 V-6 A-4 1942	4	6	21.48	0.25	1830 V-2 A-41 1943	41	2	20.2	0.1
4884_V-33_A-62_1953	62	33	24.48	0.5	4170_V-6_A-35_1952	35	6	22.74	0.15	1188 V-6 A-4 1942	4	6	21 48	0.2	356 V-2 A-21 1940	21	2	20.2	0.48
4966_V-52_A-66_1953	66	52	24.48	0.4	2240_V-7_A-93_1955	93	7	22.73	0.35	4009 V-6 A-45 1952	45	6	21 48	0.35	117/95 V-8 Δ-8 1954-56	8	8	20.08	0.12
5478_V-6_A-52_1954	52	6	24.48	0.5	6816_V-2_A-35_1951	35	2	22.7	0.3	5206 V-6 A-80 2014	80	6	21.10	0.35	4125 V-6 A-9 1952	9	6	20.00	0.12
521_V-2_A-30_1940	30	2	24.46	0.12	8629_V-2_A-21_2014	21	2	22.7	0.4	1196 V-6 A-4 1947	4	6	21.1	0.25	$4125_{0} = 0_{-1} = 5_{-1} =$	97	33	20.07	0.0
5476_V-6_A-80_1954	80	6	24.43	0.5	1048_V-6_A-80_2014	80	6	22.7	0.2	6065 V-2 A-35 1951	35	2	21.35	0.2	3050 V-2 A-40 1048	40	2	20.00	0.75
8528_V-2_A-21_2014	21	2	24.4	0.8	8625_V-33_A-105_1955	105	33	22.69	0.25	4460 V 22 A 61 1052	61	2	21.33	0.2	1100 V 6 A 4 1042	4	6	20.05	0.2
537_V-2_A-30_1940	30	2	24.39	0.12	766_V-2_A-21_1940	21	2	22.65	0.3	9557 V 2 A 21 2014	21	22	21.3	0.4	1170E V 9 A 9 102E	4	0	20.05	0.15
4212_V-6_A-35_1952	35	6	24.35	0.15	6494_V-52_A-93_1954	93	52	22.63	0.45	8557_V-2_A-21_2014	21	2	21.3	0.4	117.95_V-8_A-8_1935	8	8	20.02	0.12
5190_V-52_A-88_1953	88	52	24.34	0.3	2010_V-6_A-80_2014	80	6	22.6	0.7	6816_V-52_A-88_2014	88	52	21.3	0.4	6661_V-33_A-90_1954	90	33	20	1.2
5771_V-6_A-80_1954	80	6	24.3	0.6	1768_V-2_A-41_1943	41	2	22.53	0.15	5946_V-6_A-5/_1954	5/	6	21.26	0.4	6/21_V-2_A-35_1951	35	2	19.98	0.15
6052_V-6_A-57_1954	57	6	24.21	0.3	5744_V-6_A-80_1954	80	6	22.5	0.4	8923_V-2_A-42_1950	42	2	21.23	0.3	3035_V-2_A-35_1948	35	2	19.95	0.35
4224_V-6_A-35_1952	35	6	24.2	0.1	6050_V-33_A-62_1953	62	33	22.49	0.5	1193_V-6_A-4_1942	4	6	21.22	0.2	3034_V-2_A-35_1948	35	2	19.94	0.22
4413_V-2a_A-35_1953	35	2a	24.2	0.15	756_V-2_A-21_1940	21	2	22.34	0.2	1195_V-6_A-4_1942	4	6	21.22	0.25	6993_V-2_A-35_1951	35	2	19.93	0.25
4008_V-6_A-45_1952	45	6	24.17	0.3	1199_V-6_A-4_1942	4	6	22.26	0.2	3095_V-6_A-80_2014	80	6	21.2	0.4	5807_V-2_A-41_1950	41	2	19.91	0.2
5804_V-6_A-10_1954	10	6	24.09	0.5	5520_V-33_A-62_1953	62	33	22.24	0.8	6420_V-52_A-88_1954	88	52	21.17	0.1	6049_V-2_A-117_2014	117	2	19.9	0.15
5805_V-6_A-80_1954	80	6	24.05	0.4	5165_V-6_A-80_2014	80	6	22.2	0.6	3961_V-6_A-45_1951	45	6	21.15	0.35	8762_V-33_A-90_2014	90	33	19.9	0.25
1480_V-2_A-30_1942	30	2	24	0.6	1197_V-6_A-4_1942	4	6	22.18	0.25	1185_V-6_A-4_1942	4	6	21.09	0.15	7181_V-28_A-24_1954	24	28	19.87	0.35
8079_V-6_A-80_1954	80	6	23.97	0.4	4094_V-6_A-9_1952	9	6	22.11	0.17	8924_V-2_A-42_1950	42	2	21.09	0.3	6364_V-2_A-35_1951	35	2	19.83	0.3
6088_V-26-27_A-86_1954	86	26-27	23.96	0.55	4985_V-2_A-117_2014	117	2	22.1	0.25	4623_V-33_A-62_1953	62	33	21.08	0.3	4124_V-6_A-9_1952	9	6	19.81	0.5
4704_V-26-27_A-62_1953	62	26-27	23.63	0.4	6846_V-2_A-35_1951	35	2	22.06	0.4	905.1_V-2_A-33_1941	33	2	20.97	0.1	1198_V-6_A-4_1942	4	6	19.79	0.2
585_V-2_A-30_1940	30	2	23.5	0.1	7699_V-6_A-80_1951	80	6	22.05	0.3	905-a_V-2_A-33_1950	33	2	20.97	0.1	6009_V-52_A-88_1954	88	52	19.79	0.15
6351_V-2_A-35_1951	35	2	23.47	0.15	4630_V-33_A-62_1953	62	33	22.04	0.35	1192_V-6_A-4_1942	4	6	20.96	0.15	1075_V-28_A-39_1941	39	28	19.76	0.25
2223_V-1_A-SHD67_1954-56	SHD67	1	23.43	0.25	4728_V-26-27_A-62_1953	62	26-27	22.04	0.2	1726_V-2_A-41_1943	41	2	20.92	0.15	1594_V-2_A-30_1942	30	2	19.73	0.27
2327_V-1_A-70_1946	70	1	23.43	0.25	5087_V-26-27_A-62_1953	62	26-27	22.03	0.2	9394_V-2_A-21_2014	21	2	20.9	0.5	1181_V-6_A-4_1942	4	6	19.66	0.25
2349_V-1_A-67_1946	67	1	23.43	0.23	5087_V-26-27_A-86_1953	86	26-27	22.03	0.2	1946_V-2_A-35_1944	35	2	20.85	0.25	1187_V-6_A-4_1942	4	6	19.66	0.15
2350_V-1_A-67_1946	67	1	23.43	0.25	5087_V-26-27_A-62_1954-56	62	26-27	22.03	0.2	3960_V-6_A-45_1951	45	6	20.82	0.35	5944_V-2_A-41_1954	41	2	19.66	0.15
2351_V-1_A-67_1946	67	1	23.43	0.25	5167_V-33_A-62_1953	62	33	22.03	0.6	1018_V-6_A-80_2014	80	6	20.8	0.8	6590_V-2_A-35_1951	35	2	19.61	0.35
2352_V-1_A-67_1946	6/	1	23.43	0.2	508/0_V-26-2/_A-86_1954-56	86	26-27	22.03	0.2	1180_V-6_A-4_1942	4	6	20.7	0.12	4624_V-33_A-62_1953	62	33	19.6	0.35
2353_V-1_A-67_1946	6/	1	23.43	0.2	11/8_V-6_A-4_1942	4	6	21.87	0.4	1194_V-6_A-4_1942	4	6	20.7	0.2	3714_V-6_A-117_2014	117	6	19.6	0.23
411_V-Z_A-Z1_1940	21	2	23.4	0.32	2228_V-3_A-SHD22_1955	SHD22	2 3	21.82	0.1	4788_V-26-27_A-62_1953	62	26-27	20.7	0.4	1051_V-6_A-80_2014	80	6	19.6	0.15
6772 V 52 A 02 2014	00	20-27	23.35	0.4	4208_V-6_A-35_1952	35	6	21.82	0.18	3193_V-6_A-9_2014	9	6	20.7	0.5	8382_V-2_A-40_1950	40	2	19.59	0.3
6732_V-52_A-92_2014	92	26 27	23.3	0.15	/881_V-33_A-62_1955	62	33	21.82	0.39	9267 V-26-27 A-86 2014	86	26-27	20.7	0.4	4114 V-6 A-9 1952	9	6	19.55	0.25
4/2/_V-20-2/_A-02_1953	62	20-27	23.20	0.2	6987_V-28_A-24_1954	24	28	21.8	0.2	8057 V-6 A-80 1954	80	6	20.64	0.5	5948 V-6 A-57 1954	57	6	19.54	0.3
/131_V-0_A-40_1954	40	0	23.22	0.2	6997_V-2_A-35_1951	35	2	21.8	0.15	9075 V-33 A-90 1955	90	33	20.6	0.4	739 V-2 A-2 1940	2	2	19.5	0.25
91/2_V-1_A-111_1955	21	1	23.21		6755_V-52_A-88_2014	88	52	21.8	0.2	6087 V-2 A-41 1954	41	2	20.52	0.2	739 V-2 A-21 1950	21	2	19.5	0.35
001_V-2_A-21_2014	21	2	23.2	0.45	2752_V-1_A-111_1954-56	111	1	21.68	0.25	1986 V-2 A-40 1944	40	2	20.49	0.18	3959 V-6 A-45 1954	45	6	19.5	0.3
2092_V-28_A-117_2014	11/	28	23.2	0.15	1200_V-6_A-4_1942	4	6	21.61	0.25	1268 V-2 A-35 1942	35	2	20.4	0.2	7843 V-33 Δ-62 1955	62	33	19.5	0.25
1032_1-5 ⁴ 0_1344	40	2	23.17	0.12	4169_V-6_A-35_1952	35	6	21.61	0.15	1665 V-28 A-35 1948	35	28	20.1	0.25	8769 V-33 Δ-00 2014	90	33	19.5	0.25
					1191_V-6_A-4_1942	4	6	21.57	0.2	4629 V-33 A-62 1953	62	33	20.34	0.35	0,05_V 35_A 50_2014	50	55	15.5	0.55
🖌 🖌 KRAKAT	ΟA				2472_V-3_A-22_1946	22	3	21.52	0.1	40010 V-6 Δ-45 1954	45	6	20.27	0.35					22
											10	5	20127	0.00					

Appendix B – Significant Antimony Channel Samples >15% Sb

Sample ID	Drive	Vein	Sb (%)	Length	Sample ID	Drive	Vein	Sb (%) Leng	gth	Sample ID	Drive	Vein	Sb (%)	Length	Sample ID	Drive	Vein	Sb (%)	Length
3993_V-6_A-45_1951	45	6	19.47	0.3	6320_V-52_A-92_1954	92	52	18.55 0.4	4	1904_V-2_A-40_1944	40	2	17.33	0.11	4943_V-28_A-24_1953	24	28	16.32	0.15
2026_V-2A_A-41_1945	41	2A	19.46	0.2	3950_V-6_A-45_1951	45	6	18.53 0.2	28	5500_V-6_A-10_1953	10	6	17.3	0.1	752_V-2_A-21_1940	21	2	16.27	0.2
5205_V-6_A-80_2014	80	6	19.4	1	3175_V-28_A-35_1948	35	28	18.51 0.2	22	4640_V-33_A-62_1953	62	33	17.29	0.4	812_V-2_A-32_1941	32	2	16.26	0.45
9398_V-2_A-21_2014	21	2	19.4	0.5	4222_V-6_A-35_1952	35	6	18.51 0.1	1	6974_V-26-27_A-86_1954	86	26-27	17.29	0.2	9053_V-56_A-103_1955	103	56	16.24	0.15
6237_V-33_A-62_1953	62	33	19.39	0.25	910_V-2_A-33_1941	33	2	18.44 0.1	15	1297_V-2_A-35_1942	35	2	17.24	0.55	5008_V-33_A-62_1953	62	33	16.2	0.25
6094_V-2_A-35_1951	35	2	19.39	0.15	5950_V-6_A-57_1954	57	6	18.41 0.3	3	5794_V-2_A-41_1950	41	2	17.21	0.25	1182_V-6_A-4_1942	4	6	16.2	0.15
7158_V-26-27_A-86_1954	86	26-27	19.35	0.7	4635_V-33_A-62_1953	62	33	18.39 0.5	55	6097_V-6_A-80_1954	80	6	17.2	0.3	3889_V-6_A-45_1951	45	6	16.2	0.75
567_V-29_A-27_1940	27	29	19.34	0.15	4368_V-10_A-51_1953	51	10	18.32 0.4	4	3103_V-6_A-80_2014	80	6	17.2	0.35	3188 V-28 A-35 1948	35	28	16.18	0.4
3951_V-6_A-45_1951	45	6	19.34	0.25	7187 V-26-27 A-86 1954	86	26-27	18.32 0.5	5	6832_V-52_A-88_2014	88	52	17.2	0.35	7766 V-54 A-52 1955	52	54	16.15	0.2
813_V-2_A-32_1941	32	2	19.31	0.12	743 V-2 A-2 1940	2	2	18.25 0.2	25	5593_V-6_A-10_1955	10	6	17.18	0.1	816 V-2 A-32 1941	32	2	16.12	0.4
1497 V-2 A-30 1942	30	2	19.3	0.2	2025 V-2A A-41 1945	41	2A	18.24 0.3	32	8200 V-2 A-40 1950	40	2	17.18	0.2	3130 V-8 A-5 1948	5	8	16.12	0.45
1125 V-28 A-38 1941	38	28	19.26	0.2	4393 V-2a A-35 1953	35	2a	18.22 0.1	15	4240 V-28 A-35 1952	35	28	17.05	0.3	6598 V-26-27 A-86 1955	86	26-27	16.12	0.2
1177 V-6 A-4 1942	4	6	19.26	0.3	380 V-2 A-21 1940	21	2	18.2 0.3	35	4622 V-33 A-62 1953	62	33	16.9	0.5	6165 V-33 A-62 1953	62	33	16.1	0.6
1179 V-6 A-4 1942	4	6	19.25	0.15	8392 V-6 A-52 1955	52	6	18.1 0.1	15	7553 V-2 A-35 1951	35	2	16.84	0.6	5270 V-11 A-84 1953	84	11	16.05	0.2
1718 V-2 A-35 1942	35	2	19.25	0.15	9404 V-2 A-21 2014	21	2	18.1 0.4	15	912 V-2 A-33 1941	33	2	16.83	0.15	3872 V-6 A-45 1951	45	6	16	0.3
4423 V-2a A-35 1953	35	2a	19.24	0.5	1833 V-2 A-41 1943	41	2	18.06 0.1	15	775 V-2 A-21 1940	21	2	16.82	0.3	4210 V-6 A-35 1952	35	6	15.98	0.15
8231 V-56 A-98 1955	98	56	19.24	0.06	743 V-2 A-21 1950	21	2	18.05 0.2	25	4171 V-6 A-35 1952	35	6	16.8	0.15	4433 V-33 A-62 1953	62	33	15.95	0.5
8385 V-2 A-40 1950	40	2	19.22	0.25	1259 V-2 A-35 1942	35	2	18.02 0.1	16	7479 V-2 A-21 2014	21	2	16.8	0.65	9071 V-56 A-103 1955	103	56	15.89	0.25
3459 V-6 A-45 1951	45	6	19.2	0.3	1044 V-6 A-80 2014	80	6	18 0.3	3	757 V-2 A-21 1940	21	2	16.78	0.22	765 V-2 A-21 1940	21	2	15.74	0.4
3100 V-2A A-41 1948	41	2A	19.19	0.26	6691 V-52 A-92 2014	92	52	18 0.1	1	6460 V-52 A-88 1954	88	52	16.77	0.3	859 V-2 A-29 1941	29	2	15.74	0.18
4221 V-6 A-35 1952	35	6	19.19	0.15	6836 V-2 A-35 1951	35	2	17.93 0.3	3	8928 V-2 A-42 1950	42	2	16.75	0.27	1029 V-6 A-80 2014	80	6	15.7	0.15
5903 V-2 A-53 1954	53	2	19.17	0.15	8603 V-33 A-90 1955	90	33	17.93 0.4	12	3132 V-8 A-5 1948	5	8	16.74	0.4	3131 V-8 A-5 1948	5	8	15.67	0.4
5908 V-2 A-53 1952	53	2	19.17	0.15	5776 V-2 A-35 1951	35	2	17.91 0.3	3	8785 V-33 A-90 2014	90	33	16.7	0.45	6599 V-26-27 A-86 1954	86	26-27	15.61	0.65
6852 V-52 A-88 2014	88	52	19.1	0.35	6772 V-52 A-88 2014	88	52	17.8 0.2	2	6725 V-6 A-80 1954	80	6	16.64	0.3	6353 V-26-27 A-86 1954	86	26-27	15.61	0.6
1201_V-6_A-4_1942	4	6	19	0.25	421 V-2 A-21 1940	21	2	17.78 0.2	2	6733_V-28_A-24_1954	24	28	16.64	0.15	4011 V-6 A-45 1952	45	6	15.6	0.3
4625 V-33 A-62 1953	62	33	18.95	0.35	4081 V-6 A-9 1952	9	6	17.78 0.2	25	1787 V-2 A-40 1948	40	2	16.63	0.13	8852 V-11 A-84 2014	84	11	15.6	0.35
5189_V-52_A-88_1953	88	52	18.9	0.3	1905_V-2_A-40_1944	40	2	17.7 0.1	15	6651_V-33_A-90_1954	90	33	16.61	0.5	9019_V-2_A-21_1950	21	2	15.55	0.5
3657_V-2_A-117_2014	117	2	18.9	0.4	2187_V-2_A-42_1944	42	2	17.7 0.1	12	811_V-2_A-32_1941	32	2	16.59	0.15	4383 V-6 A-10 2014	10	6	15.5	0.85
4714_V-26-27_A-62_1953	62	26-27	18.88	0.3	2869 V-28 A-117 2014	117	28	17.7 0.6	6	5370_V-9_A-59_1953	59	9	16.59	0.3	6081 V-2 A-35 1951	35	2	15.49	0.15
913_V-2_A-33_1941	33	2	18.85	0.25	8725 V-33 A-87 2014	87	33	17.7 0.8	8	778_V-2_A-21_1940	21	2	16.54	0.2	911 V-2 A-33 1941	33	2	15.48	0.2
7877_V-33_A-62_1955	62	33	18.85	0.33	8765 V-33 A-90 2014	90	33	17.6 0.4	4	1500_V-2_A-30_1942	30	2	16.54	0.47	4436_V-33_A-62_1953	62	33	15.44	0.5
5034_V-9_A-5_1954	5	9	18.79	0.3	1189 V-6 A-4 1942	4	6	17.57 0.1	15	1672_V-2_A-35_1942	35	2	16.52	0.3	8112_V-56_A-103_1955	103	56	15.41	0.12
9017_V-2_A-21_1950	21	2	18.78	0.5	4393 V-6 A-57 2014	57	6	17.5 0.2	2	6535_V-6_A-52_1954	52	6	16.51	0.2	6279 V-9 A-5a 2014	5a	9	15.4	0.5
7363_V-26-27_A-86_1954-56	86	26-27	18.77	0.6	7695_V-6_A-80_1951	80	6	17.45 0.1	1	6492_V-52_A-92_1954	92	52	16.51	0.2	7355_V-6_A-80_1954	80	6	15.37	1.6
7365_V-26-27_A-86_1954	86	26-27	18.77	0.6	4468_V-33_A-61_1953	61	33	17.42 0.4	4	6767_V-14_A-96_1954	96	14	16.51	0.2	4083_V-6_A-10_1952	10	6	15.34	0.3
888_V-2_A-33_1941	33	2	18.75	0.6	5492_V-2_A-41_1950	41	2	17.41 0.0)5	3197_V-6_A-9_2014	9	6	16.5	0.5	4626_V-33_A-62_1953	62	33	15.34	0.25
5034_V-9_A-5A_1953	5A	9	18.73	0.3	5947_V-6_A-57_1954	57	6	17.41 0.5	5	7831_V-33_A-62_1955	62	33	16.48	0.3	4567_V-33_A-57_1953	57	33	15.3	0.35
7000_V-2_A-41_2014	41	2	18.7	0.3	6811_V-2_A-35_1951	35	2	17.41 0.4	4	3186_V-28_A-35_1948	35	28	16.41	0.4	4449_V-9_A-59_2014	59	9	15.3	0.3
4126_V-6_A-9_1952	9	6	18.68	0.6	8578 V-2 A-21 2014	21	2	17.4 0.4	15	774_V-2_A-21_1940	21	2	16.4	0.3	8384 V-28 A-24 2014	24	28	15.3	0.35
8389 V-6 A-52 1955	52	6	18.64	0.2	6472 V-26-27 A-86 2014	86	26-27	17.4 0.1	15	1992_V-2_A-40_1944	40	2	16.37	0.2	1012 V-6 A-80 2014	80	6	15.3	0.85
9320 V-26-27 A-86 2014	86	26-27	18.6	0.8	5649 V-6 A-80 1954	80	6	17.35 0.5	5	6049 V-33 A-62 1953	62	33	16.36	0.5	2636 V-8 A-5 1948	5	8	15.28	0.3
6928_V-52_A-92_1954	92	52	18.58	0.3	1674_V-2_A-35_1942	35	2	17.35 0.4	4	8920_V-2_A-42_1950	42	2	16.36	0.3	1290_V-2_A-35_1942	35	2	15.25	0.25
					5749_V-6_A-80_1954	80	6	17.35 0.5	5	5824_V-26-27_A-86_1954	86	26-27	16.34	0.4					
ΚΚΑΚΑΙ	UΑ				6715 V-6 A-80 1954	80	6	17.35 0.1	15	3177_V-28_A-35_1948	35	28	16.32	0.23					23
RESOURCES LT	D.				1839_V-2_A-40_1943	40	2	17.35 0.1	1										

Appendix C– Gold Channel Samples

Hanging Wall & Footwall >11ppm Au

Sample ID	drive	vein	Au (ppm)	geological	length
5963_V-28_A-117_2014	117	28	58.4	Foot-walll Shale-3	0.5
5984_V-28_A-117_2014	117	28	35.7	Foot-wall-Diabase - 3	0.8
4482_V-9_A-59_2014	59	9	27.3	Foot-wall Diabase-2	0.7
5457_V-6_A-57_2014	57	6	24.1	Foot-walll Shale-2	0.7
4384_V-6_A-10_2014	10	6	22.4	Foot-walll Shale-1	0.35
4347_V-6_A-10_2014	10	6	20.2	Foot-walll Shale-2	0.85
2544_V-6_A-52_2014	52	6	15.4	Foot-walll Shale-1	1
5915_V-28_A-117_2014	117	28	14.2	Foot-walll Shale-3	1
2512_V-6_A-52_2014	52	6	13.9	Foot-walll Shale-1	1
4474_V-9_A-59_2014	59	9	13.5	Foot-wall Diabase-1	0.85
5886_V-28_A-117_2014	117	28	12.3	Foot-walll Shale-3	1
5921_V-28_A-117_2014	117	28	12.1	Foot-walll Shale-3	0.9
5931_V-28_A-117_2014	117	28	11.5	Foot-walll Shale-3	1
4221_V-6_A-80_2014	80	6	11.3	Foot-walll Shale-1	1
4349_V-6_A-10_2014	10	6	37.2	Hanging-wall Shale-2	1
5881_V-28_A-117_2014	117	28	26.1	Hanging-wall Shale-2	1
8459_V-28_A-24_2014	24	28	23.1	Hanging-wall Shale-3	1
2127_V-6_A-80_2014	80	6	20.3	Hanging-wall Shale-2	1
9246_V-8_A-5_2014	5	8	17.4	Hanging-wall Shale-3	0.25
5368_V-6_A-10_2014	10	6	15.9	Hanging-wall Shale-2	1
4355_V-6_A-10_2014	10	6	15.2	Hanging-wall Shale-2	1
5986_V-28_A-117_2014	117	28	14.8	Hanging-wall Shale-3	1
4222_V-6_A-80_2014	80	6	13.3	Hanging-wall Shale-1	1
2250_V-6_A-9_2014	9	6	13.3	Hanging-wall Shale-2	1
2246_V-6_A-9_2014	9	6	11.6	Hanging-wall Shale-1	1

Main Quartz Vein >5ppm Au

Sample ID	Drive	Vein	Au (ppm)	Length	Sample ID	Drive	Vein	Au (ppm)	Length
9227 V-8 A-5 2014	5	8	55.5	0.1	4066_V-6_A-9_1952	9	6	8.4	0.1
1433 V-9 A-59 2014	59	9	40.6	0.25	4085_V-6_A-9_1952	9	6	8.3	0.5
5453 V-6 A-57 2014	57	6	38.6	0.15	4534_V-9_A-58_1958	58	9	8.1	0.2
627 V-26-27 A-86 1954	86	26-27	37	0.3	7717_V-33_A-90_1955	90	33	8.1	0.2
4348 V-6 A-10 2014	10	6	32.8	0.55	5878 V-2 A-53 1952	53	2	8	0.1
5036 V-33 A-85 1954	85	33	31.2	0.3	6384_V-2_A-35_1951	35	2	7.9	0.25
4757 V-9 A-59 1953	59	9	30.8	0.05	8253_V-6_A-52_1955	52	6	7.8	0.15
5455 V-6 A-57 2014	57	6	30.1	0.15	4699_V-9_A-5A_1953	5A	9	7.6	0.15
3190 V-6 A-9 2014	9	6	29.7	0.5	4699_V-9_A-5_1954	5	9	7.6	0.2
3689 V-33 A-87 2014	87	33	28.5	0.4	4203_V-6_A-9_1952	9	6	7.3	0.4
1480 V-9 A-59 2014	59	9	25	0.15	8287_V-2_A-54_1950	54	2	7.2	0.6
4756 V-9 A-59 1953	59	9	24.8	0.05	7116_V-6_A-52_1954	52	6	7	0.7
3214 V-6 A-9 2014	9	6	24.5	0.6	5768_V-6_A-80_1954	80	6	6.9	0.6
5272 V-9 A-5a 2014	5a	9	23.8	0.6	5080_V-6_A-57_1953	57	6	6.9	0.15
5789 V-52 A-88 2014	88	52	22.3	0.35	1005_V-6_A-80_2014	80	6	6.88	1
2510 V-6 A-52 2014	52	6	21.6	0.4	5289_V-6_A-52_1954	52	6	6.8	0.7
5819 V-2 A-35 1951	35	2	21.1	0.1	8629_V-33_A-90_1955	90	33	6.8	0.3
5606 V-28 A-24 1954	24	28	20.8	0.4	1336_V-6_A-35_1942	35	6	6.8	0.2
1345 V-6 A-10 2014	10	6	20.6	0.25	4945_V-28_A-24_1953	24	28	6.6	0.2
3349 V-6 A-9 2014	9	6	19.3	0.55	7098_V-33_A-62_1954	62	33	6.6	0.15
2322 V-7 A-93 1946	93	7	19.1	0.12	7093_V-33_A-62_1954-56	62	33	6.6	0.15
5985 V-28 A-117 2014	117	28	18.8	0.2	5010_V-33_A-85_1953	85	33	6.6	0.4
3061 V-2 A-41 2014	41	2	18.4	0.4	4121_V-6_A-10_1952	10	6	6.5	0.2
4074 V-6 A-80 2014	80	6	18.3	1	4548_V-9_A-59_1953	59	9	6.5	0.1
4517 V-11 A-64 1953	64	11	18.2	0.25	5289_V-6_A-80_1954	80	6	6.3	0.7
4106 V-6 A-9 1952	9	6	16.8	0.1	6502_V-6_A-52_1954	52	6	6.2	0.45
1109 V-6 A-35 1942	35	6	16.8	0.25	1950_V-2_A-35_1944	35	2	6	0.28
5535 V-6 A-52 1954	52	6	15.8	0.2	5812_V-2_A-41_1950	41	2	5.9	0.15
5028 V-9 A-5A 1953	5A	9	15.1	0.15	7842_V-33_A-62_1955	62	33	5.8	0.2
5354 V-9 A-59 1953	59	9	14.1	0.3	4126_V-6_A-80_2014	80	6	5.75	1
1759 V-9 A-5A 1953	5A	9	12.5	0.4	6436_V-33_A-90_1954	90	33	5.7	0.2
1759 V-9 A-5 1954	5	9	12.5	0.4	6652_V-33_A-90_1954	90	33	5.7	0.5
5094_V-26-27_A-86_1953	86	26-27	12.3	0.1	2393_V-26-27_A1946		26-27	5.7	0.1
1873_V-2_A-41_1944	41	2	12	0.18	2394_V-26-27_A-66_1954-56	66	26-27	5.7	0.1
4643_V-33_A-61_1953	61	33	11.2	0.1	4144_V-6_A-80_2014	80	6	5.66	1
4073_V-6_A-9_1952	9	6	10.9	0.1	4543_V-33_A-62_1953	62	33	5.6	0.45
5052_V-6_A-57_1953	57	6	10.4	0.05	5482_V-2_A-35_1951	35	2	5.5	0.2
5650_V-11_A-64_1954	64	11	10.4	0.2	6454_V-33_A-61_1954	61	33	5.5	0.22
5037_V-6_A-57_1954	57	6	10.3	0.06	6370_V-26-27_A-86_1954	86	26-27	5.2	0.6
5169_V-33_A-87_1954	87	33	9.2	0.6	1328_V-6_A-35_1942	35	6	5.2	0.1
7730_V-33_A-87_1955	87	33	9.2	0.2	5791_V-6_A-80_1954	80	6	5.1	0.4
5069_V-6_A-57_1953	57	6	9.2	0.1	2374_V-26-27_A-62_1946	62	26-27	5.1	0.25
5165_V-33_A-62_1953	62	33	9	0.45	4796_V-6_A-57_1953	57	6	5.1	0.15
4469_V-33_A-61_1953	61	33	8.8	0.4	1793_V-2_A-40_1948	40	2	5	0.16
2103_V-6_A-9_1945	9	6	8.7	0.24	4172_V-6_A-35_1952	35	6	5	0.2
1461 V-9 A-59 1953	59	9	8.5	0.2	7449_V-6_A-52_1954	52	6	5	0.25

