

SIGNIFICANT NEAR SURFACE DISCOVERY OF 189.2M @ 1.3 G/T GOLD, ENDING IN MINERALISATION AT HORSE HEAVEN, IDAHO USA

Assay results from Resolution's maiden drill hole at the Golden Gate Prospect, HH-GG25-001C, return exceptional gold values over a wide downhole interval.

1.30g/t gold is recorded over a downhole interval of 189.2m from 34.1m.

As the first hole to test unoxidised mineralisation at Horse Heaven, HH-GG25-001C is considered a "<u>discovery hole</u>" of a possible intrusive-hosted gold system deposit at Golden Gate.

Highlights

At Golden Gate:

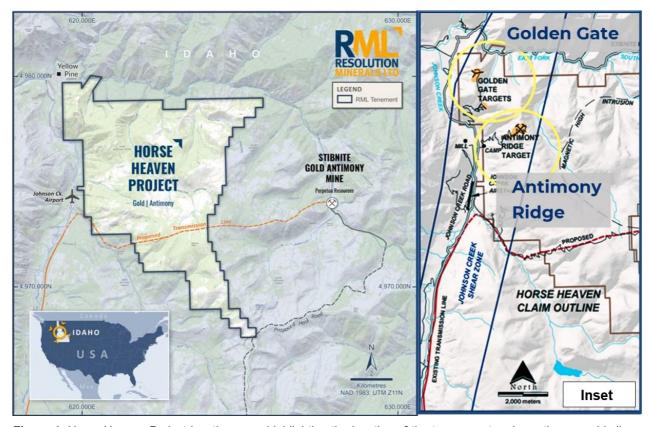
- Broad discovery intercept in maiden hole 189.2m @ 1.30 g/t Au from 34m, ending in mineralisation.
- Gold begins close to surface and continues over 223.4m with multiple higher-grade zones, including:
 - o 12.9m @ 2.32 g/t Au from 94.4m
 - o 70.8m @ 2.24 g/t Au from 128.8m
- Large system potential with geology, sulphides and alteration confirming the intrusive-hosted gold system model, the same deposit style that hosts Stibnite, only ~6km away.
- Gold mineralisation occurs at the surface and remains open to the north, south, and at depth, demonstrating the potential for a large shear zone-hosted gold deposit.
- Identical sulphides logged in drill holes HH-GG25-002C and HH-GG25-003C (results pending).
- Phase 1 drilling completed with a total of 10 holes for 2,770.6m across just a small portion of the Golden Gate target area.
- Multiple near-term catalysts include:
 - Assay results for the remainder of HH-GG25-001C and holes HH-GG25-002C and HH-GG25-003C are imminent.
 - Assay batch results from holes HH-GG25-004C to HH-GG25-010C to follow through the next few months.

At Antimony Ridge:

- Shallow drilling identifies multiple stibnite veins with samples being prepared for analysis; with results to be reported in due course.
- RML is currently conducting environmental studies ahead of applying for a permit to allow for an extensive maiden drill program at Antimony Ridge.
- RML's Horse Heaven project is strategically located in a district central to domestic critical mineral supply chains (gold-antimony-tungsten-silver), all aligned with the U.S. government's priorities to address the significant domestic critical metals shortage.

RML's CEO of US Operations, Craig Lindsay, commented on the discovery:

"Delivering a discovery intercept of 189m of continuous gold from just 34m depth which bottoms in mineralisation in our very first hole is a tremendous result.


"What excites us most is that we've confirmed a large intrusive-related gold system, the same style of system that hosts major deposits regionally, including Stibnite only 6km away.

With assays pending from the 9 remaining Golden Gate holes, several of which show the same style of mineralisation in visual core, we are building strong momentum. Golden Gate is only one of the multiple standout targets at Horse Heaven, and we believe this discovery hole is the first step in unlocking the broader district-scale potential of this Project."

Details

Resolution Minerals Ltd (ASX: RML; OTCQB: RLMLF) ("Resolution" or "Company") is very pleased to announce that its maiden drill program at its 100% owned Horse Heaven Gold-Antimony-Tungsten-Silver Project ("Horse Heaven" or the "Project"), Idaho, USA (Figure 1) has delivered a broad interval of near-surface gold mineralisation ending in mineralisation, confirming a significant new discovery at the Golden Gate Prospect.

Figure 1: Horse Heaven Project location map, highlighting the location of the two current major antimony-gold-silver-tungsten targets, the Golden Gate Target (where the Phase 1 Core Drilling Program was conducted) and the Antimony Ridge Target. Also highlighted is the fully-permitted Stibnite Gold Project, which is only 6km east of Horse Heaven. Note: Coordinates are UTM metres north and east metric system, not latitude/longitude.

The Company has received assays for the first 223.4m of drill hole HH-GG25-001C, which was drilled to a total depth of 231.6m. Final assays for the remaining 8.3m be released upon receipt.

Gold mineralisation is believed to be associated with pyrite, arsenian pyrite and arsenopyrite, which are evident throughout the hole, supporting an Intrusion-Related Gold System model.

Significant drilling intersections in:

- 189.2m @ 1.30 g/t Au from 34.1m to 223.4m, ending in mineralisation, including
 - 12.9m @ 2.32 g/t Au from 94.4m
 - o 29.6m @ 2.71 g/t Au from 131.8m
 - o 70.8m @ 2.24 g/t Au from 128.8m
- Mineralisation begins near surface and remains open to the north, south and at depth, highlighting the strong system scale potential.

With respect to the sample results currently available, the gold mineralisation in HH-GG25-001C is open-ended at depth.

Purpose of HH-GG25-001C

The intended purpose of HH-GG25-001C was to: i) Re-evaluate previously drilled gold occurrences in the oxidised profile (identified in pre-RML drilling); ii) Intersect sub-surface mineralisation subject of historical tungsten mining, close to where HH-GG25-001C was positioned; and iii) For the first time, identify possible un-oxidised mineralisation at depth.

Visible scheelite (tungsten indicator mineral) has also been logged in holes in HH-GG25-002C and HH-GG25-003C¹; supporting the multi-commodity potential of the system:

- HH-GG25-002C from 73.0m to 73.15m (239.5ft to 240.0ft) downhole interval;
- HH-GG25-003C from 0.6m to 0.75m (2.0ft to 2.5ft downhole) downhole interval; and
- HH-GG25-003C from 3.0m to 3.3m (9.9ft to 10.8ft) downhole interval.

Note: HH-GG25-001C and HH-GG25-002C are fanned holes (Figure 2).

Results of HH-GG25-001C

The Company is pleased to advise that drill hole HH-GG25-001C was successful in identifying, for the first time at Horse Heaven, material intervals of un-oxidised gold mineralisation.

The gold mineralisation is hosted in altered quartz-sericite to silicified monzonite, quartz-monzonite and granodiorite (Figure 3) and is closely associated with pyrite, arsenian pyrite, and arsenopyrite, which are described as occurring throughout the hole.

From surface to 320.6ft (97.7m) the drill hole intersected a significant width of oxidised fault gouge and cemented breccia (Figure 3). This oxidised material has gold grades of 0.21g/t Au over an interval of 90.5m from 0 to 297ft (0m to 90.5m).

Below the oxidation boundary and fault system, higher gold grades were intersected of 1.74g/t Au over an interval of 132.9m from 297ft to 732.9ft (90.5m to 223.4m).

¹ (ASX announcement dated 8 September 2025, titled "All Holes Positive with 750m of Drilling Completed in 12 Days at Horse Heaven Gold Antimony Tungsten Silver Project, Idaho, USA")

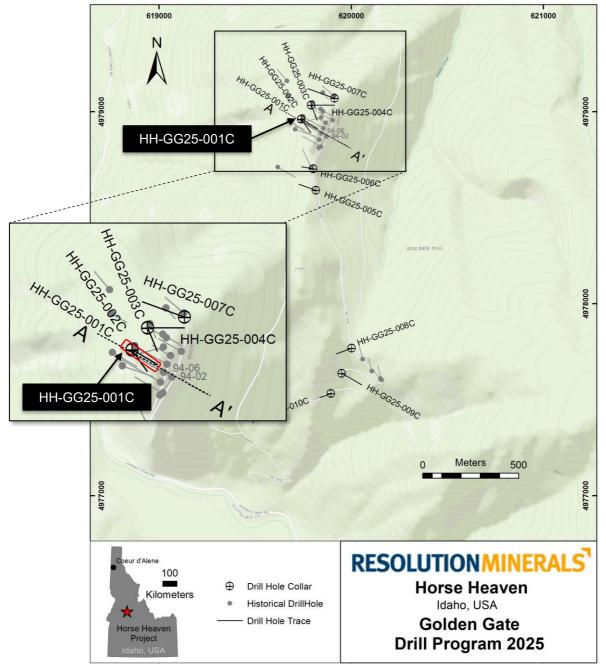


Figure 2: Drill hole location map of the Phase 1 Golden Gate drill program. HH-GG25-001C is located in the central northern part of the Golden Gate Target. INSERT: Enlarged part of the plan, included to show the details of the drill hole configuration in the vicinity of HH-GG25-001C. HH-GG25-001C is the first hole at Horse Heaven to properly test un-oxidised mineralisation. Shallow, pre-RML RC drill holes (grey hole traces) are also shown, including 94-02 and 94-06, which both appear in Figure 3. The drill hole parameters and summary mineralised interval of the pre-RML RC drill holes were provided to the market in ASX announcement dated 11 June 2025.

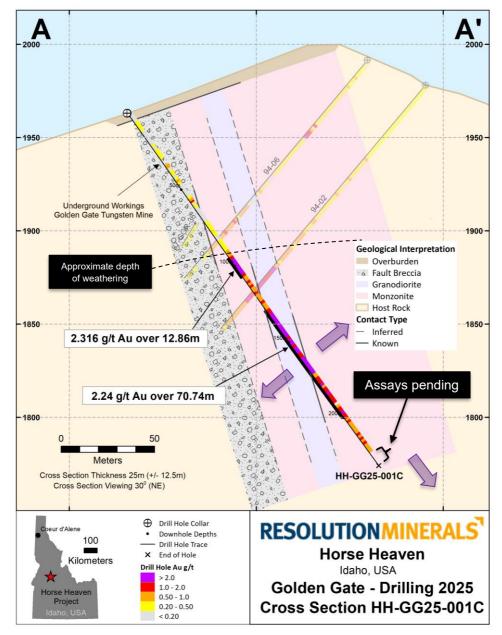


Figure 3: Schematic cross section of HH-GG25-001C showing the local geology, highlighting the significant gold intersections, the intersection of the underground working, and two pre-RML RC drill holes, 94-02 and 94-06. Strong pervasive gold mineralisation is hosted in both the monzonite (including 2.316g/t Au over 12.86m) and granodiorite (including 2.240g/t Au over 70.74m). Importantly, the gold "envelope", occurring over a downhole interval of 223.4m occurs within the fault breccia, in the granodiorite and both sides of the granodiorite, in the monzonite. As the mineralisation extends for the near full interval of the hole, at present, there appears no spatial constraint on the gold mineralisation. Mineralisation is open-ended at depth and in all directions (purple arrows).

Preliminary Interpretation of HH-GG25-001C

The pervasive, material levels of gold mineralisation over a downhole interval of 189.2m in HH-GG25-001C represent results that are entirely compatible with, and confirmatory of, the Intrusion Related Gold Systems ("IRGS") Exploration Model of Horse Heaven (ASX announcement dated 11 June 2025, titled "Agreement to Acquire Major Drill-Ready Antimony-Gold-Tungsten Project in Stibnite Mining District, Idaho, USA").

Intrusion Related Gold Systems are a broad church of mineralisation with many variations in mineralising mechanisms, geological and structural setting, alteration and metal/mineral composition. IRGSs can form large, giant, and supergiant deposits with multimillion ounce resources, including as an example only, in the U.S.: Fort Knox (>12Moz), Pogo (>10Moz), and Donlin Creek (39Moz); and in Australia: The Granites (>20Moz), Telfer (>15Moz), Hemi (11Moz), and Kidston (5Moz).

Of particular relevance to Horse Heaven is the Stibnite Mine deposit, located only 6km east of Horse Heaven. It is another example of an IRGS (intrusive hosted and structurally controlled gold deposit). The gold mineralisation at Stibnite has not been discretely categorised but is noted to share similarities with both reduced intrusion systems and Carlin-type gold deposits. Golden Gate is believed broadly analogous to the Stibnite Mine deposit. Gold mineralisation at both Golden Gate and Stibnite is localised by northerly fault systems; hosted by felsic intrusive rocks of the Idaho batholith, associated with fine-grained sulphides, sericite alteration, biotite replacement and quartz-pyrite-arsenopyrite veining.

The pervasive nature of the gold mineralisation with low levels of disseminated pyrite and arsenopyrite in an altered monzonite and granodiorite in HH-GG25-001C is reminiscent of IRGS's. Using the Lang (2000) schematic section of an IRGS. The interpreted projected position of HH-GG25-001C is possibly into a structurally prepared zone associated with the Johnson Creek shear zone, where IRGS disseminated gold mineralisation distal or lateral to the causative intrusion has been localised (Figure 4).

By extension of the Lang IRGS – Horse Heaven/Stibnite Mine comparison model (Figure 4), it follows that the Golden Gate Prospect exhibits similarities in terms of: i) host rock, ii) gold mineralisation, iii) associated disseminated sulphides, and iv) localisation along north striking shear zones to the Stibnite Mine Hanger Flats-Yellow Pine gold deposits.

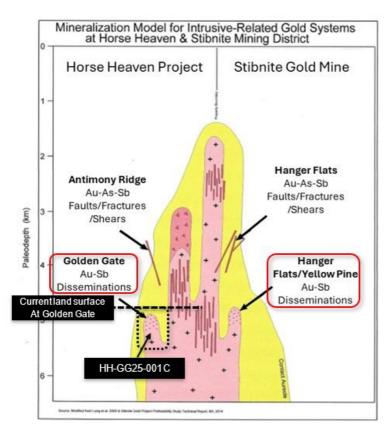


Figure 4: Schematic IRGS cross section showing the relative positions of the Stibnite Mining District Hanger Flats and Yellow Pipe deposits (Right half) and the Antimony Ridge and Golden Gate prospects (Left half). This cross section is modified from Lang et al 2000. A possible drill hole projection of HH-GG25-001C is highlighted and a hypothetical current land surface level relative to the IRGS.

Elevated Tungsten in HH-GG25-001C is recorded at a down hole depth between 120ft and 125ft (36.5m and 38.0m). Sample 190518 contains 0.315% W.

Anticipated high grade tungsten mineralisation was not encountered due to the drill hole passing through mine workings from 100ft to 112ft (30.5m to 34.1m) dating from the time of Scheelite mining. To clarify this point; the drill hole passed through a void (being the open hole of the mine working) so that no sample of *in situ* rock (mineralisation) was possible.

Phase 1 Drill Campaign Update

Resolution is pleased to advise that its maiden Phase-1 drill program at Golden Gate is now completed with a total of 10 diamond core drill holes for a total of 2,770.6m (Table 1). The average drill hole depth is 277.1m.

Hole ID	Drill	Diameter	Drill Hole Location Elevation Dip A		Drill Hole Location		Elevation Din Az		Az	ЕОН	EOH(m)	
Hote ID	Туре	Diameter	Grid	Datum	Zone	Easting	Northing	(m)	υp	AZ	(ft)	EOH (III)
HH-GG25-001C	Core	HQ3	UTM	NAD83	11T	619741	4978962	1963	-55	120	760	231.6
HH-GG25-002C	Core	HQ3	UTM	NAD83	11T	619740	4978961	1963	-55	145	870	265.2
HH-GG25-003C	Core	HQ3	UTM	NAD83	11T	619792	4979034	1992	-55	158	830	253.0
HH-GG25-004C	Core	HQ3	UTM	NAD83	11T	619792	4979034	1992	-45	90	790	240.8
HH-GG25-005C	Core	HQ3	UTM	NAD83	11T	619816	4978590	1980	-55	290	930	283.5
HH-GG25-006C	Core	HQ3	UTM	NAD83	11T	619803	4978702	2067	-60	280	815	248.4
HH-GG25-007C	Core	HQ3	UTM	NAD83	11T	619914	4979070	1967	-50	290	1185	361.2
HH-GG25-008C	Core	HQ3	UTM	NAD83	11T	620003	4977768	2038	-60	250	1140	347.5
HH-GG25-009C	Core	HQ3	UTM	NAD83	11T	619951	4977637	1872	-50	120	950	289.6
HH-GG25-010C	Core	HQ3	UTM	NAD83	11T	619895	4977532	1820	-60	250	820	249.9
			·	·		·				Ţ	9090	2770.6

Table 1: Completed and current drill holes as of the date of this announcement.

Next Assays Update

Resolution has now completed its 10 hole Phase-1 diamond program at Gold Gate, with all holes logged and sampled. This announcement reports results from the first batch of core samples, the majority of HH-GG25-001C.

- Assay results for HH-GG25-002C and HH-GG25-003C are imminent.
- Assay results for HH-GG25-004C to HH-GG25-010C will be available sequentially over the next few months, possibly extending into December 2025.

RML's Consulting Geologist and former Stibnite Gold Project Senior Geologist, Austin Zinsser stated:

"The fine grain sulfide mineralization occurring as disseminations and selvages to quartz veins at Golden Gate is similar in character to the main stage gold mineralisation in the intrusive hosted deposits at the adjacent Stibnite Gold Project (Perpetua Resources, Inc), as is the presence of sheared sulfide within fault gouge. However, the overall alteration style is fairly distinct with Golden Gate displaying pervasive silicification and strong secondary muscovite, and having more prominent veining, more open-space textures and lesser biotite-sulfide replacement."

Next Steps

Horse Heaven is an exciting project highly prospective for gold, antimony, silver, and tungsten. From time-to-time, RML's focus will be on areas with stronger gold potential than antimony, such is the case at Golden Gate. **The Company fully intends to fast track the potential of all commodities at Horse Heaven.**

Project Wide

The Company is nearing completion of a project-wide stream sediment program. When the program is completed and the assay results assessed, results will be released.

Antimony Ridge

The Company is applying for a drill permit for a large drill program to test deep extensions of the extensive shallow antimony mineralisation known at Antimony Ridge.

A man-portable drill rig was trialled at Antimony Ridge. Results are pending.

The Company is also currently collecting representative samples of stibnite-silica vein mineralisation from exposures at Antimony Ridge. These samples will be used to conduct initial metallurgical test work and mineralisation characterisation studies.

Golden Gate

Encouraged by the recently completed drilling at Golden Gate, the Company is applying for a large (50 hole) drill permit to follow up on HH-GG25-001C and other anticipated results of HH-GG25-002C to HH-GG25-010C.

Authorised for release by the board of Resolution Minerals Ltd.

For further information, please contact Aharon Zaetz Executive Director.

Aharon Zaetz

Executive Director

Resolution Minerals Ltd

M: +61 424 743 098

ari@resolutionminerals.com

Jane Morgan

Investor Relations

Jane Morgan Management

M: +61 405 555 618

im@janemorganmanagement.com.au

Follow us:

Website: www.resolutionminerals.com LinkedIn: @Resolution Minerals

X: @Resolution LTD

Competent Person's Statement

The information in this report that relates to exploration results, is based on and fairly represents information reviewed and compiled by Mr Ross Brown BSc (Hons), M AusIMM, Principal Geologist/director of exploration consulting firm, Riviere Minerals Pty. Ltd, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Brown has sufficient experience, which is relevant to the exploration activities, style of mineralisation and types of deposits under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Riviere Minerals is consulting to Resolutions Minerals Limited and consents to the inclusion in this announcement of the matters based on their information in the form and context in which it appears.

The Company confirms it is not aware of any new information or data that materially affects the information cross referenced in this announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

About Rivere Minerals

Riviere Minerals Pty Ltd ("Riviere") is a resource consultancy specialising in project evaluation and portfolio management. Its principal geologist and sole director, Mr Ross Brown, has nearly 40 years of experience in mineral exploration worldwide. Through Riviere, Mr Brown also provides assistance in exploration planning, execution and ASX reporting.

Forward Looking Statements

This announcement may contain forward-looking statements. These statements relate to the Company's expectations, beliefs, intentions or strategies regarding the future. These statements can be identified by the use of words like "anticipate", "believe", "intend", "estimate", "expect", "may", "plan", "project", "will", "should", "seek" and similar words or expressions containing same. These forward-looking statements reflect the Company's views and assumptions with respect to future events as of the date of this release and are subject to a variety of unpredictable risks, uncertainties, and other unknowns. Actual and future results and trends could differ materially from those set forth in such statements due to various factors, many of which are beyond our ability to control or predict. These include, but are not limited to, risks or uncertainties associated with the acquisition and divestment of projects, joint venture and other contractual risks, metal prices, exploration, development and operating risks, competition, production risks, sovereign risks, regulatory risks including environmental regulation and liability and potential title disputes, availability and terms of capital and general economic and business conditions.

Given these uncertainties, no one should place undue reliance on any forward-looking statements attributable to the Company, or any of its affiliates or persons acting on its behalf. Subject to any continuing obligations under applicable law, the Company disclaims any obligation or undertaking to disseminate any updates or revisions to any forward-looking statements in this announcement to reflect any change in expectations in relation to any forward-looking statements or any change in events, conditions or circumstances on which any such statement is based.

Appendix A: HH-GG25-001C ASSAY RESULTS - Gold

		Deill					Sample	Au
Location	Hole ID	Drill	Sample ID	From (ft)	To (ft)	length	Length	Au-AA23
		Technique	_				(ft)	g/t
Golden Gate	HH-GG-001C	Core	190501	0.0	7.6	7.6	3.6	0.146
Golden Gate	HH-GG-001C	Core	190502	7.6	11.2	3.6	3.6	0.084
Golden Gate	HH-GG-001C	Core	190503	11.2	15.6	4.4	4.4	0.014
Golden Gate	HH-GG-001C	Core	190504	15.6	20.0	4.4	4.4	0.029
Golden Gate	HH-GG-001C	Core	190505	20.0	25.0	5.0	5.0	0.25
Golden Gate	HH-GG-001C	Core	190506	25.0	30.0	5.0	5.0	0.291
Golden Gate	HH-GG-001C	Core	190507	30.0	35.0	5.0	5.0	0.298
Golden Gate	HH-GG-001C	Core	190508	35.0	40.0	5.0	5.0	0.286
Golden Gate	HH-GG-001C	Core	190509	40.0	50.0	10.0	4.0	0.071
Golden Gate	HH-GG-001C	Core	190510	50.0	70.0	20.0	3.5	0.03
Golden Gate	HH-GG-001C	Core	190512	70.0	75.0	5.0	2.7	0.318
Golden Gate	HH-GG-001C	Core	190513	75.0	80.0	5.0	3.5	0.151
Golden Gate	HH-GG-001C	Core	190514	80.0	85.0	5.0	3.0	0.388
Golden Gate	HH-GG-001C	Core	190515	85.0	91.5	6.5	2.5	0.325
Golden Gate	HH-GG-001C	Core	190516	91.5	100.0	8.5	2.7	0.329
Golden Gate	HH-GG-001C	Core	190517	112.0	120.0	8.0	2.2	0.569
Golden Gate	HH-GG-001C	Core	190518	120.0	125.0	5.0	4.7	0.104
Golden Gate	HH-GG-001C	Core	190519	125.0	130.0	5.0	4.8	0.287
Golden Gate	HH-GG-001C	Core	190520	130.0	135.0	5.0	5.0	0.247
Golden Gate	HH-GG-001C	Core	190521	135.0	140.0	5.0	5.0	0.169
Golden Gate	HH-GG-001C	Core	190522	140.0	145.0	5.0	5.0	0.334
Golden Gate	HH-GG-001C	Core	190523	145.0	150.0	5.0	4.7	0.509
Golden Gate	HH-GG-001C	Core	190524	150.0	155.0	5.0	5.0	0.263
Golden Gate	HH-GG-001C	Core	190525	155.0	165.0	10.0	4.3	0.137
Golden Gate	HH-GG-001C	Core	190526	165.0	170.0	5.0	5.0	0.193
Golden Gate	HH-GG-001C	Core	190527	170.0	175.0	5.0	5.0	0.16
Golden Gate	HH-GG-001C	Core	190528	175.0	180.0	5.0	5.0	0.176
Golden Gate	HH-GG-001C	Core	190529	180.0	185.3	5.3	5.3	0.468
Golden Gate	HH-GG-001C	Core	190530	185.3	190.0	4.7	4.7	0.577
Golden Gate	HH-GG-001C	Core	190531	190.0	193.5	3.5	3.5	1.01
Golden Gate	HH-GG-001C	Core	190532	193.5	196.8	3.3	3.3	0.494
Golden Gate	HH-GG-001C	Core	190533	196.8	200.0	3.2	3.2	0.2
Golden Gate	HH-GG-001C	Core	190534	200.0	205.1	5.1	3.2	0.251
Golden Gate	HH-GG-001C	Core	190536	205.1	210.0	4.9	4.9	0.081
Golden Gate	HH-GG-001C	Core	190537	210.0	215.0	5.0	5.0	0.134
Golden Gate	HH-GG-001C	Core	190538	215.0	220.0	5.0	5.0	0.133
Golden Gate	HH-GG-001C	Core	190539	220.0	225.0	5.0	5.0	0.118
Golden Gate	HH-GG-001C	Core	190540	225.0	230.0	5.0	5.0	0.142
Golden Gate	HH-GG-001C	Core	190542	230.0	235.0	5.0	5.0	0.143
Golden Gate	HH-GG-001C	Core	190543	235.0	240.0	5.0	5.0	0.225
Golden Gate	HH-GG-001C	Core	190544	240.0	245.1	5.1	5.1	0.223
Golden Gate	HH-GG-001C	Core	190545	245.1	250.0	4.9	4.9	0.445
Golden Gate	HH-GG-001C	Core	190546	250.0	255.1	5.1	5.1	0.342
Golden Gate	HH-GG-001C	Core	190547	255.1	260.0	4.9	4.9	0.353
Golden Gate	HH-GG-001C	Core	190548	260.0	265.0	5.0	5.0	0.401
Golden Gate	HH-GG-001C	Core	190549	265.0	270.0	5.0	5.0	0.401
Golden Gate	HH-GG-001C	Core	190550	270.0	274.0	4.0	4.0	0.179
Golden Gate	HH-GG-001C	Core	190551	274.0	278.7	4.7	4.7	0.238
Golden Gate	HH-GG-001C	Core	190551	274.0	283.5	4.7	4.7	0.362
Coluen Gale	1111-00-0010	0016	190002	2/0./	200.0	4.0	4.0	0.302

Appendix A: HH-GG25-001C ASSAY RESULTS – Gold.

Colden Gate	Au
Golden Gate HH-GG-001C Core 190553 283.5 288.0 4.5 4.5 0 0 0 0 0 0 0 0 0	-AA23
Golden Gate HH-GG-001C Core 190553 283.5 288.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190554 288.0 292.5 4.5 4.5 0 Golden Gate HH-GG-001C Core 190555 292.5 297.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190556 297.0 301.5 4.5 4.5 0 Golden Gate HH-GG-001C Core 190557 301.5 305.0 3.5 3.5 0 Golden Gate HH-GG-001C Core 190558 305.0 309.8 4.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190559 309.8 315.0 5.2 5.2 Golden Gate HH-GG-001C Core 190560 315.0 320.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190561 320.0 325.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190564 329.2 325.0 329.2 4.2 4.2 Golden Gate HH-GG-001C Core 190565 333.2 338.1 4.9 4.9 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 3.1 Golden Gate HH-GG-001C Core 190568 352.0 357.2 5.2 5.2 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 3.1 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 3.1 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 3.1 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 5.2 Golden Gate HH-GG-001C Core 190570 357.2 361.8 4.6 4.6 0 Golden Gate HH-GG-001C Core 190571 361.8 366.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190573 371.2 361.8 36.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190573 371.2 361.8 365.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190579 394.8 4.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 4.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 4.0 0.0 5.2 5.2 5.2 Golden Gate HH-GG-001C Core 190579 394.8 4.0 0.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190579 394.8 40.0 5.2 5.2 5.2 Golden Gate HH-GG-001C Core 190579 394.8 40.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190579 394.8 40.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 4.3 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1	<u>///20</u> g/t
Golden Gate HH-GG-001C Core 190554 288.0 292.5 4.5 4.5 0 Golden Gate HH-GG-001C Core 190555 292.5 297.0 4.5 4.5 0 0 Golden Gate HH-GG-001C Core 190556 297.0 301.5 4.5 4.5 0 0 Golden Gate HH-GG-001C Core 190557 301.5 305.0 3.5 3.5 0 Golden Gate HH-GG-001C Core 190558 305.0 309.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190559 309.8 315.0 5.2 5.2 Golden Gate HH-GG-001C Core 190559 309.8 315.0 5.2 5.2 Golden Gate HH-GG-001C Core 190560 315.0 320.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190561 320.0 325.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190562 325.0 329.2 4.2 4.2 4.2 Golden Gate HH-GG-001C Core 190564 329.2 333.2 4.0 4.0 Golden Gate HH-GG-001C Core 190565 333.2 338.1 4.9 4.0	.332
Golden Gate HH-GG-001C Core 190555 292.5 297.0 4.5 4.5 4.5 0	.385
Golden Gate HH-GG-001C Core 190556 297.0 301.5 4.5 4.5 0 Golden Gate HH-GG-001C Core 190557 301.5 305.0 3.5 3.5 0 Golden Gate HH-GG-001C Core 190558 305.0 309.8 4.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190559 309.8 315.0 5.2 5.2 Golden Gate HH-GG-001C Core 190560 315.0 320.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190561 320.0 325.0 5.0 5.0 Golden Gate HH-GG-001C Core 190562 325.0 329.2 4.2 4.2 4.2 Golden Gate HH-GG-001C Core 190564 329.2 333.2 4.0 4.0 4.0 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.9 4.9 4.9 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190566 338.1 342.9 347.0 4.1 4.1 4.1 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 1 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 1 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 Golden Gate HH-GG-001C Core 190570 357.2 361.8 4.6 4.6 0 Golden Gate HH-GG-001C Core 190571 361.8 366.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190572 366.6 371.2 4.6 4.6 0 Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 4.0	.374
Golden Gate HH-GG-001C Core 190557 301.5 305.0 3.5 3.5 0	.512
Golden Gate HH-GG-001C Core 190558 305.0 309.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190559 309.8 315.0 5.2 5.2 Golden Gate HH-GG-001C Core 190560 315.0 320.0 5.0 5.0 Golden Gate HH-GG-001C Core 190561 320.0 325.0 5.0 5.0 Golden Gate HH-GG-001C Core 190562 325.0 329.2 4.2 4.2 Golden Gate HH-GG-001C Core 190564 329.2 333.2 4.0 4.0 Golden Gate HH-GG-001C Core 190565 333.2 338.1 4.9 4.9 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 2.1 Golden Gate HH-GG-001C Core 190568	.541
Golden Gate HH-GG-001C Core 190559 309.8 315.0 5.2 5.2 Golden Gate HH-GG-001C Core 190560 315.0 320.0 5.0 5.0 Golden Gate HH-GG-001C Core 190561 320.0 325.0 5.0 5.0 Golden Gate HH-GG-001C Core 190562 325.0 329.2 4.2 4.2 Golden Gate HH-GG-001C Core 190564 329.2 333.2 4.0 4.0 Golden Gate HH-GG-001C Core 190565 333.2 338.1 4.9 4.9 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 2.1 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 1 Golden Gate HH-GG-001C Core 190579	.816
Golden Gate HH-GG-001C Core 190560 315.0 320.0 5.0 5.0 Golden Gate HH-GG-001C Core 190561 320.0 325.0 5.0 5.0 Golden Gate HH-GG-001C Core 190562 325.0 329.2 4.2 4.2 Golden Gate HH-GG-001C Core 190564 329.2 333.2 4.0 4.0 Golden Gate HH-GG-001C Core 190565 333.2 338.1 4.9 4.9 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 4.1 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 1 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 5.2 6.2 Golden Gate HH-GG-001C	1.6
Golden Gate HH-GG-001C Core 190561 320.0 325.0 5.0 5.0 Golden Gate HH-GG-001C Core 190562 325.0 329.2 4.2 4.2 Golden Gate HH-GG-001C Core 190564 329.2 333.2 4.0 4.0 Golden Gate HH-GG-001C Core 190565 333.2 338.1 4.9 4.9 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 1 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 5.2 6.2 Golden Gate HH-GG-001C Core 190570 357.2 361.8 4.6 4.6 0 Golden Gate HH-GG-001C	2.09
Golden Gate HH-GG-001C Core 190562 325.0 329.2 4.2 4.2 4.2 Golden Gate HH-GG-001C Core 190564 329.2 333.2 4.0 4.0 Golden Gate HH-GG-001C Core 190565 333.2 338.1 4.9 4.9 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190566 342.9 347.0 4.1 4.1 4.1 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 Golden Gate HH-GG-001C Core 190570 357.2 361.8 4.6 4.6 4.6 Golden Gate HH-GG-001C Core 190571 361.8 366.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190572 366.6 371.2 4.6 4.6 0 Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190573 375.5 380.5 5.0 5.0 Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 4.3 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 4.3 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 4.1	2.49
Golden Gate HH-GG-001C Core 190564 329.2 333.2 4.0 4.0 Golden Gate HH-GG-001C Core 190565 333.2 338.1 4.9 4.9 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 4.1 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 1 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 Golden Gate HH-GG-001C Core 190570 357.2 361.8 4.6 4.6 0 Golden Gate HH-GG-001C Core 190571 361.8 366.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190572 366.6 371.2 4.6 4.6 0 Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190575 375.5 380.5 5.0 5.0 Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 4.3 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1	2.01
Golden Gate HH-GG-001C Core 190565 333.2 338.1 4.9 4.9 Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.2 4.2 4.2 4.2 4.2 4.2 </td <td>3.1</td>	3.1
Golden Gate HH-GG-001C Core 190566 338.1 342.9 4.8 4.8 Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 4.1 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 1 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 5.2 6.2 6.2 6.2 6.2 6.2 5.2 5.2 6.2 6.2 6.2 6.2 6.2 5.2 5.2 5.2 6.2 <td>2.86</td>	2.86
Golden Gate HH-GG-001C Core 190567 342.9 347.0 4.1 4.1 2.2 Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 1 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 6.2 Golden Gate HH-GG-001C Core 190570 357.2 361.8 4.6 4.6 0 Golden Gate HH-GG-001C Core 190571 361.8 366.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190572 366.6 371.2 4.6 4.6 0 Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190575 375.5 380.5 5.0 5.0 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0	3.4
Golden Gate HH-GG-001C Core 190568 347.0 352.0 5.0 5.0 1 Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 6 Golden Gate HH-GG-001C Core 190570 357.2 361.8 4.6 4.6 0 Golden Gate HH-GG-001C Core 190571 361.8 366.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190572 366.6 371.2 4.6 4.6 0 Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190575 375.5 380.5 5.0 5.0 0 Golden Gate HH-GG-001C Core 190576 385.0 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8	2.06
Golden Gate HH-GG-001C Core 190569 352.0 357.2 5.2 5.2 Golden Gate HH-GG-001C Core 190570 357.2 361.8 4.6 4.6 0 Golden Gate HH-GG-001C Core 190571 361.8 366.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190572 366.6 371.2 4.6 4.6 0 Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190575 375.5 380.5 5.0 5.0 0 Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 3 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0	.375
Golden Gate HH-GG-001C Core 190570 357.2 361.8 4.6 4.6 0 Golden Gate HH-GG-001C Core 190571 361.8 366.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190572 366.6 371.2 4.6 4.6 0 Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190575 375.5 380.5 5.0 5.0 0 Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 3 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0).56
Golden Gate HH-GG-001C Core 190571 361.8 366.6 4.8 4.8 1 Golden Gate HH-GG-001C Core 190572 366.6 371.2 4.6 4.6 0 Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190575 375.5 380.5 5.0 5.0 0 Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 <t< td=""><td>.522</td></t<>	.522
Golden Gate HH-GG-001C Core 190572 366.6 371.2 4.6 4.6 0 Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190575 375.5 380.5 5.0 5.0 0 Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 <td>.165</td>	.165
Golden Gate HH-GG-001C Core 190573 371.2 375.5 4.3 4.3 1 Golden Gate HH-GG-001C Core 190575 375.5 380.5 5.0 5.0 0 Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 3 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 <td>.739</td>	.739
Golden Gate HH-GG-001C Core 190575 375.5 380.5 5.0 5.0 0 Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 3 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1	.115
Golden Gate HH-GG-001C Core 190576 380.5 385.0 4.5 4.5 0 Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0	.782
Golden Gate HH-GG-001C Core 190577 385.0 390.0 5.0 5.0 Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0	.803
Golden Gate HH-GG-001C Core 190578 390.0 394.8 4.8 4.8 0 Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 4.3 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0	.35
Golden Gate HH-GG-001C Core 190579 394.8 400.0 5.2 5.2 0 Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 0 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0	.882
Golden Gate HH-GG-001C Core 190580 400.0 405.0 5.0 5.0 0 Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0	.559
Golden Gate HH-GG-001C Core 190581 405.0 410.0 5.0 5.0 Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 6 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0	.856
Golden Gate HH-GG-001C Core 190582 410.0 414.3 4.3 4.3 Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0	1.2
Golden Gate HH-GG-001C Core 190583 414.3 418.4 4.1 4.1 0).54
	.637
Golden Gate HH-GG-001C Core 190584 418.4 422.7 4.3 4.3 0	.544
	.14
	.64
	2.59
	3.54
	3.76
	2.61
	2.81
	3.02
	2.43
	3.89
	3.03
	2.57
	2.33
	.63
	2.85
	2.99
	2.05
	.48
	2.37
	2.91

Appendix A: HH-GG25-001C ASSAY RESULTS – Gold.

		Drill					Sample	Au
Location	Hole ID	Technique	Sample ID	From (ft)	To (ft)	length	Length	Au-AA23
		reciiiique					(ft)	g/t
Golden Gate	HH-GG-001C	Core	190606	514.0	517.6	3.6	3.6	2.99
Golden Gate	HH-GG-001C	Core	190608	517.6	522.6	5.0	5.0	1.91
Golden Gate	HH-GG-001C	Core	190609	522.6	526.7	4.1	4.1	1.64
Golden Gate	HH-GG-001C	Core	190610	526.7	531.2	4.5	4.5	2.28
Golden Gate	HH-GG-001C	Core	190611	531.2	535.7	4.5	4.5	2.87
Golden Gate	HH-GG-001C	Core	190612	535.7	540.0	4.3	4.3	3.21
Golden Gate	HH-GG-001C	Core	190613	540.0	545.0	5.0	5.0	2.84
Golden Gate	HH-GG-001C	Core	190614	545.0	550.0	5.0	5.0	3.38
Golden Gate	HH-GG-001C	Core	190615	550.0	554.4	4.4	4.4	3.74
Golden Gate	HH-GG-001C	Core	190616	554.4	558.6	4.2	4.2	2.18
Golden Gate	HH-GG-001C	Core	190617	558.6	562.0	3.4	3.4	2.49
Golden Gate	HH-GG-001C	Core	190618	562.0	565.5	3.5	3.5	0.66
Golden Gate	HH-GG-001C	Core	190619	565.5	570.0	4.5	4.5	0.896
Golden Gate	HH-GG-001C	Core	190620	570.0	574.7	4.7	4.7	1.35
Golden Gate	HH-GG-001C	Core	190621	574.7	579.2	4.5	4.5	1.605
Golden Gate	HH-GG-001C	Core	190623	579.2	583.7	4.5	4.5	1.96
Golden Gate	HH-GG-001C	Core	190624	583.7	588.3	4.6	4.6	2.02
Golden Gate	HH-GG-001C	Core	190625	588.3	592.9	4.6	4.6	0.816
Golden Gate	HH-GG-001C	Core	190626	592.9	597.2	4.3	4.3	1.915
Golden Gate	HH-GG-001C	Core	190627	597.2	602.3	5.1	5.1	1.54
Golden Gate	HH-GG-001C	Core	190628	602.3	607.2	4.9	4.9	2.06
Golden Gate	HH-GG-001C	Core	190629	607.2	612.0	4.8	4.8	1.19
Golden Gate	HH-GG-001C	Core	190630	612.0	616.5	4.5	4.5	1.62
Golden Gate	HH-GG-001C	Core	190631	616.5	621.3	4.8	4.8	1.965
Golden Gate	HH-GG-001C	Core	190632	621.3	625.8	4.5	4.5	1.85
Golden Gate	HH-GG-001C	Core	190633	625.8	630.7	4.9	4.9	3.98
Golden Gate	HH-GG-001C	Core	190634	630.7	635.7	5.0	5.0	0.674
Golden Gate	HH-GG-001C	Core	190635	635.7	640.7	5.0	5.0	1.005
Golden Gate	HH-GG-001C	Core	190636	640.7	645.0	4.3	4.3	1.175
Golden Gate	HH-GG-001C	Core	190637	645.0	650.0	5.0	5.0	2.8
Golden Gate	HH-GG-001C	Core	190638	650.0	654.8	4.8	4.8	1.955
Golden Gate	HH-GG-001C	Core	190640	654.8	659.6	4.8	4.8	1.065
Golden Gate	HH-GG-001C	Core	190641	659.6	663.7	4.1	4.1	0.696
Golden Gate	HH-GG-001C	Core	190642	663.7	668.0	4.3	4.3	1.035
Golden Gate	HH-GG-001C	Core	190643	668.0	673.0	5.0	5.0	0.934
Golden Gate	HH-GG-001C	Core	190644	673.0	678.0	5.0	5.0	0.906
Golden Gate	HH-GG-001C	Core	190645	678.0	682.0	4.0	4.0	0.746
Golden Gate	HH-GG-001C	Core	190646	682.0	687.0	5.0	5.0	0.707
Golden Gate	HH-GG-001C	Core	190647	687.0	692.0	5.0	5.0	0.859
Golden Gate	HH-GG-001C	Core	190648	692.0	696.5	4.5	4.5	1.335
Golden Gate	HH-GG-001C	Core	190649	696.5	701.3	4.8	4.8	0.869
Golden Gate	HH-GG-001C	Core	190650	701.3	706.0	4.7	4.7	1.785
Golden Gate	HH-GG-001C	Core	190651	706.0	710.5	4.5	4.5	0.907
Golden Gate	HH-GG-001C	Core	190652	710.5	715.3	4.8	4.8	1.39
Golden Gate	HH-GG-001C	Core	190653	715.3	720.0	4.7	4.7	0.906
Golden Gate	HH-GG-001C	Core	190654	720.0	724.7	4.7	4.7	0.764
Golden Gate	HH-GG-001C	Core	190655	724.7	729.1	4.4	4.4	0.896
Golden Gate	HH-GG-001C	Core	190656	729.1	732.9	3.8	3.8	0.631

Appendix B: Pre-RML Golden Gate Drilling, highlighting 94-02 and 94-06 (appearing in Figure 3). Table first published in (ASX announcement dated 11 June 2025, titled "Agreement to Acquire Major Drill-Ready Antimony-Gold-Tungsten Project in Stibnite Mining District, Idaho, USA").

Hole ID	Easting (m)	Northing (m)	Azimuth (°)	Dip (°)	Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
94-1	619903	4978955	300	-55	152.4	0	152.4	152.4	0.489
						18.29	25.91	7.62	0.554
						36.58	41.15	4.57	0.61
						60.96	70.1	9.14	0.675
						105.16	132.59	27.43	0.891
					including	105.16	111.25	6.1	1.073
					including	120.4	126.49	6.1	1.159
94-2	619872	4978870	300	-50	170.69	0	170.69	170.69	0.627
						102.11	109.73	7.62	0.616
						112.78	170.69	57.91	1.104
					including	123.45	150.88	27.43	1.564
					including	137.16	149.35	12.19	1.843
94-3	619842	49/8818	300	-50	167.64	U	167.64	167.64	0.269
						89.92	96.01	6.1	0.608
94-4	619867	4978941	300	-55	121.92	0	121.92	121.92	0.508
						70.1	77.72	7.62	1.162
					including	97.54	118.87	21.34	0.981
94-5	619856	4978913	300	-50	121.92	0	121.92	121.92	0.552
						3.05	9.14	6.1	1.058
						88.39	121.92	33.53	1.058
					including	99.06	121.92	22.86	1.255
94-6	619845	4978887	300	-50	152.4	0	152.4	152.4	0.495
						47.24	53.34	6.1	1.653
						100.59	134.11	33.53	0.797
94-7	619835	4978854	300	50	167.64	0	167.64	162.54*	0.457
			4 missing s	amples'	+	103.63	111.25	7.62	0.684
						120.4	141.73	21.34	1.125
					including	128.02	138.69	10.67	1.611
86-GGR-1	619853	4979099	140	-50	70.1	0	70.1	70.1	0.784
						21.34	51.82	30.48	1.354
						54.86	67.06	12.19	0.634
86-GGR-2	619832	4978811	34	-50	105.16	0	105.16	105.16	0.154
86-GGR-3	location u	ınknown			105.16	0	105.16	105.16	0.13
86-GGR-4	location u	ınknown			91.44	0	91.44	91.44	0.107
86-GGR-5	location u	ınknown			91.44	0	91.44	91.44	0.259
86-GGR-6	location u	ınknown		-50	91.44	0	91.44	91.44	0.129

Appendix C: JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	results of a single drill hole with the ID reference HH-GG25-001C. The data is: drill hole data; sample data; assay data; and geological data. Supporting data includes drill collar locations in UTM metric data, together with dip, azimuth, altitude and end of hole data. Reported assay data is gold. The Company has completed multi-element analysis and has referred to tungsten geochemistry. Please note that the primary data of the core samples (start, finish, interval) are imperial feet measurements, subsequently converts to metric metres in this announcement. The assay data is derived independent professional laboratory services company of submitted core samples from HH-GG25-001C. HH-GG25-001C is a diamond core hole. Sample intervals are contiguous and
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 HH-GG25-001C is a diamond core drill hole that was drilled by Evolve Exploration Ltd using a Multipower MP500 modular core rig providing HQ diamond drill core. The drill core is not oriented.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Drill core recovery of HH-GG25-001C was very good (a function of the solid lithologies) approaching 100%. Where drilling encountered voids, no core was recovered. This happenstance represents < 1% of the total length of the drill hole.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill core was logged for lithology, alteration, mineralization, structure (geotechnical) using oriented core to a level which has enabled preliminary interpretations relating to style of mineralisation, host and thickness. At this stage no Mineral Resource Estimates, mining studies or metallurgical studies are appropriate. Drill core is also logged for RQD and Core recovery. Drill core is then digited photographed wet and dry while whole after logging. The logging, as described above is both quality and quantitative. 100% of the relevant intersections were logged as per above.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The HQ core was halved using a diamond core saw and sampled on geological intervals approximating 2.2 ft to 5.2 ft in length. Drill core was halved using a gasoline powered core saw by RML contract staff who maintain possession of the core at its Antimony Camp facility. Half-cut core samples were bagged and tagged using bar-coded sample tags and were securely stored prior to shipment at the Antimony Camp facility. Half cut core samples were transported by RML contractors under lock and key to ALS prep' lab' facility in Twin Falls, ID. No third-party shippers were involved in the shipping process; chain of custody forms were exchanged at ALS Minerals in Twin Falls and a copy kept on file. The

Criteria	JORC Code explanation	Commentary
		remaining boxed cut core are kept at a secure locked facility in Donnelly, ID. • ALS Minerals Twin Falls prep' lab' logs in the samples using the sample tag bar codes provided. Samples were then crushed to 70% less than 2mm, rotary split off 250g, pulverise split to better than 85% passing 75 microns. • All samples were then shipped to ALS Minerals analytical laboratory in Vancouver, British Columbia.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Gold was assayed by analytical method Au-AA23: Au by fire assay and AAS 30g nominal sample weight. Multielement analysis was by analytical method ME-ICP61: 34 elements by HF-HNO3-HCIO4 acid digestion, HCI leach and ICP-AES. Quantitatively dissolves nearly all elements for the majority of geological materials. Only the most resistive minerals, such as Zircons, are only partially dissolved. No geophysical tools, spectrometers, handheld XRF instruments, etc were used in the generation of the assay data. Certified reference materials (CRM) from an ISO certified supplier were inserted randomly into the sample stream at a ratio of 2%. CRMs were obtained for Meg LLC of Reno, Nevada; two separate CRMs were used for gold: a low grade and high-grade standard. Blank material was inserted randomly in the sample stream at a ratio of 2%. Blank material is commercially available peagravel that has been previously tested for gold concentrations. Duplicates samples were collected by quarter cutting the core at randomly selected intervals. Two quarter-cut portions of core were sent for analysis; the remaining half is kept at a secure facility. Core intervals of poor recovery were not used for duplicate samples. Duplicate core samples were inserted into the sample stream at a ratio of 2%.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No verification of the significant intersections by either independent or alternative company personnel has been completed to date. The company acknowledges the material nature of the results and is planning a program of select verification assays. Such were the immediacy of the results; these verifications were not possible prior to the release of the [initial/first] results. The Company is confident that its sample security processes are adequate for the interim period.
		 The announcement details a single hole. Nevertheless, a second hole (not reported in this announcement), HH-GG25-002C, has been drilled on the same platform, drilled in a different direction. By this HH- GG25-001C is a fanned hole.
		 Sample results, certificates and results were sent via email to RML site contractors in Antimony Camp where results are analysed and interpreted.
		 No assay adjustments have been carried out.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The drill hole location was achieved using handheld GPS programmed into the local coordinate system. The accuracy of the GPS is in line with best practice standards.
	Specification of the grid system used.	
	 Quality and adequacy of topographic control. 	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The assay data spacing of HH-GG25-001C, the length and frequency of each sample and the collective coverage of the drill hole is best practise in terms of hole sample representativeness. In terms of geological data spacing associated with HH-GG25-001C the announcement details this single hole. Every metre of this hole was logged.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drill hole has a drill direction that is approaching perpendicular to the regional trend (lithologically and structurally) and also approaching perpendicular to the
structure	If the relationship between the drilling orientation and the orientation of key	known mineralisation of a historical tungsten mine. The purpose of the hole was to test the occurrence of known

Criteria	JORC Code explanation	Commentary
	mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 tungsten mineralisation at surface at depth. Cautionary Note: There is insufficient data pertaining to sampling orientation and the local-scale orientation of mineralisation at this time to determine the true width of the gold intervals in this hole. Additional holes in all directions are required to determine whether the gold mineralisation is broadly pervasive or (to various degrees) spatially constrained. Ifor example, if the gold mineralisation is broadly pervasive, then the gold intervals in this announcement are true widths. If the gold mineralisation is spatially constrained, then the gold intervals in this announcement are not true widths.
Sample security	The measures taken to ensure sample security.	All drill core samples were delivered directly to RML's geologists on site where they remain under direct supervision at a secure site.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The competent person is unaware of the undertaking of audits or reviews for sampling technique and data, other than its own review.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, past sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 This announcement refers to the one project, Horse Heaven project in Idaho USA, comprising six hundred and ninety-nine (699) U.S. Federal lode mining claims covering 5,644 hectares and includes six hundred and eighty-nine (689) mining claims and ten lode mining claims referred as the Oberbillig Group. The competent person understands that the mining claims are all in good standing.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 No exploration results reported in this release were performed by other parties.
Geology	Deposit type, geological setting and style of mineralisation.	 The project area is dominated by Cretaceous-aged granitic rocks relating to intrusive phases associated with the Atlanta Lobe of the Idaho Batholith. These largely granodiorite rocks have intruded Neoproterozoicaged metasediments, comprising quartzites (which are dominant) calcsilicates, marble and black shale. The area and broader region are affected by broad reginal folding and N-S, NNE-SSW, and NE-SW faults. Gold, antimony, tungsten and silver mineralisation is associated with hydrothermally altered and fractured granodiorites.
Drillhole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length.	The drillhole information for HH-GG25-001C is included in an in-text table (Table) with drill collar location data, altitude, dip, azimuth, and end of hole. altitude, dip, azimuth, and end of hole.

Criteria	JORC Code explanation	Commentary
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 In reporting downhole gold intersections results of HH-GG25-001C, no maximum and minimum truncations were used. In reporting downhole gold intersections/intervals, assay results of HH-GG25-001C, weighted averages were required due to the fact that sample lengths were variant (between 2.2ft and 5.2ft). The sample interval length was multiplied by the sample assay data then divided by the total length of the interval.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents were used in this announcement.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 With reference to HH-GG25-001C, the hole was drilled close to perpendicular across the prospect-scale orientation of the known mineralisation. There is insufficient data pertaining to the gold mineralisation identified in HH-GG25-001C to allow conclusive statements concerning the sampling orientation and the local-scale orientation of mineralisation. Therefore the true width nature of the reported widths of the mineralisation (in rock chip channel and drilling) is not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	A map and a cross section are provided with geolocation information (coordinates, northing and scale bar). Legends are included within each figure (where appropriate) and when additional explanation is required, this is given to the figure caption.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This announcement is considered to be fair and balanced with respect to the exploration results and interpretations based on them.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other material data associated with new exploration results in this announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The drill hole subject of this announcement, HH-GG25-001C, is part of the 10-hole diamond core program, which as the announcement reports, Is completed. Drill hole data of HH-GG25-002C through to HH-GG25-010C will be released to the market upon receipt. A plan (Figure 2) and a cross section (Figure 3) are included in this announcement to provide a sense of location of the hole in relation to i) other drill holes, and ii) intersected mineralisation. The cross section included a geological interpretation.