RENEGADE

ASX ANNOUNCEMENT

16 February 2021

ABN 92 114 187 978 ASX Code: RNX

ISSUED CAPITAI

Shares: 862.6 million Options: 100.0 million

CORPORATE DIRECTORY

Chairman: Robert Kirtlan

Director: Mark Wallace

Director: Peter Voulgaris

Company Secretary: Graeme Smith

CONTACT DETAILS

Level 1, 982 Wellington Street, West Perth WA 6005 Australia

PO Box 1485 Subiaco WA 6904

E: info@renegadeexploration.com T: +61 409 842 354

For the latest news: www.renegadeexploration.com

SUCCESSFUL NICKEL SURFACE SAMPLING PROGRAM

Highlights

- Renegade completed a ground sampling program of historic drill hole cuttings in the Baxter-Andrews Prospect area which has returned positive Nickel values of up to 1,470 ppm
- Ground geophysical program has commenced on the Baxter -Andrews and Riches Prospects
- Interpretation of the 400 x 100m spaced gravity survey across the tenement package has generated highly prospective gold targets for drill testing and is being utilised in the Nickel work for structural definition
- Discussions with drilling contractors for maiden nickel drilling campaign underway

Renegade Exploration Limited (**ASX:RNX**) (the **Company** or **Renegade**) is pleased to advise it has received all of the results for its sampling program at its Yandal East Project (**Yandal East** or the **Project**, Figure 2) over the Baxter-Andrews Prospect during January 2021. The sampling program was successful in identifying nickel in the cuttings from historic drilling in this area.

Follow up reconnaissance field work post the Drone Magnetic Survey identified historical Aircore spoils in and around the Baxter Andrews prospect. A sampling program of these spoils included samples across 129 historical holes and resulted in Nickel assays of up to 1,470 ppm. (see Figure 1; Table 1).

Encouragingly, a number of adjacent historic holes have Nickel assays >1000 ppm. The anomalous Nickel assays correspond with magnetic highs identified by the recent Drone Magnetic Survey and enhance and support Renegade's geological model of the Nickel prospectivity of the Yandal East Project.

The Geological Survey of WA, has mapped Ultramafic rocks in the area, which are coincident with magnetic highs. No historical Nickel Exploration drilling has taken place with only Gold assays being historically reported.

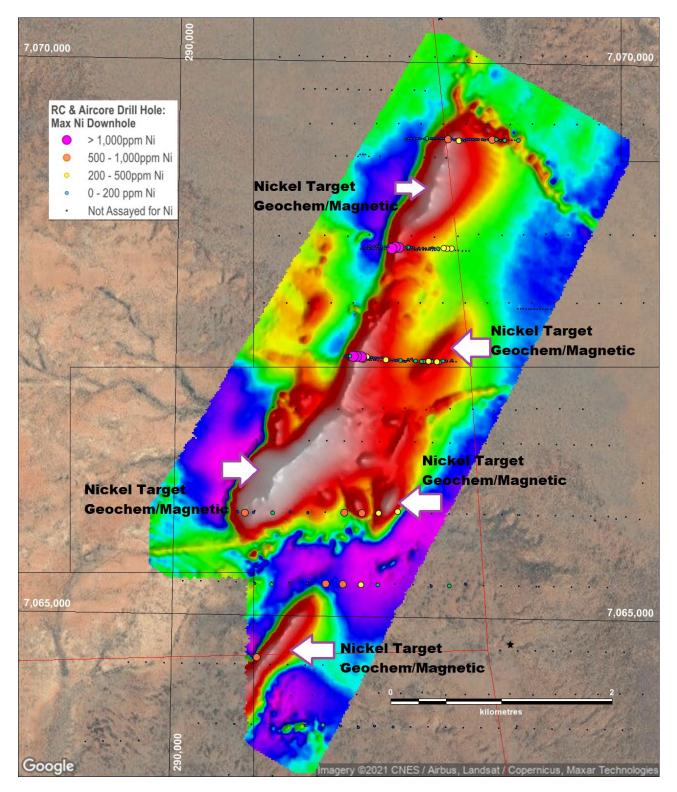


Figure 1. Location of historic holes sampled and Nickel results at Baxter-Andrews Prospect, on Drone Magnetic Survey (RTP)

The geophysical crew has arrived to site and commenced the ground geophysical program to further define targets for upcoming drilling. The program will add to the depth of geophysical knowledge generated by the recent gravity and Drone Magnetic programs. Together with the recent sampling program and historic drill data, targets have been identified at both Baxter-Andrews and Riches Prospects for drilling.

The recent gravity program has had interpretation from several parties and has generated gold targets in its own right. The Company is working on refining these targets for drilling in the upcoming program.

Discussions with drilling contractors are in train to secure a date for drilling the new targets generated at Baxter-Andrews and Riches plus gold prospects generated by the recent gravity program at soonest.

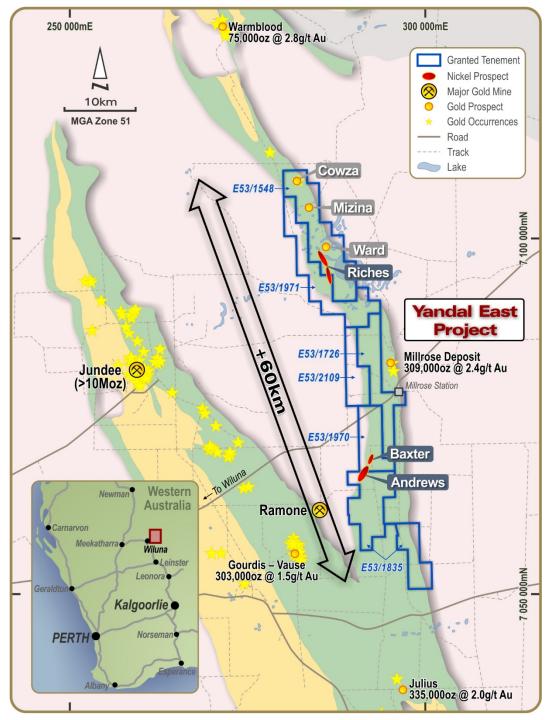


Figure 2. Location of Yandal East Project and Prospects

SampleID	MGAEastZ51	MGANorthZ51	Au	As	Bi	Ве	Cr	Cu	Fe	Mn	Ni	Pb	Zn
	(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Analysis Method			Aqua Regia ICP- MS	Aqua Regia ICP-MS									
Lower Detection	on Limit		0.02	0.1	0.01	0.05	1	0.2	0.01	5	0.2	0.2	2
Upper Detecti	on Limit		25	10000	10000	1000	10000	10000	50	50000	10000	10000	10000
210111-001	290745	7064621	<0.02	5	0.12	0.24	148	260	4.8	1180	83.6	2.2	47
210111-002	290774	7064626	<0.02	6.5	0.09	0.11	1280	64.7	8.56	117	589	1.7	24
210111-003	291541	7064023	<0.02	0.6	0.05	0.13	94	70.2	2.05	276	54.2	0.5	44
210111-004	291382	7064026	<0.02	1.1	0.03	0.09	235	39.9	2.65	514	144.5	0.7	30
210111-005	291223	7064021	<0.02	0.6	0.04	0.05	167	89.6	1.76	193	72.4	0.5	18
210111-006	291702	7064012	<0.02	12.8	0.24	0.68	305	169	17.95	637	58.5	3.7	69
210111-007	291850	7064026	<0.02	0.5	0.05	0.09	141	57.5	3.9	594	82.2	0.6	55
210111-008	292019	7064019	<0.02	2	0.44	0.22	50	85.2	9.29	1620	42.5	1.5	139
210111-009	292653	7065317	<0.02	2.9	0.04	0.49	244	124.5	30.3	70	23.2	9.6	77
210111-010	292505	7065299	<0.02	1.9	0.04	0.24	94	141.5	6.21	1100	109.5	0.9	101
210111-011	292344	7065290	<0.02	30.4	0.7	0.25	168	112.5	16.7	371	22.8	10	56
210111-012	291858	7065295	<0.02	1.4	0.05	0.08	301	67.4	3.94	491	124.5	0.8	41
210111-013	291708	7065294	<0.02	0.8	0.03	0.14	923	43.9	3.97	416	466	0.5	82
210111-014	291547	7065295	<0.02	2	0.01	0.07	976	39.6	4.43	514	508	0.5	48
210111-015	291388	7065299	<0.02	7.6	0.04	0.13	1800	123	8.97	1370	625	6.9	100
210111-016	291222	7065298	<0.02	1.5	0.07	0.18	139	44.5	2.23	307	69	1.2	61
210111-017	291067	7065291	<0.02	0.4	0.04	0.09	91	53	1.47	193	67.9	1	28
210111-018	290897	7065287	<0.02	6.8	0.02	0.12	484	44.4	3.24	382	182.5	2.8	49
210111-019	290746	7065292	<0.02	0.8	0.02	0.52	50	15.6	4.94	432	32.7	0.8	98
210111-020	291856	7065939	<0.02	16.2	0.16	0.09	2210	92.2	5.5	532	438	1	37
210111-021	292030	7065955	<0.02	0.2	0.01	0.07	1130	62.7	5.11	466	488	0.4	55
210111-022	291708	7065937	<0.02	23.6	0.1	0.06	926	39.8	6.08	718	689	0.8	17
210111-023	291546	7065939	<0.02	1	0.01	0.1	920	60.6	4.9	509	544	0.4	89
210111-024	291216	7065933	<0.02	0.4	0.02	0.19	108	75.2	3.29	305	94.6	1.5	38

			1	r									
210111-025	291057	7065939	<0.02	1.5	0.02	0.16	70	40.4	1.86	280	33.6	1.1	22
210111-026	290896	7065931	<0.02	0.2	0.01	0.19	88	81.2	1.77	187	137.5	0.4	20
210111-027	290724	7065932	<0.02	1.8	0.02	0.1	78	44.6	1.72	237	61.4	0.8	23
210111-028	290649	7065927	<0.02	<0.1	0.01	0.07	783	35	4.18	407	632	0.3	41
210111-029	290580	7065934	<0.02	1.7	0.04	0.96	49	29.1	2.49	43	24.9	4	22
210112-001	292498	7067328	<0.02	0.5	0.01	0.09	194	45.4	2.94	333	91.1	0.3	39
210112-002	292447	7067323	<0.02	0.8	0.01	0.06	156	38.1	2.15	248	76.6	0.3	25
210112-003	292417	7067321	<0.02	1	0.01	0.08	159	51	2.96	312	105	0.4	49
210112-004	292387	7067306	<0.02	0.4	0.01	0.1	17	59	3.54	340	128.5	0.3	72
210112-005	292363	7067310	<0.02	0.1	0.01	0.1	719	4.4	9.66	1070	273	0.4	100
210112-006	292316	7067316	<0.02	1.5	0.02	0.11	615	57.2	4.54	624	162	0.5	44
210112-007	292287	7067316	<0.02	1.6	0.01	0.17	695	53.8	6.29	872	274	0.3	57
210112-008	292243	7067312	<0.02	0.6	0.01	<0.05	333	17	1.76	367	199.5	0.2	20
210112-009	292222	7067314	<0.02	3.8	2.8	0.19	786	53.1	5.65	1090	162.5	9.7	49
210112-010	292169	7067316	<0.02	1.5	0.02	0.09	778	35.4	3.87	370	213	0.6	35
210112-011	292134	7067332	<0.02	0.6	0.02	0.07	161	48.7	2.34	254	62.3	0.3	24
210112-012	292103	7067330	<0.02	0.8	0.02	0.07	114	23.7	1.66	180	44	0.4	17
210112-013	292076	7067313	<0.02	0.7	0.01	0.16	128	44.3	1.73	261	82.1	0.4	37
210112-014	292055	7067314	<0.02	0.8	0.01	0.1	132	32.5	2.16	317	89.4	0.2	33
210112-015	292032	7067321	<0.02	0.8	0.01	0.15	168	30.5	2.29	280	151	0.5	49
210112-016	292009	7067322	<0.02	1.3	0.02	0.08	106	41.7	1.4	200	42.9	0.7	27
210112-017	291992	7067319	<0.02	0.8	0.01	0.1	170	32.1	2.44	254	56.6	0.4	34
210112-018	291972	7067321	<0.02	5.2	0.21	0.17	147	18.9	2.54	147	20.9	6	13
210112-019	291936	7067322	<0.02	0.7	0.01	0.07	225	26.5	2.78	348	49.6	0.6	32
210112-020	291900	7067324	<0.02	0.7	0.02	0.08	1080	52.4	4.23	385	328	0.4	41
210112-021	291862	7067343	<0.02	1.4	0.04	0.22	144	28	3.43	310	56.5	0.7	49
210112-022	291832	7067339	<0.02	0.3	0.01	0.08	96	67.8	2.09	241	52.6	0.3	26
210112-023	291809	7067339	<0.02	0.5	0.02	0.13	110	71.5	2.25	201	50.5	0.4	28
210112-024	291786	7067340	<0.02	0.3	0.02	0.11	22	55.1	2.08	178	37.5	0.5	22
210112-025	291769	7067342	<0.02	0.1	0.01	0.11	52	28	1.95	225	36.9	0.4	33
210112-026	291748	7067328	<0.02	0.2	0.01	0.11	113	25.9	1.72	155	92.7	0.4	19

[]			1	1					1			1	
210112-027	291729	7067344	<0.02	0.2	0.01	0.1	688	25.9	3.76	358	404	0.4	45
210112-028	291698	7067329	<0.02	50	0.09	0.15	1520	83.6	13.7	568	874	0.9	24
210112-029	291680	7067346	<0.02	1.5	0.08	0.14	1850	42.6	6.26	543	1060	0.4	29
210112-030	291649	7067349	<0.02	0.5	0.01	0.14	345	100	2.88	281	364	0.4	31
210112-031	291634	7067346	<0.02	14.8	0.02	0.09	1340	31.6	5.75	471	1140	0.3	17
210112-032	291602	7067348	<0.02	2.9	0.01	0.13	1280	24.9	6.63	454	1350	0.4	23
210112-033	291574	7067352	<0.02	0.2	0.01	0.14	108	30.6	3.92	425	108	0.5	47
210112-034	291549	7067348	<0.02	0.2	0.01	0.09	39	31.4	1.67	186	29.8	0.3	24
210112-035	291529	7067353	<0.02	0.7	0.02	0.13	82	26.6	1.66	239	79.2	0.8	43
210112-036	292478	7068333	<0.02	0.6	0.01	0.06	795	47.2	3.47	339	260	0.3	39
210112-037	292441	7068333	<0.02	0.2	0.01	0.08	978	50	4.39	392	335	0.2	45
210112-038	292410	7068335	<0.02	0.8	0.19	0.29	1080	16	5.17	1280	354	2.6	38
210112-039	292357	7068331	<0.02	0.5	0.02	0.1	405	65.4	5.48	455	143	0.8	57
210112-040	292321	7068336	<0.02	1.1	0.02	0.21	76	49.6	3.15	347	41.5	0.5	35
210112-041	292303	7068339	<0.02	0.7	0.02	0.14	22	40.2	2.8	419	23.7	0.3	35
210112-042	292280	7068336	<0.02	0.7	0.01	0.17	25	43.8	2.92	372	24.8	0.4	39
210112-043	292245	7068330	<0.02	4.2	0.04	0.14	102	59	3.18	294	43.5	0.7	39
210112-044	292216	7068333	<0.02	0.7	0.06	0.11	179	38	2.4	236	87.6	0.5	25
210112-045	292183	7068334	<0.02	0.7	0.01	0.12	56	50.7	2.63	272	42.5	0.4	32
210112-046	292161	7068320	<0.02	2	0.02	0.11	41	13.5	1.34	141	21.8	0.5	11
210112-047	292135	7068337	<0.02	0.2	0.02	0.15	155	25.6	1.04	149	41.3	0.7	15
210112-048	292113	7068339	<0.02	0.2	0.02	0.07	99	22	0.82	131	37.7	1	11
210112-049	292085	7068340	<0.02	1.2	0.01	0.18	75	57.8	2.17	248	125.5	0.5	29
210112-050	292066	7068340	<0.02	1.7	0.02	0.27	111	43.4	2.74	105	89.6	0.7	14
210112-051	292020	7068337	<0.02	1	0.02	0.29	296	64.6	4.06	146	201	0.8	32
210112-052	292000	7068335	<0.02	17.5	0.05	0.18	2070	18.3	6.58	523	1470	0.5	20
210112-053	291969	7068336	<0.02	5.7	0.01	0.13	867	28.3	7.7	375	1440	0.3	21
210112-054	291939	7068325	<0.02	38.5	0.07	0.26	1820	12.3	6.69	787	1430	0.5	25
210112-055	291903	7068339	<0.02	0.6	0.02	0.11	74	39.8	2.13	224	38.8	0.3	31
210112-056	291877	7068338	<0.02	0.4	0.01	0.1	52	45.2	1.97	232	61.4	0.4	24
210112-057	291847	7068340	<0.02	0.4	0.01	0.09	89	38.4	2.26	313	54.4	0.2	29

												1	
210112-058	291823	7068342	<0.02	0.1	0.01	0.07	70	63.7	2.16	378	53.4	1.2	38
210112-059	291800	7068344	<0.02	0.1	0.01	0.17	44	32.6	1.52	225	39.3	0.3	29
210112-060	291773	7068344	<0.02	8.9	0.03	0.15	77	35.3	3.29	563	34.4	1.1	107
210112-061	291743	7068344	<0.02	0.2	0.02	0.13	43	45.7	1.76	264	19.8	0.5	32
210112-062	291725	7068326	<0.02	0.1	0.02	0.14	50	36.6	2.3	245	21.2	0.6	29
210112-063	291701	7068342	<0.02	0.8	0.01	0.11	66	41.4	2.23	322	20.5	0.7	30
210112-064	292418	7069320	<0.02	0.3	0.01	0.18	18	44.5	3.74	418	21.6	0.5	43
210112-065	292434	7069316	<0.02	0.9	0.06	0.1	2250	73.8	6.39	485	660	1	29
210112-066	292462	7069318	<0.02	1.1	0.07	0.11	661	27.4	5.4	100	24.2	2.7	8
210112-067	292485	7069312	<0.02	0.6	0.02	0.13	49	36.1	0.85	115	32.7	0.4	11
210112-068	292505	7069317	<0.02	0.4	<0.01	0.11	54	86.4	2.87	263	76.4	0.2	34
210112-069	292531	7069301	<0.02	0.7	0.02	0.27	992	43.3	6.34	285	417	0.7	53
210112-070	292556	7069314	<0.02	1.1	0.03	0.21	199	39	3.77	139	29.4	3.9	18
210112-071	292579	7069303	<0.02	0.2	0.01	0.37	15	89.6	2.71	267	98.4	0.5	54
210112-072	292598	7069316	<0.02	0.3	0.03	0.16	202	33.9	3.39	168	24.5	2.2	21
210112-073	292618	7069320	<0.02	0.4	0.01	0.13	16	33.2	1.69	211	9.2	1.4	19
210112-074	292634	7069317	<0.02	0.5	0.03	0.21	17	38	1.61	209	15.5	0.5	21
210112-075	292655	7069317	<0.02	<0.1	0.01	0.19	31	40.9	1.89	238	13.4	0.7	24
210112-076	292681	7069317	<0.02	0.1	0.02	0.17	46	29	1.19	145	17.4	0.6	18
210112-077	292704	7069321	<0.02	0.6	0.03	0.27	9	24.6	1.84	211	9.8	1.7	26
210112-078	292739	7069318	<0.02	0.4	0.02	0.22	32	27.1	2.32	246	16.6	0.8	30
210112-079	292762	7069318	<0.02	0.3	0.01	0.15	58	74.5	3.04	343	43.1	0.4	48
210112-080	292795	7069321	<0.02	0.6	0.01	0.1	224	62.2	3.45	372	91.6	0.4	45
210112-081	292833	7069317	<0.02	5.7	0.07	0.06	2240	44.1	4.46	319	580	0.7	40
210112-082	292868	7069322	<0.02	0.7	0.01	0.07	305	57.6	3.53	367	126	0.2	44
210112-083	292905	7069316	<0.02	0.3	0.01	0.07	240	60.8	3.13	346	94.6	0.2	40
210112-084	292945	7069316	<0.02	<0.1	0.02	0.08	197	49.9	2.39	264	62.8	0.4	30
210112-085	292945	7069316	<0.02	0.2	0.01	<0.05	846	47.9	4.1	609	249	<0.2	41
210112-086	293066	7069318	<0.02	0.2	0.01	0.08	364	48.7	3.85	554	154.5	0.3	42
210112-087	292388	7069322	<0.02	0.3	0.01	0.4	26	41.1	2.58	253	20.5	0.4	34
210112-088	292365	7069322	<0.02	0.3	0.04	0.47	29	30.2	2.26	273	19.6	0.4	29

210112-089	292326	7069325	<0.02	0.5	0.01	0.27	55	39.5	2.02	210	24.6	0.4	36
210112-090	292302	7069323	<0.02	0.4	0.03	0.24	43	34.4	1.87	218	20.3	0.4	27
210112-091	292277	7069323	<0.02	0.3	0.01	0.21	42	45.7	1.4	184	35.8	0.5	20
210112-092	292238	7069320	<0.02	0.2	0.01	0.06	245	73	3.92	429	142	0.2	43
210112-093	292220	7069317	<0.02	0.1	0.01	0.28	26	40	1.7	212	20.6	0.3	29
210112-094	292176	7069322	<0.02	1	0.02	0.68	27	24.8	1.32	153	42.2	1	43
210112-095	292148	7069321	<0.02	0.7	0.01	0.14	59	48.7	2.48	251	35.6	0.7	29
210112-096	292126	7069316	<0.02	0.1	0.02	0.09	71	34.2	2.91	421	23.2	0.5	31
210112-097	292094	7069317	<0.02	<0.1	0.02	0.06	58	31.4	1.92	264	23.8	0.4	27
210112-098	292072	7069318	<0.02	<0.1	0.02	0.13	81	53.1	2.42	320	30	0.7	30
210112-099	292046	7069304	<0.02	<0.1	0.01	0.12	90	48	2.67	297	32	0.4	29

Table 1: Results from Andrews-Baxter Historic Drill Hole Cuttings Sampling

Table 1 lists the assays from the recent drill cuttings sampling of historic holes at Yandal East. The sample type is specified in Table 1.

The Company is highly encouraged by the recent sampling program which, together with the Drone Magnetics, gravity survey and the current ground geophysical program is generating exciting targets for an upcoming drill program.

This announcement has been approved by the Board of Renegade Exploration Limited.

For more information please contact:

Robert Kirtlan Director Mark Wallace Director

Ends.

About Renegade Exploration Limited

Renegade Exploration Limited (ASX:RNX) is an Australian based minerals exploration and development company.

The Company's Yandal East Gold Project is located within a well-endowed gold region known as the Yandal Greenstone Belt, 70km NE of Wiluna, Western Australia. The current major production centre is at Jundee, located ~25km west of Yandal East. The region has historically produced in excess of 10Moz of gold and the Company's permits are adjacent to and along strike in both directions from the Millrose Deposit containing 309,000oz @ 2.4g/t Au.

Apart from the Company's gold project at Yandal East, Renegade also owns 90% of the Yukon Base Metal Project located within the highly prospective Selwyn Basin, Yukon Territory, Canada.

The Company's primary objective is to deliver long-term shareholder value by becoming a mid-tier resource company. Renegade strives to achieve this through the discovery, acquisition and development of economic mineral deposits.

Competent Person Statement and Geological Information Sources

The information in this announcement that relates to exploration results for the Yandal East Gold Project is based on information compiled by Mr Peter Smith, who is a consultant to the Company. Mr Smith is a Member of the Australian Institute of Geoscientists. Mr Smith has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australiasian Code for Reporting of Exploration Results (JORC Code). Mr Smith consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Information on the Millrose Deposit is sourced from various reports including Mines Resources Australia (1999 with amendments thereafter) and Annual WA Mines Department reports provided by Audax Resources Limited during the period 2001-2010.

Previously Reported Exploration Results

The Company confirms that it is not aware of any new information or data that materially affects the information included in this market release.

Appendix 1 Soil Sampling, Drill Cutting Summary

Surface Sample Type:	Rockchips representing previous drill cuttings
Fraction Size:	+80#
Sample Collection Method:	Random sampling of drill spoils
Sample Size:	Generally < 100 grams
Laboratory:	ALS
Sample Preparation:	Fine Crush : 70% < 2mm, Pulverize 85% < 75um

Sample Analysis Technique: Ultratrace Aqua Regia ICP-MS, ALS Method ME-MS41

Elements	Au	As	Bi	Be	Cr	Cu	Fe	Mn	Ni	Pb	Rb	Zn
Units	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Detection	0.02	0.1	0.01	0.05	1	0.2	0.01	5	0.2	0.2	0.1	2

Statistics

Element	Count	Min	Max	Mean
Au_ppm	129	0.02	0.02	0.02
As_ppm	129	0.1	38.5	2.6
Bi_ppm	129	0.01	2.8	0.59
Be_ppm	129	0.06	0.96	0.16
Cr_ppm	129	9	2250	375
Cu_ppm	129	4.4	260	49.8
Fe_%	129	0.82	30.3	3.82
Mn_ppm	129	43	1620	368
Ni_ppm	129	9.2	1470	192
Pb_ppm	129	0.2	9.7	1.02
Rb_ppm	129	0.2	25.2	4.48
Zn_ppm	129	8	139	37.5

JORC CODE 2012 EDITION - TABLE 1 SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling was carried out on historic RC/AC drilling spoils that are from exploration that only assayed for gold. The sampling was of a representative nature of of surface drill spoils that had not degraded. The sampling is general in nature, and doesn't represent any specific interval, within the drillhole.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No drilling was undertaken
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling was undertaken
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	 No logging took place as the logging was originally carried out when the samples were fresh.

Criteria	JORC Code explanation	Commentary
	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	See Appendix 1
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 ALS laboratories in Perth were used and they are a highly professional facility Standards were put in randomly and 12 standards in total were inserted within the 129 samples assayed Field blanks were not available so a early sample assessed as barren was used in the place of a blank and inserted 4 samples. Duplicates were done by collecting 2 sample bags and reassaying them. In total 8 duplicates were carried out from 129 samples
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Soil results reviewed by Independent Consultant
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A handheld Garmin GPS was used to survey the sample points The grid used was GDA94 Zone 51
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of 	 See Appendix 1 map for Sample distribution Data is from existing drill lines where distance between drill cuttings, was generally 25m on detailed lines, and 100m on the more regional

Criteria	JORC Code explanation	Commentary
	 geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	samples No compositing was applied to sampling
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Samples were collected perpendicular to interpreted geology
Sample security	 The measures taken to ensure sample security. 	 Samples remained in the custody of Company consultants until delivered to the laboratory by a transport company
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits have been undertaken to date

JORC TABLE 1 - SECTION 2 REPORTING OF EXPLORATION	Results
---	---------

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Renegade Exploration has a direct 75% interest in the Yandal East Project with Zebina Minerals Pty Ltd maintaining a 25% interest in the Project. The Project includes tenements, E53/1548, E53/1726, E53/1835, E53/1970 and E53/1971
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• The Andrews-Baxter area has been subject to a historic of drilling, predominantly in the 1990s by Aberfoyle & Normandy. The drill cuttings sampling program was undertaken as no historical data was available for the drill holes in this particular area.
Geology	 Deposit type, geological setting and style of mineralisation. 	 WA, Archean lode gold system At this early stage mineralisation appears to be associated with quartz veins in a sheared and contorted mafic volcanic (basalt). Nickel is interpreted to be hosted in Basic and Ultramafic rocks, with massive sulphide accumulations proximal to basal embayments
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Samples were located by GPS
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	No data aggregation required.

Criteria	JORC Code explanation	Commentary
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	No drilling was undertaken
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A Plan of the sample locations shown in Figure 1 and Appendix 1.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	No drilling was undertaken
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The Company recently completed a 400m x 100m gravity survey. The Company recently completed and airborne Drone Magnetic survey.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Ground geophysical survey program about to commence. Drill targeting to commence following this program.