

ASX:LEG

18 July 2017

ASX Announcement

Diamond Drilling Intersects Sulphides at Area N - Rockford Project, Fraser Range

- Multiple intervals containing massive and matrix to net textured sulphides intersected in prospective pyroxene-rich host rocks in diamond drillhole RKDD003
- Conductor N1 intersected at modelled depth in RKDD003 associated with 55m graphitic-sulphidic interval
- DHTEM planned to test for possible offhole features
- Diamond drillhole RKDD004 collared to test N2 conductor

Legend Mining Limited ("Legend") is pleased to provide an update of the ongoing diamond/RC drilling programme at its Rockford Project in the Fraser Range district of Western Australia.

Diamond drillhole RKDD003 designed to test the strong N1 fixed loop electromagnetic ("FLTEM") conductor at Area N has been completed at a downhole depth of 804m. The presence of multiple sulphide bearing mafic intrusives in close proximity to sulphur-rich metasediment/granulite makes Area N a favourable location for the formation of magmatic nickel-copper mineralisation. A downhole electromagnetic ("DHTEM") survey is planned for RKDD003 to test for offhole conductors and the next diamond drillhole, RKDD004 has commenced to test conductor N2, (see Figure 1 below for RKDD003 and RKDD004 locations).

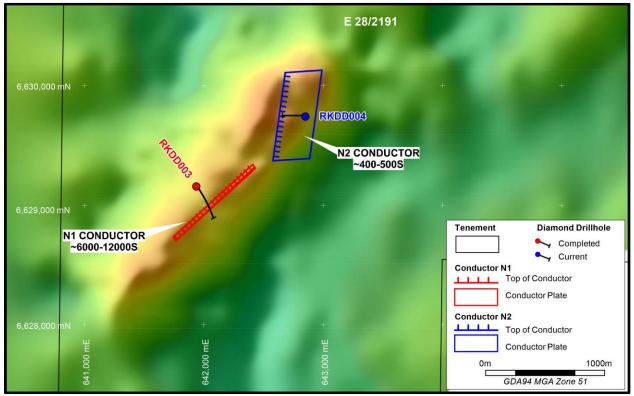


Figure 1: Area N Diamond Drillholes and Conductor Plates on Gravity

Legend Managing Director Mark Wilson said; "Legend has consistently characterised Area N as a developing story. The presence of massive and matrix to net textured sulphides in the right rocks in the first diamond hole is considered encouraging. The results from the downhole EM survey and next diamond hole are awaited with great interest."

Technical Discussion

Diamond drillhole RKDD003 testing the strong N1 fixed loop electromagnetic ("FLTEM") conductor at Area N has been completed to a depth of 804m. The hole intersected an intercalated package of felsic to mafic metasediment/granulite including a broad graphitic-sulphidic interval between 683m and 738m. This unit directly correlates with the modelled position of the FLTEM conductor and adequately explains the feature. See Figure 1 for drillhole location in relation to FLTEM conductor both for features N1 and N2.

Of real significance are multiple intervals of sulphide-bearing mafic intrusive rocks in the graphiticsulphidic metasediment/granulite package. Within this package are two prominent sulphide rich intervals (1m and 2.8m respectively). The interval between 693.8m-694.8m comprises a cumulate textured pyroxenite with zones of matrix to net textured sulphide and includes a 6cm section of massive sulphide (pyrrhotite, trace chalcopyrite, plus magnetite) see Photos 1 & 2. A second interval (738.7m-741.5m) comprising a coarse pyroxene-garnet-feldspar lithology contains zones of matrix sulphide, see Photo 3. The sulphide textures are demonstrably magmatic in character.

Photo 1: Massive pyrrhotite, minor chalcopyrite in pyroxenite, 694.5m (NQ2 core)

Photo 2: Matrix pyrrhotite, minor chalcopyrite in pyroxenite, 693.9m (NQ2 core)

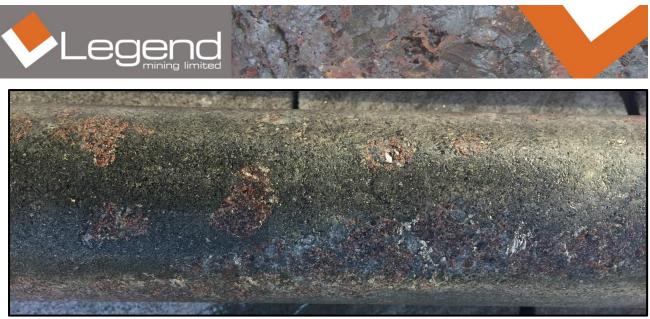


Photo 3: Sulphide in pyroxene-garnet-feldspar lithology, 739.3m (NQ2 core)

The presence of multiple sulphide bearing mafic intrusives in close proximity to sulphur-rich metasediment/granulite makes Area N a favourable location for the formation of magmatic nickel-copper mineralisation.

A downhole electromagnetic survey will be completed to confirm the conductor has been intersected and to test for any significant offhole features. Selected drill core samples will be submitted for full multi-element analysis and reported when received. Details of the completed diamond drillhole RKDD003 and recently commenced RKDD004 are provided in Table 1 below, while Area N is located on Figure 2.

Table 1: Diamond Drillhole Summary							
Hole	Easting	Northing	Conductor	RL	Dip	Azimuth	Depth
RKDD003	641935	6629165	N1	204	-70 ⁰	135 ⁰	804
*RKDD004	642850	6629750	N2	205	-70 ⁰	270 ⁰	550

* RKDD004 commenced on 17 July 2017 with proposed 550m depth. Co-ordinates GDA94 MGA Zone 51.

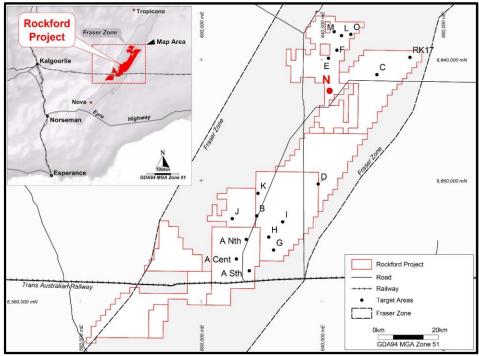


Figure 2: Area N Location

RC Drilling Programme

The RC drill programme aimed at testing MLTEM conductors at Areas E (E2), F (F1) and O (O1) is ongoing, see Figures 2 & 3.

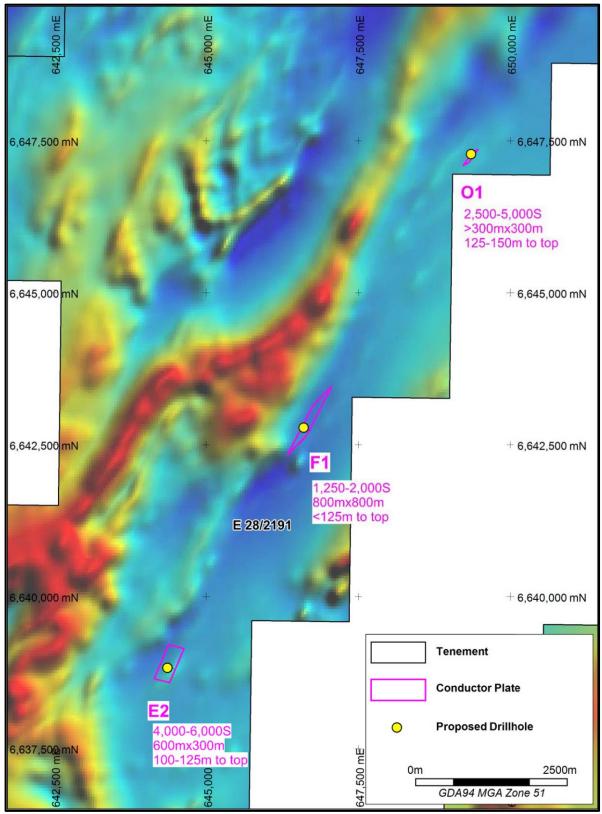


Figure 3: MLTEM Conductors E2, F1 & O1 with Proposed RC Drillholes on Aeromagnetics

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Derek Waterfield, a Member of the Australian Institute of Geoscientists and a full time employee of Legend Mining Limited. Mr Waterfield has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Waterfield consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Visit www.legendmining.com.au for further information and announcements.

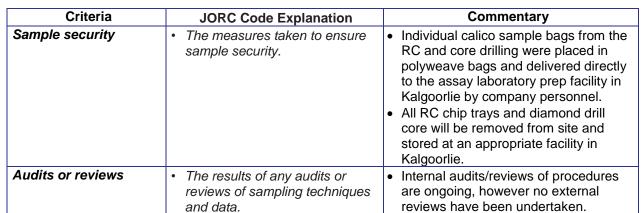
For more information: Mr Mark Wilson Managing Director Ph: (08) 9212 0600

Mr Derek Waterfield Executive Director - Technical Ph: (08) 9212 0600

Appendix 1: Legend Mining Ltd – EM Survey/Aircore Drilling Programme Rockford Project JORC Code Edition 2012: Table 1

Section 1:	Sampling	Techniques and Data	
------------	----------	---------------------	--

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 intervals. For each metre drilled, a 2- 3kg rig split sample was collected from the cyclone in a calico bag with the remainder of the sample collected in a green plastic bag (20-40kg). All RC drillholes have been sampled as 4m composites and submitted for geochemical analysis. Where anomalous values are returned from 4m composites, the 1m rig split samples may be submitted for assay. Selected 1m half NQ2 core samples were submitted for geochemical analysis. QAQC standards and duplicate samples were included routinely (approximately 1 each every 50 samples) for RC. Samples were submitted to an independent commercial assay laboratory. A four acid digest was used, with samples analysed for; Au by fire assay and a multi-element suite including Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tm, U, V, W, Y, Yb, Zn, Zr by ICP-MS.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 RC drillholes used the standard RC drilling technique, utilising a face sampling bit and undertaken by Orland Drilling. Diamond drillhole pre-collars were completed using the RC technique to depths of 142-212m. The remainder of the hole was drilled with NQ2 diamond coring. Orlando Drilling completed the drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	RC sample recoveries are visually estimated for each metre by the



Criteria	JORC Code Explanation	Commentary
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 RC drill samples were recovered from the pre-collar portion of the diamond drillholes. Drill core sample recoveries for the NQ2 core were recorded in drill log sheets. No relationship has been determined between sample recoveries and grade and there is insufficient data to determine if there is a sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging of all drillholes included; lithology, grainsize, texture, deformation, mineralisation, alteration, veining, colour, weathering. RC logging is qualitative and based on 1m intervals which are sieved and retained in chip trays. Drill core logging is qualitative and based on drill core retained in core trays. Drill core orientation was recorded when possible. All drillholes were logged in their entirety.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All RC drill samples were collected using a PVC spear or scoop as 4m composites (2-3kg). Other composites of 2m, 3m and 5m and individual 1m samples were collected where required, i.e. bottom of hole. Both wet and dry samples were collected. The samples are dried and pulverised before analysis. QAQC reference samples and duplicates were routinely submitted with each sample batch. Selected cut half core samples based on geology were submitted for geochemical analysis. The size of the sample from each drilling method is considered appropriate for the mineralisation style sought and for the analytical technique used.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, 	 RC/core samples were analysed for Au by 50g fire assay with an ICP-OES finish, and for a multi-element suite by ICP-MS following a four acid digest. These assay methods are considered appropriate. QAQC standards and duplicate samples were included routinely (approximately 1 each every 50 samples). In addition reliance is placed on laboratory procedures and

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. The verification of significant intersections by either 	 internal laboratory batch standards and blanks. All samples were analysed by Intertek Genalysis Laboratory Services Perth using methods; FA50/OE04 (Au), 4A/MS48 (multi-elements) and 4A/MS48R (REE extended suite). Primary data was collected in the field using a set of standard logging
	 independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drillhole collars are surveyed with a handheld GPS unit with an accuracy of ±5m which is considered sufficiently accurate for the purpose of the drillhole. All co-ordinates are expressed in GDA94 datum, Zone 51. Regional topographic control has an accuracy of ±2m based on detailed DTM data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC and diamond drillhole spacing is not regular or grid based, with the location of individual drillholes governed by targeting the position of modelled EM conductor plates. RC drillholes are sampled in their entirity as 4m composites on a routine basis or as 2m, 3m and 5m composites at the end of holes as required. Only selected cut half core samples based on geology were submitted for geochemical analysis.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 RC and diamond drillholes were planned to intersect modelled EM conductor plates perpendicular to strike.

Section 2: Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Rockford Project comprises nine granted exploration licences and three applications, covering 2,792km². Rockford JV tenements: E28/2188-2192 (70% Legend, 30% Rockford Minerals Pty Ltd), E28/1718 & E28/1727 (70% Legend, 30% Ponton Minerals Pty Ltd). Legend 100% owned: E28/2404-2405 & ELA28/2675-2677. The Project is located 280km east of Kalgoorlie mostly on vacant crown land with the eastern portion on Kanandah Pastoral Station. There are no Native Title Claims over tenements E28/2188-2192 & E28/2405. Tenements E28/1718, E28/1727 & E28/2404 are covered 90%, 20% and 100% respectively by the Ngadju Native Title Claim. The tenements are in good standing and there are no known impediments.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Not applicable, not referred to.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The primary target is Nova style nickel-copper mineralisation hosted in high grade mafic granulites within the Fraser Complex. A secondary target is Tropicana style structurally controlled gold mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	Refer to table of drillhole collars in body of report.

Criteria	JORC Code Explanation	Commentary
	 dip and azimuth of the hole down hole length and interception depth hole length. 	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. 	 No assay results have been received to date.
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 The drill core has been oriented to enable future evaluation of true thicknesses of any mineralised intervals. All drillhole intercepts/intervals are measured downhole in metres.
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Project location, MLTEM/FLTEM conductor and drillhole location maps have been included in the body of the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be 	 No assay results have been received to date.

Criteria	JORC Code Explanation	Commentary
	practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Detailed high quality aeromagnetic and gravity datasets have been used in the initial targeting of EM surveys. Highpower EM Geophysical Services Pty Ltd have undertaken high powered moving loop and fixed electromagnetic surveying (MLTEM, FLTEM) over the Rockford Project to assist with drillhole targeting.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Downhole electromagnetic surveying will be undertake to confirm the conductor was intersected and to detect possible offhole features.