

DISCLAIMER

The material in this Presentation has been prepared by Meteoric Resources NL ("Meteoric") and is general background information about Meteoric's current activities as at the date of this presentation. This information is given in summary form and does not purport to be complete. Information in this presentation, including forecast financial information, should not be considered as advice or a recommendation to investors or potential investors in relation to holding, purchasing or selling securities or other financial products or instruments and does not take into account your particular investment objectives, financial situation or needs.

Before acting on any information you should consider the appropriateness of the information having regard to these matters, any relevant offer document and in particular, you should seek independent financial advice. All securities and financial product or instrument transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments and, in international transactions, currency risk. This presentation may contain forward looking statements including statements regarding our intent, belief or current expectations with respect to Meteoric's businesses, operations, market conditions, results of operation, financial condition, capital adequacy, specific provisions and risk management practices. Readers are cautioned not to place undue reliance on these forward-looking statements. Meteoric does not undertake any obligation to publicly release the result of any revisions to these forward-looking statements to reflect events or circumstances after the date hereof to reflect the occurrence of unanticipated events. While due care has been used in the preparation of forecast information, actual results may vary in a materially positive or negative manner. Forecasts and hypothetical examples are subject to uncertainty and contingencies outside Meteoric's control. Past performance is not a reliable indication of future performance.

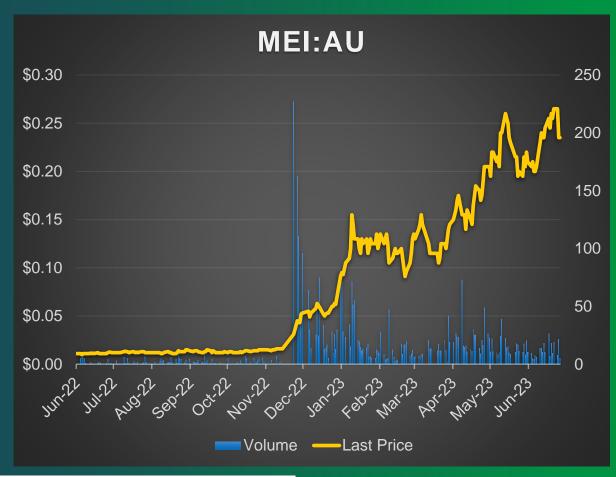
Competent Persons' Statements

The information in this presentation that relates to exploration results is based on information reviewed, collated and fairly represented by Dr Andrew Tunks a Competent Person and a Member of Australian Institute of Geoscientists #2820 and a consultant to Meteoric Resources NL. Dr Tunks has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr. Tunks consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The Company confirms that all material assumptions and technical parameters underpinning the exploration results in this report continue to apply and have not materially changed. The Company is not aware of any new information or data that materially affects the information included in this release.

The information in this presentation that relates to exploration results is based on information reviewed, collated and fairly represented by Dr Carvalho a Competent Person and aa Member of the Australasian Institute of Mining and Metallurgy and a consultant to Meteoric Resources NL. Dr.Carvalho has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr. Carvalho consents to the inclusion in this report of the matters based on this information in the form and context in which it appears

The information in this presentation that relates to Mineral Resources is based on information compiled by Dr. Beck Nader, a Competent Person who is a Fellow of Australian Institute of Geoscientists #4472. Dr. Beck Nader is a consultant for BNA Mining Solutions. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify him as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Beck Nader consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this presentation that relates to Mineral Resources is based on information compiled by Dr. Volodymyr Myadzel, a Competent Person who is a Member of Australian Institute of Geoscientists #3974. Dr. Volodymyr Myadzel is a consultant for BNA Mining Solutions. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Volodymyr Myadzel consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.



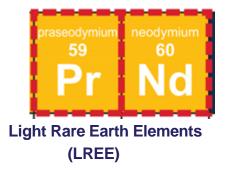
COMPANY OVERVIEW

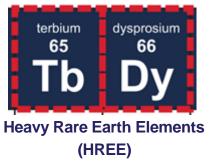
Supported by an experienced and competent Board, the share price has performed significantly well this year

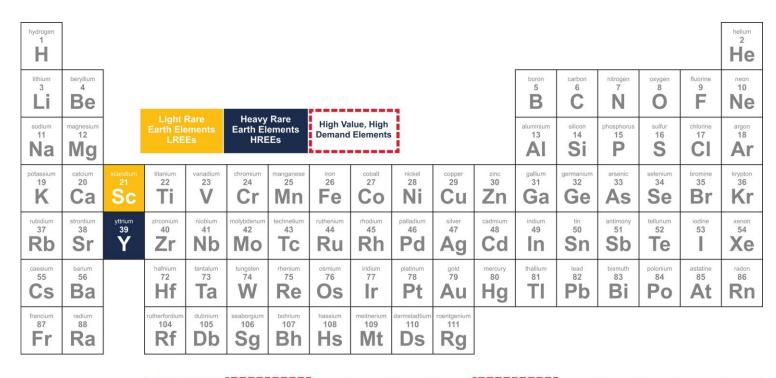
MEI Snapshot		
ASX Code	MEI	
Share Price (17/07/23 Close)	A\$ 0.245	
Shares on Issue	1,940M	
Market Capitalisation	A\$480M	
Liquidity (3-Month Avg.)	A\$ 3M / day	
Largest Shareholder	c. 8.47%	

Board of Directors		
Executive Chairman	Dr Andrew Tunks	
Executive Director	Dr Marcelo de Carvalho	
Non-Executive Director	Dr Paul Kitto	
Chief Executive Officer	Nick Holthouse	

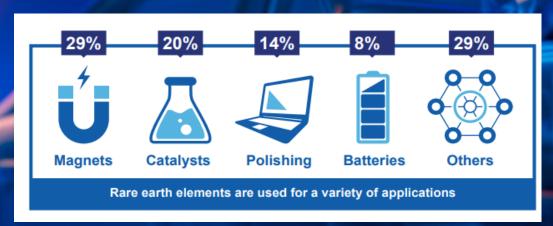
Director Experience and Background






RARE EARTHS AND WHY WE NEED THEM

4 REE have permanent magnet power

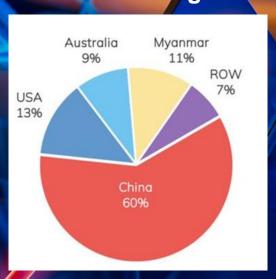


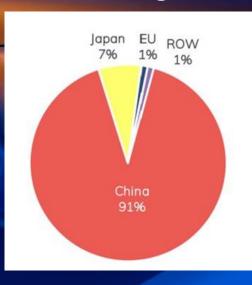
lanthanum 57 La	cerium 58 Ce	praseodymium 59 Pr	neodymium 60 Nd	promethium 61 Pm	samarium 62 Sm	europium 63 Eu	gadolinium 64 Gd	65	dysprosium 66 Dy	67	erbium 68 Er	thulium 69 Tm	ytterbium 70 Yb	Lutetium 71 Lu
actinium 89 AC	thorium 90 Th	protactinium 91 Pa	uranium 92 U	neptunium 93 Np	Plutonium 94 Pu	americium 95 Am	curium 96 Cm	berkelium 97 BK	californium 98 Cf	einsteinium 99 ES	fermium 100 Fm	mendelevium 101 Md	nobelium 102 No	lawrencium 103

RARE EARTH OVERVIEW

Global governments have listed rare earths as critical minerals including Australia, USA, EU, Canada and the UK

Downstream Demand for Rare Earths




Rare earth permanent magnets are the largest use of rare earths by value.

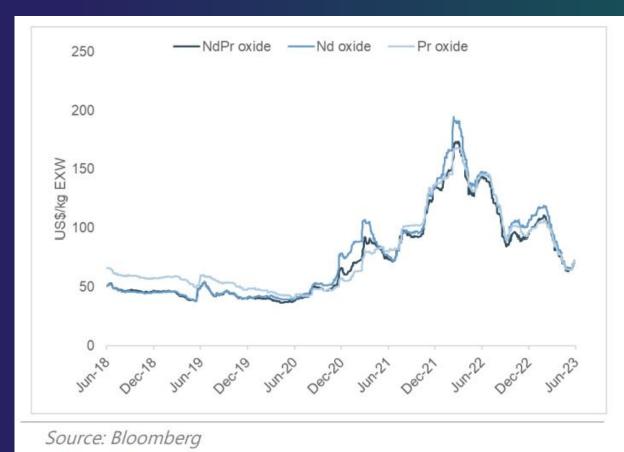
Rare Earths are critical in terms of future consumption and economic security requirements.

REE Mining

REE Magnets

Rare Earth Magnets and Motors: A European Call for Action, A report by the Rare Earth Magnets and Motors Cluster of the European Raw Materials Alliances, Oct 2021. Argus Analytics Oct 2021.

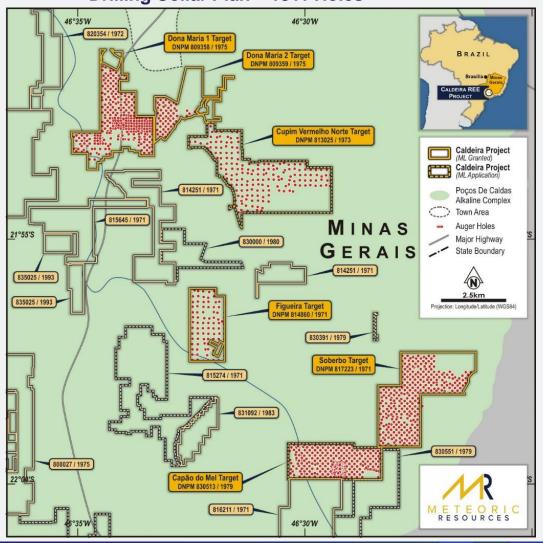
RARE EARTH DEPOSIT TYPES AND COMPARABLES


Ionic clay allows for expedited development timelines, reduced capex requirements and a higher value product

	Ionic Clay-hosted REE	Hard Rock-hosted REE				
	METEORIC RESOURCES LINE RARE EARTHS MINORAÇÃO SERRIFERDE MINORAÇÃO SERRIFERDE	TODIC LYNAS CORPORATION LTD A R A F U R A SET OWNERS LIMITED A R A F U R A SET OWNERS LIMITED ILUKA				
Location	Predominantly mined in China and Myanmar	Majority of production based in China,				
Payability	Contains both light and heavy REEs	Typically light REEs only				
Scale	 Lower initial capex allows for increased scalability Typically ~US\$15/kg TREO annual output (capital intensity)¹ 	Typically ~US\$150/kg TREO annual output (capital intensity)				
Exploration	 Quick and inexpensive – aircore drilling into deeply weathered granite (clays) 	Similar to other hard rock base minerals requiring substantial drilling and geochemistry				
Mining	 Surface mining, with minimal stripping of waste material Pits backfilled leaving no tailings or waste dumps 	 Drill and blast with large mining fleet (typically, with high strip ratios) Capital-intensive open cut and underground operations required 				
Processing	Simple dissolution of REE from clay in ammonium sulphateNo radioactive waste streams	 High temperature mineral cracking using strong reagents for REE minerals Tailings are often radioactive and are costly to dispose 				

Source: (1) Hochschild Mining plc, Capital Markets Presentation, September 2021

RARE EARTH MAGNET PRICES

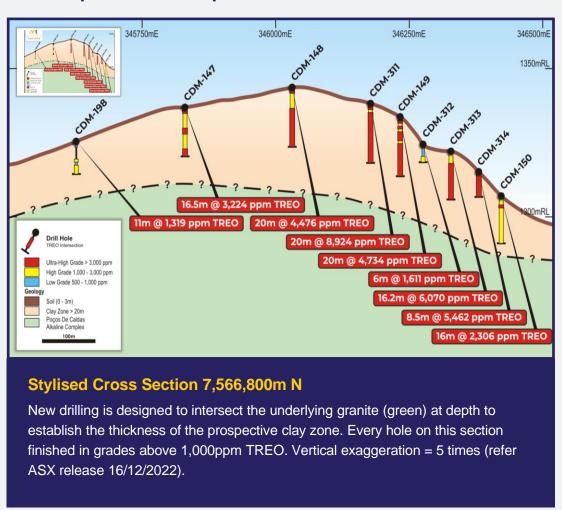


Source: Bloomberg

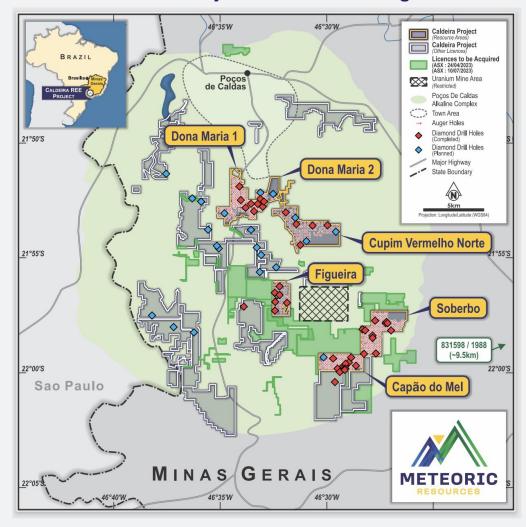
SIGNIFICANT HISTORIC EXPLORATION

JOGMEC successfully explored project between 2016 and 2019

Drilling Collar Plan – 1311 Holes


Drilling Results (ASX 16/12/2022)

10m	@	8,810 ppm TREO ending in	1,942 ppm TREO	(Hole FG-82)
20m	@	8,924 ppm TREO ending in	9,945 ppm TREO	(Hole CDM-311
15m 286)	@	7,042 ppm TREO ending in	3,425 ppm TREO	(Hole CDM-
7m	@	7,646 ppm TREO ending in	12,429 ppm TREO	(Hole DM2-28)
20m	@	6,779 ppm TREO ending in	4,652 ppm TREO	(Hole CDM-47)
12m	@	8,367 ppm TREO ending in	5,829 ppm TREO	(Hole CVN-22)
13m	@	6,600 ppm TREO ending in	6,817 ppm TREO	(Hole CVN-80)
20m	@	5,918 ppm TREO ending in	2,239 ppm TREO	(Hole CDM-27)
14m	@	5,979 ppm TREO ending in	2,325 ppm TREO	(Hole FG-27)
15m	@	7,551 ppm TREO ending in	7,915 ppm TREO	(Hole FG-89)
13m	@	7,641 ppm TREO ending in	2,072 ppm TREO	(Hole SB-109)
19m 134)	@	6,895 ppm TREO ending in	7,840 ppm TREO	(Hole CDM-
15m	@	6,709 ppm TREO ending in	4,460 ppm TREO	(Hole SB-44)


CALDEIRA GRADES, DRILLING INTERCEPTS AND PEERS

Outstanding grades, wide continuous intercepts and open at depth

Capo Do Mel Prospect

Caldeira Project - Diamond Drilling

TIER 1 IONIC ADSORPTION CLAY (IAC) RARE EARTH

The due diligence program and previous metallurgical work has proven the project's IAC characteristics across various prospects

Metallurgy Bulk Sample

- 4,917ppm TREO
- 25.5% Magnet REE
- MREO = 1,250 ppm

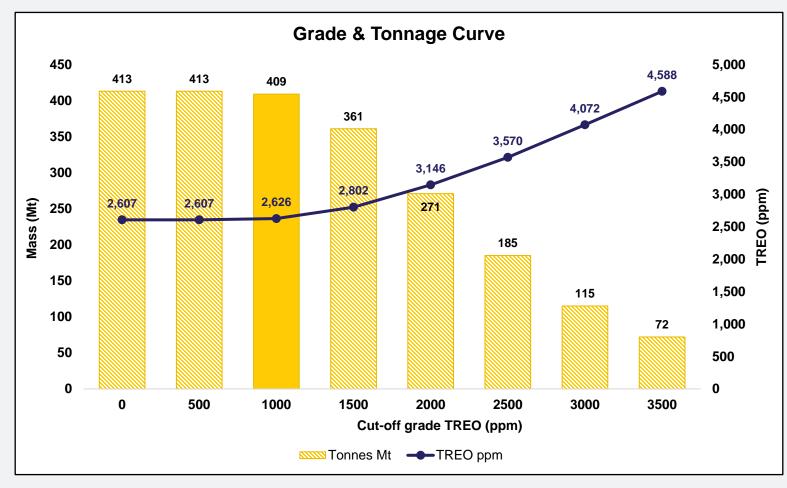
Classification	Element		REE (ppm)	Conversion Factor	Oxide	REO (ppm)	REO /TREO %
	Lanthanum	La	1961	1.1728	La ₂ O ₃	2300	46.8%
LREE	Cerium	Ce	731	1.2284	Ce_2O_3	898	18.3%
LNEE	Praseodymium	Pr	274	1.1702	Pr ₆ O ₁₁	321	6.5%
	Neodymium	Ne	756	1.1664	Nd_2O_3	882	17.9%
	Samarium	Sm	86	1.1596	Sm_2O_3	100	2.0%
	Europium	Eu	22	1.1579	Eu_2O_3	25	0.5%
	Gadolinium	Gd	60	1.1526	Gd_2O_3	69	1.4%
	Terbium	Tb	8	1.151	Tb ₄ O ₇	9	0.2%
	Dysprosium	Dy	35	1.1477	Dy ₂ O ₃	40	0.8%
HREE	Holmium	Но	6	1.1455	Ho_2O_3	7	0.1%
	Erbium	Er	15	1.1435	Er_2O_3	17	0.3%
	Thulium	Th	2	1.1142	Tm_2O_3	2	0.0%
	Ytterbium	Yt	11	1.1379	Yb_2O_3	13	0.3%
	Lutetium	Lu	2	1.1372	1.1372 Lu ₂ O ₃		0.0%
	Yttrium	Υ	183	1.2697	Y_2O_3	232	4.7%
	Totals		4151			4917	100%

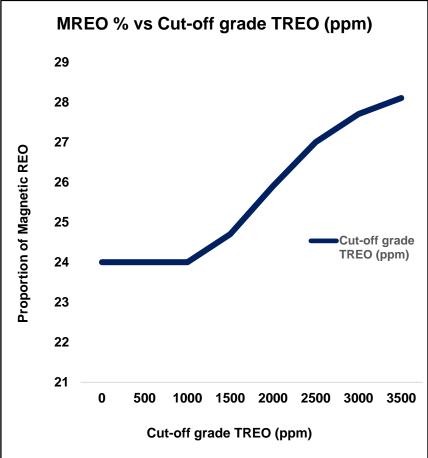
Metallurgy Results and Future Work

- Leach in ammonium sulphate solution
- pH 4
- Maximum leach % occurring within 5-10mins
- Recoveries to the leach are exceptional
 - Nd & Pr above 70%
 - Tb 60-70% and
 - Dy 50-60%

Metallurgical Recoveries (ASX: 27/6/23)

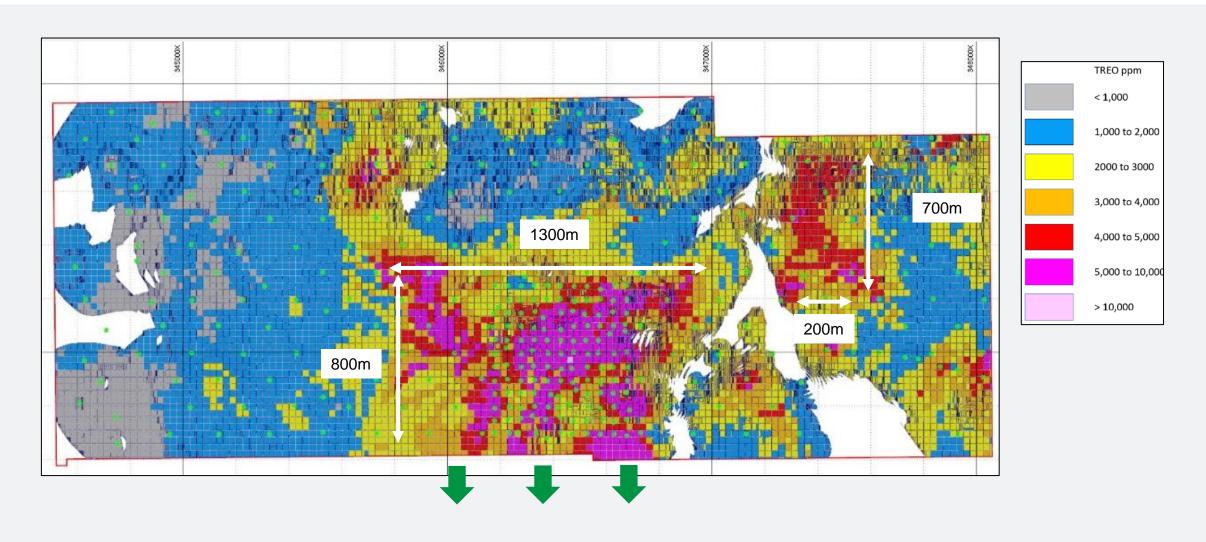
REO	Sample1	Sample2	Sample3	Sample4	AVERAGE
La ₂ O ₃	61%	62%	59%	64%	62%
Ce ₂ O ₃	4%	4%	4%	4%	4%
Pr ₆ O ₁₁	53%	51%	49%	54%	52%
Nd ₂ O ₃	65%	63%	61%	67%	64%
Sm ₂ O ₃	53%	52%	48%	53%	52%
Eu ₂ O ₃	55%	53%	52%	56%	54%
Gd ₂ O ₃	56%	57%	53%	57%	56%
Tb ₄ O ₇	50%	47%	42%	48%	47%
Dy ₂ O ₃	41%	38%	35%	40%	39%
Ho ₂ O ₃	33%	28%	15%	29%	26%
Er ₂ O ₃	28%	29%	31%	29%	29%
Tm_2O_3	26%	25%	22%	25%	25%
Yb ₂ O ₃	15%	19%	17%	19%	18%
Lu ₂ O ₃	21%	21%	19%	22%	21%
Y ₂ O ₃	37%	38%	35%	37%	37%

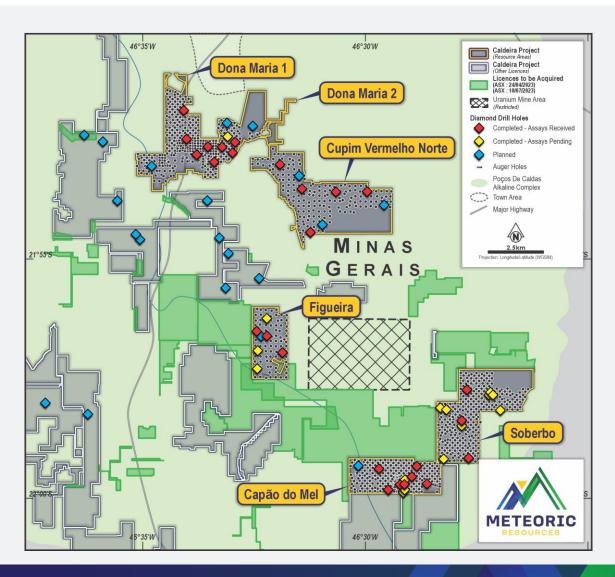

CALDEIRA PROJECT MAIDEN RESOURCES – 409Mt @ 2626 ppm TREO


World's Highest Grade Ionic Adsorption Clay REE Deposit (ASX 1/5/2023)

Licence	JORC	Tonnes	TREO	Pr ₆ O ₁₁	Nd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	MREO	MREO/TREO
Licence	Category	Mt	ppm	ppm	ppm	ppm	ppm	ppm	(%)
Capão do Mel	Inferred	68	2,692	148	399	4	22	572	21.3%
CVN	Inferred	104	2,485	152	472	5	26	655	26.4%
Dona Maria 1 & 2	Inferred	94	2,320	135	404	5	25	569	24.5%
Figueira	Inferred	50	2,811	135	377	5	26	542	19.3%
Soberbo	Inferred	92	2,948	190	537	6	27	759	25.8%
Total	Inferred	409	2,626	154	447	5	25	631	24.0%

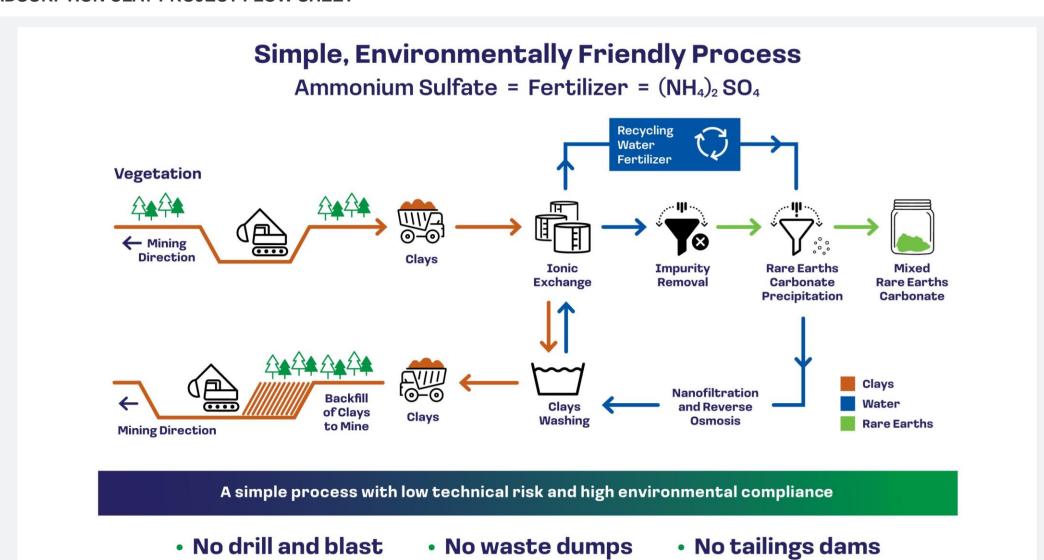
SUBSTANTIAL ULTRA HIGH GRADE RESOURCE


Magnetic Rare Earth Oxide proportion increases as cut-off grade increases


HIGH GRADE START TO MINE LIFE

Capão do Mel - Plan View Block Model

CALDEIRA – MOVING FORWARD WITH METEORIC



Drilling Highlights (ASX 24/7/23)

- CDMDD001 31.2m @ 3,769ppm TREO, including 16.4m @ 5,537ppm TREO
- CDMDD004 16.4m @ 5,967ppm TREO, including 10.7m @ 7,243ppm TREO
- CDMDD006 36.0 @ 2,881ppm TREO, including 9.0m @ 4,228ppm TREO.
- CVNDD001 19.2m @ 5,825ppm TREO
- CVNDD003 31.8m @ 3,243ppm TREO, including 4m @ 16,074 TREO
- DM1DD003 9.93m @ 4,741ppm TREO
- FGDD002 58.31m @ 2,449ppm TREO, including 5.53m @ 4,834ppm TREO
- FGDD003 45.55m @ 3,352ppm TREO, including FGDD003 11.7m @ 6,108 TREO

A Green Mine for Green Metals

IONIC ADSORPTION CLAY PROJECT FLOW SHEET

Contact Information

Meteoric Resources NL

ABN 64 107 985 651

T +61 8 9226 2011

E info@meteoric.com.au

W www.meteoric.com.au

A Level 1, 33 Ord St, West Perth WA 6005

Dr Andrew Tunks - Executive Chairman

T +61 400 205 555

E ajtunks@meteoric.com.au

Victoria Humphries - Investor & Media Relations

T +61 431 151 676

E victoria@nwrcommunications.com

