

20 November 2023

POTENTIAL NICKEL CHANNEL SETTING AT LONG SOUTH GAP

KEY POINTS

- 3D seismic survey complete, geophysical data collected over 5.8km² Long South Gap
- Untested area in one of Australia's most prolific nickel sulphide camps
- Current deep diamond hole wrapped-up, potential nickel channel environment identified
- 3D seismic targeting exercise underway, places Company in strong position to advance discovery program

Lunnon Metals Limited (**ASX: LM8**) (the **Company** or **Lunnon Metals**) is pleased to update the progress of its discovery program at the **Long South Gap** target. The Long South Gap area is hosted on the Company's Silver Lake-Fisher (**SLF**) project at its Kambalda Nickel Project (**KNP**). The first ever diamond drill (**DD**) hole program in this part of the prolific Kambalda Dome (see ASX announcements dated 31 August 2023 and 9 October 2023) has wrapped up at 1,083m depth in a wedge hole from the original parent hole, which itself was stopped at 928m. The Company's first DD holes into the untested Long South Gap target area have recorded the following important outcomes:

- Confirmed a thick succession of high MgO komatiite, a pre-requisite for the ideal hosting environment for nickel sulphides.
- Intersection of a significant structure/fault zone, that has potential implications for nickel prospectivity and based on initial incomplete assaying is variably mineralised with gold (see **Figure 1**). The Company notes it does not have rights to gold mineralisation at the SLF, these remain with Gold Fields Ltd.
- Intersection of an initial komatiite-mafic contact, with a notable anomalous zone of elevated geochemistry above this contact, indicative of a potential nickel channel environment.
- Enabled the collection of "time-velocity" and density data over more than 1km length of DD core, which will assist in optimising the calibration of the 3D seismic data.

Figure 1: Portion of a broad, potential gold structure encountered in SLK23DD_005W1; close to the interpreted prospective nickel contact in the Company's first ever diamond hole at Long South Gap – trays shown 999m to 1,022m downhole depth.

The current hole, SLK23DD_005W1 finished approximately 1,060m vertically below surface. The opportunity to reenter the hole remains, with drill causeway construction planned immediately following the completion of the 3D seismic survey and analysis of the collected data. The hole's progress has been hampered by a broad, variably mineralised gold structure¹ encountered from **990m to 1,040m** downhole (see **Figure 1** above). This structure impeded efforts to advance the drill hole at a satisfactory rate, due to frequent "bogging" of the rod string. The DD hole will be cased through the lake sediments which will allow re-entry in due course if desired.

Managing Director, Edmund Ainscough, commenting said: "The Long South Gap prospect is a big part of our discovery effort for the next 18 months or more. The decision to wrap-up this initial drill program coincides with the successful completion of the extensive surface 3D seismic survey across close to 6km² of untested prospective contact. Data analysis and interpretation will commence immediately and deliver a first detailed view of the komatiite-basalt contact over this significant area. The diamond hole has achieved two very important results; the first being confirmation of a thick pile of high MgO komatiite, which is a pre-requisite to ensure we are in the ideal hosting environment for nickel sulphides. The second is particularly exciting and gives us great encouragement - the presence of a large, confirmed gold structure; seeing this is significant given the well documented, strong spatial relationship between gold structures and nickel troughs at Kambalda. This relationship is seen time and time again, most relevantly to the immediate west of the target area at the Beta Hunt Nickel/Gold mine, owned and operated by TSX listed Karora Resources and also at the Silver Lake nickel mine, where gold was mined for many years in the past close to the main nickel channels".

DRILL PROGRAM HEADLINES

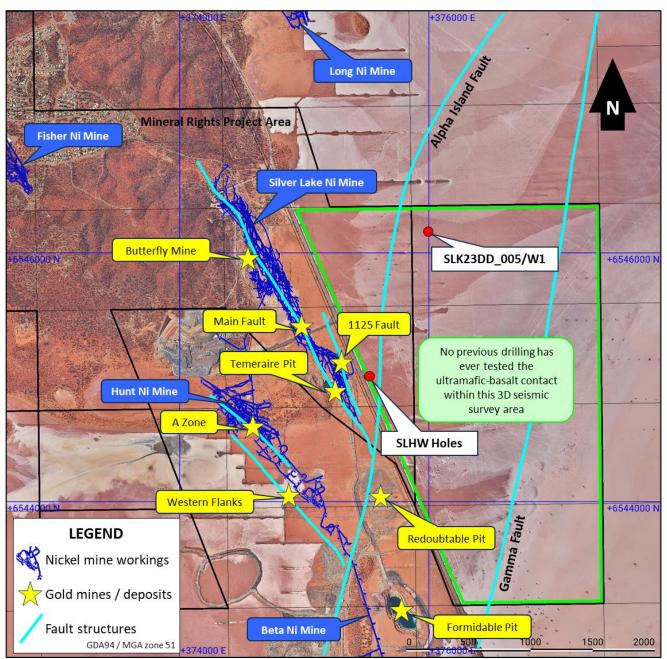
The Company's first DD holes into the untested Long South Gap target area have recorded the following key outcomes:

- Foremost, the intersection of a significant quartz vein/shear gold bearing structure. There is a well-documented spatial relationship between mineralised nickel channels or troughs and gold bearing structures in the Kambalda belt (see commentary below). Final assays for the full intersection are pending but the margins of the structure include zones such as 4.1m @ 1.10g/t (from 990m) and 4.0m @ 2.68g/t (from 1,022m) with the latter intercept hosting a maximum sample value of 8.23g/t.
- Confirmation of a thick, ~550 metre succession of high MgO komatiite, a pre-requisite for the ideal hosting environment for nickel sulphides.
- Intersection of an initial komatiite-mafic contact at 918m down hole depth, with a notable anomalous zone of elevated nickel-indicator geochemistry ("Kambalda Ratio" explained below) directly above this contact, suggestive of a potential nickel channel environment. The mafic rock is being analysed to confirm whether it is Lunnon Basalt or not.
- Enabled the collection of "time-velocity" and density data over more than 1km length of DD core, critical data to assist in optimising the calibration of the 3D seismic data now collected over the 5.8km² target area.

RELATIONSHIP BETWEEN NICKEL AND GOLD AT KAMBALDA/ST IVES

The world-renowned Kambalda Nickel District has produced more than 1.4 million tonnes of nickel metal² since its discovery in 1966 by WMC Resources Ltd (**WMC**). In addition, close to 15Moz of gold³ has been mined by both WMC and then Gold Fields Ltd, after acquiring the St Ives operation in December 2001.

This makes the Kambalda/St Ives district a globally significant gold camp in its own right. The close spatial relationship between mineralised nickel troughs or channels and significant gold structures was initially recognised by WMC and was subsequently repeatedly confirmed as WMC developed its operating nickel mines, particularly Silver Lake and then Beta/Hunt (see **Figure 2**).


¹ The Company does not have rights to gold mineralisation at the SLF, these remain with Gold Fields Ltd.

² Source: historical WMC production records plus sum of relevant production from ASX company announcements.

³ Source: historical WMC production records plus sum of relevant production from Gold Fields public announcements.

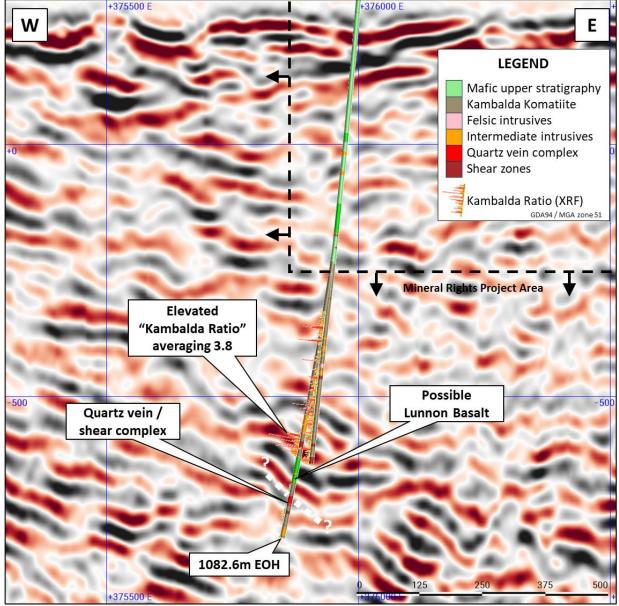
ASX:LM8

Figure 2: Plan view of the Long South Gap target area, the adjacent Silver Lake and Beta/Hunt mines highlighting the strong spatial relationship between gold structures and nickel troughs in the immediate vicinity.

The Silver Lake mine sits immediately adjacent to the Long South Gap target area. The mine was the first nickel mine developed in Kambalda and it was well known that high-grade gold structures intersected the prospective nickel contact and extended into the Lunnon Basalt in the footwall.

Gold-only stopes were mined on structures such as the Jaws Fault, Main Fault and 1125 Fault. A few hundred metres further to the west, at the Beta Hunt Nickel/Gold mine (now owned and operated by TSX listed Karora Resources), there are further examples of this direct spatial relationship between the gold-bearing structures in the footwall basalt and the nickel deposits directly above, most notably the "Father's Day Vein" discovery in September 2018.

The accepted geological interpretation for this close relationship is that these structures pre-date the nickel event and then played some part in the focussing of the nickel-rich komatiites into channels. These structures were themselves subsequently reactivated during the later gold event, placing gold and nickel deposits in close proximity.



The Company's first ever DD holes in the target area, SLK23DD_005 and its wedge (W1), both recorded significant faulting in the komatiite host, causing slow penetration and drilling difficulties. Ultimately, a decision to wrap-up activity on W1 at 1,083m was made as progress continued to be slow and reaching the planned end of hole depth of 1,200m could not be assured within a reasonable timeframe and cost.

The intersection of this broad structure has the potential to have significant implications for the Company's targeting of nickel mineralisation, anticipated to be in close proximity. Completion of the 3D seismic survey and full interpretation of the data will put the Company in a strong position to then advance a portfolio of high-quality drill targets, aided by the important geological observations from this initial drilling.

3D SEISMIC SURVEY

Geophysical contractor, UltraMag Geophysics Pty Ltd ("**UltraMag**"), under the supervision of Southern Geoscience Consultants Pty Ltd, mobilised to the KNP at the end of October 2023 and have made excellent progress. Early indications are that the data is of a high-quality and covering the expected depth profiles required to map the prospective komatiite-basalt contact. The survey has been completed on time and budget with processing and analysis of the resultant data an ongoing exercise that will run for up to six months. Drill targets and interpretations will be produced progressively over this timeframe.

Figure 3: Cross section view showing paths and summary geological log of two diamond holes drilled at Long South Gap against the 2D seismic survey profile – see **Figure 4** for location at the SLF property level.

"KAMBALDA RATIO"

Portable field XRF (**pXRF**) readings on the DD core have enabled initial assessment of select nickel prospectivity measures. Pending return of the full suite of multi-element assays, based on pXRF results there is an elevated zone of geochemistry defined by the "Kambalda Ratio"⁴ directly above the mafic unit (see **Figure 3**). This ratio is derived by the formula (Ni/Cr) × (Cu/Zn) and assesses the enrichment of nickel and copper relative to chromium and zinc. This ratio has proven useful historically as a vector towards potential channellised komatilitic environments in the Kambalda nickel field. It assists discern between mineralised and unmineralised host rocks. In the relevant zone in SLK23DD_005W1, this ratio averaged 3.8 over 43 metres down hole (between drill depth 875 metres and 918 metres), indicative of proximity to a potentially mineralised sequence at the base of a komatilite flow unit.

The Company highlights that this is a ratio and the pXRF readings for nickel itself averaged 0.15% Ni with a peak value of 0.24% Ni recorded. Upon receipt of the full multi-element laboratory analyses, the calculation of the Kambalda Ratio will be updated and other potential geochemical vectors will be assessed such as Komatiite Facies analysis⁵ (Ni/Cr versus Ni/Ti), and MgO content.

Important Note: in relation to the reporting of these geochemistry indicators and ratios based on XRF analysis during detailed geological logging, these cannot be considered a substitute for laboratory analysis. Assay results are required to determine the grades of the relevant elements, in this case nickel, chromium, copper and zinc. When these results are available, the Company will update the market. The current turnaround time for assay results is approximately three to four weeks.

BACKGROUND TO THE LONG SOUTH GAP PROSPECT

In April 2023, the Company announced the results of a geophysical survey using the "mini vibro-seis" seismic data collection method completed by UltraMag (see **Figure 4**). The survey was successful with two 2D seismic lines completed on the surface of Lake Lefroy, to the immediate east of the historical Silver Lake mine and to the immediate south of the Long Operation (now owned by Wyloo), host to the West Victor, Victor, McLeay and Long/Moran nickel trends. At that time, the Company signalled its intent to scope out and then execute a full 3D seismic survey using the same methodology of which the data collection phase is now complete.

In total, the mined nickel channels immediately adjacent to, east and north of, the survey area have generated approximately **13.5 million tonnes**⁶ of past ore production and over **465,500 tonnes of nickel metal**⁶ at an average grade of **3.45% Ni**⁶. No surface or underground drilling has tested the key nickel prospective position in the 5.8km² survey area, namely the contact between the Kambalda Komatiite and the Lunnon Basalt.

UPCOMING EVENTS / NEWS FLOW

The following news flow and events are anticipated through to the Christmas 2023/New Year 2024 period. The focus is capturing the success of the 2023 drill campaign and Historical Core Program, with several updated and first-time Mineral Resource Estimates (**MREs**) expected in the coming months.

- MRE updates with metallurgical DD holes at 85H and Foster South
- First-time MREs at East Trough, Silver Lake Hanging Wall and the Foster 40, 50 and 60 surfaces
- RC results for Baker Measured drill out
- Historical Core Program first-time MRE for Fisher
- Foster South Metallurgical Program test work summary
- Final reporting of the Foster/Baker combined Preliminary Feasibility Study (March quarter 2024)

⁴ Source: Brand, 1999, Element ratios in nickel sulphide exploration: vectoring towards ore environments. J. Geochem. Explor., 67 (1999), pp. 145-165

⁵ Source: Burley, LL and Barnes, SJ 2019, Komatiite characteristics of the Fisher East nickel sulfide prospects: implications for nickel prospectivity in the northeastern Yilgarn Craton: Geological Survey of Western Australia, Report 198, 20p

⁶ Source: historical WMC production records plus sum of relevant production from previous ASX:IGO announcements.

This release has been approved and authorised for release by the Board.

Edmund Ainscough Managing Director Phone: +61 8 6424 8848

Email: info@lunnonmetals.com.au

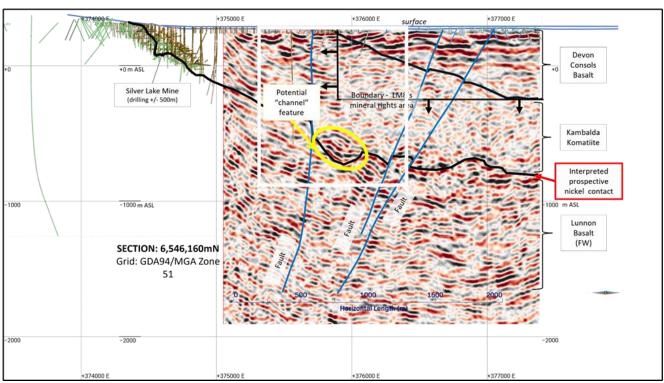


Figure 4: Cross section view showing location of Figure 3 inset (white box) at Long South Gap against the 2D seismic survey profile and target generated (April 2023)

ANNEXURE 1: DIAMOND DRILL HOLE COLLAR DETAILS

Hole ID	Easting	Northing	Elev. (m ASL)	Dip	Azi.	EOH Drill Depth (m)	Hole Type	Grid
SLK23DD_005	376,000.0	6,546,160.0	290.0	-85	265	928.3	DD	MGA94_51
SLK23DD_005W1	370,000.0	0,340,100.0 230.0	250.0	203	1,082.6	טט	1010/24_21	

ANNEXURE 2: ASSAY RESULTS

Hole ID	From (drill depth) (m)	Width^ (m)	Ni %	Cu %	Co %	Fe %	Mg %	As ppm	Pd g/t	Pt g/t
SLK23DD_005 & W1	Assays for areas of interest for Ni all pending									

Hole ID	From (drill depth) (m)	Width^ (m)	Au g/t
SLK23DD_005W1	990	4.1	1.10
and	1,020	4.0	2.68

[^]True widths are interpreted to be approximately 75% of the drilled widths.

COMPETENT PERSON'S STATEMENT & COMPLIANCE

Any information in this announcement that relates to nickel and gold geology, nickel Mineral Resources, Exploration Targets and Exploration Results, is based on, and fairly represents, information and supporting documentation prepared by Mr. Aaron Wehrle, who is a Member of the Australasian Institute of Mining and Metallurgy (**AusIMM**). Mr. Wehrle is a full-time employee of Lunnon Metals Ltd, a shareholder and holder of employee options/performance rights; he has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Wehrle consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

MINERAL RESOURCES

The detailed breakdown of the Company's Mineral Resources as updated 30 June 2023, is as follows:

	Cut-	Indi	cated Ni	i		Inferred Ni	i	ī	otal Ni	
	off (Ni %)	Tonnes	%	Ni Tonnes	Tonnes	%	Ni Tonnes	Tonnes	%	Ni Tonnes
FOSTER MINE										
Warren	1.0	345,000	2.6	8,800	100,000	2.4	2,400	445,000	2.5	11,200
Foster Central										
Toster Certifal										
85H	1.0	387,000	3.3	12,800	300,000	1.3	3,800	687,000	2.4	16,600
N75C	1.0	270,700	2.6	6,900	142,000	1.9	2,600	412,700	2.3	9,500
S16C/N14C	1.0	-	-	-	64,000	5.7	3,700	64,000	5.7	3,700
South	1.0	223,000	4.7	10,500	116,000	4.8	5,500	340,000	4.7	16,000
Sub total		1,225,700	3.2	39,000	722,000	2.5	18,000	1,948,700	2.9	57,000
BAKER AREA										
Baker	1.0	638,000	3.8	24,000	291,000	2.3	6,800	929,000	3.3	30,800
Sub total		638,000	3.8	24,000	291,000	2.3	6,800	929,000	3.3	30,800
TOTAL		1,863,700	3.4	63,000	1,013,000	2.4	24,800	2,877,700	3.1	87,800

Note: Figures have been rounded and hence may not add up exactly to the given totals. The Mineral Resource is inclusive of any reported Ore Reserves.

ORE RESERVES

The detailed breakdown of the Company's Baker Ore Reserve as at 30 June 2023, is as follows:

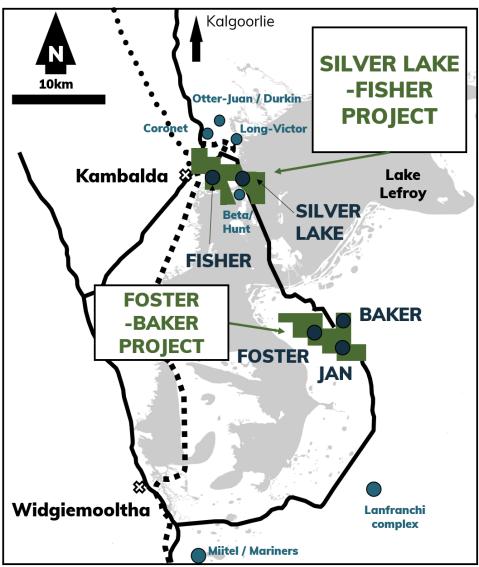
Baker	tonnes	Ni %	Cu %	Co%	Pd g/t	Pt g/t	As ppm	Ni metal
Proved	-	-	-	-	-	-	-	-
Probable	612,000	2.86	0.24	0.052	0.49	0.20	110	17,500
TOTAL	612,000	2.86	0.24	0.052	0.49	0.20	110	17,500

Note: All figures have been rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding.

The Ore Reserve is reported using the December 2022 Mineral Resource. The Ore Reserve is evaluated using a cut-off grade of 1.5% Ni, except for an incremental cut-off grade of 1.0% Ni for low grade development necessary for access to mining zones. The inputs used for the NPV in the Ore Reserve study were a A\$35,294/t nickel price (US\$24,000/t at US\$0.68:A\$1.00) and 8% discount rate.

DISCLAIMER

References in this announcement may have been made to certain previous ASX announcements, which in turn may have included Exploration Results, Exploration Targets, Mineral Resources, Ore Reserves and the results of Pre-Feasibility Studies. For full details, please refer to the said announcement on the said date. The Company is not aware of any new information or data that materially affects this information. Other than as specified in this announcement and mentioned announcements, the Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement(s), and in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement.



ABOUT THE KAMBALDA NICKEL PROJECT (KNP)

The Kambalda Nickel Project (**KNP**) (shown in **Figure 5**) features approximately 47km² of tenements in the Kambalda Nickel District. KNP is located approximately 570km east of Perth and 50-70km south-southeast of Kalgoorlie, in the Eastern Goldfields of Western Australia. KNP comprises two project areas, Foster and Baker* (19 contiguous mining leases) and Silver Lake and Fisher⁺ (20 contiguous mining leases).

The world-renowned Kambalda Nickel District has produced more than 1.4 million tonnes of nickel metal since its discovery in 1966 by WMC Resources Ltd (**WMC**). In addition, close to 15Moz of gold in total has been mined, making the Kambalda/St Ives district a globally significant gold camp in its own right.

The KNP is assessed via public roads, well-established mine road infrastructure and the main St Ives causeway over Lake Lefroy. The KNP is broadly surrounded by tenements held by St Ives Gold Mining Co. Pty Ltd (**SIGM**), a wholly owned subsidiary of Gold Fields Limited (JSE:GFI) and the Company's major shareholder.

*SIGM retains rights to explore for and mine gold in the "Excluded Areas", as defined in the subsisting agreements between Lunnon Metals and SIGM, and on the remaining area of the tenements, has select rights to gold in limited circumstances.

*The Company has the exclusive rights to nickel on 19 mining leases and related access rights on one additional tenure. Gold Fields retains the rights to the other minerals (except to the extent minerals occur in conjunction with nickel mineralisation or nickel bearing ore but excluding gold).

Figure 5: Regional Location of the Kambalda Nickel Project and other nearby nickel deposits.

JORC TABLE 1

The following table addresses historical WMC exploration activities/methods, Lunnon Metals' reverse circulation and diamond drilling program as well as covering the Company's Historical Core Program, where relevant.

Today's announcement exclusively relates to **surface diamond drilling** by **Lunnon Metals**.

SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 All drilling and sampling are undertaken in an industry standard manner both historically by WMC Resources Ltd (WMC) and by Lunnon Metals Ltd (Lunnon Metals or the Company) in 2021, 2022 and 2023. Lunnon Metals' land and/or causeway based diamond drill (DD) and reverse circulation (RC) holes are completed by Blue Spec Drilling Pty Ltd (Blue Spec) following protocols and QAQC procedures aligned with industry best practice. DD holes on the surface of the salt lake, Lake Lefroy, have been drilled by Ausdrill, using a track-mounted lake rig. RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. Duplicate samples are also collected directly into calico sample bags from the drill rig cyclone, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling. RC samples are appropriate for use in a resource estimate. DD Lunnon Metals Core samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) either from surface or as tails from RC pre-collars. All DD core is stored in industry standard plastic core trays labelled with the drill hole ID and core depth intervals. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling. DD core samples are appropriate for use in any future Mineral Resource estimate. Where a handheld XRF tool was us

Criteria	JORC Code explanation	Commentary
	- Jone code explanation	
Sampling techniques (continued)		 WMC Historical data Sampling procedures followed by WMC in the drilling, retrieval, and storage of diamond drill core are in line with industry standards at the time (1966 to 2001). Surface diamond drill obtaining NQ and/or BQ diameter drill core, were the standard exploration sample techniques employed by WMC. Underground diamond drilling included both up hole and downhole, retrieving BQ diameter drill core. The drill core was typically collected in steel core trays of 1.0m lengths comprising five to seven compartments depending on drill core diameter. The core trays were labelled with the drill hole number and numbered with the downhole meterage for the start of the first 1 m run and the end of the last 1 m run on the lip of the core tray and typically included core blocks within the core trays demarcating the depth meterage of rod pull breaks.
		The earlier drilling was collected in wooden, and hybrid wooden/steel core trays and occasionally depths recorded in feet.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 RC Lunnon Metals RC holes are drilled with a 5 1/2-inch bit and face sampling hammer. Holes are drilled dry with use of booster/auxiliary air when/if ground water is encountered. DD Lunnon Metals Core samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) from surface, or as tails from RC pre-collars, or as wedge holes off parent DD holes. To help accurately test the targets, "navi" or motor drilling is sometimes used over short runs to control the direction of the drill hole. In these instances, no drill core or sample is returned from that portion of the drill hole. No navi drilling is undertaken within expected intervals of mineralisation. Wedge holes utilise the parent hole to a given depth then branch off from the parent hole using either a casing wedge, halrow wedge or a natural elbow, or navi bend, in the parent hole from where a lip can be cut with the diamond drill bit and the wedge hole drilled straight off the parent. The DD core is orientated during the drilling process by Blue Spec, using a down hole Reflex ACTIITM Rapid Descent Digital Core Orientation Tool, and then reconstructed over zones of interest by Lunnon Metals field staff for structural and geotechnical logging.
		 WMC Historical Drilling Historical DD completed by WMC comprised surface NQ and BQ size drill core. Pre-collars to the surface diamond drillholes are typically PQ and HQ size and occasionally comprised RC drilling techniques. The pre-collars are not typically mineralised. Underground diamond drilling was used extensively in the operating environment. Drilling included both up hole and downhole, retrieving typically BQ diameter drill core and to a lesser extent AQ diameter drill core. Although no documentation is available to describe the

Criteria	JORC Code explanation	Commentary
Drilling techniques (continued)		drilling techniques used by WMC at the time it is understood that the various drilling types used conventional drilling methods consistent with industry standards of the time. None of the historical WMC diamond drill core was oriented.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Every RC sample is assessed and recorded for recovery and moisture by Lunnon Metals field staff in real time during the drilling process. Samples are monitored for possible contamination during the drilling process by Lunnon Metals geologists. DD core recovery is measured for each drilling run by the driller and then checked by the Lunnon Metals geological team during the mark up and logging process. No sample bias is observed. There is no relationship between recovery and nickel grade nor bias related to fine or coarse sample material. There are no available records for sample recovery for diamond or RC drilling completed by WMC; however, relogging exercises completed by Lunnon Metals of surface diamond drillholes from across the KNP between 2017 and present has found that on average drill recovery was good and acceptable by industry standards.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 For both Lunnon Metals RC and DD: Geology logging is undertaken for the entire hole recording lithology, oxidation state, mineralisation, alteration, structural fabrics, and veining. DD orientated structural logging, core recovery, and Rock Quality Designation (RQDs) are all recorded from drill core over intervals of interest and relevance. Detailed geotechnical logging and rock property test work is completed over intervals of relevance by independent MineGeoTech Pty Ltd (MGT) contractor geotechnical engineers. Geological logging (and where required, geotechnical logging) is completed in sufficient detail to support future Mineral Resource estimation, mining and metallurgical studies. Metallurgical test work in the broader project area is ongoing in addition to the geological logging and element assaying detailed below. General logging data captured are qualitative (descriptions of the various geological features and units) and quantitative (numbers representing structural attitudes, and vein and sulphide percentages, magnetic susceptibility and conductivity). DD core is photographed in both dry and wet form. RC chip trays are photographed in both dry and wet form. RC chip trays are photographed in both dry and wet form. WMC Historical data There is no available documentation describing the logging procedures employed by WMC geologists in the KNP area. However, the historical graphical hardcopy logs and other geoscientific records available for the project are of high quality and contain significant detail with logging intervals down to as narrow as 0.01 m. The geological logs document lithology, textures, structures, alteration, and mineralisation observed in drill core captured

Criteria	JORC Code explanation	Commentary
Logging (continued)	JOKE Code explanation	both graphically and in a five-character logging code (Lunnon Metals notes that a previous logging legend employed at WMC's Kambalda nickel operations utilised a 3-letter code which is often represented on hard copy plans and cross sections of an older vintage and which was converted by WMC to the latter 5-character code at some later time). • Stratigraphy is also captured in a three-character logging code. Sample intervals are recorded on the graphical log. These logging legends are well documented in lieu of a recorded procedure and are utilised by Lunnon Metals in current logging practices. • In regard geotechnical logging or procedures, there is no record of any formal relevant procedures or logging and based on personal experience of the Competent Person, such logging was not routinely completed prior to the introduction of Regulation 10:28 in the WA Mine Safety and Inspection Act, requiring the same in approximately 1996. • Based on the personal experience of the Competent Person to this announcement, having worked for WMC in Kambalda between 1996 and 2001, it is known that WMC had a rigorous and regimented system for storing and archiving the graphical logs physically, microfilmed, and drafted on to master cross sections, plans, and long sections as well as capturing the interval data (logging and assays) digitally in database format. • Lunnon Metals sourced historical diamond core from the St Ives Gold Mining Co Pty Ltd (SIGM) Kambalda core yard on Durkin Road where relevant to its investigations.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Lunnon Metals RC Dry RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. Industry prepared certified reference material (CRM), or standard samples, of various grades appropriate to the mineralisation expected are inserted into the sample batches, approximately every 50 samples and more frequently in the expected mineralised zones. Lunnon Metals prepared blank samples are inserted, approximately every 50 samples and more frequently in the expected mineralised zones. Blank samples are prepared from barren reject RC chips as verified by laboratory analysis and geological logging. Duplicate samples are also collected from the drill rig cyclone, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. After receipt of the RC samples by the independent laboratory the samples are dried and pulverised with >85% pulverised to 75micron or better. For sample weights >3kg the sample is dried, split and pulverised up to 3kg. Lunnon Metals DD DD core samples are collected with a diamond drill rig drilling HQ and/or NQ2 size core. After logging, sample interval mark-up, photographing, and geotechnical rock property test work, selected sample intervals of drill core are cut in half along the length of the drill core with a diamond

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation (continued)	JORC Code explanation	saw in a Discoverer® Automatic Core Cutting Facility using a Corewise Auto Core Saw. • Typically, one half of the drill core is sent to the laboratory for assay and the other half retained in its original core tray. • In zones of potential metallurgical interest, the half core sample is vacuum sealed and stored refrigerated for later use, the remaining half core is further cut into quarters with one quarter sent to the laboratory for assay and the remaining quarter retained in its original core tray. • In the case of metallurgical 'twin' holes, the quarter core is sent to the laboratory for assay, while the remaining three quarters of core is vacuum sealed and stored refrigerated. No core is retained in its original core tray. • Holes are marked-up and sampled for assaying over mineralised and surrounding intervals at a typical minimum sample interval of 0.3m to ensure adequate sample weight and a typical maximum sample interval of 1.0m, constrained by geological boundaries. • Specific Gravity − density measurements are taken for each mineralised DD sample for the Lunnon drill holes. • Sample weights vary depending on core diameter, sample length and density of the rock. • Industry prepared CRM, or standard samples, of various grades appropriate to the mineralisation expected are inserted into the sample batches, approximately every 50 samples and more frequently in the identified mineralised zones. • Lunnon prepared blank samples are inserted, approximately every 50 samples and more frequently in the identified mineralised zones. Blank samples are prepared from barren non-ultramafic Proterozoic Dyke DD core acquired locally and verified by geological logging. • Field duplicate samples are collected at a rate of 1 in 25 samples, and more frequently in the identified mineralised zones, by cutting the core into quarters and submitting both quarters to the laboratory for analysis as two separate samples, or the laboratory for analysis as two separate samples, and more frequently in the identified mineral
		 WMC Historical data All historical core that was relevant to the mineralisation drilled and sampled by WMC as sighted by Lunnon Metals was sawn with half or quarter core sampling practices. It is

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation (continued)		assumed that all samples otherwise contributing to any estimation of nickel mineralisation by Lunnon Metals were processed with this standard methodology. Portions of drill core distal to the main high-grade mineralisation were sometimes 'chip sampled' by WMC. Lunnon Metals has chosen not to utilise such samples in any estimation of grade or mineralisation. WMC typically sampled in interval lengths relevant to the underlying lithology and mineralisation such that sample interval lengths may vary from between minima of 0.05m and maxima up to 2.00m approximately within any mineralised zone. Intervals of no mineralisation or interest were not sampled. Review of historical drill core by Lunnon Metals indicated that there were no areas of interest relevant to nickel mineralisation that were not half or quarter core sawn and sampled by WMC and that the sample sizes were appropriate for the type, style and thickness of mineralisation being tested with sample breaks corresponding to lithological or mineralisation breaks being the norm. Although faded through time, sample depth intervals are evident as marked on the remaining half core as observed by Lunnon Metals and these correlate to sample interval depths in the original paper graphical drill logs and the database. While the WMC procedure for logging, sampling, assaying and QAQC of drillhole programs was not available at the time of this announcement it is interpreted that it was of high quality and in line with industry standards at that time. It is the opinion of the Competent Person that the sample preparation, security, and analytical procedures pertaining to the above-mentioned historical WMC drilling are adequate and fit for purpose based on: WMC's reputation in geoscience stemming from their discovery of nickel sulphides in Kambalda in the late 1960s; identification of procedures entitled "WMC QAQC Practices for Sampling and Analysis, Version 2 – adapted for St Ives Gold" dated February 2001 and which includes practices for nickel; and
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks,	 Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation i.e. drying, crushing where necessary, and pulverising. Pulverised samples are then transported to Intertek Genalysis in Perth for analysis. Samples are analysed for a multi-element suite including, as a minimum, Ni, Cu, Co, Cr, As, Fe, Mg, Pb, S, Ti, Zn. Analytical techniques use a four-acid digest (with ICP-OES or ICP-MS finish) of hydrofluoric, nitric, perchloric and hydrochloric acids, suitable for near total dissolution of almost all mineral species including silica-based samples. Within the nickel mineralised zones, the platinum group elements (Pd, Pt, Au) are also analysed using a 50g charge lead collection fire assay method with ICP-MS finish. These techniques are considered quantitative in nature.

Criteria	JORC Code explanation	Commentary
Quality of assay duplica checks) laboratory tests of accur	duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 As discussed previously, CRM standard, and blank samples are inserted by Lunnon Metals into sample batches, and the laboratory also carries out internal standards in individual batches. The resultant Lunnon Metals and laboratory QAQC data is reviewed upon receipt to determine that the accuracy and precision of the data has been identified as acceptable prior to being cleared for upload to the database. Where handheld pXRF data is referenced, the tool was used to assess the geochemical signature of the core in the field, prior to full laboratory analysis. In this instance, low levels of nickel, chromium, copper and zinc were assessed in the zones reported and compared as ratios, to derive the "Kambalda Ratio". The unit is a Bruker, S1 Titan 800 2020 model.
		 WMC Historical data There is no data available at the time of this announcement pertaining to the assaying and laboratory procedures nor the historical field or laboratory quality assurance and quality control (QAQC), if any, undertaken by WMC drilling programs in the KNP area; however, it is expected that industry standards as a minimum were likely to have been adopted in the KNP area and the analytical laboratory.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Numerous DD twin holes of original RC holes, and DD wedge twin holes from original DD parent holes now completed at KNP demonstrate acceptable correlation and verification of the associated significant intersections reported. The distance between the original and twin holes typically ranges between 0.5m and 5.0m. Prior to drilling, all planned collar data is captured in a digital drillhole collar register stored on a secure site-based server which is backed up to Perth based server continuously. The collar register is updated as drilling progresses and is completed. Logging and sample intervals are captured in digital QAQC'd spreadsheets via "tough" books (rugged tablet, field-based laptops). After internal sign-off, these digital sampling and logging registers are saved by geologists in the designated folder on the server. After further data validation by the database administrator, the items in the upload folder are uploaded to a secure digital database on a separate sequel server. Since September 2023 the data collected on the 'tough' books syncs directly to the Geobank (Micromine) database stored on a separate secure sequel server. A set of buffer tables store the data before the database administrator does a second validation of the data (driven by in-built validation rules in the database) before loading to the production data tables. Assays from the laboratory are sent directly to the database administrator via a dedicated Lunnon Metals assays email address. A QAQC check is completed and verified by the Lunnon Metals database administrator before the batches are direct loaded from the analysis certificates to the database.

Criteria	JORC Code explanation	Commentary
Verification of	·	No adjustments are made to the original assay data.
sampling and assaying (continued) WMC Historical data Diamond core data – across of undertaken exhaustive assess underground and surface diam visually validate significant dri		
		 the KNP database. No significant or systematic anomalies have been identified and the Competent Person is satisfied that the original data in the project area is representative of the geology and mineralisation modelled; thus no adjustments to assay data have been deemed necessary or made. Twin holes of select historical WMC intercepts have now been completed and also demonstrate acceptable correlation and verification of the associated historical significant intersections Lunnon Metals notes that the Kambalda style of nickel mineralisation is highly visible permitting the nickel grade to be relatively accurately estimated by experienced geologists to validate the laboratory assay grade; this is a practise that is not uncommon in the nickel mining industry.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 RC and DD hole collar locations are located initially by handheld GPS to an accuracy of +/- 3m. Subsequently, drill hole collar locations are then picked up by a licensed surveyor using DGPS methods following the completion of the drilling. All drill holes are typically surveyed downhole at 5m intervals using the REFLEX gyro Sprint-IQ (north seeking gyro) system for both azimuth and dip measurements. Some of the more recent drillholes are being downhole surveyed with the new REFLEX gyro OMNIx42, which is stated to have a greater accuracy than the Sprint-IQ. Downhole surveys are uploaded by Blue Spec and Ausdrill to the IMDEXHUB-IQ, a cloud-based data management program where surveys are validated and approved by trained Lunnon Metals staff. Surveys can now be validated live and in 3D with the introduction of Seequent Central to our process, a cloud-based management system with direct integration between IMDEX and Leapfrog Geo (3D geology modelling software). Approved exports are then downloaded to the server and after additional QAQC checks and sign off the survey data is uploaded to the Geobank database. The input file is the same file directly downloaded from IMDEX hub, so data entry errors are eliminated. The grid projection is GDA94/ MGA Zone 51. Diagrams and location data tables have been provided in the previous reporting of exploration results where relevant. WMC Historical data Historical methods of drill collar survey pick-up are not known however WMC did employ surface surveyors dedicated to the collection of exploration collar data. The easting, northing and elevation values were originally

Criteria	JORC Code explanation	Commentary
Location of data points (continued)		 51 grid. Both the original KNO grid coordinates and the converted coordinates are recorded in the database. A representative number of historical drill collars were located in the field and their locations cross checked via differential GPS and/or handheld GPS to validate the database collar coordinates. Historical hardcopy downhole survey data is generally available for the majority of surface drillholes and the records show that single shot magnetic instruments were used. A representative number of these hardcopy downhole survey records have been cross checked against the digital records in the database. Downhole surveys of select historical surface DD have been conducted using modern gyro systems as described above and no significant errors or inconsistencies were deemed present. Lunnon Metals has corrected where necessary incorrect data in the database where down hole measurements from the hardcopy data were incorrectly processed. No other significant errors or inconsistencies were deemed present or capable of being detrimental to any interpretation of nickel mineralisation including any MRE work.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied Whether sample compositing has been applied.	 The RC and DD programs at KNP comprise drillhole spacings that are dependent on the target style, orientation and depth. Drillholes are not necessarily drilled to set patterns or spacing at the exploration stage of the program. Previous drill spacing varies greatly, again subject to the target style dimensions, orientation and depth and inherent geological variability and complexity. All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation. No sample compositing has been applied except at the reporting stage of drill intercepts within a single hole.
		 WMC Historical data The typical spacing for the early WMC DD surface drill traverses is approximately 200m to 400m apart with drillhole spacing along the traverses at 100m to 50m. In areas of shallower RC drilling this drill spacing is sometimes improved to 100m by 50m or even 50m by 50m. The drill spacing for areas the subject of underground DD holes was variable but was on average spaced at approximately 20m along the strike of a mineralised zone with fans or rings of DD holes that deliver pierce points in the dip orientation at variable spacing, but typically 10m to 20m apart.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 The preferred orientation of drilling at KNP is designed to intercept the target approximately perpendicular to the strike and dip of the mineralisation where/if known. Subsequent sampling is therefore considered representative of the mineralised zones if/when intersected. In the broader project area, the majority of historical drill holes were collared vertically and lifted/drifted in towards

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure (continued)	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 close to perpendicular to the mineralisation with depth as the nickel contact was approached. The chance of bias introduced by sample orientation relative to structures, mineralised zones or shears at a low angle to the drillhole is possible, however quantified orientation of the intercepted interval allows this possible bias to be assessed. Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal. Lunnon Metals does not consider that any bias was introduced by the orientation of sampling resulting from either drilling technique. Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal.
Sample security	The measures taken to ensure sample security.	 After the drill core is cut and returned to its original position in the core tray, Lunnon's geologists mark up the drill core for sampling and records the sample intervals against unique sample numbers in a digital sample register. A Lunnon Metals core farm technician then collects the cut core samples into calico bags guided by the sample register and sampling information contained therein. The calico samples are collected sequentially in groups of five and placed into polyweave bags which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. The laboratory checks the samples received against the submission form and notifies Lunnon Metals of any inconsistencies. Once the laboratory has completed the assaying, the pulp packets, pulp residues and coarse rejects are held in the laboratory's secure warehouse until collected by Lunnon Metals or approval is provided for them to be discarded.
		 WMC Historical data There is no documentation which describes the historical sample handling and submission protocols during the WMC drilling programs; however, it is assumed that due care was taken with security of samples during field collection, transport and laboratory analysis. The historical drill core remaining after sampling was stored and catalogued at the KNO core farm (now Gold Fields, SIGM core farm) and it remains at this location to the present day.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits or reviews have been undertaken at this stage of the program. WMC Historical data Cube Consulting Pty Ltd (Cube) are independent of Lunnon Metals and have been previously retained by Lunnon Metals to complete the grade estimation for nickel mineralisation models and MRE exercises but also to review and comment on the protocols developed by Lunnon Metals to deal with, and thereafter utilise, the historical WMC Resources' data, in particular the re-sampling and QAQC exercise completed by Lunnon Metals such that the data is capable of being used in accordance with current ASX Listing Rules where

Criteria	JORC Code explanation	Commentary
Audits or reviews (continued)		 applicable and JORC 2012 guidelines and standards for the generation and reporting of MREs. Cube has documented no fatal flaws in the work completed
		by Lunnon Metals in this regard.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The property is located on granted Mining Leases. Although all of the tenements wholly or partially overlap with areas the subject of determined native title rights and interests, the Company notes that the original grant of the right to mine pre-dates 23 December 1996 and as such section 26D of the Native Title Act will be applied to exempt any future renewals or term extensions from the right to negotiate in Subdivision P of the Act. The complete area of contiguous tenements on which the Silver Lake-Fisher project and rights is located is, together with the wholly owned Foster-Baker project area on the south side of Lake Lefroy, collectively referred to as the Kambalda Nickel Project ("KNP") area. Gold Fields Ltd's wholly owned subsidiary, SIGM, remains the registered holder and the beneficial owner of the Silver Lake-Fisher area. Lunnon now holds: - 100% of the rights and title to the Foster-Baker (FBA) area of KNP, its assets and leases, subject to certain select reservations and excluded rights retained by SIGM, principally relating to the right to gold in defined areas and the rights to process any future gold ore mined at their nearby Lefroy Gold Plant; - The FBA project area of KNP comprises 19 tenements, each approximately 1,500 m by 800 m in area, and three tenements on which infrastructure may be placed in the future. The tenement numbers are as follows: - M15/1546; M15/1548; M15/1549; M15/1550; M15/1551; M15/1553; M15/1556; M15/1577; M15/1559; M15/1573; M15/1577; M15/1577; M15/1577; M15/1579; M15/1577; M15/1579; M15/1577; M15/1577; M15/1577; M15/1577; M15/1578; M15/1577; M15/1577; M15/1578; M15/1577; M15/1579; M15/1577; M15/1579; M15/1571; M15/1579; M15/1571; M15/157

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 In relation to nickel mineralisation, WMC, now BHP Nickel West Pty Ltd and a wholly owned subsidiary of BHP Group Limited, conducted all relevant exploration, resource estimation, development and mining of the mineralisation at Foster and Jan mines from establishment of the mineral licences through to sale of the properties to SIGM in December 2001. SIGM has conducted later gold exploration activities on the FBA area since 2001, however until nickel focused work recommenced under Lunnon management, no meaningful nickel exploration has been conducted since the time of WMC ownership and only one nickel focussed surface diamond core hole (with two wedge holes), was completed in total since WMC ownership and prior to the Company's IPO, which was at Foster South. On the KNP, past total production from underground mining in contained nickel metal terms by WMC was: Foster 61,129 nickel tonnes; Jan 30,270 nickel tonnes; Fisher 38,070 nickel tonnes; Silver Lake 123,318 nickel tonnes.
Geology	Deposit type, geological setting and style of mineralisation.	 The KNP area is host to both typical 'Kambalda' style, komatiitic hosted, nickel sulphide deposits and Archaean greenstone gold deposits such as routinely discovered and mined in Kambalda/St Ives district. The project area is host to nickel mineralisation and elements associated with this nickel mineralisation, such as Cu, Co, Pd and Pt.
Drillhole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: • easting and northing of the drillhole collar • elevation or RL (elevation above sea level in metres) of the drillhole collar • dip and azimuth of the hole • down hole length and interception depth hole length.	 Drill hole collar location and directional information has been provided within the body of related previous ASX reports and also within the relevant Additional Details Table in the Annexures of those reports. A representative proportion of historical drilling completed by WMC as recorded in the drilling database and relevant to the report, has been verified. DD drilling previously reported has included plan and cross-sectional orientation maps to aid interpretation.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Grades have been reported as intervals recording downhole length and interpreted true width where this estimation is able to be made. Any grades composited and reported to represent an interpreted mineralised intercept of significance are reported as sample-length weighted averages over that drill intercept. The Company currently considers that grades above 0.5g/t Au, 0.5% Ni and/or 1.0% Ni are worthy of consideration for individual reporting in any announcement of Exploration Results in additional details tables provided. Composite nickel grades may be calculated typically to a 0.5g/t Au or 0.5% Ni cut-off with intervals greater than 1.0g/t Au or 1.0% Ni reported as "including" in any zones of broader lower grade mineralisation.

Criteria	JORC Code explanation	Commentary
Data aggregation methods (continued)		 cut-offs however in such cases the cut off will be specifically stated. Reported intervals may contain minor internal waste (samples with values below stated the cut-off grade) however the resultant composite must be greater than either the 0.5g/t Au, 0.5% Ni, 1.0g/t Au or 1.0% Ni as relevant (or the alternatively stated cut-off grade). As per other Kambalda style nickel sulphide deposits the Lunnon Metals composites reported may include samples of very high nickel grades down to lower grades approaching the 0.5% Ni or 1.0% Ni cut-off as relevant. No top-cuts have been applied to reporting of drill assay results. No metal equivalent values have been reported. Other elements of relevance to the reported nickel or gold mineralisation, such as Cu, Co, Fe, Mg, Pd and Pt and the like, are reported where the nickel grade is considered significant, if they have been assayed for. Historical WMC drilling in the project area was typically only assayed for Ni and less frequently for Cu, Zn and Co.
Relationship between mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 In regard nickel exploration, the general strike and dip of the Lunnon Basalt footwall contact and by extension any hanging wall related nickel mineralised surfaces, if present, are considered to be well defined by past drilling which generally allows for true width calculations to be made regardless of the density or angle of drilling. For nickel exploration in the broader project area, if possible due to the shallow depth, drillhole design has generally allowed drill holes to intersect target surfaces at approximately perpendicular to the strike of mineralisation. Previously reported intersections have included approximate true widths, but these may not be true widths, as ongoing interpretation of the geology and mineralisation may result in that drilling not always being exactly perpendicular to the strike/dip of mineralisation once interpreted.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	 Plans, long projections and sections, and isometric imagery where able to clearly represent the results of drilling, have been included in this report or previously been provided in prior lodged reports. Due to the long plunge extents and sheet like nature of many of the targeted nickel surfaces, long projections are often considered the most appropriate format to present most results, especially if there are insufficient drill hole intercepts to present meaningful, true cross sections.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Drill collar locations of WMC Historical and current drilling completed by Lunnon Metals have been previously lodged on the ASX platform and all results of the drilling have also been previously reported.

Criteria **JORC Code explanation Commentary** Other Other exploration data, if meaningful The KNP has a long history of geological investigation, substantive and material, should be reported primarily for nickel, but also gold to a lesser degree. exploration data including (but not limited to): Datasets pertinent to the KNP that represent other geological observations; geophysical meaningful and material information include: survey results; geochemical survey Geophysics - multiple ground and aerial based surveys results; bulk samples – size and of magnetic, gravity, Sub Audio Magnetics, electro method of treatment; metallurgical magnetics, and down hole transient electromagnetic test results; bulk density, groundwater, surveys. geotechnical and rock characteristics; Geochemistry - nickel and gold soil geochemistry potential deleterious datasets across the KNP and rock chip sampling in contaminating substances. areas of outcrop. Historical production data recording metallurgical performance of Foster mine nickel delivered to the Kambalda Concentrator. Metallurgical test work on drill core from the project area is carried out by external consultants, currently Independent Metallurgical Operations Pty Ltd using methodologies consistent with the type of mineralisation encountered and the likely future processing route. Geotechnical test work on this drill core is carried out by independent consultants MGT involving geotechnical logging of the DD core and off-site rock property testing of selected DD core samples. Downhole Transient Electro-magnetic (DHTEM) surveys, when conducted, use the DigiAtlantis system and DRTX transmitter. The readings are typically recorded at 2.5m to 10m intervals. The survey used loops ranging from 300m x 200m to 690m x 290m in orientations designed relative to the target and stratigraphic setting. If required, the Company generally retains ABIM Solutions Pty Ltd (ABIMS) to use the latest generation QL40 OBI Optical Televiewer (OTV) and a customized logging vehicle, to conduct OTV wireline surveys in the project area in select holes. The OTV survey generates an oriented 360-degree image of the borehole wall by way of a CCD camera recording the image reflected from a prism. The OTV wireline surveys in the RC holes are particularly useful in defining geological and structural orientation data, data that is otherwise unobtainable from RC drill chips. Where completed, these OTV surveys identified the downhole extents of the sulphide mineralisation, the down hole depths of other key contacts, and enabled the visual reconciliation of the 1m Ni assay results received with the apparent styles of nickel sulphide mineralisation imaged downhole, and provided the orientation of important shear structures within the selected RC holes. If required, ABIMS are also used to collected down-hole imaging data using the latest generation ABI40 Acoustic Televiewer (ATV) and a customised logging vehicle. The ATV wireline survey in DD holes provides down-hole definition. geotechnical aeological rock characterisation, determination of fracture frequency and orientation, and primary stress orientation. The ABI40 ATV generates an image of the drillhole wall by transmitting ultrasound pulses from a rotating sensor and recording the amplitude and travel time of the signals reflected from the

drillhole wall. Data is transferred back to the surface via a

Criteria	JORC Code explanation	Commentary
Other substantive exploration data (continued)		 wireline in real time. Such data collected is used by the Company's geologists in support of deposit geological and structural modelling and by geotechnical consultants for geotechnical assessment purposes. Southern Geoscience Consultants Pty Ltd provide an ultrasonic velocity meter for the collection of velocity data measurements on DD core using an ultrasonic velocity meter. Data from this coupled with density measurements will provide acoustic impedance information, enabling the reflectivity in the seismic section to be tied to the geology in the borehole.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Since the Company's IPO, over 70,000m of either diamond or RC drilling has now been completed at FBA and SLF. Over 17,500m of historical core has also been reprocessed in the Company's Historical Core Program (HCP). All Company work programs are continuously assessed against, and in comparison to, ongoing high priority programs elsewhere at the KNP. Where activity or drilling relates to early stage exploration, it is an iterative process with assay, geological, geochemical, geophysical and litho-structural observations and results all contributing to a continuous assessment of the merits of any particular target, and how, or whether, to continue to pursue further data and further definition, potentially by continuing to drill. Where drilling relates to an MRE, subject to further drilling results and success, the outcome of future metallurgical and geotechnical assessment, that MRE may be upgraded, in whole or in part. Thereafter, subject to positive ongoing results and external market and price variables, updates and future additions to the Company's MRE may then form the basis for development studies that may lead to the future declaration of a Probable Ore Reserve from those portions of the MRE at the Indicated (or higher) classification. Any such Ore Reserves then in turn may form the basis of technical and economic studies to investigate the potential to exploit those nickel deposits in the future.