QUARTERLY ACTIVITIES REPORTFor the Quarter ended 31 December 2013

HIGHLIGHTS

Tanzania

Rupa Suguti Project

 Initial Liontown RC drilling program at the Chirorwe prospect validates previous mid 1990s drilling results and indicates potential for significant high grade gold mineralization. Better intersections include:

0	SCRC021	5m @	3.6g/t	gold	from	32m
---	---------	------	--------	------	------	-----

incl. 3m @ 5.6g/t gold from 32m

SCRC023 4m @ 5.9g/t gold from 12m

incl. 2m @ 11.3g/t gold from 13m

o SCRC024 7m @ 5.6/t gold from 40m

incl. 1m @ 10.9g/t gold from 43m

 Drilling at Chirorwe in the mid 1990s intersected continuous gold mineralization over 800m strike including:

SICHB005 12m @ 3.9g/t gold from 32m

o SICHB006 6m @ 6.0g/t gold from 26m

o SICHB014 8m @ 4.3g/t gold from 10m

- The mineralized trend remains open in all directions with artisanal pitting mapped for a further 1km west of the drill area and the prospective eastern extension largely obscured by shallow alluvial cover.
- The Chirorwe prospect is located on a 7km long gold corridor defined by soil sampling and the alignment of historic and active artisanal workings. There has been no drilling along this trend apart from that at Chirorwe.

RC Drilling - Chirorwe Prospect

INVESTMENT HIGHLIGHTS

- Large gold system identified at Jubilee Reef in northern Tanzania.
 Exploration is ongoing.
- High grade gold
 mineralisation confirmed
 at Rupa Suguti, also in
 northern Tanzania.
- Strategic land position in North Queensland precious metals province with large multi-element anomalies defined.

For further information, please contact:

Mr Tim Goyder
Chairman
Mr David Richards
Managing Director
Liontown Resources Limited
Telephone +61 8 9322 7431

Liontown Resources Limited, Level 2, 1292 Hay Street, West Perth, Western Australia T: +618 9322 7431 F: +618 9322 5800 E: info@ltresources.com.au W: www.ltreources.com.au ABN 39 118 153 825

1. Jubilee Reef Project (Agreement to acquire 100%)

The Jubilee Reef Project is located approximately 850km northwest of Dar es Salaam within the Lake Victoria Goldfield of northern Tanzania (see Figure 1). This is an Archaean greenstone-granite terrain which hosts several multimillion ounce gold deposits including African Barrick's Bulyanhulu deposit and AngloGold Ashanti's Geita deposit. Liontown originally entered the Project via a Joint Venture agreement with Currie Rose Resources Inc in 2011 and earned 66% by sole funding exploration. In April 2013, Liontown agreed to acquire the remaining equity in the property and will hold 100%.

In 2011 and 2012, Liontown drilled approximately 22,300m and intersected strong gold mineralisation at three prospects; i.e., Masabi Hill, Panapendesa and Chela (see Figure 2/Appendices 1-3).

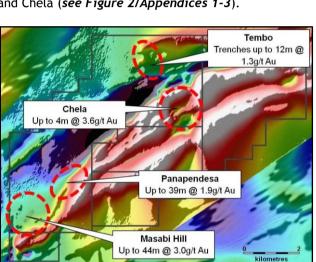


Figure 2: Jubilee Reef Project - Magnetic Image showing main gold prospects

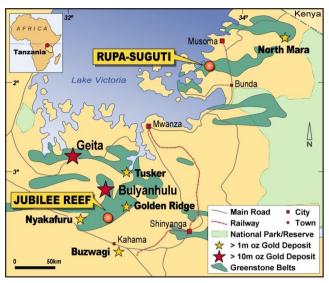


Figure 1: Liontown Projects in Tanzania - Regional Setting

Better intersections at Masabi Hill, the most advanced prospect, include:

- JBRRC018 50m @ 1.8g/t gold from 40m, including 27m @ 2.8g/t gold from 42m
- JBRRC041 62m @ 2.4g/t gold from 70m, including 21m @ 4.7g/t gold from 70m
- JBRRC045 74m @ 1.8g/t gold from 8m, including 23m @ 2.9g/t gold from 50m
- JBRRC118 86m @ 1.7g/t gold from 9m, including 44m @ 3.0g/t gold from 24m

During the second half of 2013, the Company carried out trenching at the Tembo prospect in the northern part of the Project (see *Figure 2*) and discovered a new zone of gold mineralisation (*see Figure 3/Table 1*) that has not yet been drill tested.

Table 1: Tembo Trenching - Significant intersections (>0.1g/t)

HOLEID	EAST	NORTH	LENGTH (m)	AZIMUTH	DIP	From (m)	To (m)	Interval (m)	Au (g/t)
						33	34	1	1.6
JBRTR001	444488	9612131	60*	60	10	41	52	11	1.7
						in	icl. 6m @ 2	.7g/t from 46	m
						0	8	8	1.1
JBRTR002	444500	9612166	49	150	0	i	ncl. 1m @ 4	1.1g/t from 21	m
JBKTKOOZ	444300	3012100	49	130	0	14	24	10	0.4
						32	40	8	1.1
JBRTR003	444261	9612346	200	200	-15		No signif	icant assays	
JBRTR004	444896	9612401	150	155	-14	24	28	4	1.0
JBRTR005	444015	9612720	100	245	-5	64	74	10	0.4
JBRTR006	445599	9612559	133	155	-2.5	58	70	12	1.3
JBKTKOOO	443333	3012333	133	133	-2.3		incl. 2m @	4.1 from 68m	1

^{*} Intervals interpreted to be equivalent to true thicknesses

Previous exploration at Tembo had been largely ineffective due to the steep topography and complex regolith not being adequately accounted for.

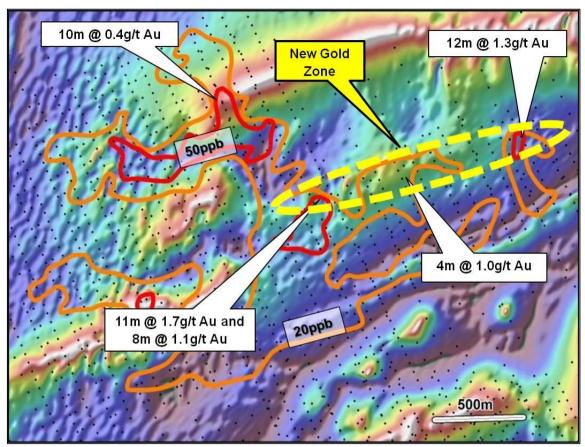


Figure 3: Jubilee Reef Project - Magnetic image of Tembo prospect area showing dislocated stratigraphy, gold-in-soil geochemistry and newly defined gold zone.

Follow up drill programs totalling approximately 10,000m have been designed to test the 4 gold prospects at Jubilee Reef.

The information in this report that relates to exploration results at the Jubilee Reef Project is based on information compiled by David Richards, a full-time employee and Director of Liontown Resources Limited and a Competent Person and member of the Australasian Institute of Geoscientists (AIG). Mr Richards has sufficient experience in the style of mineralisation under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Richards consents to inclusion in the report of the matters based on his information in the form and context in which it appears.

2. Rupa Suguti Project (Liontown - Option to acquire 100%)

In April 2013, Liontown executed an Option Agreement giving the Company the right to acquire 100% in Rupa Suguti Project which is located in the northern part of the Lake Victoria Goldfield approximately 200km north of Jubilee Reef and 100km WSW of African Barrick's North Mara gold mine (see Figure 1). The Project is considered prospective for lode style, Archaean gold deposits.

The Rupa Suguti property comprises a largely contiguous, 65km² package of tenements covering Archaean greenstones and includes a previously defined 7km long, east- west trending gold mineralized corridor hosted in basalt close to a contact with granite (see Figure 4).

During the Quarter, Liontown completed an initial 9 hole/756m RC drill program to follow up previous gold intersections reported from drilling undertaken in the mid-1990s at the Chirorwe prospect.

Better intersections from the recently completed program include:

- SCRC021 5m @ 3.6g/t gold from 32m
 incl. 3m @ 5.6g/t gold from 32m
- SCRC023 4m @ 5.9g/t gold from 12m incl. 2m @ 11.3g/t gold from 13m
- SCRC024 7m @ 5.6/t gold from 40m
 incl. 1m @ 10.9g/t gold from 43m

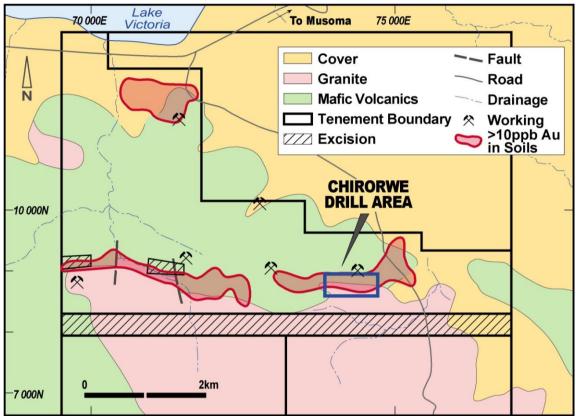


Figure 4: Rupa/Suguti – Project geology, tenure, and previous soil geochemistry.

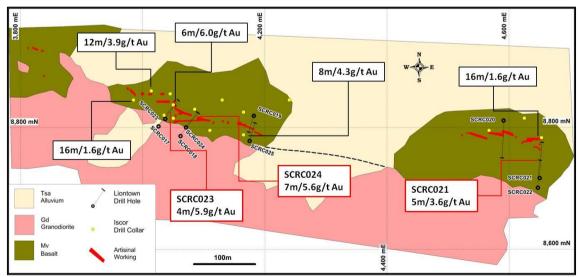


Figure 5: Chirorwe prospect geology showing previous Iscor and recent Liontown drilling with better gold intersections.

In 1995/1996, shallow RC drilling (16 holes) by Iscor Limited at Chirorwe recorded multiple intersections (*see Figure 5*) that indicated continuous medium to high grade gold mineralisation over 800m strike.

Better intersections from the Iscor RC drilling (see Figure 5) included:

SICHB005 12m @ 3.9g/t gold from 32m

SICHB006 6m @ 6.0g/t gold from 26m

• SICHB014 8m @ 4.3g/t gold from 10m

Liontown's drilling validates the previous Iscor results and in particular confirms the potential for significant high grade mineralisation. The mineralised trend remains open in all directions and artisanal pitting has been recently mapped for a further 1km west of the western most Iscor drill hole. The eastern extension of the Chirorwe trend is largely obscured by shallow alluvial cover.

The main gold lode at Chirorwe is a moderately south dipping, strongly silicified, sulphidic, 1-7m thick horizon hosted by sheared, altered basalt immediately north of an intrusive granitic contact (*see Figures 5 and 6*).

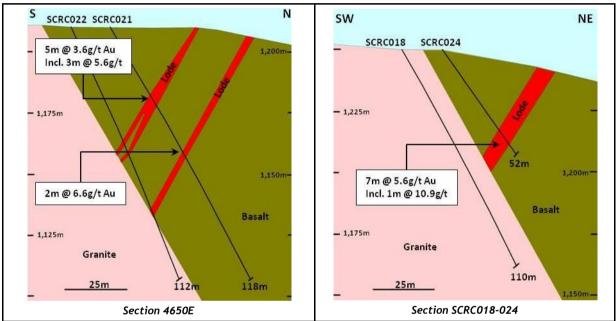


Figure 6: Chirorwe drill sections.

Priority targets for future drilling include:

- The central part of the Chirorwe prospect, which is obscured by shallow cover;
- Along strike to the east of SCH021 which is also obscured by shallow cover;
- Along strike to the west where artisanal pits have been mapped.

The Chirorwe prospect is located on a 7km long gold corridor (*see Figure 5*) defined by soil sampling and the alignment of historic and active artisanal workings. This corridor will also be the focus of future exploration designed to define further drill targets.

The Information in this report that relates to the Exploration Results of the Rupa Suguti Project is extracted from the ASX announcement entitled "Rupa Suguti Project Drilling Results" released on 13 November 2013 and is available on www.ltresources.com.au. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

3. Mount Windsor Project (Liontown 100%)

The Mount Windsor Project is located in the prolific Charters Towers gold field (see Figure 7) of North Queensland which has yielded over 15 million ounces of gold from world-class mines such as Charters Towers (+7Moz), Kidston (+4Moz), Paiingo (+3Moz), Ravenswood (+2Moz) and Mt Levshon (2.7Moz).

Work during the Quarter focussed on a review of the Allandale prospect located in the western part of the Project (see Figure 7).

The Allandale trend has been mapped over 4km strike, indicating potential for a large gold system and previous rock chip sampling, soil geochemistry, mapping and drill data are consistent with the upper part of a Vera-Nancy (Pajingo) style epithermal deposit. Based on this model, the best gold mineralisation would be potentially developed approximately 200-300m below the surface.

Previous drilling by CRA in 1992 (*see Appendix 5*) intersected broad zones of anomalous gold and pathfinder geochemistry in a number of holes and it proposed to drill beneath these to test for higher grade mineralization (*see Figure 8*).

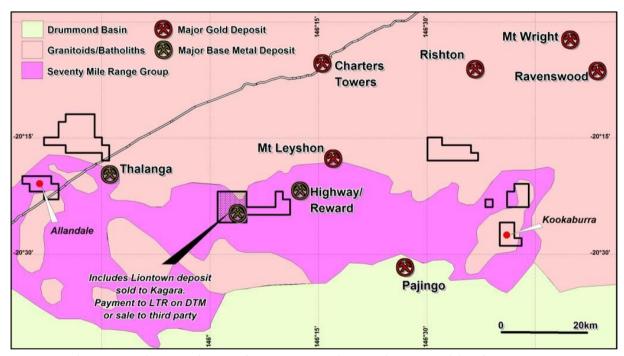
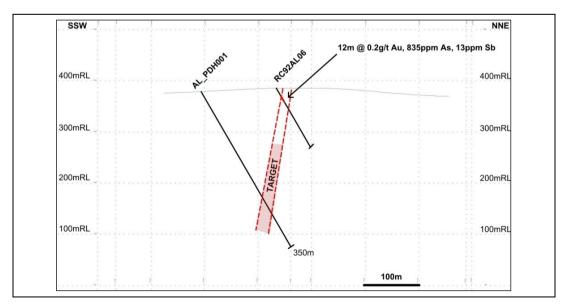
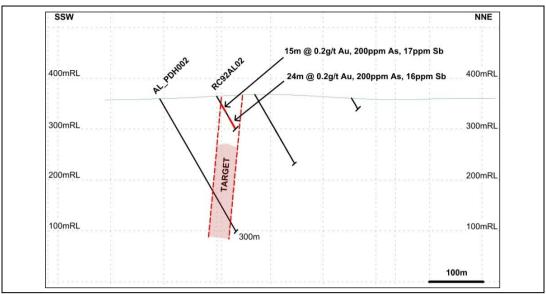




Figure 7: Mt Windsor Project - Regional Geology, major deposits and remaining Liontown tenure

Figures 8: Allandale Prospect - Cross sections showing previous and proposed holes (AL PDH1 & 2)

The information in this report that relates to exploration results at the Mount Windsor Project is based on information compiled by David Richards, a full-time employee and Director of Liontown Resources Limited and a Competent Person and member of the Australasian Institute of Geoscientists (AIG). Mr Richards has sufficient experience in the style of mineralisation under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Richards consents to inclusion in the report of the matters based on his information in the form and context in which it appears.

4. Tenement schedules and expenditures

In accordance with ASX Listing Rule 5.3, please refer to Appendix 8 for listing of tenements. In addition, during the quarter the Company has spent \$189,312 on exploration and evaluation activities (YTD: \$332,833) and \$182,020 on administration costs (YTD \$288,565).

5. Corporate

At the end of the Quarter, Liontown's cash balance was approximately \$0.6 million. Please refer to the attached Appendix 5B for further details.

DAVID RICHARDS Managing Director

and factorial

30 January 2014

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

APPENDIX 1: Masabi Hill – RC Drilling statistics

HOLEID	Easting	Northing	Azimuth	Din	DEPTH	Significa	ant Interse	ctions (>0.	lg/t Au)	Significa	nt Interse	ctions (>0.	5g/t Au)
HOLEID	Easting	Northing	Azimutii	Dip	DEPTH	From	То	Interval	Grade	From	То	Interval	Grade
						3	18	15	0.63	13	17	4	1.14
JLRR31	9155	6320	335	-60	100	20	47	27	0.63	28	33	5	1.59
						62	80	18	0.90	62	73	11	1.12
						19	26	7	0.27				
JLRR9	9019	6438	14	-60	125	83	89	6	0.29				1
						91	92	1	1.06	91	92	1	1.06
						6	12	6	0.34				
						24	30	6	0.24				
JRRC-1	9300	6350	290	-60	98	33	39	6	0.22				
						57	63	6	0.22				
						75	81	6	0.28				
JRRC-2	9000	6245	360	-60	65	0	33	33	0.70	6	27	21	0.93
						42	57	13	0.90	48	51	3	3.00
						2	26	24	0.63	4	6	2	1.32
						2	36	34	0.63	17	24	7	1.22
										26	29	3	0.98
JBRRC018	9042	6254	335	-60	175	40	90	50	1.79	42	69	27	2.76
						- 00	100	0	0.90	80	87	7	1.09
						99	108	9	0.89	104	107 144	3 6	2.24
						135	148	13	0.75	138			1.20
						153 0	175	22	0.45	153 9	158	5 27	1.00
						60	48 64	48 4	1.05 0.46	9	46	37	1.30
JBRRC019	9136	6272	335	-60	175		76	8	0.46				
JUNICOLS	9130	0272	333	-00	1/3	68 88	92	4	0.13				
						97	103	6	0.42				
						107	109	2	1.27	107	109	2	1.27
JBRRC020	9064	6418	155	-60	175	128	140	12	0.88	130	131	1	6.28
JEHROZO	3001	0410	133	00	1,3	148	160	12	0.54	130	131	_	0.20
						35	46	11	0.59	36	44	8	0.74
						- 33	40	11	0.55	70	91	21	4.66
JBRRC041	9030	6208	360	-60	132	70	132	62	2.37	94	99	5	1.00
						,,,	132	02	2.37	102	132	30	1.40
						3	12	9	0.27	102	132	30	1.40
						17	30	13	0.32				
						40	57	17	0.25				
						66	78	12	0.26				
JBRRC042	9029	6364	180	-60	165	86	94	8	0.32				
						110	111	1	0.77				
						114	117	3	1.16	114	117	3	1.16
						129	152	23	0.50	133	137	4	1.49
						154	165	11	0.30		J.	l l	
						0	8	8	0.30	3	4	1	1.20
						40	45	5	0.23				
JBRRC043	9120	6236	360	-60	123	48	85	37	0.48	49	55	6	1.08
						99	105	6	0.48	100	102	2	0.96
						112	119	7	0.57	114	115	1	1.65
						11	25	14	0.34				
						29	41	12	1.01	31	36	5	2.08
						18	36	18	0.36	53	55	2	1.28
JBRRC044	9123	6356	180	-60	129	66	73	7	0.86	70	72	2	2.38
						80	84	4	0.63	82	83	1	1.41
						89	100	11	0.27				
					<u> </u>	105	111	6	0.18				
										12	32	20	2.33
						8	82	74	1.8	50	73	23	2.93
JBRRC045	9216	5991	360	-60	135					76	82	6	1.46
35MMC043	J210	3331	300	.00	133	84	86	2	0.58				
						97	104	7	0.44				
						124	129	5	0.99	127	128	1	3.65
						48	51	3*	0.3				
						54	57	3	0.66	56	57	1	1.16
								4*	0.42				
JBRRC046	9222	6131	180	-60	135	62	66	4*	0.43				
JBRRC046	9222	6131	180	-60	135	105 118	112 130	7 12	0.43 0.34 1.23	122	128	6	2.11

^{* 1-4}m composite samples

APPENDIX 1 (cont): Masabi Hill – RC Drilling statistics

HOLEID	Easting	Northing	Azimuth	Dip	DEPTH	Significa	ant Interse	ctions (>0.	lg/t Au)	Significa	ant Interse	ctions (>0.	5g/t Au)
HOLLID	Lusting	itorumg	ALIMOUN	5,6	D E. 1111	From	То	Interval	Grade	From	То	Interval	Grade
JBRRC047	9600	6027	360	-60	140	104	107	3	0.19	400			
10000010	0.502	6474	400		20	109	112	3	2.11	109	112	3	2.11
JBRRC048	9602	6171	180	-60	39			ole abando					
JBRRC049	9610	6176	180	-60	79	24	28	ole abando 4*	0.29	ereaching	target dep	un	
						52	57	5	1.07	53	57	4	1.25
JBRRC050	9617	6172	360	-60	130	86	94	8	1.27	86	92	6	1.59
						125	128	3	0.88	125	127	2	1.15
						16	32	16*	0.28	16	20	4*	0.66
						87	92	5	0.44				
JBRRC051	9477	6305	360	-60	190	109	112	3	1.55	109	111	2	2.14
						164	168	4*	0.36				
						180	188	4*	0.25		1	1	
						17	59	42	0.5	18	22	4	1.1
100000053	0.454	6424	400	60	420			244	0.46	26	33	7	1.26
JBRRC052	9451	6431	180	-60	120	64	88	24*	0.16	02	07	4	1.05
						91 104	98 120	7 16	0.76 0.54	93 117	97 120	3	1.05 1.73
						104	16	4	0.36	11/	120	3	1.73
						22	28	6	0.68	22	25	3	1.08
JBRRC053	9441	6506	180	-60	112	56	59	3	0.52			3	2.00
						64	71	7	0.32				
JBRRC054	9598	6101	180	-60	84	23	36	13	0.24	23	24	1	1.02
						4	16	12	0.45				
JBRRC061	8980	6267	360	-60	100	31	40	9	0.26				
						65	94	29	0.25				
						27	71	44	0.43	32	44	12	0.68
										48	49	1	1.39
JBRRC062	8970	6201	360	-60	150	74	97	23	0.38	77	86	9	0.55
						99	105	6	0.33				
						111	132	21	0.35	407	444		
						134	145	9	0.78	137	144	7	1.1
						140 153	150 159	10 6	0.77 0.7	141 154	148 155	7	0.98 2.99
JBRRC063	8983	6161	360	-60	200	164	167	3	0.7	134	133	1	2.99
						193	198	5	0.31				
						4	12	8	0.44				
JBRRC064	9062	6273	360	-60	80	14	32	18	0.43	21	26	5	0.89
						45	66	21	0.62	45	55	10	0.89
JBRRC065	9064	6161	360	-60	200	15	33	18	0.45	16	17	1	1.1
JBINICOOS	3004	0101	300	-00	200	13	33	10	0.43	27	29	2	1.33
						12	20	8	0.47	13	15	2	1.24
						31	40	9	0.28				
						64	69	5	0.17				
IDDDCCCC	0024	6164	260	60	200	75	81	6	0.27		04	4	3.40
JBRRC066	9024	6164	360	-60	200	89 110	91 114	2 4	1.3 0.22	90	91	1	2.48
						110	114	+	0.22	133	161	28	1.95
						132	200	68	1.5	162	183	21	1.46
									-	186	200	14	1.11
						67	73	6	0.36	68	70	2	0.89
						78	83	5	0.23				
JBRRC067	9174	6201	360	-60	124	85	87	2	0.27				
						93	103	10	0.68	99	103	4	1.22
ļ						113	123	10	0.27		1	-	
						3	12	9	0.64	3	6	3	1.47
IDDDCCCC	01.00	6260	262	60	124	14	22	8	0.76	15	20	5	1.03
JBRRC068	9166	6260	360	-60	134	27	58	31	0.52	27	34	7	0.83
						75	98	22	0.63	50 86	52 95	2 9	1.23 1.31
					 	36	38	23	0.63	OŪ	33	3	1.31
JBRRC069	9164	6371	360	-60	90	54	56	2	0.39				
				30		86	90	4	0.32				
4m compo	cito cam	nloc						· · · · ·					

^{* 1-4}m composite samples

APPENDIX 1 (cont): Masabi Hill – RC Drilling statistics

HOLEID	F			5.	DED#11	Significa	ant Interse	ctions (>0.	1g/t Au)	Significa	ant Interse	ctions (>0.	5g/t Au)
HOLEID	Easting	Northing	Azimuth	Dip	DEPTH	From	То	Interval	Grade	From	То	Interval	Grade
						123	131	7	0.8	128	131	3	1.6
JBRRC070	9220	6098	180	-60	187	150	153	3	0.43				
						175	177	2	0.4				
JBRRC071	9600	6291	180	-60	111	16	109	93	0.32	73	74	1	3.97
						8	24	16*	0.37				
JBRRC072	9590	6298	360	-60	150	32	45	15	0.23				
						82	87	5	0.42		1	1	
						122	144	22	0.49	122	129	7	1.21
JBRRC073	9604	6428	180	-60	129	28	40	12	0.72	31	37	6	1.22
						57	92	35	0.47	59	66 41	7 12	1.6
						12	72	60	0.54	29 43	41	4	1.21
JBRRC074	9594	6428	360	-60	123	12	/2	00	0.54	55	61	6	0.93
3511110071	333.	0.20	500	00	123					89	91	2	2.1
						80	108	28	0.74	96	99	3	3.3
JBRRC075	9601	6548	180	-60	87	12	58	46	0.26	51	57	6	0.95
JBRRC076	9582	6522	180	-60	33	16	33	17	0.39	Hole ab	andoned b	efore targe	t depth
JBRRC077	9587	6521	180	-60	95	16	56	40*	0.22				
						4	9	5	0.15				
JBRRC078	9027	6178	90	-60	80	13	19	6	0.21				
JUNICO76	3027	0178	30	-00	80	48	56	8	0.31				
						65	77	12	0.35				
										1	20	19	1.17
JBRRC079	9015	6245	90	-60	81	0	35	35	0.87	22	24	2	0.86
										30	33	3	1.31
						67	81	14	0.56				4.04
						67	63	62	0.75	35	56	21	1.24
JBRRC080	8982	6247	80	-60	130	67 83	81 87	14 4	0.27				
						89	129	40	0.41	110	123	13	1.43
						1	15	14	0.18	110	123	13	1.43
JBRRC081	8988	6180	90	-60	81	31	45	14	0.49	32	33	1	1.53
						62	73	11	0.3	62	63	1	1.36
10000000	0404	6422	270		440	28	40	12*	0.21		ı	l	
JBRRC082	9494	6423	270	-60	118	48	64	16	1.02	49	60	11	1.38
JBRRC083	9568	6430	270	-60	96	28	96	68*	0.32				
JBRRC084	9545	6428	270	-60	120	8	24	16*	0.43				
						28	52	24*	0.39	32	36	4*	0.99
JBRRC085	9645	6427	270	-60	150	66	71	5	2	66	71	5	2
						75	100	25*	0.27				
JBRRC086	9715	6425	270	-60	85	36	44	8*	0.3			efore targe	et depth
JBRRC087	9690	6425	270	-60	32	120	150		andoned be			4*	0.01
JBRRC088	9715	6260	270	-60	150	128 4	150 16	22* 12*	0.27 0.47	144 4	148 8	4*	0.91
JBRRC089	9641	6261	270	-60	119	36	60	24*	0.47	40	44	4*	1.33
						4	32	28*	0.44	12	16	4*	1.7
JBRRC090	9562	6260	270	-60	114	72	88	16	1.8	72	87	15	1.92
JBRRC092	9315	5865	115	-60	129		-	-	-				-
JBRRC093	9398	5942	115	-60	99	1			-0.4	/+ A			
JBRRC094	9300	6029	180	-60	87				<0.1g	ιAu			
JBRRC095	9296	6078	180	-60	110								
JBRRC096	9299	6129	180	-60	130	113	118	5	12.4	113	117	4	15.44
						7	16	9	0.48		1		
						20	31	11	0.73	24	30	6	1.15
IDDE COO	0222	5050	400		400	33	41	8	0.45	38	39	1	1.19
JBRRC097	9230	6068	180	-60	100	43	46	3	0.6			4.	2
						51	74	23	2.05	52	66	14	3.17
						83	89	6	0.27				
						92	95	3	0.13	10	11	1	1 12
JBRRC098	9226	6017	180	-60	100	5	23	18	0.48	10 16	11 17	1	1.13
3511110030	5220	5517	100	50	100	38	48	10*	0.28	10	1/	1 1	1.02
4m compo	-	<u> </u>			.	30	70	10	0.20				

^{* 1-4}m composite samples

APPENDIX 1 (cont): Masabi Hill – RC Drilling statistics

HOLEID	Enetine	Northing	Azimuth	Di-	DEPTH	Significa	nt Interse	ctions (>0.	1g/t Au)	Significa	ant Interse	ctions (>0.5	g/t Au)
HOLEID	Easting	Northing	Azimutn	Dip	DEPTH	From	То	Interval	Grade	From	То	Interval	Grade
						4	12	8*	0.37				
						28	40	12*	0.2				
JBRRC099	9120	6016	180	-60	153	92	104	12*	0.24				
						446	4.00			124	128	3	0.77
						116	152	46	0.42	136	152	16	0.82
										24	27	3	1.04
100000400	0420	5044	400	60	450	46	400	00*	0.00	36	40	4	1.05
JBRRC100	9120	5911	180	-60	150	16	108	92*	0.38	49	55	6	0.94
										72	76	4	0.91
JBRRC102	10002	6218	180	-60	29			Hole aba	andoned b	efore targ	et depth		
JBRRC103	10017	6217	180	-60	63	48	60	12*	0.27				
JBRRC104	10001	6192	180	-60	86	29	44	15*	0.66	33	40	7	1.13
JBRRC111	9593	6162	180	-60	130				<0.1g	/t Au		•	
IDDDC112	0410	C172	100	60	100	44	48	4*	0.23				
JBRRC112	9418	6173	180	-60	100	96	100	4	0.36				
						32	43	11	0.35				
										80	81	1	1.02
JBRRC113	9402	6261	180	-60	105	73	105	32	0.47	87	88	1	1.06
						/3	105	32	0.47	91	92	1	1.51
										104	105	1	1.02
JBRRC114	9398	6200	100	-60	120	4	36	32*	0.27			•	
JBKKC114	9396	6309	180	-60	120	80	96	16*	0.28				
JBRRC115	9248	6258	360	-60	100	8	36	28*	0.27	29	31	2	1.17
IDDDC116	9249	6210	360	60	100	36	96	60*	0.33	41	44	3	1.21
JBRRC116	9249	6310	300	-60	100	30	90	60.	0.33	46	49	3	0.82
JBRRC117	8945	6035	360	-60	150	124	150	26	0.46	126	128	2	1.02
JBKKC117	6545	0055	300	-00	130	124	130	20	0.40	146	149	3	0.76
JBRRC118	8950	6110	360	-60	120	9	95	86	1.72	24	68	44	2.99
JUNICIIO	8330	0110	300	-00	120	105	120	15	0.7	116	120	4	1.6
JBRRC119	8948	5986	360	-60	117	8	16	8*	0.18				
JUNICITY	0340	3300	300	00	117	80	88	8*	0.17				
JBRRC120	8945	5916	360	-60	111	48	72	24*	0.34	65	66	1	1.32
JBRRC121	9009	5999	360	-60	150	8	20	12*	0.14				
						16	20	4*	0.24				
JBRRC122	9000	6068	360	-60	183	64	68	4*	0.2				
JUNICIEE	3000	0000	300	00	103	108	112	4*	0.22				
						132	140	8*	0.37				
JBRRC123	9093	6039	360	-60	150	144	148	4*	0.32				
JBRRC124	9078	6097	360	-60	150	116	128	12*	0.43				
										106	107	1	1.68
JBRRC125	9222	5932	360	-60	153	84	131	47	0.35	121	122	1	1.01
										127	128	1	1.12
JBRRC126	9204	6689	360	-60	147					/t Au	1		
JBRRC127	9201	6532	360	-60	130	88	126	38	0.32	94	95	1	1.02
JBRRC128	9544	6262	270	-60	123	12	44	32*	0.62	28	44	16*	0.98
						72 4	92	20*	0.53	84	88	4*	1.4
JBRRC129	9399	6205	360	-60	105		20	16*	0.3	32	40	8*	1
JDI.II.C123	5555	0203	300	50	100	28	105	77*	0.37	84	88	4*	1.4
JBRRC130	9401	6058	360	-60	93		· · · · · · · · · · · · · · · · · · ·		<0.1g			•	
JBRRC131	9301	6051	360	-60	141	108	124	16*	0.93	116	124	8*	1.3
JBRRC132	9111 site sam	5889	360	-60	150	4	116	112*	0.33				

^{* 1-4}m composite samples

APPENDIX 2: Panapendesa –RC Drilling statistics

HOLEID	Fastina	Northing	Azimuth	Dia	DEPTH	Signifca	nt Interse	ctions (>0.1	lg/t Au)	Signifca	nt Interse	ctions (>0.5	ig/t Au)
HOLEID	Easting	Northing	Azimutn	Dip	DEPIR	From	То	Interval	Grade	From	То	Interval	Grade
						0	6	6	0.25				
JRRC-4	11183	7735	45	-60	102	60	69	9	0.19				
						90	93	3	9.5	90	93	3	9.5
						0	11	11	1.94	0	7	7	2.9
JBRRC007	11187	7804	135	-60	172	120	144	24	1.25	123	143	20	1.5
JBKKC007	1110/	7604	155	-00	1/2	146	159	13	0.57	151	153	2	1.7
						140	133	13	0.57	154	157	3	0.7
JBRRC008	11387	7936	135	-60	139	28	30	2	0.32	28	29	1	0.5
JBRRC022	11075	7750	155	-60	157	70	76	6	0.41				
						28	48	20*	0.18				
JBRRC024	11282	7813	155	-60	103	64	103	39	1.89	74	81	7	5.6
						04	103	33	1.05	92	100	8	3.2
JBRRC025	11351	7848	155	-60	110	33	60	27	1.12	42	52	10	2.7
JBRRC091	11415	7933	155	-55	200	0	8	8*	0.31				
JBRRC101	11125	7804	155	-60	105	94	105	11	4.18	94	101	7	6.41
JBRRC105	11135	7740	155	-60	135	0	60	60*	1.35	21	35	14	2.25
JEKKCIOS	11155	7740	155	-00	133	U	80	60	1.55	41	44	3	12.5
						0	16	16*	0.17				
										48	58	10	2.77
JBRRC106	11214	7784	155	-75	129	44	104	60*	0.9	62	63	1	2.01
						44	104	60	0.5	68	72	4	1.4
										79	87	8	1.67
JBRRC107	11194	7842	155	-60	22			Hole aba	andoned b	efore targe	et depth		
JBRRC108	11194	7840	155	-60	120		<0.18	g/t Au			<0.5	g/t Au	
JBRRC109	11330	7898	145	-55	151	101	128	27	1.1	103	107	4	1.67
JENNCIUS	11330	7030	143	-55	131	101	120	21	1.1	113	126	13	1.61
										90	93	3	0.96
JBRRC110	11268	7840	155	-60	180	88	121	33	0.61	101	104	3	1.53
19KKC110	11208	7640	100	-00	190					114	117	3	2.09
						123	132	11	0.93	129	130	1	4.68
JBRRC133	11115	7639	159	-60	335	60	80	20*	0.43	68	80	12*	0.65

^{* 1-4}m composite samples

APPENDIX 3: Chela – 2012 Aircore Drill Statistics

HOLEID	Easting	Northing	DEPTH	Significant Intersections (>0.1g/t Au) Significant Intersections (>0.5g/t Au)							ig/t Au)
HOLEID	Easting	ivoruning	DEPIR	From	То	Interval	Grade	From	То	Interval	Grade
JLRB646	5383	10631	27	20	24	4*	0.1				
JLRB647	5398	10593	27	24	27	3*	0.11				
JLRB648	5417	10558	32	28	32	4*	0.16				
JLRB649	5439	10523	29				<0.1g	/t Au			
JLRB650	5455	10484	30	24	30	6*	0.17				
JLRB651	5470	10448	28								
JLRB652	5487	10413	36								
JLRB653	5517	10379	43								
JLRB654	5522	10343	45								
JLRB655	5540	10307	48				<0.1g	/t Au			
JLRB656	5569	10271	69								
JLRB657	5574	10243	17								
JLRB658	5590	10203	52								
JLRB659	5608	10166	51								
JLRB660	5625	10126	45	16	32	16*	0.27	28	32	4*	0.52
JLRB661	5885	10319	45	28	45	17*	0.6	28 40	36 44	8* 4*	0.75 0.65
JLRB662	5868	10355	20	1			J	<u> </u>			
JLRB663	5851	10391	27								
JLRB664	5825	10425	20				<0.1g	/t Au			
JLRB665	5808	10461	54								
JLRB666	5791	10497	41								
JLRB667	5774	10533	65	12	20	8*	0.52	12	16	4*	0.66
JLRB668	5757	10570	50	,	•	•	<0.1g	/t Au			
JLRB669	5740	10606	47	36	40	4*	0.26				
JLRB670	5723	10642	54	16	52	36*	0.15				
JLRB671	5706	10678	35	4	35	31*	0.24	28	32	4*	0.56
JLRB672	5689	10715	36	0	32	32*	0.18			•	
JLRB673	5660	10900	36	24	32	8*	0.61	24	28	4*	0.83
JLRB674	5696	10916	29	20	29	9*	0.19		Į.	L.	
JLRB675	5733	10932	35	24	35	11*	0.27				
JLRB676	5769	10948	38	20	39	19*	0.27	32	36	4*	0.54
JLRB677	5805	10964	81	24	40	16*	0.36	24	28	4*	0.64

^{* 1-4}m composite samples

APPENDIX 4: Rupa Suguti/Chirorwe Prospect – Liontown RC Drilling statistics

						•	Signific	ant Inte	ersections	(>0.25g/t)	Signifi	cant In	tersection	s (>1g/t)
HOLEID	EAST	NORTH	RL	DEPTH	Azimuth	Dip	From	То	Interval	Grade	From	То	Interval	Grade
SCRC017	4026	8803	1252	112	35	-60								
SCRC018	4062	8787	1250	100	35	-60				No significa	nt accas			
SCRC019	4182	8820	1232	50	198	-55			ľ	NO SIGITITICA	iiit assa	ys		
SCRC020	4591	8812	1205	110	180	-55								
SCRC021	4650	8718	1210	118	360	-60	32	37	5	3.6	32	35	3	5.6
3CKC021	4030	0/10	1210	110	300	-60	59	61	2	6.6	59	61	2	6.6
							52	53	1	2.8	52	53	1	2.8
SCRC022	4647	8702	1210	112	360	-65	56	58	2	0.5				
							82	83	1	1.7	82	83	1	1.7
							12	16	4	5.9	13	15	2	11.3
SCRC023	4037	8815	1252	50	35	-55	12	10	4	5.5	13	14	1	19.2
							21	23	2	1.7	21	22	1	2.7
SCRC024	4071	8801	1250	52	37	-55	40	47	7	5.6	40	47	7	5.6
3CRC024	4071	0001	1230	32	3/	-33				incl	41	45	4	7.1
							2	3	1	0.9				
SCRC025	4175	8779	1233	52	18	-55	5	6	1	1.3	5	6	1	1.3
3CNCU25	41/3	0//9	1233	32	10	-55	9	10	1	1.4	9	10	1	1.4
							11	12	1	0.6				
(NB All1m sar	nples, tru	e widths 85	-90% of d	rill widths)		_								

APPENDIX 5: Mt Windsor/Allandale Prospect – Historic (1992) RC Drilling statistics

		. 430. / / 1.	.aaa.c .	. ospect		(1332)		g stati	36.63	
ווסובום	FACT	NODTU	DI	DEDTU	A 718 41 IT. I	DID	9	ignificant	(>0.1g/t) A	u
HOLEID	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	From	То	Interval*	Grade
RC92AL01	354633	7749967	367.8	156	17	-60	87	93	6	0.15
RC92AL02	354589	7749902	364.2	72	17	-60	21	36	15	0.16
NC3ZALUZ	334363	7743302	304.2	72	17	-00	48	72	24	0.19
RC92AL03	354381	7749976	365.2	63.5	17	-60		No signific	cant results	
RC92AL04	353716	7750356	370.1	78	17	-60	45	51	6	0.19
RC92AL05	353647	7750223	376.2	108	17	-60	93	96	3	0.45
RC92AL06	353189	7750235	386	132	17	-60	18	30	12	0.16
RC92AL07	352829	7750272	394.8	120	17	-60				
RC92AL08	352384	7750282	388.5	117	17	-60		No signifia	ant raculta	
RC92AL09	352906	7750496	384.5	54	17	-60		NO SIGNITIO	cant results	
RC92AL10	354644	7750163	360.5	25	17	-60				
*411.2		h = 0.700/ = f = l =		ala						

^{*}All 3m composites, true widths ~70% of downhole intervals

APPENDIX 6 - Jubilee Reef - JORC Table 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad	Drill samples are typically submitted as 4 metre composites which comprise representative sub samples (collected via the tube technique) from 1 m intervals. If an assay from a 4 metre composite is considered significant, then the 1 metre samples are submitted for separate assay.
	meaning of sampling.	Trench samples are collected as continuous 1-2m chip samples along floor.
		Drill holes and trenches are oriented perpendicular to the interpreted strike of the mineralised trend.
		Rock samples comprise multiple chips considered to be representative of the horizon or outcrop being sampled.
		Samples submitted for assay typically weigh 2-3kg.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	All drill samples are homogenised by riffle splitting prior to sampling. Weights (see above) for drill, trench and rock samples are maintained to ensure results represent entire intervals.
		Duplicates, blanks and standards are routinely submitted to ensure results are repeatable and accurate with no noticeable nugget effects.
	Aspects of the determination of mineralisation that are Material to the Public Report.	Mineralisation is initially estimated via the visual assessment and recording of relevant minerals and independently confirmed by ALS Global, an internationally certified assay laboratory.
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules)	For subsurface sampling, different drilling techniques (RC/RAB/Aircore/Core) have been used to collect 1 metre samples which are typically composited to 4 metre samples (see above). A representative 2-3kg of the sample interval is pulverised to -75 microns from which 25g is then digested by aqua regia and assayed for gold by ICP-MS.
	may warrant disclosure of detailed information.	From time to time, samples are assayed for a suite of other elements. Liquor from the aqua regia digest is assayed by either ICPAES or ICPMS for up to 52 elements. Rock and trench samples are assayed by the same
		techniques described above.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg	Drilling techniques used at Jubilee Reef comprise:
·	core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented	 Reverse Circulation (RC)/4.5-5.5", face sampling hammer
	and if so, by what method, etc).	• Rotary Air Blast (RAB)/3.5-4.5" bit, open hole blade or
		 hammer Aircore (AC)/ 3.5-4.5" face sampling, blade
		Diamond Core/NQ diameter, standard tube with all core oriented when feasible.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recoveries are visually estimated and recorded for each metre. To date sample recoveries have averaged >95%.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Drill collars are sealed to prevent sample loss and holes are normally drilled dry to prevent poor recoveries and contamination caused by water ingress. Wet intervals are noted in case of unusual results.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	None noted as yet.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	All drill holes are logged on 1 metre intervals and the following observations recorded:
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Recovery, quality (i.e. degree of contamination), wet/dry, hardness, colour, grainsize, texture, mineralogy, lithology, structure type and intensity, vein type and %, sulphide

0.14	1000 0 1 1 1	
Criteria	JORC Code explanation	Commentary
		type and %, alteration assemblage and magnetic susceptibility.
		In addition, RQD and structural orientation data are collected for diamond core.
	Whether logging is qualitative or quantitative in nature. Core	Logging is quantitative, based on visual field estimates
	(or costean, channel, etc) photography.	All drill core is photographed prior to cutting.
	The total length and percentage of the relevant intersections logged.	All holes are logged from start to finish.
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	Core is sawn with half submitted for assay.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Non core samples are collected as 1 metre samples, riffle split and then composited by tube sampling the bags. Samples are typically dry.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation follows industry best practice standards and is conducted by international company ALS Global; i.e.
		Oven drying, jaw crushing and pulverising so that 85% passes -75microns. Prepped samples are shipped from ALS Mwanza (Tanzania) to ALS Brisbane (Australia) for assaying.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All sample batches include duplicates (1:20), blanks (1:50) and certified standards (1:33)
	Measures taken to ensure that the sampling is representative	Measures taken include:
	of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 regular cleaning of cyclones, splitters and sampling equipment to prevent contamination;
		 statistical comparison of duplicate samples; and statistical comparison of anomalous 4m composite
		assays versus average of follow up 1m assays.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Comparison of anomalous duplicates and 4mv1m assays show excellent repeatability indicating sample size is appropriate to the grain size.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Assay and laboratory procedures have been selected following a review of techniques provided by internationally certified laboratories. In addition, the sample prep laboratory in Mwanza is regularly visited to ensure high standards are being maintained.
		The techniques used for gold and base metals are total.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None used
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision	Multiple certified standards with varying element contents have been purchased. Different ones are selected randomly and submitted every 33 samples.
	have been established	Barren granitic material from a road quarry is submitted every 50 samples.
		Duplicates are collected every 20 samples and assayed.
		Comparison of results indicates good levels of accuracy and precision. No external laboratory checks have been used.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	None undertaken
assaying	The use of twinned holes.	None undertaken
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Acquire database. (NB data cannot be loaded into Acquire unless it

Criteria	JORC Code explanation	Commentary	
		is validated first)	
		Hard copies are stored in the local office and electronic data is stored on the Perth server. Data is exported from Acquire for processing by a number of different software packages.	
		All electronic data is routinely backed up.	
	Discuss any adjustment to assay data.	None required	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All drill holes, trenches, workings and geochemical samples are initially located using a hand held GPS.	
	other locations used in Mimeral Resource estimation.	Drill holes that will be used in Mineral Resource estimation are accurately located using a DGPS.	
		All RC and diamond holes have been surveyed by either a down hole camera or gyroscope.	
	Specification of the grid system used	The grid system used is ARC1960 Zone 36S; however, for reporting purposes, and to maintain confidentiality, local coordinates are sometimes used.	
	Quality and adequacy of topographic control.	Nominal RLs based on regional topographic datasets are used initially; however, these are updated if DGPS coordinates are collected.	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Varies from 400-700m spacings for trenching at Tembo to <50x50m at Masabi.	
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing not yet appropriate for Mineral Resource or Ore Reserve Estimations	
	Whether sample compositing has been applied.	Drill samples are initially collected as 4 metre intervals which have been composited from 1 metre intervals. 1 metre samples are submitted at a later date if the results from 4 metre samples are considered significant based on grade and setting	
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Unknown for Masabi and Chela prospects where mineralisation is largely hosted by a granitoid body and not visually distinct.	
Suucture		At Panapendesa and Tembo prospects, drilling and trenching is oriented perpendicular to the interpreted strike of mineralisation and no bias is envisaged.	
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been recognised; however, it is possible that drilling at Masabi has drilled down and sub parallel to mineralised structures.	
Sample security	The measures taken to ensure sample security.	Company geologist supervises all sampling and subsequent storage in field. Same geologist delivers samples to ALS lab in Mwanza and receives an official receipt of delivery.	
		ALS Mwanza organises transport to ALS in Brisbane.	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None completed.	
	Section 2 Reporting of Explo	ration Results	
Criteria	JORC Code explanation	Commentary	
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Jubilee Reef Project comprises 4 granted prospecting licences (PLs 4495/2007, 6168/2009, 8125/2012, 8304/2012) and 1 application (HQ-P24830) comprising a contiguous, 60km^2 area located ~850km NW of Dar es Salaam, Tanzania. Liontown originally entered the Project via a Joint Venture agreement with Currie Rose Resources Inc in 2011 and earned 66% by sole funding exploration. In April 2013, Liontown agreed to acquire the remaining equity in the property and will hold 100% pending completion of transfer documentation for the tenements.	

Criteria	JORC Code explanation	Commentary
		PLs 4495/2007 and 6168/2009 are in the name of Currie Rose while the other PLs are held by third parties. Currie Rose has trust agreements with these parties ensuring they will be transferred to Liontown.
		On mining, royalties are payable to the Tanzanian government (4% NSR) and Currie Rose (2% NSR).
		There are no other material issues affecting the tenements
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All granted tenements are in good standing and there are no impediments to operating in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Project has been held by Currie Rose and predecessor companies continuously since 1996. Work completed prior to Liontown includes soil sampling, prospecting, aeromagnetics, VTEM and ~15,000m drilling. This work was of high quality and defined multiple gold targets which have been the focus of Liontown's exploration activities.
		Significant results from the prior exploration have been validated by Liontown and reported in the initial ASX announcement released in early 2011.
Geology	Deposit type, geological setting and style of mineralisation.	The Jubilee Reef Project comprises Archaean greenstone stratigraphy including volcanoclastic sediments, BIFs and basalt that have been intruded by granitoids varying in composition from diorite to syenite. The stratigraphy has been thickened by a layer parallel thrust faults that are possibly also a major control on gold mineralisation.
		Gold is structurally controlled but hosted in a number of different settings and lithologies similar to Archaean lode style gold systems mined in Western Australia and Canada.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	See Appendices 1-3
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg	Intercepts are calculated using lower cuts of 0.1 and 0.5g/t gold. No top cuts used to date.
	cutting of high grades) and cut-off grades are usually Material and should be stated.	Internal waste (i.e. <cut between="" cut="" exceed="" grades.<="" is="" limited="" mineralised="" off="" off)="" samples="" single="" td="" that="" to=""></cut>
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Short intervals of high grade that have a material impact on overall intersection are highlighted separately (see attached appendices)
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None reported
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill	The relationship between true widths and down hole widths has not yet been determined for Masabi Hill and Chela.
widths and intercept lengths	hole angle is known, its nature should be reported.	True widths at Panapendesa are approximately 25-50% of down hole widths
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Mineralised widths reported for trenching from Tembo are interpreted to be close to true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate	See Figures in body of report

Criteria	JORC Code explanation	Commentary	
	sectional views.		
not practicable, representative reporting of both low and mineralise		Comprehensive reporting has been undertaken with both mineralised and unmineralised holes/trenches listed in attached tables and appendices.	
Other substantive exploration data	3,		
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Pending future funding	

APPENDIX 7 - Mount Windsor Project - JORC Table 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drill samples are typically submitted as 1 m intervals. Drill holes are oriented perpendicular to the interpreted strike of the mineralised trend. Rock samples comprise multiple chips considered to be representative of the horizon or outcrop being sampled. Samples submitted for assay typically weigh 2-3kg. Historic drill results reported for the Allandale prospect are based on 3m samples composited from 1m intervals. Sample and assaying techniques for these results are not
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	provided in the original reporting. All drill samples are homogenised by riffle or cone splitting prior to sampling. Weights (see above) for drill and rock samples are maintained to ensure results represent entire intervals. Duplicates, blanks and standards are routinely submitted to ensure results are repeatable and accurate with no noticeable nugget effects.
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	RC drilling was used to collect 1 metre samples from which a representative 2-3kg was sent to Intertek Genalysis in Townsville for analysis. Samples are pulverised to -75 microns and analysed for gold by fire-assay, Hg by AAS and a multi-element suite by mixed-acid digest – ICPMS/OES. Rock samples are assayed by the similar techniques described above.
Drilling Drill type (eg core, reverse circulation, open-hole hammer, techniques rotary air blast, auger, Bangka, sonic, etc) and details (eg		Reverse Circulation (RC)/5.5", face sampling hammer
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recoveries are visually estimated and recorded for each metre. To date sample recoveries have averaged >95%.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Drill collars are sealed to prevent sample loss and holes are normally drilled dry to prevent poor recoveries and contamination caused by water ingress. Wet intervals are noted in case of unusual results.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	None observed.

riteria JORC Code explanation		Commentary	
	preferential loss/gain of fine/coarse material.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	All drill holes are logged on 1 metre intervals and the following observations recorded:	
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Recovery, quality (i.e. degree of contamination), wet/dry, hardness, colour, grainsize, texture, mineralogy, lithology, structure type and intensity, vein type and %, sulphide type and %, alteration assemblage and magnetic susceptibility.	
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging is quantitative, based on visual field estimates. No photography undertaken but will be completed if drill core drilling is carried out.	
	The total length and percentage of the relevant intersections logged.	All holes are logged in the same detail from start to finish.	
Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilling completed.	
preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Non core samples are collected as dry, 1 metre riffle split samples.	
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation follows industry best practice standards and is conducted by international company Intertek Genalysis; i.e.	
		Oven drying, jaw crushing and pulverising so that 85% passes -75microns.	
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All sample batches include duplicates (1:50), blanks (1:100 and certified standards (1:25)	
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Measures taken include: regular cleaning of cyclones, splitters and sampling equipment to prevent contamination; and	
		 statistical comparison of duplicate samples and standards. 	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Comparison of anomalous duplicates is undertaken to ensure sample size is appropriate to grain size. (i.e. results show good repeatability)	
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Assay and laboratory procedures have been selected following a review of techniques provided by internationally certified laboratories.	
		The techniques used for gold and base metals are total.	
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None used	
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision	Multiple certified standards with varying element contents have been purchased. Different ones are selected randomly and submitted every 25 samples.	
	have been established	Duplicates are systematically collected every 50 samples and assayed to ensure results are repeatable.	
		Comparison of results indicates good levels of accuracy and precision. No external laboratory checks have been used.	
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	None undertaken	
assaying	The use of twinned holes.	None undertaken	
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Hard copies are stored in the local office and electronic data is stored on the Perth server. Data is exported from Datashed or Access for processing by a number of different software packages.	

Criteria	JORC Code explanation	Commentary	
		All electronic data is routinely backed up.	
	Discuss any adjustment to assay data.	None required.	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and	All drill holes, workings and geochemical samples are initially located using a hand held GPS.	
	other locations used in Mineral Resource estimation.	Drill holes that will be used in Mineral Resource estimation will be accurately located using a DGPS.	
		All RC holes have been surveyed by a down hole camera.	
	Specification of the grid system used	The grid system used is GDA94 Zone 55; however, for reporting purposes, and to maintain commercial confidentiality, local coordinates are sometimes used.	
	Quality and adequacy of topographic control.	Nominal RLs based on regional topographic datasets are used initially; however, these are updated if DGPS coordinates are collected.	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	No regular sampling spacing used as yet.	
and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing not yet appropriate for Mineral Resource or Ore Reserve Estimations	
	Whether sample compositing has been applied.	No compositing undertaken	
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling is oriented perpendicular to the interpreted strike of mineralisation and no bias is envisaged.	
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been recognised.	
Sample security	The measures taken to ensure sample security.	Company geologist supervises all sampling and secure storage in field. Company employees hand deliver samples to laboratory in Townsville.	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None completed.	
	Section 2 Reporting of Explo	oration Results	
Criteria	JORC Code explanation	Commentary	
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Mt Windsor Project comprises 3 granted EPMs – 14161, 16627 and 16920 located in northern Queensland in close proximity to Charters Towers. The EPMs are wholly owned by Liontown Resources.	
		EPM14161 is subject to an Agreement with Kagara Limited regards the Liontown base metal deposit. Kagara is currently in Administration and it is unclear how this will impact Liontown's ownership of the EPM; however, there are no high priority exploration targets on the tenement and Liontown is not planning any further work.	
		There are no third party agreements or other material issues affecting the other two EPMs.	
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements remain in good standing and there are no impediments to operating in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The current EPMs formed part of a much larger Project which was established in 2007. The Project comprised up to 23 EPMs and covered a total area >4,000km²; however, the number of tenements and total area has varied with time as ongoing exploration and data reviews have resulted in the relinquishment and acquisition of different areas. From April 2010 to July 2013, the Project, including the current	

Criteria	JORC Code explanation	Commentary	
		EPMs, was subject to a JV Agreement between Liontown Resources and Ramelius Resources Limited. Ramelius Resources designed and executed the drilling and sampling referred to above. Ramelius withdrew after spending approximately \$7,000,000 on exploration.	
		Prior to Liontown acquiring the ground, numerous companies have explored the Charters Towers area since the 1960s for gold and base metals with exploration comprising assorted geochemical, geophysical and drilling programs involving a wide variety of techniques. All previous data has been compiled and reviewed with results used to facilitate the latest phase of exploration	
Geology	Deposit type, geological setting and style of mineralisation.	The Mt Windsor Project is largely located over the Lolworth-Ravenswood Block with the southern part overlapping the Devonian Drummond Basin. Cover sequences include the Tertiary Southern Cross Formation and Campaspe Beds which occur extensively over the Drummond Basin and the Seventy Mile Range Group. The Lolworth-Ravenswood Block comprises neo-Proterozoic to early Cambrian metasediments and orthogneisses belonging to the Cape River and Charters Towers Metamorphics; metasediments and metavolcanics (or intrusive equivalents) of the Cambro-Ordovician Seventy Mile Range Group; and Ordovician to Devonian granitoids of the Lolworth and Ravenswood Batholiths. Several styles of mineralisation are being targeted including low sulphidation epithermal gold, breccia related gold associated with Carbo-Permian intrusions and porphyry style copper-molybdenum-gold.	
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length.	See attached Appendices or Tables attached to or included in body of report	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually	Significant intercepts are calculated using lower cuts between 0.1 and 1.0g/t gold. Copper and molybdenum intercepts are calculated using a	
	Material and should be stated.	lower cut of 0.1%.	
		No top cuts used to date. Internal waste (i.e. <cut between="" cut="" exceed="" grades.<="" is="" limited="" mineralised="" off="" off)="" samples="" single="" td="" that="" to=""></cut>	
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Short intervals of high grade that have a material impact on overall intersection are highlighted separately (see attached appendices)	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been calculated or reported.	
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill	True widths have not yet been established for the Kookaburra intercepts.	
widths and intercept lengths	hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg	True widths at Allandale are estimated to be ~70% of the reported down hole intervals.	

Criteria	JORC Code explanation	Commentary
	'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See Figures in body of report
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting has been undertaken with both mineralised and unmineralised holes/samples listed in attached tables and appendices.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material data reported
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	At Kookaburra, an IP geophysical survey is planned to determine whether higher concentrations of sulphides exist beneath shallow soil cover than that already tested by previously drilling.
		At Allandale, a 3 hole, 1,000m RC/core drilling program is planned to test beneath previously defined gold and pathfinder element anomalism.

APPENDIX 8

The following information is provided in accordance with ASX Listing Rule 5.3 for the quarter ended 31 December 2013:

1. Listing of tenements held:

Location	Project	Tenement No.	Registered Holder	Nature of interests
Tanzania	Jubilee Reef	PL4495/2007	Currie Rose Resources (T) Limited	100% direct - pending transfer
		PL6168/2009	Currie Rose Resources (T) Limited	100% direct - pending transfer
	PL8125/2012		Boulder Mining Company Limited	100% direct - pending transfer
		PL8304/2012	Barrick Exploration Africa Limited	100% direct - pending transfer
	Rupa Suguti	PL4497/2007	Bismark Hotel Company	0% - option to acquire 100%
		PL7865/2012	Twigg Gold	0% - option to acquire 100%
		PL8183/2012	WG Exploration	0% - option to acquire 100%
		PL8659/2012	WG Exploration	0% - option to acquire 100%
Australia	Mt Windsor	EPM14161	Liontown Resources Limited	100% direct (subject to agreement with Kagara Ltd)
		EPM16920	Liontown Resources Limited	100% direct
		EPM16227	Liontown Resources Limited	100% direct

2. Listing of tenements acquired (directly or beneficially) during the quarter:

There were no tenements acquired during the quarter.

3. Tenements relinquished, reduced or lapsed (directly or beneficially) during the quarter:

Location	Project	Tenement No.	Registered Holder	Nature of interests
Australia	Mt Windsor	EPM 16408	Liontown Resources Limited	100% direct
		EPM 16712	Liontown Resources Limited	100% direct
		EPM 17804	Liontown Resources Limited	100% direct
		EPM 17971	Liontown Resources Limited	100% direct
		EPM 18224	Liontown Resources Limited	100% direct
		EPM 18352	Liontown Resources Limited	100% direct

Rule 5.3

Appendix 5B

Mining exploration entity quarterly report

 $Introduced \ o{1/07/96} \ Origin \ Appendix \ 8 \ \ Amended \ o{1/07/97}, \ o{1/07/98}, \ 30/09/01, \ o{1/06/10}, \ 17/12/10$

Name of entity

Liontown Resources Limited	
ABN	Quarter ended ("current quarter")
39 118 153 825	31 December 2013

Consolidated statement of cash flows

		Current quester	Vacr to data	
Coch	flows related to operating activities	Current quarter \$A	Year to date (6 months) \$A	
Casii	nows related to operating activities	ΦA		
1.1	Receipts from product sales and related debtors	_	ψ A	
1.2	Payments for (a) exploration & evaluation	(189,312)	(332,833)	
	(b) development	(105,612)	(882,888)	
	(c) production	_	_	
	(d) administration	(182,020)	(288,565)	
1.3	Dividends received	-	-	
1.4	Interest and other items of a similar nature			
	received	1,538	5,145	
1.5	Interest and other costs of finance paid	_	-	
1.6	Income taxes paid	-	-	
1.7	Other (provide details if material)	-	-	
	Net Operating Cash Flows	(369,794)	(616,253)	
	Cash flows related to investing activities			
1.8	Payment for purchases of:			
	(a) prospects	-	-	
	(b) equity investments	- (1.266)	(20.702)	
1.0	(c) other fixed assets Proceeds from sale of:	(1,366)	(28,793)	
1.9				
	(a) prospects(b) equity investments	-	-	
	(c) other fixed assets	_	-	
1.10	Loans to other entities	_	-	
1.10	Loans repaid by other entities			
1.12	Other (provide details if material)	_	_	
1.12	outer (provide details it illuterial)			
	Net investing cash flows	(1,366)	(28,793)	
1.13	Total operating and investing cash flows (carried	. , ,	. , , ,	
	forward)	(371,160)	(645,046)	

⁺ See chapter 19 for defined terms.

1.13	Total operating and investing cash flows		
	(brought forward)	(371,160)	(645,044)
	Cash flows related to financing activities		
1.14	Proceeds from issues of shares, options, etc.	-	-
1.15	Proceeds from sale of forfeited shares	-	-
1.16	Proceeds from borrowings	-	-
1.17	Repayment of borrowings	-	-
1.18	Dividends paid	-	-
1.19	Other (provide details if material)	-	
	Net financing cash flows	-	<u>-</u>
	Net increase (decrease) in cash held	(371,160)	(645,046)
1.20	Cash at beginning of quarter/year to date	927,603	1,203,544
1.21	Exchange rate adjustments to item 1.20	28,063	26,008
1.22	Cash at end of quarter	584,506	584,506

Payments to directors of the entity and associates of the directors

Payments to related entities of the entity and associates of the related entities

		Current quarter \$A	
1.23	Aggregate amount of payments to the parties included in item 1.2	91,026	
1.24	Aggregate amount of loans to the parties included in item 1.10	Nil	

1.25 Explanation necessary for an understanding of the transactions

Item 1.23 consists of legal fees paid to a director for the provision of legal services (\$9,000), the salary and superannuation paid to the Managing Director (\$47,457), non-executive director superannuation (\$7,569) and service charges paid to Chalice Gold Mines Ltd (a director related entity) for the provision of corporate services, office rent and technical personnel (\$27,000).

Apart from compulsory superannuation contributions, non-executive directors did not receive directors' fees during the quarter.

Non-cash financing and investing activities

2.1 Details of financing and investing transactions which have had a material effect on consolidated assets and liabilities but did not involve cash flows

At the Company's Annual General Meeting held in November 2013, Shareholders approved the issue of 4,361,795 shares to directors, at an issue price of 1.262 cents per share, in lieu of directors' Fees outstanding up to 30 September 2013.

2.2	Details of outlays made by other entities to establish or increase their share in projects in which the
	reporting entity has an interest

_1	reporting entity has an interest
]	Nil

Appendix 5B Page 2 17/12/2010

⁺ See chapter 19 for defined terms.

Financing facilities available

Add notes as necessary for an understanding of the position.

- 3.1 Loan facilities
- 3.2 Credit standby arrangements

Amount available \$A	Amount used \$A
Nil	Nil
Nil	Nil

Estimated cash outflows for next quarter

	Total	334,000
4.4	Administration	62,000
4.3	Production	-
4.2	Development	-
4.1	Exploration and evaluation	272,000
		\$A

Reconciliation of cash

show	nciliation of cash at the end of the quarter (as n in the consolidated statement of cash flows) to lated items in the accounts is as follows.	Current quarter \$A	Previous quarter \$A
5.1	Cash on hand and at bank	584,506	623,016
5.2	Deposits at call	-	304,587
5.3	Bank overdraft	-	-
5.4	Other (provide details)	-	-
	Total: cash at end of quarter (item 1.22)	584,506	927,603

Changes in interests in mining tenements

6.1 Interests in mining tenements relinquished, reduced or lapsed

Tenement reference	Nature of interest	Interest	Interest at end of
	(note (2))	at	*** **** **
		beginni	quarter
		ng of	
		quarter	
QLD:			
EPM 16408	Owned	100%	0%
EPM 16712	Owned	100%	0%
EPM 17804	Owned	100%	0%
EPM 17971	Owned	100%	0%
EPM 18224	Owned	100%	0%
EPM 18352	Owned	100%	0%

⁺ See chapter 19 for defined terms.

Appendix 5B Mining exploration entity quarterly report

6.2 Interests in mining tenements acquired or increased Nil	
---	--

Issued and quoted securities at end of current quarterDescription includes rate of interest and any redemption or conversion rights together with prices and dates.

		Total number	Number quoted	Issue price per security (see note 3) (cents)	Amount paid up per security (see note 3) (cents)
7.1	Preference +securities (description)			3) (cons)	(cents)
7.2	Changes during quarter (a) Increases through issues	Nil	Nil	Nil	Nil
	(b) Decreases through returns of capital, buy- backs, redemptions	Nil	Nil	N/A	N/A
7.3	+Ordinary securities	396,151,370	396,151,370	N/A	N/A
7.4	Changes during quarter (a) Increases through issues	4,361,795	4,361,795	\$0.01262	N/A
	(b) Decreases through returns of capital, buy- backs	Nil	Nil	N/A	N/A
7.5	+Convertible debt securities (description)				
7.6	Changes during quarter (a) Increases through issues (b) Decreases through securities matured,	Nil Nil	Nil Nil	N/A N/A	N/A N/A
7.7	Converted Options				
	(description and conversion factor) Listed options	32,649,048	Nil	Exercise price \$0.05	Expiry date 27 September 2015
	Unlisted options	2,000,000	Nil	Exercise price \$0.01727	Expiry date 30 November 2016
		2,000,000	Nil	\$0.02302	30 November 2016

⁺ See chapter 19 for defined terms.

Appendix 5B Page 4 17/12/2010

7.8	Issued during	2,000,000	Nil	\$0.0173	30 November 2016
	quarter	2,000,000	Nil	0.02302	30 November 2016
7.9	Exercised during				
	quarter	Nil	Nil	N/A	N/A
7.10	Expired during				
	quarter	3,000,000	Nil	\$0.20	2 December 2013
		1,050,000	Nil	\$0.20	1 November 2013
7.11	Debentures				
	(totals only)	Nil	Nil		
7.12	Unsecured				
	notes (totals				
	only)				
		Nil	Nil		

Compliance statement

- This statement has been prepared under accounting policies which comply with accounting standards as defined in the Corporations Act or other standards acceptable to ASX (see note 5).
- 2 This statement does give a true and fair view of the matters disclosed.

Sign here: Date: 30 January 2014

(Joint company secretary)

Print name: Leanne Forgione

Notes

- The quarterly report provides a basis for informing the market how the entity's activities have been financed for the past quarter and the effect on its cash position.

 An entity wanting to disclose additional information is encouraged to do so, in a note or notes attached to this report.
- The "Nature of interest" (items 6.1 and 6.2) includes options in respect of interests in mining tenements acquired, exercised or lapsed during the reporting period. If the entity is involved in a joint venture agreement and there are conditions precedent which will change its percentage interest in a mining tenement, it should disclose the change of percentage interest and conditions precedent in the list required for items 6.1 and 6.2.
- 3 **Issued and quoted securities** The issue price and amount paid up is not required in items 7.1 and 7.3 for fully paid securities.

⁺ See chapter 19 for defined terms.

- The definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report.
- Accounting Standards ASX will accept, for example, the use of International Financial Reporting Standards for foreign entities. If the standards used do not address a topic, the Australian standard on that topic (if any) must be complied with.

== == == ==

Appendix 5B Page 6 17/12/2010

⁺ See chapter 19 for defined terms.