

**Renegade Exploration Limited** 

Level 7, 333 Adelaide Street Brisbane QLD 4000 Australia ASX:RNX

ABN 92 114 187 978 Phone 1300 525 118 www.renegadeexploration.com

7 November 2024

# **ASX RELEASE**

# Mongoose drilling delivers best copper intervals to date

## Highlights

- Drill hole pXRF results have returned stunning copper intervals at the Greater Mongoose mineralised zone, part of the Cloncurry Project.
- RMG035 pXRF results:
  - > 107m @ 0.62% Cu (from 55m) including;
    - o 7m @ 2.06% Cu (from 59m)
    - o 13m @ 1.01% Cu (from 115m)
- RMG036 pXRF results:
  - > 105m @ 0.51% Cu (from 3m) including;
    - 22m @ 1.0% Cu (from 39m)
    - 13m @ 0.82% Cu (from 89m)
- Very-high magnetite alteration zones and breccias were encountered at Tank and Mongoose West with pXRF results including:
  - > 30m @ 0.18% Cu (Tank, from 153m, RMG034)
  - > 5m @ 0.45% Cu (Mongoose West, from 33m, RMG037)
  - > 6m @ 0.31% Cu (Mongoose West, from 220m, RMG038)
  - > 3m @ 1.10% Cu (Mongoose West, from 324m, RMG038)
  - > 6m @ 0.41% Cu (Magazine, from 38m, RMZ001)
- Deeper RC drilling encounters intense Red Rock alteration and potential Ernest Henry style magnetite rich breccia/shear zones.
- The significant drill intervals from holes RMG035 and RMG036 have been sent to the lab for copper and gold analysis. All drilling has been completed and results are expected in 4-6 weeks.

Renegade Exploration Limited's (ASX:RNX) recent reverse circulation (RC) drilling program has returned the best drilling intercepts to date at the Greater Mongoose mineralised zone, part of the Cloncurry Project.

Drilling tested new anomalies throughout the zone identified by recent diamond drilling and geophysical surveys including the Mongoose Deposit, Tank, Magazine, Mongoose Deeps, and Mongoose West.



**Renegade Chairman, Robert Kirtlan, said:** "To intercept significant copper mineralisation in every single drill hole is a remarkable achievement. These results are the best that Renegade have drilled at Mongoose to date, this is particularly significant as we have completed 40 holes for over 6,500m of drilling. The highly mineralised holes reported above have opened up a new area of mineralisation and will add size to the Mongoose Deposit."

"Each and every hole we drill in the Greater Mongoose Area adds to our understanding of the very large IOCG system which we believe has remarkable similarities to the Ernest Henry Cu-Au deposit. We are currently interpreting the new data generated from the drilling and will plan our next programs around this."

"The deeper 500m RC hole went well with no major technical issues with either the drill rig or water. This indicates that we may be able to go even deeper with the relatively cheaper RC drilling, perhaps beyond 600m. We have seen more of the Ernest Henry style alteration and brecciation<sup>1</sup> which gives serious encouragement to continue looking for something bigger within the Greater Mongoose Area".

"The QLD Government CEI funding amount of \$330,000 has been received and together with current cash and the small loan facility in place, Renegade is well placed financially to continue work on the current Greater Mongoose programs."

#### **Cautionary Statement**

The company uses an Olympus Vanta portable hand-held XRF analyser to screen samples for mineralisation before submitting samples to the lab for assay. This allows for some understanding of the distribution of mineralisation prior to sampling to better ensure that samples submitted for analysis are representative of the type and style of mineralisation. The hand-held XRF provides confirmation that mineralisation is present however it is not an accurate determination of the elemental concentration within the sample analysed. The use of pXRF readings only provides the indication of the order of magnitude of formal assay results and is not considered equivalent to a laboratory analysed sample result. Limitations include very small analysis window, possible inhomogeneous distribution of mineralisation, analytical penetration depth, possible effects from irregular rock surfaces. These results obtained from the hand-held XRF are indicative only and may not be representative of elemental concentration within the material sampled. The pXRF readings are subject to confirmation by chemical analysis from an independent laboratory.

<sup>&</sup>lt;sup>1</sup> See ASX Release dated 2 July 2024; Ernest Henry style IOCG zone discovered at Mongoose Deeps.



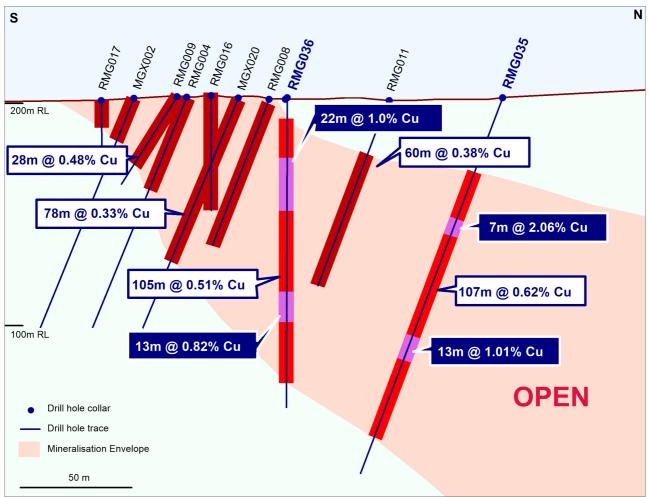



Figure 1: Cross section looking west, showing the new holes RMG035 and RMG036 at Mongoose<sup>2,3,4</sup>,

<sup>&</sup>lt;sup>2</sup> See ASX Release dated 16 January 2023; Renegade assumes control of Mongoose Project

<sup>&</sup>lt;sup>3</sup> See ASX Release dated 31 March 2024; Drilling intercepts near surface copper at Mongoose

<sup>&</sup>lt;sup>4</sup> See ASX Release dated 1 May 2024; Drilling continues to intercept near surface copper at Mongoose



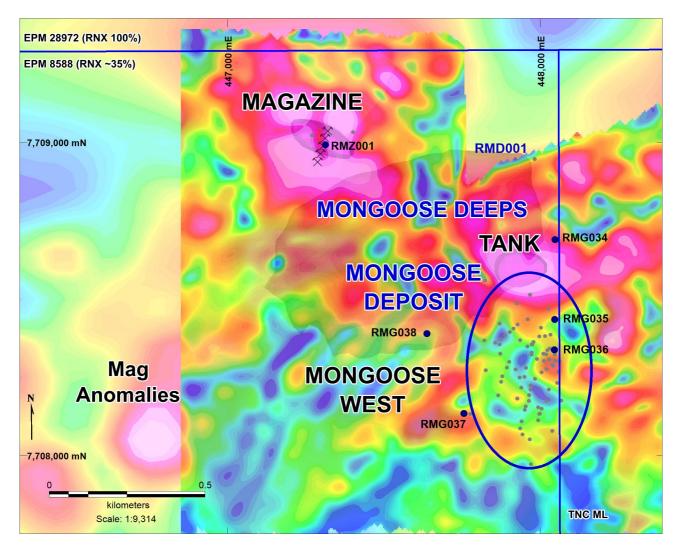



Figure 2: Greater Mongoose plan view map showing the recent drill hole locations and the drone-based magnetics (analytic signal)<sup>5</sup>

## Greater Mongoose background

The Greater Mongoose prospect area at the Cloncurry Project consists of a number of high priority targets led by the Mongoose Deeps magnetic anomaly which lies beneath the Mongoose copper deposit. The anomaly is a magnetite-rich breccia pipe which is similar in size, shape, and magnitude as the nearby world-class Ernest Henry copper mine<sup>6</sup>.

The recent drilling was targeting close to surface magnetic anomalies and potential de-magnetised zones in and around the Greater Mongoose area. The drilling at Tank returned a large section of very high magnetite that shows evidence of brecciation. This is the second magnetite rich breccia zone encountered by Renegade in the area. The magnetite rich zone contains broad pyrite alteration and towards the base of the unit returned broad chalcopyrite mineralised zones. Additional magnetite altered zones were also encountered at Mongoose West along with zones of copper sulphides. A deep RC hole was also completed to test the possible westward extension of the mineralisation down towards a deep gravity anomaly. The hole was extended down to 500m and encountered several zones of copper mineralisation and highly red rock-magnetite altered dolerites. This alteration provides additional evidence of a very large hydrothermal system existing at Mongoose.

<sup>&</sup>lt;sup>5</sup> See ASX Release dated 19 September 2024; New magnetic anomalies identified at Greater Mongoose Prospect drives next drilling program.

<sup>&</sup>lt;sup>6</sup> See ASX Release dated 2 July 2024; Ernest Henry style IOCG zone discovered at Mongoose Deeps.



Renegade has completed over 6,500m of RC and diamond drilling<sup>7,8</sup> at Mongoose producing a number of significant intersections.

The drilling at Mongoose allowed the company to complete a Maiden Inferred Mineral Resource Estimate<sup>9</sup> which utilised an optimised pit shell and a base cut of 0.25 % Cu. The Mongoose Inferred Resource currently stands at:

#### > 3.1 Mt @ 0.55 % Cu and 0.07 g/t Au for 17.0 Kt Cu and 7.3 koz Au (0.25% Cu cut off).

Mongoose is part of the Carpentaria Joint Venture (CJV) between Glencore plc and Renegade, whose stake is currently ~35%. In January 2023, Renegade reached agreement with Glencore to excise the Mongoose Project (EPM8588) and sole risk future expenditure. Renegade's interest in EPM8588 will increase with expenditure<sup>10</sup>.

#### **Cautionary Statement**

The company uses an Olympus Vanta portable hand-held XRF analyser to screen samples for mineralisation before submitting samples to the lab for assay. This allows for some understanding of the distribution of mineralisation prior to sampling to better ensure that samples submitted for analysis are representative of the type and style of mineralisation. The hand-held XRF provides confirmation that mineralisation is present however it is not an accurate determination of the elemental concentration within the sample analysed. The use of pXRF readings only provides the indication of the order of magnitude of formal assay results and is not considered equivalent to a laboratory analysed sample result. Limitations include very small analysis window, possible inhomogeneous distribution of mineralisation, analytical penetration depth, possible effects from irregular rock surfaces. These results obtained from the hand-held XRF are indicative only and may not be representative of elemental concentration within the material sampled. The pXRF readings are subject to confirmation by chemical analysis from an independent laboratory.

#### **pXRF** Information

The RC samples have been analysed using the Company's Portable XRF (pXRF) Olympus Vanta Series XRF analyser. The RC sampling and pXRF assaying, primarily for detecting copper anomalism, is a semi-quantitative approach. While this advanced handheld instrument provides high accuracy in detecting low-concentration multi-elements, in the ppm range, its results, though reliable, should not be equated with laboratory assays, though regular calibration and expert handling minimize potential errors.

The following points detail the methodology used for sample analysis in the Greater Mongoose prospect area:

- The samples consist of 1m intervals of RC drill chips that have been analysed using an Olympus Vanta pXRF.
- The drilling captures the RC sample into a large green bag sample and splits off a small representative sample into a white calico bag. The calico bag sample is then run through a lab riffle splitter to produce a separate 1/4 sample. The 1/4 sample is then sieved to -2mm with the coarse sample being rejected and the fines are preserved for pXRF analyses. The pXRF undergoes a calibration check at the beginning of each day.
- 2 beam geochemistry mode was used with a beam reading time of 10 seconds for beam 1 and 25 seconds for beam 2.

<sup>&</sup>lt;sup>7</sup> See ASX Release dated 8 May 2023; Up to 25% Cu confirms Mongoose high grade copper sulphide.

<sup>&</sup>lt;sup>8</sup> See ASX Release dated 4 July 2023; Large high-grade copper zones continue at Mongoose.

<sup>&</sup>lt;sup>9</sup> See ASX Release dated 12 December 2023; Maiden Mongoose Cu-Au Mineral Resource Estimate at Cloncurry Project.

<sup>&</sup>lt;sup>10</sup> See ASX Release dated 16 January 2023 Renegade assumes control of Mongoose Project.



- A duplicate, standard, and blank reading was taken every ~50m with good repeatability.
- The operating temperature for the pXRF was within the recommended temperature range of -10 to 50°C.

An example of the scatter plot between a series of sieved duplicate samples and the original laboratory copper results is presented below. Larger variation in results is expected due to the field duplicate nature of the sampling (taken from the large green sample bag) when compared to the current process of splitting a sub-sample from the smaller white calico sample bag.

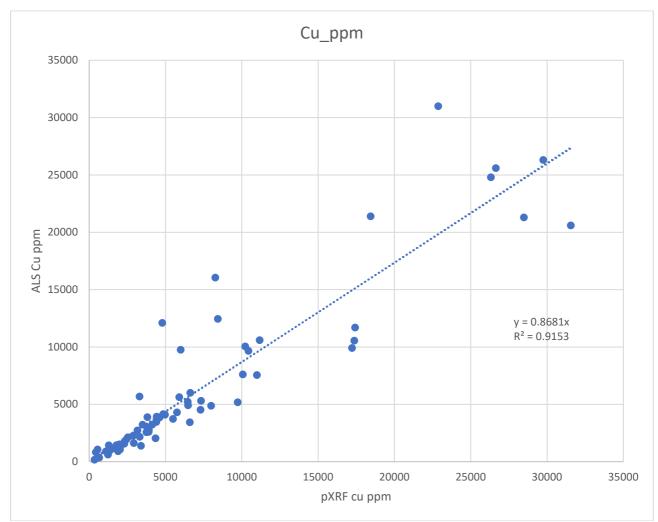



Figure 3: Scatter plot showing the sieved field duplicate pXRF result against the ALS laboratory copper result



#### Table 1: Drill hole pXRF copper results

| Hole ID | From m | To m | Cu ppm pXRF | Hole ID    | From m | To m | Cu ppm pXRF |
|---------|--------|------|-------------|------------|--------|------|-------------|
| RMZ001  | 38     | 39   | 3084        | RMG035     | 69     | 70   | 3510        |
| RMZ001  | 39     | 40   | 2863        | RMG035     | 70     | 71   | 14073       |
| RMZ001  | 40     | 41   | 3229        | RMG035     | 71     | 72   | 8498        |
| RMZ001  | 41     | 42   | 4543        | RMG035     | 72     | 73   | 7518        |
| RMZ001  | 42     | 43   | 3113        | RMG035     | 73     | 74   | 4318        |
| RMZ001  | 43     | 44   | 7767        | RMG035     | 74     | 75   | 6156        |
| RMG034  | 153    | 154  | 3269        | RMG035     | 75     | 76   | 7134        |
| RMG034  | 154    | 155  | 2936        | RMG035     | 76     | 77   | 1342        |
| RMG034  | 155    | 156  | 1125        | RMG035     | 77     | 78   | 1547        |
| RMG034  | 156    | 157  | 208         | RMG035     | 78     | 79   | 2074        |
| RMG034  | 157    | 158  | 1223        | RMG035     | 79     | 80   | 3093        |
| RMG034  | 158    | 159  | 387         | RMG035     | 80     | 81   | 1934        |
| RMG034  | 159    | 160  | 518         | RMG035     | 81     | 82   | 957         |
| RMG034  | 160    | 161  | 7525        | RMG035     | 82     | 83   | 5364        |
| RMG034  | 161    | 162  | 3527        | RMG035     | 83     | 84   | 2146        |
| RMG034  | 162    | 163  | 1890        | RMG035     | 84     | 85   | 2060        |
| RMG034  | 163    | 164  | 2928        | RMG035     | 85     | 86   | 5919        |
| RMG034  | 164    | 165  | 3626        | <br>RMG035 | 86     | 87   | 7177        |
| RMG034  | 165    | 166  | 1713        | RMG035     | 87     | 88   | 1719        |
| RMG034  | 166    | 167  | 576         | RMG035     | 88     | 89   | 1366        |
| RMG034  | 167    | 168  | 437         | RMG035     | 89     | 90   | 1009        |
| RMG034  | 168    | 169  | 120         | RMG035     | 90     | 91   | 257         |
| RMG034  | 169    | 170  | 281         | RMG035     | 91     | 92   | 1204        |
| RMG034  | 170    | 171  | 564         | RMG035     | 92     | 93   | 2928        |
| RMG034  | 173    | 172  | 1961        | RMG035     | 93     | 94   | 978         |
| RMG034  | 172    | 173  | 3650        | RMG035     | 94     | 95   | 422         |
| RMG034  | 173    | 174  | 938         | RMG035     | 95     | 96   | 1014        |
| RMG034  | 174    | 175  | 253         | RMG035     | 96     | 97   | 3723        |
| RMG034  | 175    | 176  | 2085        | RMG035     | 97     | 98   | 3922        |
| RMG034  | 176    | 177  | 550         | RMG035     | 98     | 99   | 1658        |
| RMG034  | 177    | 178  | 423         | RMG035     | 99     | 100  | 26687       |
| RMG034  | 178    | 179  | 123         | RMG035     | 100    | 101  | 9548        |
| RMG034  | 179    | 180  | 180         | RMG035     | 101    | 102  | 3000        |
| RMG034  | 180    | 181  | 221         | RMG035     | 102    | 103  | 3548        |
| RMG034  | 181    | 182  | 8016        | RMG035     | 103    | 104  | 2185        |
| RMG034  | 182    | 183  | 2914        | RMG035     | 104    | 105  | 4684        |
| RMG035  | 55     | 56   | 7567        | RMG035     | 105    | 106  | 2077        |
| RMG035  | 56     | 57   | 1000        | RMG035     | 106    | 107  | 5685        |
| RMG035  | 57     | 58   | 1853        | RMG035     | 107    | 108  | 2966        |
| RMG035  | 58     | 59   | 713         | RMG035     | 108    | 109  | 6865        |
| RMG035  | 59     | 60   | 20023       | RMG035     | 109    | 110  | 8061        |
| RMG035  | 60     | 61   | 38997       | RMG035     | 110    | 111  | 4846        |
| RMG035  | 61     | 62   | 19099       | RMG035     | 111    | 112  | 2547        |
| RMG035  | 62     | 63   | 14572       | RMG035     | 112    | 113  | 2927        |
| RMG035  | 63     | 64   | 13328       | RMG035     | 113    | 114  | 4708        |
| RMG035  | 64     | 65   | 24415       | RMG035     | 114    | 115  | 6812        |
| RMG035  | 65     | 66   | 13798       | RMG035     | 115    | 116  | 5579        |
| RMG035  | 66     | 67   | 7028        | RMG035     | 116    | 117  | 10156       |
| RMG035  | 67     | 68   | 4075        | RMG035     | 117    | 118  | 3539        |
| RMG035  | 68     | 69   | 9513        | RMG035     | 118    | 119  | 2008        |



| Hole ID          | From m | To m | Cu ppm pXRF | Hole ID    | From m | To m | Cu ppm pXRF |
|------------------|--------|------|-------------|------------|--------|------|-------------|
| RMG035           | 119    | 120  | 16360       | RMG036     | 11     | 12   | 89          |
| RMG035           | 120    | 120  | 37775       | RMG036     | 12     | 13   | 1201        |
| RMG035           | 120    | 121  | 20827       | RMG036     | 12     | 14   | 450         |
| RMG035           | 121    | 122  | 9892        | <br>RMG036 | 14     | 15   | 282         |
| RMG035           | 122    | 123  | 1896        | RMG036     | 14     | 16   | 3248        |
| RMG035<br>RMG035 | 123    | 124  | 1239        | RMG036     | 16     | 17   | 6959        |
|                  | 124    |      |             |            | 17     |      | 4249        |
| RMG035           |        | 126  | 901         | <br>RMG036 |        | 18   |             |
| RMG035           | 126    | 127  | 12534       | RMG036     | 18     | 19   | 2586        |
| RMG035           | 127    | 128  | 8950        | RMG036     | 19     | 20   | 2221        |
| RMG035           | 128    | 129  | 1539        | RMG036     | 20     | 21   | 1253        |
| RMG035           | 129    | 130  | 5390        | <br>RMG036 | 21     | 22   | 628         |
| RMG035           | 130    | 131  | 685         | RMG036     | 22     | 23   | 1189        |
| RMG035           | 131    | 132  | 4050        | RMG036     | 23     | 24   | 789         |
| RMG035           | 132    | 133  | 3451        | RMG036     | 24     | 25   | 6126        |
| RMG035           | 133    | 134  | 5662        | RMG036     | 25     | 26   | 4549        |
| RMG035           | 134    | 135  | 7406        | RMG036     | 26     | 27   | 3683        |
| RMG035           | 135    | 136  | 3779        | RMG036     | 27     | 28   | 1363        |
| RMG035           | 136    | 137  | 2774        | RMG036     | 28     | 29   | 1050        |
| RMG035           | 137    | 138  | 4823        | RMG036     | 29     | 30   | 7683        |
| RMG035           | 138    | 139  | 4385        | RMG036     | 30     | 31   | 14816       |
| RMG035           | 139    | 140  | 3197        | RMG036     | 31     | 32   | 3967        |
| RMG035           | 140    | 141  | 3621        | RMG036     | 32     | 33   | 2756        |
| RMG035           | 141    | 142  | 6939        | RMG036     | 33     | 34   | 2963        |
| RMG035           | 142    | 143  | 7171        | RMG036     | 34     | 35   | 2185        |
| RMG035           | 143    | 144  | 5422        | RMG036     | 35     | 36   | 3279        |
| RMG035           | 144    | 145  | 2151        | RMG036     | 36     | 37   | 730         |
| RMG035           | 145    | 146  | 2341        | RMG036     | 37     | 38   | 12538       |
| RMG035           | 146    | 147  | 5487        | RMG036     | 38     | 39   | 2928        |
| RMG035           | 147    | 148  | 2727        | RMG036     | 39     | 40   | 12713       |
| RMG035           | 148    | 149  | 4673        | RMG036     | 40     | 41   | 17489       |
| RMG035           | 149    | 150  | 2896        | RMG036     | 41     | 42   | 22651       |
| RMG035           | 150    | 151  | 14224       | RMG036     | 42     | 43   | 7735        |
| RMG035           | 151    | 152  | 4064        | RMG036     | 43     | 44   | 24714       |
| RMG035           | 152    | 153  | 1195        | RMG036     | 44     | 45   | 6953        |
| RMG035           | 153    | 154  | 2227        | RMG036     | 45     | 46   | 14211       |
| RMG035           | 154    | 155  | 4621        | RMG036     | 46     | 47   | 3498        |
| RMG035           | 155    | 156  | 3086        | RMG036     | 47     | 48   | 5204        |
| RMG035           | 156    | 157  | 2056        | RMG036     | 48     | 49   | 11424       |
| RMG035           | 157    | 158  | 6289        | RMG036     | 49     | 50   | 13121       |
| RMG035           | 158    | 159  | 2723        | RMG036     | 50     | 51   | 5997        |
| RMG035           | 159    | 160  | 5711        | RMG036     | 51     | 52   | 6810        |
| RMG035           | 160    | 161  | 5615        | RMG036     | 52     | 53   | 6606        |
| RMG035           | 161    | 162  | 7337        | RMG036     | 53     | 54   | 3403        |
| RMG036           | 3      | 4    | 1810        | RMG036     | 54     | 55   | 4476        |
| RMG036           | 4      | 5    | 3913        | RMG036     | 55     | 56   | 6500        |
| RMG036           | 5      | 6    | 1842        | RMG036     | 56     | 57   | 5975        |
| RMG036           | 6      | 7    | 407         | RMG036     | 57     | 58   | 2774        |
| RMG036           | 7      | 8    | 332         | RMG036     | 58     | 59   | 8161        |
| RMG036           | 8      | 9    | 194         | RMG036     | 59     | 60   | 19423       |
| RMG036           | 9      | 10   | 368         | RMG036     | 60     | 61   | 10850       |
| RMG036           | 10     | 10   | 64          | RMG036     | 61     | 62   | 3231        |
|                  | 10     |      | 04          |            | 01     | 02   | 3231        |



| Hole ID | From m | To m | Cu ppm pXRF | Hole ID | From m | To m | Cu ppm pXRF |
|---------|--------|------|-------------|---------|--------|------|-------------|
| RMG036  | 62     | 63   | 2270        | RMG038  | 220    | 221  | 11891       |
| RMG036  | 63     | 64   | 4872        | RMG038  | 221    | 222  | 2373        |
| RMG036  | 64     | 65   | 4872        | RMG038  | 222    | 223  | 482         |
| RMG036  | 65     | 66   | 3442        | RMG038  | 223    | 224  | 271         |
| RMG036  | 66     | 67   | 2533        | RMG038  | 224    | 225  | 1917        |
| RMG036  | 67     | 68   | 1716        | RMG038  | 225    | 226  | 1540        |
| RMG036  | 68     | 69   | 1423        | RMG038  | 324    | 325  | 2380        |
| RMG036  | 69     | 70   | 1269        | RMG038  | 325    | 326  | 26638       |
| RMG036  | 70     | 71   | 1039        | RMG038  | 326    | 327  | 4026        |
| RMG036  | 71     | 72   | 1604        |         |        |      |             |
| RMG036  | 72     | 73   | 580         |         |        |      |             |
| RMG036  | 73     | 74   | 953         |         |        |      |             |
| RMG036  | 74     | 75   | 593         |         |        |      |             |
| RMG036  | 75     | 76   | 5267        |         |        |      |             |
| RMG036  | 76     | 77   | 2294        |         |        |      |             |
| RMG036  | 77     | 78   | 4799        |         |        |      |             |
| RMG036  | 78     | 79   | 1932        |         |        |      |             |
| RMG036  | 79     | 80   | 1384        |         |        |      |             |
| RMG036  | 80     | 81   | 1360        |         |        |      |             |
| RMG036  | 81     | 82   | 1265        |         |        |      |             |
| RMG036  | 82     | 83   | 1178        |         |        |      |             |
| RMG036  | 83     | 84   | 6220        |         |        |      |             |
| RMG036  | 84     | 85   | 8910        |         |        |      |             |
| RMG036  | 85     | 86   | 6796        |         |        |      |             |
| RMG036  | 86     | 87   | 8130        |         |        |      |             |
| RMG036  | 87     | 88   | 3753        |         |        |      |             |
| RMG036  | 88     | 89   | 2141        |         |        |      |             |
| RMG036  | 89     | 90   | 10450       |         |        |      |             |
| RMG036  | 90     | 91   | 7061        |         |        |      |             |
| RMG036  | 91     | 92   | 15914       |         |        |      |             |
| RMG036  | 92     | 93   | 16043       |         |        |      |             |
| RMG036  | 93     | 94   | 8103        |         |        |      |             |
| RMG036  | 94     | 95   | 4274        |         |        |      |             |
| RMG036  | 95     | 96   | 3512        |         |        |      |             |
| RMG036  | 96     | 97   | 4356        |         |        |      |             |
| RMG036  | 97     | 98   | 1794        |         |        |      |             |
| RMG036  | 98     | 99   | 8495        |         |        |      |             |
| RMG036  | 99     | 100  | 5068        |         |        |      |             |
| RMG036  | 100    | 101  | 8416        |         |        |      |             |
| RMG036  | 101    | 102  | 13516       |         |        |      |             |
| RMG036  | 102    | 103  | 6355        |         |        |      |             |
| RMG036  | 103    | 104  | 3961        |         |        |      |             |
| RMG036  | 104    | 105  | 3328        |         |        |      |             |
| RMG036  | 105    | 106  | 1811        |         |        |      |             |
| RMG036  | 106    | 107  | 740         |         |        |      |             |
| RMG036  | 107    | 108  | 1134        |         |        |      |             |
| RMG037  | 33     | 34   | 1480        |         |        |      |             |
| RMG037  | 34     | 35   | 2058        |         |        |      |             |
| RMG037  | 35     | 36   | 305         |         |        |      |             |
| RMG037  | 36     | 37   | 17609       |         |        |      |             |
| RMG037  | 37     | 38   | 1017        |         |        |      |             |



| Hole ID          | From m   | To m     | Cu ppm | Hole ID          | From m   | To m     | Cu ppm |
|------------------|----------|----------|--------|------------------|----------|----------|--------|
| RMG009           | 10       | 11       | 15600  | RMG011           | 51       | 52       | 27200  |
| RMG009           | 11       | 12       | 4510   | RMG011           | 52       | 53       | 7060   |
| RMG009           | 12       | 13       | 4400   | RMG011           | 53       | 54       | 1180   |
| RMG009           | 13       | 14       | 561    | RMG011           | 54       | 55       | 1170   |
| RMG009           | 14       | 15       | 519    | RMG011           | 55       | 56       | 1360   |
| RMG009           | 15       | 16       | 823    | RMG011           | 56       | 57       | 1410   |
| RMG009           | 16       | 10       | 491    | RMG011           | 57       | 58       | 1030   |
| RMG009           | 17       | 18       | 2340   | RMG011           | 58       | 59       | 625    |
| RMG009           | 18       | 19       | 10550  | RMG011           | 59       | 60       | 4270   |
| RMG009           | 19       | 20       | 7560   | RMG011           | 60       | 61       | 3440   |
| RMG009           | 20       | 20       | 4850   | RMG011           | 61       | 62       | 3830   |
| RMG009           | 20       | 22       | 2380   | RMG011           | 62       | 63       | 9140   |
| RMG009           | 22       | 23       | 3700   | RMG011           | 63       | 64       | 19700  |
| RMG009           | 23       | 24       | 1550   | RMG011           | 64       | 65       | 1060   |
| RMG009           | 24       | 25       | 2440   | RMG011           | 65       | 66       | 1465   |
| RMG009           | 25       | 26       | 234    | RMG011           | 66       | 67       | 3130   |
| RMG009           | 26       | 20       | 1425   | RMG011           | 67       | 68       | 2190   |
| RMG009           | 27       | 28       | 1210   | RMG011           | 68       | 69       | 7260   |
| RMG009           | 28       | 29       | 3770   | RMG011           | 69       | 70       | 5480   |
| RMG009           | 29       | 30       | 7590   | RMG011           | 70       | 70       | 2740   |
| RMG009           | 30       | 31       | 7480   | RMG011           | 70       | 72       | 5060   |
| RMG009           | 31       | 32       | 6220   | RMG011           | 72       | 73       | 2120   |
| RMG009           | 32       | 33       | 988    | RMG011<br>RMG011 | 73       | 73       | 1990   |
| RMG009           | 33       | 33       | 2160   | RMG011<br>RMG011 | 74       | 74       | 1830   |
| RMG009           | 34       | 35       | 34700  | RMG011<br>RMG011 | 74       | 76       | 2640   |
| RMG009           | 35       | 36       | 3640   | RMG011           | 76       | 70       | 4120   |
| RMG009           | 36       | 37       | 1380   | RMG011<br>RMG011 | 70       | 78       | 2170   |
| RMG009           | 37       | 38       | 1035   | RMG011           | 78       | 70       | 3420   |
| RMG003           | 28       | 29       | 2480   | RMG011<br>RMG011 | 79       | 80       | 2090   |
| RMG011           | 29       | 30       | 2600   | RMG011           | 80       | 81       | 978    |
| RMG011           | 30       | 31       | 1220   | RMG011<br>RMG011 | 81       | 82       | 1110   |
| RMG011           | 31       | 32       | 1070   | RMG011           | 82       | 83       | 1630   |
| RMG011           | 32       | 33       | 295    | RMG011           | 83       | 84       | 719    |
| RMG011           | 33       | 34       | 348    | RMG011           | 84       | 85       | 464    |
| RMG011           | 34       | 35       | 152    | RMG011           | 85       | 86       | 780    |
| RMG011           | 35       | 36       | 250    | RMG011           | 86       | 87       | 877    |
| RMG011           | 36       | 37       | 321    | RMG011           | 87       | 88       | 5950   |
| RMG011           | 37       | 38       | 504    | MGX020           | 0        | 1        | 1180   |
| RMG011           | 38       | 39       | 547    | MGX020           | 1        | 2        | 2980   |
| RMG011           | 39       | 40       | 20400  | MGX020           | 2        | 3        | 1930   |
| RMG011           | 40       | 40       | 902    | MGX020           | 3        | 4        | 692    |
| RMG011<br>RMG011 | 40       | 41       | 834    | MGX020           | 4        | 5        | 923    |
| RMG011<br>RMG011 | 41       | 42       | 1980   | MGX020           | 5        | 6        | 715    |
| RMG011<br>RMG011 | 42       | 43       | 683    | MGX020           | 6        | 7        | 984    |
| RMG011<br>RMG011 | 43       | 44       | 208    | MGX020           | 7        | 8        | 789    |
| RMG011<br>RMG011 | 44       | 45       | 303    | MGX020           | 8        | 8<br>9   | 785    |
| RMG011<br>RMG011 | 45<br>46 | 40       | 114    | MGX020<br>MGX020 | 9        | 9<br>10  | 1860   |
|                  |          |          |        |                  |          | 10       | 883    |
| RMG011           | 47       | 48       | 854    | MGX020           | 10       |          | 2820   |
| RMG011           | 48<br>49 | 49       | 731    | MGX020           | 11<br>12 | 12<br>13 |        |
| RMG011           |          | 50<br>51 | 23900  | MGX020           |          |          | 924    |
| RMG011           | 50       | 51       | 22400  | MGX020           | 13       | 14       | 1470   |

 Table 2: Drill hole copper assay information related to cross section, Figure 1



| Hole ID | From m | To m | Cu ppm | Hole ID | From m | To m | Cu ppm |
|---------|--------|------|--------|---------|--------|------|--------|
| MGX020  | 14     | 15   | 4780   | MGX020  | 56     | 57   | 1050   |
| MGX020  | 15     | 16   | 4530   | MGX020  | 57     | 58   | 448    |
| MGX020  | 16     | 17   | 12700  | MGX020  | 58     | 59   | 874    |
| MGX020  | 17     | 18   | 10600  | MGX020  | 59     | 60   | 1650   |
| MGX020  | 18     | 19   | 12050  | MGX020  | 60     | 61   | 1230   |
| MGX020  | 19     | 20   | 7760   | MGX020  | 61     | 62   | 991    |
| MGX020  | 20     | 20   | 1890   | MGX020  | 62     | 63   | 299    |
| MGX020  | 20     | 22   | 1250   | MGX020  | 63     | 64   | 1100   |
| MGX020  | 21     | 22   | 7850   | MGX020  | 64     | 65   | 1000   |
| MGX020  | 23     | 23   | 8580   | MGX020  | 65     | 66   | 3060   |
| MGX020  | 23     | 24   | 7770   | MGX020  | 66     | 67   | 1170   |
| MGX020  | 24     | 25   | 6470   |         | 67     | 68   | 945    |
|         |        |      |        | MGX020  |        |      |        |
| MGX020  | 26     | 27   | 7100   | MGX020  | 68     | 69   | 4610   |
| MGX020  | 27     | 28   | 2730   | MGX020  | 69     | 70   | 1770   |
| MGX020  | 28     | 29   | 1500   | MGX020  | 70     | 71   | 1455   |
| MGX020  | 29     | 30   | 5500   | MGX020  | 71     | 72   | 1115   |
| MGX020  | 30     | 31   | 3870   | MGX020  | 72     | 73   | 1340   |
| MGX020  | 31     | 32   | 7270   | MGX020  | 73     | 74   | 926    |
| MGX020  | 32     | 33   | 2040   | MGX020  | 74     | 75   | 7980   |
| MGX020  | 33     | 34   | 668    | MGX020  | 75     | 76   | 2810   |
| MGX020  | 34     | 35   | 534    | MGX020  | 76     | 77   | 400    |
| MGX020  | 35     | 36   | 3410   | MGX020  | 77     | 78   | 1910   |
| MGX020  | 36     | 37   | 227    |         |        |      |        |
| MGX020  | 37     | 38   | 1180   |         |        |      |        |
| MGX020  | 38     | 39   | 1120   |         |        |      |        |
| MGX020  | 39     | 40   | 285    |         |        |      |        |
| MGX020  | 40     | 41   | 4630   |         |        |      |        |
| MGX020  | 41     | 42   | 4810   |         |        |      |        |
| MGX020  | 42     | 43   | 1200   |         |        |      |        |
| MGX020  | 43     | 44   | 844    |         |        |      |        |
| MGX020  | 44     | 45   | 2400   |         |        |      |        |
| MGX020  | 45     | 46   | 2480   |         |        |      |        |
| MGX020  | 46     | 47   | 5400   |         |        |      |        |
| MGX020  | 47     | 48   | 12550  |         |        |      |        |
| MGX020  | 48     | 49   | 18850  |         |        |      |        |
| MGX020  | 49     | 50   | 5220   |         |        |      |        |
| MGX020  | 50     | 51   | 6070   |         |        |      |        |
| MGX020  | 51     | 52   | 5420   |         |        |      |        |
| MGX020  | 52     | 53   | 3740   |         |        |      |        |
| MGX020  | 53     | 54   | 1830   |         |        |      |        |
| MGX020  | 54     | 55   | 4700   |         |        |      |        |
| MGX020  | 55     | 56   | 1490   |         |        |      |        |
| MGX020  | 56     | 57   | 1050   |         |        |      |        |
| MGX020  | 57     | 58   | 448    |         |        |      |        |
| MGX020  | 58     | 59   | 874    |         |        |      |        |
| MGX020  | 59     | 60   | 1650   |         |        |      |        |
| MGX020  | 60     | 61   | 1230   |         |        |      |        |
| MGX020  | 61     | 62   | 991    |         |        |      |        |
| MGX020  | 62     | 63   | 299    |         |        |      |        |
| MGX020  | 63     | 64   | 1100   |         |        |      |        |
| MGX020  | 64     | 65   | 1000   |         |        |      |        |



#### Table 3: Drillhole collar information

| Hole ID | East MGA | North MGA | RL m | EOH m | Dip | Azi MGA |
|---------|----------|-----------|------|-------|-----|---------|
| RMG034  | 448048   | 7708690   | 206  | 300   | -55 | 230     |
| RMG035  | 448047   | 7708435   | 203  | 180   | -70 | 179     |
| RMG036  | 448046   | 7708338   | 202  | 138   | -90 | 0       |
| RMG037  | 447757   | 7708135   | 204  | 126   | -55 | 275     |
| RMG038  | 447638   | 7708389   | 200  | 500   | -65 | 117     |
| RMZ001  | 447314   | 7708993   | 195  | 66    | -55 | 284     |

## This announcement has been approved by the Board of Renegade Exploration Limited.

## For more information, please contact:

Robert Kirtlan Director Phone 1 300 525 118 info@renegadeexploration.com Gareth Quinn Investor Relations Mobile + 61 417 711 108 gareth@republicpr.com.au



#### **Cautionary Statement**

The company uses an Olympus Vanta portable hand-held XRF analyser to screen samples for mineralisation before submitting samples to the lab for assay. This allows for some understanding of the distribution of mineralisation prior to sampling to better ensure that samples submitted for analysis are representative of the type and style of mineralisation. The hand-held XRF provides confirmation that mineralisation is present however it is not an accurate determination of the elemental concentration within the sample analysed. The use of pXRF readings only provides the indication of the order of magnitude of formal assay results and is not considered equivalent to a laboratory analysed sample result. Limitations include very small analysis window, possible inhomogeneous distribution of mineralisation, analytical penetration depth, possible effects from irregular rock surfaces. These results obtained from the hand-held XRF are indicative only and may not be representative of elemental concentration within the material sampled. The pXRF readings are subject to confirmation by chemical analysis from an independent laboratory.

#### **Competent Person Statement and Geological Information Sources**

The information in this announcement that relates to Exploration Targets and Exploration Results for the Mongoose Project is based on information compiled by Mr Edward Fry, who is a full-time employee of the Company. Mr Fry is a Member of the Australian Institute of Mining and Metallurgy. Mr Fry has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australiaan Code for Reporting of Exploration Results (JORC Code). Mr Fry consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The references in this announcement to Exploration Results were reported in accordance with Listing Rule 5.7 in the following announcements:

| ASX Release Title                                                                            | Date              |
|----------------------------------------------------------------------------------------------|-------------------|
| Renegade assumes control of Mongoose Project                                                 | 16 January 2023   |
| Drilling intercepts near surface copper at Mongoose                                          | 31 March 2024     |
| Drilling continues to intercept near surface copper at Mongoose                              | 1 May 2023        |
| Up to 25% Cu confirms Mongoose high grade copper sulphide                                    | 8 May 2023        |
| Large high-grade copper zones continue at Mongoose                                           | 4 July 2023       |
| Maiden Mongoose Cu-Au Mineral Resource Estimate at Cloncurry Project                         | 12 December 2023  |
| Ernest Henry style IOCG zone discovered at Mongoose Deeps                                    | 2 July 2024       |
| New magnetic anomalies identified at Greater Mongoose Prospect drives next drilling program. | 19 September 2024 |

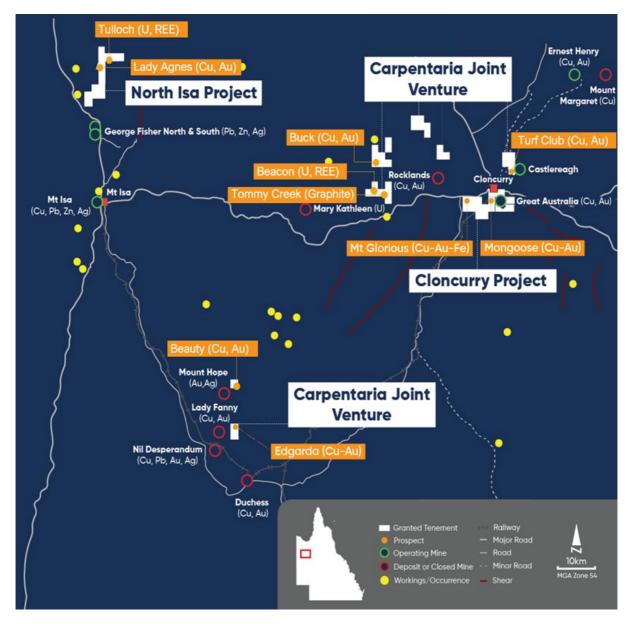
The company confirms it is not aware of any new information or data that materially affects the information included in the previous market announcements noted above.

The references in this announcement to Mineral Resource estimates were reported in accordance with Listing Rule 5.8 in the following announcement:

| ASX Release Title                                                    | Date             |
|----------------------------------------------------------------------|------------------|
| Maiden Mongoose Cu-Au Mineral Resource Estimate at Cloncurry Project | 12 December 2023 |

In accordance with ASX Listing Rule 5.23, the Company confirms that it is not aware of any new information or data that materially affects the information included in the previous market announcement noted above and that all material assumptions and technical parameters underpinning the Mineral Resource estimates in the previous market announcement continue to apply.




## **About Renegade Exploration Limited**

# Renegade Exploration Limited (ASX:RNX) is an Australian based minerals exploration company developing a portfolio of advanced copper and gold projects in north-west Queensland.

Renegade's immediate primary focus is the Cloncurry Project located in mining infrastructure rich Cloncurry. In January 2023, Renegade reached an agreement with Carpentaria Joint Venture partner Mount Isa Mines (MIM) to become sole operator and funder of the project<sup>11</sup>, which is very advanced in terms of exploration activity.

The company expanded its north-west Queensland operations with a 75% interest in a joint venture on the North Isa Project, located just north of MIM's George Fisher mining operations near Mount Isa and has permits in the Barcaldine region prospective for rare earths and vanadium.

More recently Renegade has been making applications over permits directly south of Cloncurry along major regional fault structures and will plan work once granted in the 2025 field season.



For further information www.renegadeexploration.com

<sup>&</sup>lt;sup>11</sup> Refer ASX Release; Renegade assumes control of Mongoose Project dated 16 January 2023

# 

# JORC Code, 2012 Edition – Table 1

# Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The samples consist of 1m intervals of RC drill chips that have been analysed using an Olympus Vanta pXRF.</li> <li>The drilling captures the RC sample into a large green bag sample and splits off a small representative sample into a white calico bag. The calico bag sample is then run through a lab riffle splitter to produce a separate ¼ sample. The ¼ sample is then sieved to -2mm with the coarse sample being rejected and the fines are preserved for pXRF analyses. The pXRF undergoes a calibration check at the beginning of day.</li> <li>2 beam geochemistry mode was used with a beam reading time of 10 seconds for beam 1 and 25 seconds for beam 2.</li> <li>A duplicate, standard, and blank reading was taken every ~50m with good repeatability.</li> <li>The operating temperature for the pXRF was within the recommended temperature range of -10 to 50c.</li> <li>The samples were almost entirely dry.</li> <li>Competent person considers the sample and analytical procedures for the pXRF and laboratory assay to be acceptable for early-stage exploration project.</li> <li>The relevant calico samples have been sent to the lab for analyses.</li> </ul> |
| Drilling<br>techniques | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air<br/>blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple<br/>or standard tube, depth of diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>A reverse circulation rig with a 5.5inch bit with an air<br/>booster/auxiliary truck was used for the drilling.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries<br/>and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure<br/>representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade<br/>and whether sample bias may have occurred due to preferential<br/>loss/gain of fine/coarse material.</li> </ul>           | <ul> <li>The sample green bags were visually assessed for any significant sample loss. No Significant sample loss was recorded.</li> <li>The use of a powerful air auxiliary and booster truck was used to maintain good recoveries and to ensure representativity.</li> <li>There is no known relationship between the sample recoveries and the sample grade.</li> </ul>                                                |
| Logging                  | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul> | <ul> <li>RC logging was completed on a metre-by-metre basis. Lithology, oxidization, alteration and mineralization were logged.</li> <li>Magnetic susceptibility readings were taken on a metre-by-metre basis using a KT-10.</li> <li>Logging was completed onto paper by the on-site geologist and later transcribed into excel before being imported into Micromine for evaluation and database management.</li> </ul> |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>The RC chips were photographed.</li> <li>The level of logging detail is considered appropriate and sufficient to support this resource estimation.</li> <li>All holes were logged in full.</li> </ul>                                                                                                                                                                                                            |

# 

| Criteria                                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>A rig attached cone splitter was used to separate a representative sampling into the white calico bag for each meter drilled. The samples were almost always dry.</li> <li>The method of sub sampling is industry standard for this type of deposit.</li> <li>At each 20m interval, a certified reference blank and standard were inserted into the samples sent to the lab for analyses.</li> <li>A duplicate split calico sample was taken every 20m for the drilling.</li> <li>The sample sizes are considered as being appropriate for the material being tested.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Quality of<br>assay data<br>and<br>laboratory<br>tests      | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul>                                                                             | <ul> <li>The pXRF data presented is preliminary in nature and should be considered as being semi-quantitative.</li> <li>The calico bag sample is then run through a lab riffle splitter to produce a separate ¼ sample. The ¼ sample is then sieved to - 2mm with the coarse sample being rejected and the fines are preserved for pXRF analyses.</li> <li>A test comparison from hole RMG018 consisting of 70 samples was conducted to test the validity of the pXRF spot sampling. A separate spear sub sample was collected from the bulk green bag and was sieved down to -2 mm. The comparison of the - 2mm sample and the original sample ALS Cu result revealed an excellent correlation with an R2 of 0.915 (y = 0.8681x). The comparison between the random spot sample and the -2mm sample shows a similarly excellent correlation with an R2 of 0.8981 (y = 0.9852x). Finally, the comparison between the spot samples and the ALS samples resulted in an excellent correlation with an R2 of 0.9447. Based on this testing, it was concluded that the inclusion of the pXRF spot sample data set into the resource model is valid.</li> </ul> |

| Criteria                 | JORC Code explanation                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                                                                                                                                               | • The spot samples were analysed with an Olympus Vanta (model VANTA VMR-CCC-Y) handheld XRF with read times of 35 seconds (10, 25, 0 seconds per the three beams). The analysis times were determined by not requiring the 3 <sup>rd</sup> Beam and by testing the repeatability of the main target elements (mainly copper) for 30, 25, 20, 15, and 10 second times) not significant difference was detected within the grouping and trends for the main elements. |
|                          |                                                                                                                                                                                               | <ul> <li>Competent person considers the sample and analytical<br/>procedures for the pXRF and laboratory assay to be acceptable<br/>for early-stage exploration project</li> </ul>                                                                                                                                                                                                                                                                                  |
| Verification of sampling | • The verification of significant intersections by either independent or alternative company personnel.                                                                                       | <ul> <li>Significant intersections have been validated against geological<br/>logging and assays where they are available.</li> </ul>                                                                                                                                                                                                                                                                                                                               |
| and                      | The use of twinned holes.                                                                                                                                                                     | • The RNX drill logging was done on paper then transcribed into                                                                                                                                                                                                                                                                                                                                                                                                     |
| assaying                 | <ul> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | excel. All historical logging has been digitised and is available in<br>the open file reports stored by the QLD government. All data is<br>currently being stored in Micromine where several data validation                                                                                                                                                                                                                                                        |
| I a antion of            |                                                                                                                                                                                               | checks have been made to ensure data accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Location of data points  | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and<br/>down-hole surveys), trenches, mine workings and other locations</li> </ul>                                | <ul> <li>A hand-held GPS was used to locate the drill hole position using<br/>GDA 94 (MGA zone 54).</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |
|                          | used in Mineral Resource estimation.                                                                                                                                                          | • The topographic control is considered suitable for the exploration                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | Specification of the grid system used.                                                                                                                                                        | stage of the project.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | Quality and adequacy of topographic control.                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Data                     | Data spacing for reporting of Exploration Results.                                                                                                                                            | • Drilling density is typically 50 x 50m in the well drilled areas and                                                                                                                                                                                                                                                                                                                                                                                              |
| spacing                  | • Whether the data spacing and distribution is sufficient to establish the                                                                                                                    | sporadic on the fringes.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| and<br>distribution      | degree of geological and grade continuity appropriate for the Mineral<br>Resource and Ore Reserve estimation procedure(s) and<br>classifications applied.                                     | <ul> <li>Data spacing and distribution is sufficient to establish the degree<br/>of geological and grade continuity appropriate for the resource<br/>estimation and classification applied.</li> </ul>                                                                                                                                                                                                                                                              |
|                          | • Whether sample compositing has been applied.                                                                                                                                                | No sample compositing has been applied.                                                                                                                                                                                                                                                                                                                                                                                                                             |



| Criteria                                                            | J | ORC Code explanation                                                                                                                                                                                                                                                                                             | С | ommentary                                                                                                                                                                                                                 |
|---------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orientation<br>of data in<br>relation to<br>geological<br>structure | • | Whether the orientation of sampling achieves unbiased sampling of<br>possible structures and the extent to which this is known, considering<br>the deposit type.<br>If the relationship between the drilling orientation and the orientation<br>of key mineralised structures is considered to have introduced a | • | The RNX/MIM drill holes are mostly orientated towards 200 degrees azimuth (GDA).<br>The Sovereign holes are all orientated towards 225 degrees (GDA).<br>No sampling bias is known to exists, though it is not precluded. |
| Sample<br>security                                                  | • | sampling bias, this should be assessed and reported if material.<br>The measures taken to ensure sample security.                                                                                                                                                                                                | • | The chain of custody for historical data was not recorded in the historical exploration reports.                                                                                                                          |
|                                                                     |   |                                                                                                                                                                                                                                                                                                                  | • | The RNX drill samples were collected from site and stored at a secure facility with selected intervals sent to the Lab by RNX using Followmont Transport.                                                                 |
| Audits or<br>reviews                                                | • | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                            | • | No audits have been completed to date.                                                                                                                                                                                    |



# Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                            | J | ORC Code explanation                                                                                                                                                                                                                                                                     | C | commentary                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement<br>and land<br>tenure<br>status | • | Type, reference name/number, location and ownership including<br>agreements or material issues with third parties such as joint<br>ventures, partnerships, overriding royalties, native title interests,<br>historical sites, wilderness or national park and environmental<br>settings. | • | The company owns 23.03 % of the Carpentaria JV properties in QLD namely 8586, 1280, 12597, and 12561. EPM 8588 is in the excluded tenements category of the CJV and RNX ownership is currently ~35%. These tenements are located on the Mitakoodi people's traditional land. |
|                                                     | • | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.                                                                                                                                                 | • | The tenement is in good standing and no known impediments exist.                                                                                                                                                                                                             |
| Exploration<br>done by<br>other<br>parties          | • | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                            | • | Historical exploration was undertaken by Mount Isa Mining, a Glencore Company according to the terms of the Joint Venture.                                                                                                                                                   |
| Geology                                             | ٠ | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                            | • | The mineralization style is an Iron-Oxide-Copper-Gold (IOCG) system.                                                                                                                                                                                                         |
| Drill hole<br>Information                           | • | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:                                                                                                                  | • | Please refer to the drill hole collar, pXRF assay tables, and previous announcements referenced above.                                                                                                                                                                       |
|                                                     |   | <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> </ul>                                                                                                                |   |                                                                                                                                                                                                                                                                              |
|                                                     |   | <ul> <li>dip and azimuth of the hole</li> </ul>                                                                                                                                                                                                                                          |   |                                                                                                                                                                                                                                                                              |
|                                                     |   | <ul> <li>down hole length and interception depth</li> </ul>                                                                                                                                                                                                                              |   |                                                                                                                                                                                                                                                                              |
|                                                     |   | <ul> <li>hole length.</li> </ul>                                                                                                                                                                                                                                                         |   |                                                                                                                                                                                                                                                                              |
|                                                     | • | If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly                                                                        |   |                                                                                                                                                                                                                                                                              |



| Criteria                                                                             | JORC Code explanation                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                     |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      | explain why this is the case.                                                                                                                                                                                                                                                          |                                                                                                                                                                |
| Data<br>aggregatio<br>n methods                                                      | <ul> <li>In reporting Exploration Results, weighting averaging techniques,<br/>maximum and/or minimum grade truncations (eg cutting of high<br/>grades) and cut-off grades are usually Material and should be stated.</li> </ul>                                                       | <ul><li>Weighted average intervals are being reported.</li><li>No metal equivalents are being reported</li></ul>                                               |
|                                                                                      | <ul> <li>Where aggregate intercepts incorporate short lengths of high grade<br/>results and longer lengths of low grade results, the procedure used<br/>for such aggregation should be stated and some typical examples of<br/>such aggregations should be shown in detail.</li> </ul> |                                                                                                                                                                |
|                                                                                      | <ul> <li>The assumptions used for any reporting of metal equivalent values<br/>should be clearly stated.</li> </ul>                                                                                                                                                                    |                                                                                                                                                                |
| Relationshi<br>p between<br>mineralisati<br>on widths<br>and<br>intercept<br>lengths | • These relationships are particularly important in the reporting of<br>Exploration Results.                                                                                                                                                                                           | <ul> <li>The drill holes are orientated perpendicular to the significant<br/>magnetic anomalies and to the general trend of the<br/>mineralisation.</li> </ul> |
|                                                                                      | <ul> <li>If the geometry of the mineralisation with respect to the drill hole<br/>angle is known, its nature should be reported.</li> </ul>                                                                                                                                            | <ul> <li>The relationship between the mineralisation width and intercept<br/>width is unknown at present.</li> </ul>                                           |
|                                                                                      | <ul> <li>If it is not known and only the down hole lengths are reported, there<br/>should be a clear statement to this effect (eg 'down hole length, true<br/>width not known').</li> </ul>                                                                                            | width is unknown at present.                                                                                                                                   |
| Diagrams                                                                             | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                    | • Figures in text.                                                                                                                                             |
| Balanced<br>reporting                                                                | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                            | Representative reporting has been effected within this report.                                                                                                 |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                         |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other<br>substantive<br>exploration<br>data | • Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | <ul> <li>All interpretations are consistent with observations made and information gained during exploration.</li> <li>Drilling has been completed by three primary companies, Sovereign Metals Ltd, MIM, and Renegade Exploration Ltd.</li> </ul> |
| Further<br>work                             | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                     | <ul><li>To be determined.</li><li>Figures in text.</li></ul>                                                                                                                                                                                       |