

ASX: LM8

SILVER LAKE HANGING WALL UPDATE 11 SEPTEMBER 2023

KEY POINTS

- Surface drilling program at Silver Lake mine nearing completion
- 1.00m @ 5.74% Ni, 1.65m @ 2.11% Ni and 2.20 @ 1.85% Ni confirm prospectivity of Silver Lake Hanging Wall (SLHW) position
- Results validate previously reported Exploration Target range estimates
- Mineral Resource estimate to follow conclusion of first pass program
- Exciting new opportunity identified on prospective komatiite-basalt contact down dip of historically mined area at Silver Lake

Lunnon Metals Limited (**ASX: LM8**) (the **Company** or **Lunnon Metals**) is pleased to provide an update on activities at Silver Lake-Fisher (**SLF**), part of the Kambalda Nickel Project (**KNP**).

The first pass surface diamond drill (**DD**) program evaluating the Silver Lake Hanging Wall (**SLHW**) prospect is nearing completion. Approximately 4,200 metres have now been drilled in four DD parent¹ (and multiple subsidiary wedge) holes with assay results now returned for those that have been logged and processed.

Significant mineralisation recorded in completed holes to date includes (>1.0% Ni cut-off):

SLK23DD_001:	1.00m @ 1.05% Ni, 0.06% Cu and 0.01% Co (from 453.0 metres down hole);
SLK23DD_002:	1.06m @ 1.51% Ni, 0.10% Cu and 0.03% Co (from 484.94 metres);
SLK23DD_002W1A:	1.65m @ 2.11% Ni, 0.17% Cu and 0.06% Co (from 475.40 metres);
SLK23DD_002W2:	1.00m @ 5.74% Ni, 0.27% Cu and 0.07% Co (from 453.85 metres); and
SLK23DD_003:	2.20m @ 1.85% Ni, 0.12% Cu and 0.03% Co (from 429.20 metres).

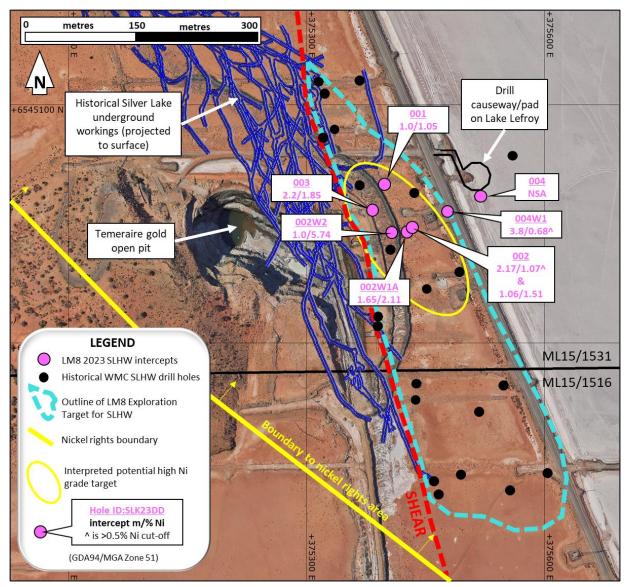
Further anomalous intercepts (>0.5% and >1.0% Ni cut-offs) in these and the remaining holes, that are considered prospective, are also included in the annexures at the end of this report. All intercepts recorded extremely low, or below detection, levels of arsenic.

An exciting observation during this program has been identifying nickel mineralisation beneath the SLHW position on the komatiite-basalt contact. This contact sits approximately 60 metres below the SLHW and is the position traditionally considered more prospective for nickel. All new Lunnon Metals DD holes were extended to ensure that the contact position was tested. This new drilling, together with the historical WMC Resources Ltd (**WMC**) DD data and previous Company re-assay results, have defined a significant opportunity at this contact.

Managing Director, Edmund Ainscough, commenting said: "The Exploration Target, coupled with the wealth of existing historical drill data, put us in a great position to execute our initial drill program at Silver Lake. This first pass drilling has defined a robust mineralised surface that confirms past drilling and validates the Exploration Target. A Mineral Resource estimate is the next step together with reviewing the multi-element data to assist vectoring towards possible higher grade shoots within that surface".

POSTAL ADDRESS PO Box 470 West Perth WA 6872 Ph +61 8 6424 8848

¹ "Parent" hole is used in this context to describe an initial diamond hole that serves as a platform for subsequent geophysical/geochemical surveys and then further diamond drilling by way of wedging from that parent, if warranted.


PROGRAM DETAILS

The DD program has been conducted from a single causeway and drill pad on the surface of Lake Lefroy (see **Figure 1**). Initially, three 70m spaced drill lines were planned with approximately 30m spaced pierce points intended along those lines, where possible and warranted. The objective was to significantly improve on the approximate 100m x 100m historical drill density with the aim of testing for the presence of potential high-grade shoots within the SLHW prospect, as was recognised and subsequently achieved at the Baker deposit.

Down Hole Transient Electro-Magnetic (**DHTEM**) surveying of selected new DD holes was of limited assistance due to the lack of continuous massive sulphide lenses in those holes coupled with the presence of hanging wall iron-rich sediments in this locality, impeding the effectiveness of this technique.

It is evident from geological logging and analysis to date that the proximity to, and intersection with, significant post mineralisation faults/shears, as illustrated on **Figure 2**, may be a key control on the development of higher-grade nickel mineralisation. DD hole SLK23DD_002W2, which recorded 1.00m @ 5.74% Ni, 0.27% Cu and 0.07% Co (from 453.85 metres down hole) is an example of improved nickel grades approaching this structural intersection.

Based on this observation, the initial program has been extended with three further holes targeting proximity to just such an interpreted intersection (orange crosses on **Figure 2**).

Figure 1: Plan view of the SLHW prospect area showing historical pierce points and the recent LM8 drill program together with the position of the historical mine workings (dark blue) and current surface infrastructure (see long projection in **Figure 2** for fuller results).

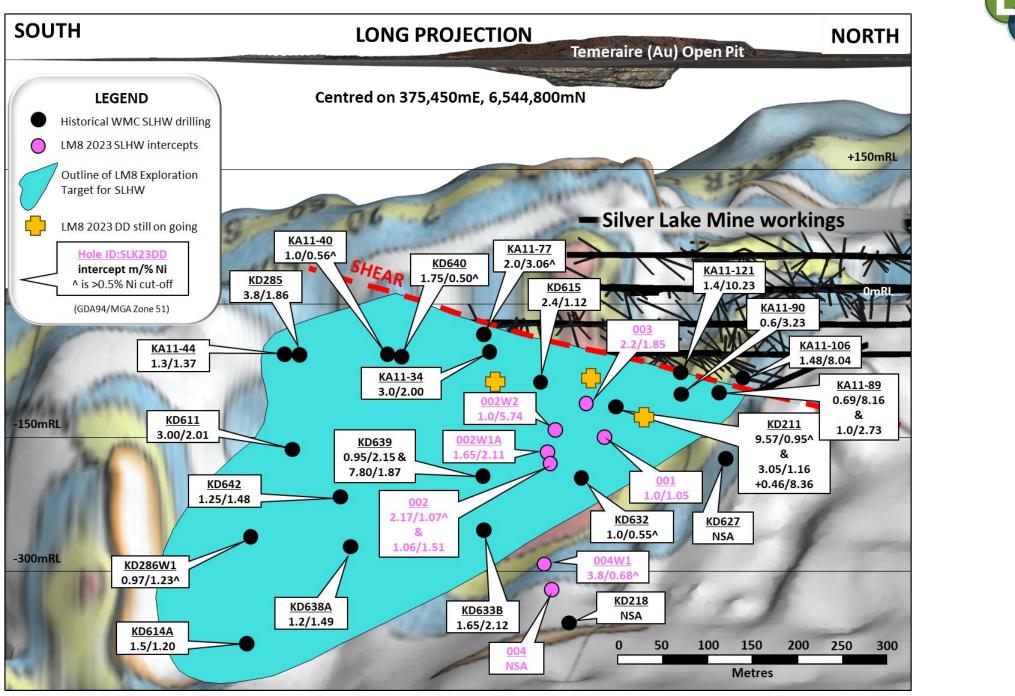


Figure 2: Long projection (looking west) of the SLHW prospect and Exploration Target area. Historical WMC drilling and current Lunnon Metals program results shown.

NEW OPPORTUNITY ON KOMATIITE-BASALT CONTACT

As noted earlier, the Company has previously reported that the more traditionally prospective nickel mineralised position, that being at the komatiite-basalt contact, had been tested only on a broad spacing by historical WMC drilling (some of which have been previously reported, see ASX announcement dated 3 March 2023). The historical DD holes that intersect the komatiite-basalt contact record a range of nickel grades from highly anomalous to significant intersections, including (> 1.0% Ni cut-off, unless annotated ^ which denotes >0.5% Ni):

LM8 re-assay of WMC DD holes

- KD 632 11.0m @ 0.64% Ni^
- KD 633B 0.90m @ 2.44% Ni
- KD 639 3.80m @ 0.58% Ni^

Original WMC assays (not previously reported)

- KD 286W1 1.40m @ 1.84% Ni
- KD 609 1.00m @ 1.05% Ni
- KD 615 17.00m @ 0.60% Ni[^]
- KD 187
 6.71m @ 0.58% Ni[^]

All new Lunnon Metals' DD holes were extended to ensure that the komatiite-basalt contact, approximately 60 metres beyond the SLHW, was tested. This new drilling, together with the historical WMC DD data and previous Company re-assay results, have defined a significant opportunity at this contact. The current program recorded two separate broad and highly anomalous mineralised intercepts (>0.5% Ni cut-off), potentially indicating proximity to higher grade nickel sulphides:

- SLK23DD_001 3.00m @ 0.64% Ni, 0.04% Cu and 0.02% Co (from 513.0 metres down hole);
 - SLK23DD_002 **16.20m @ 0.61% Ni**, 0.04% Cu and 0.02% Co (from 531.8 metres); and
- SLK23DD_002W2 10.00m @ 0.57% Ni, 0.03% Cu and 0.02% Co (from 499.0 metres).

Figure 3 below provides a long projection view of this basal contact with all historical and re-assayed WMC DD holes and current Lunnon Metals' program DD holes annotated.

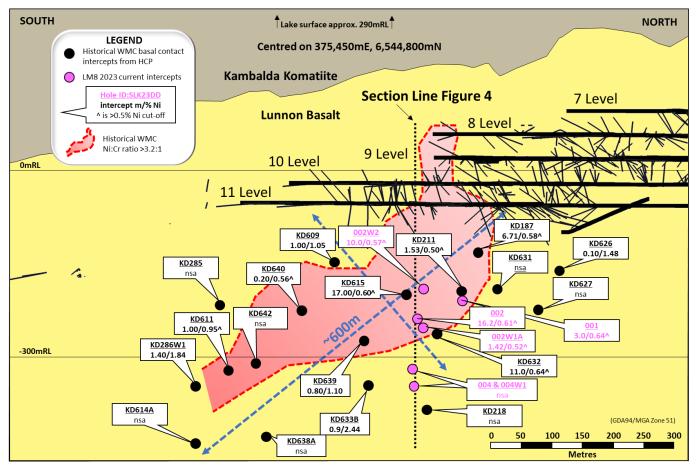
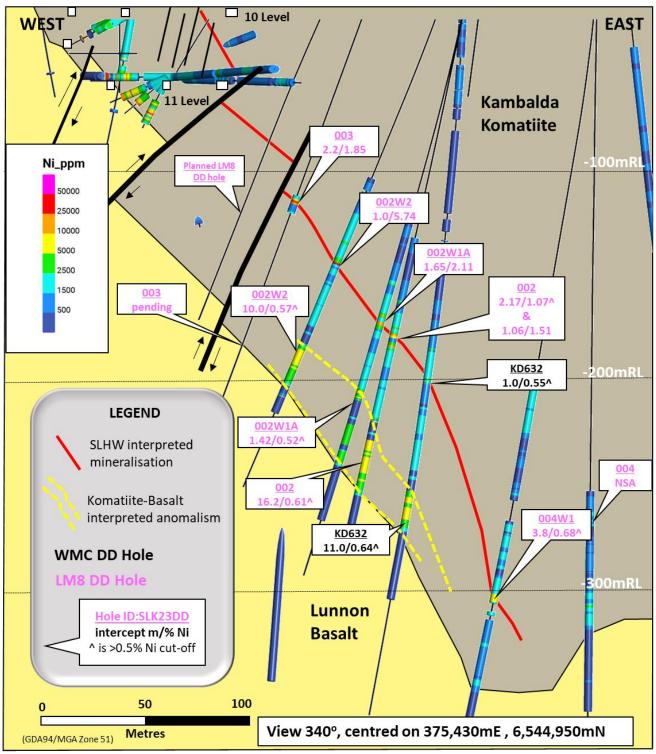



Figure 3: Long projection (looking west) of the traditionally prospective komatiite-basalt contact position with historical WMC drilling, current Lunnon Metals' program results and WMC's Ni:Cr ratio anomaly outline.

Figure 4 below illustrates in cross section the relationship between the historical Silver Lake underground mine, the SLHW and the prospective komatiite-basalt contact highlighting the down dip extent of the opportunity.

Figure 4: Cross section (viewed to 340°) showing the SLHW nickel surface and the prospective komatiite-basalt contact position with historical WMC drilling, current Lunnon Metals' program.

This new opportunity, with dimensions of approximately 600 metres by 300 metres, represents an exciting additional target for the Company adjacent to the SLHW prospect itself and immediately down dip of the existing Silver Lake mine workings.

NEXT STEPS FOR SLHW PROSPECT

Upon completion of the DD program and return of all assay results, a Mineral Resource estimation (**MRE**) will be completed for the SLHW prospect. On the basis that the DD program has validated and reproduced widths and grades seen in the previous historical drill intercepts, it is expected that the MRE will record tonnage and grade outcomes broadly within the previously reported Exploration Target ranges. Subject to the program being completed and assay results returned in a timely fashion, the goal is to complete and report the MRE before the end of the December quarter.

Analysis of the multi-element data for all re-assayed WMC DD and new Lunnon Metals DD holes will also be conducted to determine if vectors towards higher grade shoots within the mineralised SLHW surface can be detected and therefore guide future drilling.

COMPLIANCE STATEMENT: BASIS OF THE EXPLORATION TARGET FOR SLHW

An Exploration Target of between approximately **0.65Mt and 1.3Mt grading between 1.3% Ni and 2.7% Ni** has previously been estimated for the SLHW prospect (see ASX announcement dated 25 October 2022). The Company highlighted at the time of the estimation of the Exploration Target, that the potential quantity and grade of the Exploration Target stated was conceptual in nature, that there had been insufficient exploration to estimate a Mineral Resource and it was uncertain if further exploration will result in the estimation of a Mineral Resource.

The detailed explanation of the basis of the Exploration Target for SLHW estimated by the Company in accordance with the guidelines of the JORC Code (2012) was included in the referenced announcement. The Company considers that the Exploration Target was appropriately estimated and was representative of the exploration potential at SLHW prospect at the time of its generation.

Exploration activities, both previously reported and contained within this current report, have validated the ranges reported within that estimate. The Exploration Target was based on and fairly represented, information and supporting documentation prepared by the Competent Person, Mr. Aaron Wehrle.

This release has been approved and authorised for release by the Board.

Edmund Ainscough Managing Director Phone: +61 8 6424 8848 Email: <u>info@lunnonmetals.com.au</u>

ADDITIONAL BACKGROUND ON KAMBALDA'S FIRST NICKEL MINE: THE HISTORIC SILVER LAKE SHAFT

Silver Lake nickel mine was developed on the Lunnon Shoot, named after diamond driller Jack Lunnon who drilled the discovery hole, KD1, in 1966. The mine was operated by WMC continuously from 1966 until its closure in the 1985/86 financial year, producing **4.54 million tonnes of ore at 2.72% Ni for over 123,000 tonnes of nickel metal** based on WMC's production records.

The Silver Lake mine and the nickel shoots it hosts are developed on the southeast flank of the Kambalda Dome, with the historical workings plunging for approximately 2.5km to the south-southeast and extending to a vertical depth of only 350m (from surface to 50m below sea level).

Silver Lake was the third largest nickel mine in Kambalda after Otter-Juan and Long Shaft (now both owned by Wyloo Metals Pty Ltd).

The SLHW prospect (known as the '25H' surface during the operating life of the mine) sits below the deepest worked level of the historical Silver Lake mine, being 12 Level (approximately 340m below surface). Technical documentation available to the Company, dating from 1980, indicates that WMC planned to access this area in the future from the Hunt Decline (now part of Canadian listed Karora Resources Beta/Hunt gold mine, some 700m to the west of the Silver Lake workings). That access plan was never executed and the nickel mineralisation hosted by the SLHW remains available to this day.

The same internal WMC technical report indicated that the 25H surface constituted approximately 40% of the ore tonnes and nickel metal hosted in hanging wall positions at Silver Lake and 20% of the mine's entire available inventory of nickel (as at September 1980).

Hole ID	Easting	Northing	Elevation (m ASL)	Dip	Azimuth	EOH Drill Depth (m)	Hole Type	Grid
KD187	375,319.38	6,545,007.02	288.8	90.0	0.0	487.7	DD	MGA94_51
KD211	375,380.96	6,545,008.96	288.8	90.0	0.0	635.8	DD	MGA94_51
KD218	375,498.05	6,545,008.12	288.9	90.0	0.0	769.8	DD	MGA94_51
KD285	375,451.01	6,544,644.78	288.7	90.0	0.0	602.9	DD	MGA94_51
KD286W1	375,565.64	6,544,643.39	29.7	88.0	195.0	777.2	DD	MGA94_51
KD609	375,379.33	6,544,765.18	288.7	90.0	0.0	521.1	DD	MGA94_51
KD611	375,503.85	6,544,645.67	288.7	90.0	0.0	699.6	DD	MGA94_51
KD614A	375,609.95	6,544,643.98	289.7	90.0	0.0	830.0	DD	MGA94_51
KD615	375,384.11	6,544,886.57	288.6	90.0	0.0	620.0	DD	MGA94_51
KD626	375,315.62	6,545,128.58	288.6	90.0	0.0	540.0	DD	MGA94_51
KD627	375,378.61	6,545,127.95	288.9	90.0	0.0	613.0	DD	MGA94_51
KD631	375,317.19	6,545,067.16	288.8	90.0	0.0	578.0	DD	MGA94_51
KD638A	375,546.19	6,544,763.58	288.7	90.0	0.0	800.0	DD	MGA94_51
KD640	375,440.40	6,544,765.45	288.7	90.0	0.0	600.0	DD	MGA94_51
KD642	375,500.33	6,544,766.38	288.5	90.0	0.0	694.0	DD	MGA94_51

Annexure 1a: Diamond Drill Hole Collar Table for Historical WMC Resources Ltd holes with new intercepts reported herein (on the komatiite-basalt contact)

Annexure 1b: Diamond Drill Hole Collar Table for LM8 diamond drill holes

Hole ID	Easting	Northing	Elev. (m ASL)	Dip	Azi.	EOH Drill Depth (m)	Hole Type	Grid
SLK23DD_001	375,513.71	6,545,011.47	290.1	-76.0	263.0	584.6	DD	MGA94_51
SLK23DD_002	375,517.00	6,545,008.00	290.0	-78.0	228.0	582.5	DD	MGA94_51
SLK23DD_002W1	375,516.00	6,545,010.00	290.0	-77.5	229.2	291.7	DD	MGA94_51
SLK23DD_002W1A	375,517.00	6,545,008.00	290.0	-78.0	228.0	602.8	DD	MGA94_51
SLK23DD_002W2	375,517.00	6,545,008.00	290.0	-78.0	228.0	570.8	DD	MGA94_51
SLK23DD_002W3	375,516.00	6,545,010.00	290.0	-77.5	229.2	360.5	DD	MGA94_51
SLK23DD_003	375,515.00	6,545,011.00	290.0	-71.0	249.0	570.8	DD	MGA94_51
SLK23DD_004	375,514.70	6,545,011.57	290.2	-87.0	144.5	675.4	DD	MGA94_51
SLK23DD_004W1	375,514.70	6,545,011.57	290.2	-87.0	144.5	699.8	DD	MGA94_51

Annexure 2a: Drill Intercepts for Lunnon Metals' drilling on SLHW prospect position

Hole ID	From (drill depth) (m)	Width^ (m)	Ni %	Cu %	Со %	Fe %	Mg %	As ppm	Pd g/t	Pt g/t	Cut- off % Ni
SLK23DD_001	453.00	1.00	1.05	0.06	0.01	8.40	14.96	<10	0.25	0.20	1.00
and	513.00	3.00	0.64	0.04	0.02	6.57	20.05	<10	0.06	0.03	0.50
SLK23DD_002	479.31	2.17	1.07	0.14	0.02	10.07	15.37	<10	0.19	0.09	0.50
including	479.31	0.99	1.47	0.23	0.03	9.96	15.48	<10	0.26	0.13	1.00
and	484.94	1.06	1.51	0.10	0.03	11.74	14.88	28.00	0.35	0.05	1.00
and	531.80	16.20	0.61	0.04	0.02	6.52	16.78	26.31	0.07	0.03	0.50
SLK23DD_002W1				Fo	ailed hole,	did not re	each targe	et			
SLK23DD_002W1A	472.10	0.55	1.28	0.10	0.03	11.57	16.38	<10	0.23	0.11	1.00
and	475.40	1.65	2.11	0.17	0.06	17.65	12.90	15.88	0.45	0.23	1.00
and	510.00	1.42	0.52	0.03	0.01	4.99	17.92	<10	n/a	n/a	0.50
SLK23DD_002W2	453.85	1.00	5.74	0.27	0.07	15.65	12.40	21.50	1.15	0.80	1.00
and	499.00	10.00	0.57	0.03	0.02	6.19	19.57	13.70	0.05	0.03	0.50
SLK23DD_003	428.60	2.80	1.61	0.10	0.03	9.01	16.46	10	0.33	0.14	0.50
including	429.20	2.20	1.85	0.12	0.03	9.50	16.22	11	0.38	0.16	1.00
SLK23DD_004						nsa					
SLK23DD_004W1	598.00	3.80	0.68	0.05	0.02	6.91	15.34	<10	n/a	n/a	0.50

'nsa' means no significant assays.

'n/a' means these elements were not assayed in the current program.

^true widths are interpreted to be approximately in the range 50%-75% of drilled widths subject to final interpretation.

Annexure 2b: Drill Intercepts for historical WMC and current Lunnon Metals' drilling beneath/below SLHW prospect on the komatiite-basalt contact

Hole ID	From (drill depth) (m)	Width ^ (m)	Ni %	Cu %	Co %	Fe %	Mg %	As ppm	Pd g/t	Pt g/t	Cut- off % Ni
KD187	416.20	6.71	0.58	0.03	0.02	n/a	n/a	n/a	n/a	n/a	0.50
KD211	481.58	1.53	0.50	0.03	0.02	n/a	n/a	n/a	n/a	n/a	0.50
KD218	674.83										
KD285	509.69					n	sa				
KD286W1	638.83	1.40	1.84	0.21	0.06	n/a	n/a	655.51	n/a	n/a	1.00
KD609	435.20	1.00	1.05	0.05	0.06	n/a	n/a	n/a	n/a	n/a	1.00
KD611	610.00	1.00	0.95	0.06	0.01	n/a	n/a	n/a	n/a	n/a	0.50
KD614A	731.60		nsa								
KD615	480.00	17.00	0.60	0.03	0.02	n/a	n/a	n/a	n/a	n/a	0.50
KD626	448.80	0.10	1.48	0.06	0.04	n/a	n/a	<10	n/a	n/a	1.00
KD627	512.00										
KD631	478.45					n	sa				
KD638A	716.00										
KD640	515.40	0.20	0.56	0.02	0.02	n/a	n/a	n/a	n/a	n/a	0.50
KD642	603.00					n	sa				
SLK23DD_001	513.00	3.00	0.64	0.04	0.02	6.57	20.05	<10	0.06	0.03	0.50
SLK23DD_002	531.80	16.20	0.61	0.04	0.02	6.52	16.78	26.31	0.07	0.03	0.50
SLK23DD_002W1A	510.00	1.42	0.52	0.03	0.01	4.99	17.92	<10	n/a	n/a	0.50
SLK23DD_002W2	499.00	10.00	0.57	0.03	0.02	6.19	19.57	13.70	0.05	0.03	0.50
SLK23DD_003	494.35					pen	ding		-		
SLK23DD_004	609.60										
SLK23DD_004W1	639.19					n	sa				

'nsa' means no significant assays.

'n/a' means these elements were not assayed historically or in the current program.

^true widths are interpreted to be range between approximately 50-75% of drilled widths subject to final interpretation.

COMPETENT PERSON'S STATEMENT & COMPLIANCE

The information in this announcement that relates to nickel geology, nickel Mineral Resources, Exploration Target and Exploration Results, is based on, and fairly represents, information and supporting documentation prepared by Mr. Aaron Wehrle, who is a Member of the Australasian Institute of Mining and Metallurgy (**AusIMM**). Mr. Wehrle is a full-time employee of Lunnon Metals Ltd, a shareholder and holder of employee options/performance rights; he has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Wehrle consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

DISCLAIMER

References in this announcement may have been made to certain previous ASX announcements, which in turn may have included Exploration Results, Exploration Targets, Mineral Resources, Ore Reserves and the results of Pre-Feasibility Studies. For full details, please refer to the said announcement on the said date. The Company is not aware of any new information or data that materially affects this information. Other than as specified in this announcement and mentioned announcements, the Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement(s), and in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement.

ABOUT THE KAMBALDA NICKEL PROJECT (KNP)

The Kambalda Nickel Project (**KNP**) (shown in **Figure 5**) features approximately 47km^2 of tenements in the Kambalda Nickel District. KNP is located approximately 570km east of Perth and 50-70km south-southeast of Kalgoorlie, in the Eastern Goldfields of Western Australia. KNP comprises two project areas, Foster and Baker* (19 contiguous mining leases) and Silver Lake and Fisher⁺ (20 contiguous mining leases).

The world-renowned Kambalda Nickel District has produced in excess of 1.4 million tonnes of nickel metal since its discovery in 1966 by WMC Resources Ltd (**WMC**). In addition, close to 15Moz of gold in total has been mined, making the Kambalda/St Ives district a globally significant gold camp in its own right.

The KNP is assessed via public roads, well-established mine road infrastructure and the main St Ives causeway over Lake Lefroy. The KNP is broadly surrounded by tenements held by St Ives Gold Mining Co. Pty Ltd (**St Ives**), a wholly owned subsidiary of Gold Fields Limited (JSE:GFI) and the Company's major shareholder.

*St Ives retains rights to explore for and mine gold in the "Excluded Areas", as defined in the subsisting agreements between Lunnon Metals and St Ives, and on the remaining area of the tenements, has select rights to gold in limited circumstances.

⁺The Company has the exclusive rights to nickel on 19 mining leases and related access rights on one additional tenure. Gold Fields retains the rights to the other minerals (except to the extent minerals occur in conjunction with nickel mineralisation or nickel bearing ore but excluding gold).

Figure 5: Regional Location of the Kambalda Nickel Project and other nearby nickel deposits.

JORC Table 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 All drilling and sampling are undertaken in an industry standard manner both historically by WMC Resources Ltd (WMC) and by Lunnon Metals Ltd (Lunnon Metals or the Company) in 2021, 2022 and 2023. Lunnon Metals' diamond drill (DD) and reverse circulation (RC) holes are completed by Blue Spec Drilling Pty Ltd (Blue Spec) following protocols and QAQC procedures aligned with industry best practice. RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. Duplicate samples are also collected directly into calico sample bags from the drill rig cyclone, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered appropriate for the material sampled. The samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) either from surface or as tails from RC pre-collars. All DD core is stored in industry standard plastic core trays labelled with the drill hole ID and core depth intervals. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered representative and appropriate for this type of drilling. DD core is stored in industry standard plastic core trays labelled with the drill hole ID and core depth intervals. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered representative and appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling. DD core samples are appropriate for use in any future Min

Defiller		DC Lunn on Matela
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 <u>RC Lunnon Metals</u> RC holes are drilled with a 5 1/2-inch bit and face sampling hammer. Holes are drilled dry with use of booster/auxiliary air when/if ground water is encountered. <u>DD Lunnon Metals</u> Core samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) from surface, or as tails from RC pre-collars, or as wedge holes off parent DD holes. To help accurately test the targets, "navi" or motor drilling is sometimes used over short runs to control the direction of the drill hole. In these instances, no drill core or sample is returned from that portion of the drill hole. No navi drilling is undertaken within expected intervals of mineralisation. Wedge holes utilise the parent hole to a given depth then branch off from the parent hole using either a casing wedge, or a natural elbow, or navi bend, in the parent hole from where a lip can be cut with the diamond drill bit and the wedge hole drilled straight off the parent. The DD core is orientated during the drilling process by Blue Spec, using a down hole Reflex ACTIIITM Rapid Descent Digital Core Orientation Tool, and then reconstructed over zones of interest by Lunnon Metals field staff for structural and geotechnical logging. <u>WMC Historical Drilling</u> Historical Dz completed by WMC comprised surface NQ and BQ size drill core. Pre-collars to the surface diamond drillholes are typically PQ and HQ size and occasionally comprised RC drilling techniques. The pre-collars are not typically mineralised. Although no documentation is available to describe the drilling techniques used by WMC at the time it is understood that the various drilling types used conventional drilling methods consistent with industry standards of the time. None of the historical WMC diamond drill core was oriented.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Every RC sample is assessed and recorded for recovery and moisture by Lunnon Metals field staff in real time during the drilling process. Samples are monitored for possible contamination during the drilling process by Lunnon Metals geologists. DD core recovery is measured for each drilling run by the driller and then checked by the Lunnon Metals geological team during the mark up and logging process. No sample bias is observed. There is no relationship between recovery and nickel grade nor bias related to fine or coarse sample material. There are no available records for sample recovery for diamond or RC drilling completed by WMC; however, relogging exercises completed by Lunnon Metals of surface diamond drillholes from across the KNP between 2017 and present found that on average drill recovery was good and acceptable by industry standards.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	 For both Lunnon Metals RC and DD: Geology logging is undertaken for the entire hole recording lithology, oxidation state, mineralisation, alteration, structural fabrics, and veining.

Logging	estimation, mining studies and	DD orientated structural logging, core recovery, and Rock
(continued)	metallurgical studies.	Quality Designation (RQD s) are all recorded from drill core
	Whether logging is qualitative or	over intervals of interest and relevance.
	quantitative in nature. Core (or	Detailed geotechnical logging and rock property test work is completed over intervals of relevance by independent
	costean, channel, etc.) photography.	completed over intervals of relevance by independent — MineGeoTech Pty Ltd (MGT) contractor geotechnical
	The total length and percentage of	engineers.
	the relevant intersections logged.	Geological logging (and where required, geotechnical
		logging) is completed in sufficient detail to support future
		Mineral Resource estimation, mining and metallurgical
		studies.
		 Metallurgical test work in the broader project area is ongoing in addition to the geological logging and element
		assaying detailed below.
		 General logging data captured are qualitative (descriptions
		of the various geological features and units) and quantitative
		(numbers representing structural attitudes, and vein and
		sulphide percentages, magnetic susceptibility and
		conductivity).
		• DD core is photographed in both dry and wet form.
		WMC Historical data
		There is no available documentation describing the logging
		procedures employed by WMC geologists in the KNP area.
		However, the historical graphical hardcopy logs and other
		geoscientific records available for the project are of high
		quality and contain significant detail with logging intervals down to as narrow as 0.01 m.
		 The geological logs document lithology, textures, structures,
		alteration, and mineralisation observed in drill core captured
		both graphically and in a five-character logging code
		(Lunnon Metals notes that a previous logging legend
		employed at WMC's Kambalda nickel operations utilised a 3- letter code which is often represented on hard copy plans
		and cross sections of an older vintage and which was
		converted by WMC to the latter 5-character code at some
		later time).
		• Stratigraphy is also captured in a three-character logging
		code. Sample intervals are recorded on the graphical log.
		These logging legends are well documented in lieu of a recorded procedure and are utilised by Lunnon Metals in
		current logging practices.
		• In regard geotechnical logging or procedures, there is no
		record of any formal relevant procedures or logging and
		based on personal experience of the Competent Person,
		such logging was not routinely completed prior to the introduction of Regulation 10:28 in the WA Mine Safety and
		Inspection Act, requiring the same in approximately 1996.
		 Based on the personal experience of the Competent Person
		to this announcement, having worked for WMC in Kambalda
		between 1996 and 2001, it is known that WMC had a
		rigorous and regimented system for storing and archiving
		the graphical logs physically, microfilmed, and drafted on to
		master cross sections, plans, and long sections as well as capturing the interval data (logging and assays) digitally in
		database format.
		Lunnon Metals sourced historical diamond core from the St
		Ives Gold Mining Co Pty Ltd (SIGM) Kambalda core yard on
		Durkin Road where relevant to its investigations.
		lves Gold Mining Co Pty Ltd (SIGM) Kambalda core yard

Sub-sampling	If core, whether cut or sawn and	Lunnon Metals RC
techniques and	whether quarter, half or all core	Dry RC samples are collected directly into calico sample bags
sample	taken.	on a 1.0m basis from a cone splitter mounted on the drill rig
preparation	If non-core, whether riffled, tube	cyclone. 1.0m sample mass typically averages 3.0kg splits.
	sampled, rotary split, etc. and	Industry prepared certified reference material (CRM), or
	whether sampled wet or dry.	standard samples, of various grades appropriate to the
	For all sample types, the nature,	mineralisation expected are inserted into the sample
	quality and appropriateness of the	batches, approximately every 50 samples and more
	sample preparation technique.	frequently in the expected mineralised zones.
		• Lunnon Metals prepared blank samples are inserted,
	Quality control procedures adopted	approximately every 50 samples and more frequently in the
	for all sub-sampling stages to maximise representivity of samples.	expected mineralised zones. Blank samples are prepared
		from barren reject RC chips as verified by laboratory analysis
	Measures taken to ensure that the	and geological logging.Duplicate samples are also collected from the drill rig
	sampling is representative of the in	cyclone, at a rate of 1 in every 25 samples and more
	situ material collected, including for instance results for field	frequently in the expected mineralised zones.
	duplicate/second-half sampling.	• After receipt of the RC samples by the independent
		laboratory the samples are dried and pulverised with >85%
	Whether sample sizes are appropriate	pulverised to 75micron or better. For sample weights > 3kg
	to the grain size of the material being	the sample is dried, split and pulverised up to 3kg.
	sampled.	Lunnon Metals DD
		• DD core samples are collected with a diamond drill rig
		drilling HQ and/or NQ2 size core. After logging, sample
		interval mark-up, photographing, and geotechnical rock
		property test work, selected sample intervals of drill core are
		cut in half along the length of the drill core with a diamond
		saw in a Discoverer [®] Automatic Core Cutting Facility using
		a Corewise Auto Core Saw.
		• Typically, one half of the drill core is sent to the laboratory
		for assay and the other half retained in its original core tray.
		 In zones of potential metallurgical interest, the half core sample is vacuum scaled and stored refrigerated for later
		sample is vacuum sealed and stored refrigerated for later use, the remaining half core is further cut into quarters with
		one quarter sent to the laboratory for assay and the
		remaining quarter retained in its original core tray.
		 In the case of metallurgical 'twin' holes, the guarter core is
		sent to the laboratory for assay, while the remaining three
		quarters of core is vacuum sealed and stored refrigerated.
		No core is retained in its original core tray.
		Holes are marked-up and sampled for assaying over
		mineralised and surrounding intervals at a typical minimum
		sample interval of 0.3m to ensure adequate sample weight
		and a typical maximum sample interval of 1.0m, constrained
		by geological boundaries.
		Specific Gravity – density measurements are taken for each minorelized DD example for the lumpon drill holes
		mineralised DD sample for the Lunnon drill holes.Sample weights vary depending on core diameter, sample
		length and density of the rock.
		 Industry prepared certified reference material (CRM), or
		standard samples, of various grades appropriate to the
		mineralisation expected are inserted into the sample
		batches, approximately every 50 samples and more
		frequently in the identified mineralised zones.
		• Lunnon prepared blank samples are inserted, approximately
		every 50 samples and more frequently in the identified
		mineralised zones. Blank samples are prepared from barren
		non-ultramafic RC chips as verified by laboratory analysis or
		barren non-ultramafic Proterozoic Dyke DD core acquired
		locally and verified by geological logging.
		• Field duplicate samples are collected at a rate of 1 in 25

Sub-sampling	samples, and more frequently in the identified mineralised
techniques and	zones, by cutting the core into quarters and submitting both
sample	quarters to the laboratory for analysis as two separate
preparation	samples.
(continued)	 In the case of the metallurgical holes no field duplicates are collected to preserve a consistent amount of core for
	metallurgical testwork.
	 After receipt of the DD core samples by the independent
	laboratory the samples are dried, crushed to ~2mm, and pulverised with >85% pulverised to 75micron or better. For
	sample weights >3kg the sample is dried, crushed to ~2mm, split, and pulverised up to 3kg.
	Sample sizes are considered appropriate for the style of
	mineralisation (potentially nickeliferous massive, matrix and disseminated sulphides, hosted in komatiite and basalt).
	 Samples are submitted to Intertek Genalysis in Kalgoorlie for
	sample preparation i.e. drying, crushing where necessary,
	and pulverising. Pulverised samples are then transported to
	Intertek Genalysis in Perth for analysis.
	WMC Historical data
	 All historical core that was relevant to the mineralisation
	drilled and sampled by WMC as sighted by Lunnon Metals
	was sawn with half or quarter core sampling practices. It is
	assumed that all samples otherwise contributing to any
	estimation of nickel mineralisation by Lunnon Metals were
	processed with this standard methodology.
	 Portions of drill core distal to the main high-grade
	mineralisation were sometimes 'chip sampled' by WMC.
	Lunnon Metals has chosen not to utilise such samples in any
	estimation of grade or mineralisation.
	WMC typically sampled in interval lengths relevant to the
	underlying lithology and mineralisation such that sample
	interval lengths may vary from between minima of 0.05m
	and maxima up to 2.00m approximately within any
	mineralised zone.
	• Intervals of no mineralisation or interest were not sampled.
	Review of historical drill core by Lunnon Metals indicated
	that there were no areas of interest relevant to nickel
	mineralisation that were not half or quarter core sawn and
	sampled by WMC and that the sample sizes were appropriate for the type, style and thickness of
	mineralisation being tested with sample breaks
	corresponding to lithological or mineralisation breaks being the norm. Although faded through time, sample depth
	intervals are evident as marked on the remaining half core
	=
	as observed by Lunnon Metals and these correlate to sample
	interval depths in the original paper graphical drill logs and
	the database.
	 While the WMC procedure for logging, sampling, assaying and QAQC of drillbala programs uses not available at the
	and QAQC of drillhole programs was not available at the
	time of this announcement it is interpreted that it was of high
	quality and in line with industry standards at that time.
	It is the opinion of the Competent Person that the sample
	preparation, security, and analytical procedures pertaining to
	the above-mentioned historical WMC drilling are adequate
	and fit for purpose based on:
	- WMC's reputation in geoscience stemming from their
	discovery of nickel sulphides in Kambalda in the late 1960s;
	- identification of procedures entitled "WMC QAQC
	Practices for Sampling and Analysis, Version 2 – adapted for
	St Ives Gold" dated February 2001 and which includes
I	

Sub-sampling		practices for nickel; and
techniques and sample preparation (continued)		- the first-hand knowledge and experience of the Competent Person of this announcement whilst working for WMC at Kambalda between 1996 and 2001.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation i.e. drying, crushing where necessary, and pulverised samples are then transported to Intertek Genalysis in Perth for analysis. Pulverised samples are then transported to Intertek Genalysis in Perth for analysis. Samples are analysed for a multi-element suite including, as a minimum, Ni, Cu, Co, Cr, As, Fe, Mg, Pb, S, Ti, Zn. Analytical techniques used a four-acid digest (with ICP-OES or ICP-MS finish) of hydrofluoric, nitric, perchloric and hydrochloric acids, suitable for near total dissolution of almost all mineral species including silica-based samples. Within the nickel mineralised zones, the platinum group elements (Pd, Pt, Au) are also analysed using a 50g charge lead collection fire assay method with ICP-MS finish. These techniques are considered quantitative in nature. As discussed previously, CRM standard, and blank samples are inserted by Lunnon Metals into sample batches, and the laboratory also carries out internal standards in individual batches. The resultant Lunnon Metals and laboratory QAQC data is reviewed upon receipt to determine that the accuracy and precision of the data has been identified as acceptable prior to being cleared for upload to the database. MMC Historical data There is no data available at the time of this announcement pertaining to the assaying and laboratory procedures nor the historical field or laboratory quality assurance and quality control (QAQC), if any, undertaken by WMC drilling programs in the KNP area; however, it is expected that industry standards as a minimum were likely to have been adopted in the KNP area and the analytical laboratory.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Numerous DD twin holes of original RC holes, and DD wedge twin holes from original DD parent holes now completed at KNP demonstrate acceptable correlation and verification of the associated significant intersections reported. The distance between the original and twin holes typically ranges between 0.5m and 5.0m. Prior to drilling, all planned collar data is captured in a digital drillhole collar register stored on a secure site-based server which is backed up to Perth based server continuously. The collar register is updated as drilling progresses and is completed. Logging and sample intervals are captured in digital QAQC'd spreadsheets via "tough" books (rugged tablet, field-based laptops). After internal sign-off, these digital sampling and logging registers are saved by geologists in the designated folder on the server. After further data validation by the database administrator, the items in the upload folder are uploaded to a secure digital database on a separate sequel sever.
Verification of sampling and		• Assays from the laboratory are sent directly to the database administrator via a dedicated Lunnon Metals assays email address where they are all checked and verified by the

assaying (continued)	Accuracy and quality of surveys used	 Lunnon Metals database administrator before accepting the batches into the database. No adjustments are made to the original assay data. <u>WMC Historical data</u> Diamond core data – across the KNP, Lunnon Metals has undertaken exhaustive assessment of historical WMC underground and surface diamond drill core to inspect and visually validate significant drill assays and intercepts, and re-sample and re-assay to validate historical assay data in the KNP database. No significant or systematic anomalies have been identified and the Competent Person is satisfied that the original data in the project area is representative of the geology and mineralisation modelled; thus no adjustments to assay data have been deemed necessary or made. No twin holes of historical intercepts have been completed to date. Lunnon Metals notes that the Kambalda style of nickel mineralisation is highly visible permitting the nickel grade to be relatively accurately estimated by experienced geologists to validate the laboratory assay grade; this is a practise that is not uncommon in the nickel mining industry.
Location of data points Location of data points (continued)	Accuracy and quality of surveys used to locate drillholes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 RC and DD hole collar locations are located initially by handheld GPS to an accuracy of +/- 3m. Subsequently, drill hole collar locations are then picked up by a licensed surveyor using DGPS methods following the completion of the drilling. All drill holes are typically surveyed downhole at 5m intervals using the REFLEX gyro Sprint-IQ (north seeking gyro) system for both azimuth and dip measurements. Downhole surveys are uploaded by Blue Spec to the IMDEXHUB-IQ, a cloud-based data management programme where surveys are validated and approved by trained Lunnon Metals staff. Approved exports are then downloaded to the server. After additional QAQC checks and sign off the survey data is uploaded to the digital database. The grid projection is GDA94/ MGA Zone 51. Diagrams and location data tables have been provided in the previous reporting of exploration results where relevant. WMC Historical data Historical methods of drill collar survey pick-up are not known however WMC did employ surface surveyors dedicated to the collection of exploration collar data. The easting, northing and elevation values were originally recorded in local KNO ('Kambalda Nickel Operations') grid and later converted to the currently used GDA94/MGA Zone 51 grid. Both the original KNO grid coordinates and the converted coordinates are recorded in the database. A representative number of historical drill collars were located in the field and their locations cross checked via differential GPS and/or handheld GPS to validate the database collar coordinates. Historical hardcopy downhole survey data is generally available for the majority of surface drillholes and the records show that single shot magnetic instruments were used. A representative number of these hardcopy downhole survey records have been cross checked against the digital records in the database. No new downhole surveys have been conducted however Lunnon Metals has co

		 in the database where down hole measurements from the hardcopy data were incorrectly processed. No other significant errors or inconsistencies were deemed present or capable of being detrimental to any interpretation of nickel mineralisation including any MRE work.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied Whether sample compositing has been applied.	 The RC and DD programmes at KNP comprise drillhole spacings that are dependent on the target style, orientation and depth. Drillholes are not necessarily drilled to set patterns or spacing at the exploration stage of the programme. Previous drill spacing varies greatly, again subject to the target style dimensions, orientation and depth and inherent geological variability and complexity. All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation. No sample compositing has been applied except at the reporting stage of drill intercepts within a single hole. <u>WMC Historical data</u> The typical spacing for the early WMC DD surface drill traverses is approximately 200m to 400m apart with drillhole spacing along the traverses at 100m to 50m. In areas of shallower RC drilling this drill spacing is sometimes improved to 100m by 50m or even 50m by 50m.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The preferred orientation of drilling at KNP is designed to intercept the target approximately perpendicular to the strike and dip of the mineralisation where/if known. Subsequent sampling is therefore considered representative of the mineralised zones if/when intersected. In the broader project area, the majority of historical drill holes were collared vertically and lifted/drifted in towards close to perpendicular to the mineralisation with depth as the nickel contact was approached. The chance of bias introduced by sample orientation relative to structures, mineralised zones or shears at a low angle to the drillhole is possible, however quantified orientation of the intercepted interval allows this possible bias to be assessed. Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal. Lunnon Metals does not consider that any bias was introduced by the orientation of sampling resulting from either drilling intercepts the interpreted mineralisation as planned, bias is considered to mineralisation as planned, bias is consider to minimal.
Sample security	The measures taken to ensure sample security.	 After the drill core is cut and returned to its original position in the core tray, Lunnon's geologists mark up the drill core for sampling and records the sample intervals against unique sample numbers in a digital sample register. A Lunnon Metals core farm technician then collects the cut core samples into calico bags guided by the sample register and sampling information contained therein. The calico samples are collected sequentially in groups of five and placed into polyweave bags which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a corresponding submission form and consignment

Sample security (continued)		 note. The laboratory checks the samples received against the submission form and notifies Lunnon Metals of any inconsistencies. Once the laboratory has completed the assaying, the pulp packets, pulp residues and coarse rejects are held in the laboratory's secure warehouse until collected by Lunnon Metals or approval is provided for them to be discarded. <u>WMC Historical data</u> There is no documentation which describes the historical sample handling and submission protocols during the WMC drilling programmes; however, it is assumed that due care was taken with security of samples during field collection, transport and laboratory analysis. The historical drill core remaining after sampling was stored and catalogued at the KNO core farm (now Gold Fields, SIGM core farm) and it remains at this location to the present day.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No external audits or reviews have been undertaken at this stage of the programme. <u>WMC Historical data</u> Cube Consulting Pty Ltd (Cube) are independent of Lunnon Metals and have been previously retained by Lunnon Metals to complete the grade estimation for nickel mineralisation models and MRE exercises but also to review and comment on the protocols developed by Lunnon Metals to deal with, and thereafter utilise, the historical WMC Resources' data, in particular the re-sampling and QAQC exercise completed by Lunnon Metals such that the data is capable of being used in accordance with current ASX Listing Rules where applicable and JORC 2012 guidelines and standards for the generation and reporting of MREs. Cube has documented no fatal flaws in the work completed by Lunnon Metals in this regard.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The property is located on granted Mining Leases. Although all of the tenements wholly or partially overlap with areas the subject of determined native title rights and interests in the two Ngadju determinations, the Company notes that the original grant of the right to mine pre-dates 23 December 1996 and as such section 26D of the Native Title Act will be applied to exempt any future renewals or term extensions from the right to negotiate in Subdivision P of the Act. KNP, shown in its regional location in the body of the preceding report above, inclusive of the acquired rights as detailed in the announcement dated 12 April 2022, is approximately 47km² in size comprising two parcels of 19 (Foster and Baker or FBA) and 20 (Silver Lake and Fisher or SLF) contiguous granted mining leases situated within the Kambalda Nickel District which extends for more than 70 kilometres south from the township of Kambalda. The Company currently holds 100% of the mineral rights and title to its leases at the FBA element of the KNP, subject to certain rights retained by SIGM, principally relating to the right to gold in defined areas and the rights to process at their nearby Lefroy Gold Plant any future gold ore mined. Full details of the Company's IPO and the transactions involved are in the Prospectus submitted to the ASX dated 22 April 2021 and lodged with the ASX on 11 June 2021. Gold Fields Ltd's wholly owned subsidiary, SIGM, was the registered holder and the beneficial owner of the FBA area until the Lunnon IPO in 2021. The FBA area comprises 19 tenements, each approximately 1,500m by 800m in area, and three tenements on which infrastructure may be placed in the future. The KNP area tenement numbers are as follows: M15/1556; M15/1556; M15/1557; M15/1557; M15/1557; M15/1577; M15/1573; M15/1570; M15/1577; M15/1577; M15/1579; M15/1576; M15/1577; M15/1579; M15/1576; M15/1577; M15/1579; M15/1579; M15/1579; M15/1570; M15/1577; M15/1579; M15/1579; M15
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 In relation to nickel mineralisation, WMC, now BHP Nickel West Pty Ltd and a wholly owned subsidiary of BHP Group Limited, conducted all relevant exploration, resource estimation, development and mining of the mineralisation at Foster and Jan mines from establishment of the mineral licences through to sale of the properties to SIGM in December 2001.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties (continued)		 SIGM has conducted later gold exploration activities on the FBA area since 2001, however until nickel focused work recommenced under Lunnon management, no meaningful nickel exploration has been conducted since the time of WMC ownership and only one nickel focussed surface diamond core hole (with two wedge holes), was completed in total since WMC ownership and prior to the Company's IPO, which was at Foster South. On the FBA, past total production from underground was: Foster 61,129 nickel tonnes and Jan 30,270 nickel tonnes.
Geology	Deposit type, geological setting and style of mineralisation.	 The KNP area is host to both typical 'Kambalda' style, komatiitic hosted, nickel sulphide deposits and Archaean greenstone gold deposits such as routinely discovered and mined in Kambalda/St Ives district. The project area is host to nickel mineralisation and elements associated with this nickel mineralisation, such as Cu, Co, Pd and Pt.
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 Drill hole collar location and directional information has been provided within the body of related previous ASX reports and also within the relevant Additional Details Table in the Annexures of those reports. A representative proportion of historical drilling completed by WMC as recorded in the drilling database and relevant to the report, has been verified. DD drilling previously reported has included plan and cross-sectional orientation maps to aid interpretation.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Grades have been reported as intervals recording downhole length and interpreted true width where this estimation is able to be made. Any grades composited and reported to represent an interpreted mineralised intercept of significance are reported as sample-length weighted averages over that drill intercept. The Company currently considers that grades above 0.5% Ni and/or 1.0% Ni are worthy of consideration for individual reporting in any announcement of Exploration Results in additional details tables provided. Composite nickel grades may be calculated typically to a 0.5% Ni cut-off with intervals greater than 1.0% reported as "including" in any zones of broader lower grade mineralisation. Other composite grades may be reported above differing cut-offs however in such cases the cut off will be specifically stated. Reported intervals may contain minor internal waste however the resultant composite must be greater than either the 0.5% Ni or 1.0% Ni as relevant (or the alternatively stated cut-off grade). As per other Kambalda style nickel sulphide deposits the Lunnon Metals composites reported may include samples of very high nickel grades down to lower grades approaching the 0.5% Ni or 1.0% Ni cut-off as relevant.

Criteria	JORC Code explanation	Commentary
Data aggregation methods (continued)		 No top-cuts have been applied to reporting of drill assay results. No metal equivalent values have been reported. Other elements of relevance to the reported nickel mineralisation, such as Cu, Co, Fe, Mg, Pd and Pt and the like, are reported where the nickel grade is considered significant, if they have been assayed for. Historical WMC drilling in the project area was typically only assayed for Ni and less frequently for Cu, Zn and Co.
Relationship between mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 In regard nickel exploration, the general strike and dip of the Lunnon Basalt footwall contact and by extension any hanging wall related nickel mineralised surfaces, if present, are considered to be well defined by past drilling which generally allows for true width calculations to be made regardless of the density or angle of drilling. For nickel exploration in the broader project area, if possible due to the shallow depth, drillhole design has generally allowed drill holes to intersect target surfaces at approximately perpendicular to the strike of mineralisation. Previously reported intersections have included approximate true widths, but these may not be true widths, as ongoing interpretation of the geology and mineralisation may result in that drilling not always being exactly perpendicular to the strike/dip of mineralisation once interpreted.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	 Plans, long projections and sections, and isometric imagery where able to clearly represent the results of drilling, have been included in this report or previously been provided in prior lodged reports.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Drill collar locations of WMC Historical and current drilling completed by Lunnon Metals have been previously lodged on the ASX platform and all results of the drilling have also been previously reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The KNP and FBA has a long history of geological investigation, primarily for nickel, but also gold to a lesser degree. Datasets pertinent to the KNP that represent other meaningful and material information include: Geophysics - multiple ground and aerial based surveys of magnetic, gravity, Sub Audio Magnetics, electro magnetics, and down hole transient electromagnetic surveys. Geochemistry - nickel and gold soil geochemistry datasets across the KNP and rock chip sampling in areas of outcrop. Historical production data recording metallurgical performance of Foster mine nickel delivered to the Kambalda Concentrator.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data (continued)		 Metallurgical test work on drill core from the project area is carried out by external consultants, currently Independent Metallurgical Operations Pty Ltd using methodologies consistent with the type of mineralisation encountered and the likely future processing route. Geotechnical test work on this drill core is carried out by independent consultants MGT involving on-site geotechnical logging of the DD core and off-site rock property testing of selected DD core samples. Downhole Transient Electro-magnetic (DHTEM) surveys, when conducted, use the DigiAtlantis system and DRTX transmitter. The readings are typically recorded at 2.5m to 10m intervals. The survey used loops ranging from 300m x 200m to 690m x 290m in orientations designed relative to the target and stratigraphic setting. If required, the Company generally retains ABIM Solutions Pty Ltd (ABIMS) to use the latest generation QL40 OBI Optical Televiewer (OTV) and a customized logging vehicle, to conduct OTV wireline surveys in the project area in select holes. The OTV survey generates an oriented 360-degree image of the borehole wall by way of a CCD camera recording the image reflected from a prism. The OTV wireline surveys in the RC holes are particularly useful in defining geological and structural orientation data, data that is otherwise unobtainable from RC drill chips. Where completed, these OTV surveys identified the downhole extents of the sulphide mineralisation, the downhole depths of other key contacts, and enabled the visual reconciliation of the 1m Ni assay results received with the apparent styles of nickel sulphide mineralisation imaged downhole, and provided the orientation ABI40 Acoustic Televiewer (ATV) and a customized logging vehicle. The ATV wireline survey in DD holes provides down-hole geological definition, geotechnical rock mass characterisation, determination of fracture frequency and orientation, and primary stress orientation. The ABI40 ATV generates
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Since the Company's IPO, over 64,000m of either diamond or RC drilling has now been completed at FBA and SLF. In addition, nearly 15,000m of historical diamond core has been accessed, re-logged and selected intervals reassayed as part of the Company's Historical Core Program. All Company work programmes are continuously assessed against, and in comparison to ongoing high priority programmes elsewhere at the KNP; presently Foster and Warren for example and now also Silver Lake and Fisher. Subject to further drilling results and success, the outcome

Criteria	JORC Code explanation	Commentary
Further work (continued)		 of future metallurgical and geotechnical assessment, the Exploration Target may be upgraded, in whole or in part, to a Mineral Resource Estimation. Subject to positive ongoing results and external market and price variables, updates and future additions to the Company's Mineral Resource Estimation may then form the basis for development studies that may lead to the future declaration of a Probable Ore Reserve from those portions of the Mineral Resource at the Indicated (or higher) classification. Any such Ore Reserves then in turn may form the basis of technical and economic studies to investigate the potential to exploit those nickel deposits in the future.