

Springfield

• Widespread anomalous copper-gold results associated with a major fault zone returned from recently completed 15,000m geochemical drilling campaign across the **Southern Volcanic** sequence including:

- o SPRB871: 8m @ 0.10% Cu from 34m
- o SPRB873: 26m @ 0.09% Cu from 37m
- SPRB796: **13m @ 0.08%** Cu from 3m
- o SPRB872: 8m @ 0.08% Cu from 39m
- o SPRB766: **11m @ 0.07%** Cu from 32m
- Encouraging copper results received from first-pass RC drilling at the **Abraham Prospect** designed to test several copper-gold-in-soil anomalies associated with volcanic horizons adjacent to the Goodin Fault Zone.
- Widespread low-level anomalous copper sulphides intersected in follow-up RC drilling along target VMS horizons at the **Monty, Homer** and **Central** volcanic trends.

<u>Halloween</u>

- In-fill diamond and RC drilling completed at the **Halloween Project** to evaluate deeper copper-gold targets defined by 3D geological modelling.
- Elevated copper, gold and associated pathfinder elements intersected in firstpass RC drilling program at **Halloween West Project** designed to test multiple geochemical and geophysical targets along the extension of the prospective Halloween horizon.

<u>Milgun</u>

 Internal technical review elevates prospectivity of the Milgun Project for copper-gold mineralisation – located in a favourable uplifted tectonic setting and comprising prospective Narracoota Volcanics.

Talisman Mining Ltd ABN 71079 536 495 6 Centro Avenue, Subiaco Western Australia 6008 www.talismanmining.com.au

COMPANY SNAPSHOT

Board of Directors

Alan Senior Non-Executive Chairman

Gary Lethridge Managing Director

Graeme Cameron Technical Director

Brian Dawes Non-Executive Director

Karen Gadsby Non-Executive Director

Contact Details

6 Centro Avenue Subiaco, Western Australia, 6008 Australia

Telephone: + 61 8 9380 4230

Facsimile: + 61 8 9382 8200

Email: info@talismanmining.com.au

Web site: www.talismanmining.com.au

Capital Structure

Shares on Issue: 131,538,627 (TLM)

Options on Issue: 14,950,000 (Unlisted)

ASX: TLM

Doolgunna Copper-Gold Projects (WA)

Springfield (TLM 100%)

The Springfield Project comprises a 303km² ground package located approximately 150km north-east of Meekatharra in the northern Murchison Goldfields region of Western Australia and 4km along strike from Sandfire Resources' DeGrussa VMS Copper-Gold Mine (see **Figure 1**).

During the Quarter, exploration activities at Springfield were concentrated mainly on drilling programs at the **Homer, Central** and **Monty Trends**. Drilling has intersected further minor copper-sulphides along key stratigraphic horizons, confirming the prospectivity of these sequences.

Detailed surface geological mapping was also completed at the **Central Corridor** and **Abraham Trends** to identify and define key structures and possible VMS host horizons for potential RC drilling.

Encouragingly, **several zones of +500ppm copper** (with a maximum assay of **1,700ppm**) were defined by a 400-800m spaced aircore geochemical drilling programme completed over the **Southern Volcanics**. These anomalous zones are associated with mafic volcanics and sediments along a major NW-trending fault zone adjacent to the Goodin Fault Zone.

Assay results for first-pass RC drilling at the **Abraham Prospect** were received during the Quarter with two zones of copper anomalism identified including a best result of **4m @ 0.1% Cu from 50m in SPRC264**, associated with a basalt-volcaniclastic sediment contact. This initial encouraging result confirms the prospectivity of the Southern Volcanics and requires further investigation in 2013.

Figure 1 – Springfield and Halloween tenement locality map

Homer Trend

Historic RC drilling along the **Homer Trend** has consistently intersected disseminated copper-sulphide mineralisation associated with a well-defined volcaniclastic sedimentary horizon near the base of the Narracoota basalt sequence.

RC drilling completed during the Quarter at Homer comprised RC drilling on 200m line spacings, targeting discrete structural breaks with coincident magnetic targets along the prospective host horizons.

Drilling intersected mafic volcano-sedimentary sequences with minor copper anomalism (see *Appendix 2*) associated with sulphides in basalts, silicified volcanic sediments and minor chert, with magnetic anomalism attributed to magnetite enriched dolerites.

An ongoing technical review of the Homer Trend will focus on the assessment of litho-chemical data to identify additional key host horizons and associated VMS alteration signatures for possible follow-up exploration activities.

Monty Trend

During the second half of 2012, a full structural and geological review was completed over the **Monty Trend** including re-assaying selected samples with low-level analytical techniques to better define follow-up drill targets and to vector towards a potential mineralized VMS position.

During the Quarter, RC drilling and associated down-hole EM (DHEM) was completed at Monty on 200m line spacing. This drilling targeted discrete structural breaks within coincident magnetic targets along the prospective Monty host horizon, along strike from discrete massive copper sulphide mineralisation intersected in previous diamond drilling (SDPD020 – **0.25m @ 7.63% Cu**).

Drilling intersected the Monty target horizon in two of the four RC holes but did not return any significant results. Anomalous copper sulphide mineralisation associated with quartz veining within a narrow interval of volcanic sediment was intersected by drill holes SPRC271 and SPRC274 (see **Appendix 2**).

The Monty data is currently being reviewed to determine possible targets for future work.

Central Trend

Interpretations from RC drilling data suggest that a prospective basalt-sediment contact at the southern margin of the **Central Trend** may represent a stratigraphically equivalent position to the DeGrussa mine sequence on the southern limb of a major regional syncline which has the potential to host VMS-style copper-gold mineralisation.

An updated geological interpretation of the Central Corridor was completed during the Quarter to identify key litho-structural controls on possible mineralisation and to further refine drilling targets. In addition, earlier DHEM surveys at the Central Trend detected two late-time off-hole conductors along the prospective target horizon.

RC drilling completed during the Quarter focused on testing these conductors as well as coincidental geochemical/structural targets proximal to the Central Corridor basalts. The drilling intersected favourable basalt and sediment sequences with no significant copper-gold mineralisation reported. The source of the two conductors was found to be conductive magnetite-bearing sediments located proximal to the sediment-basalt contact.

A programme of geological and geophysical interpretation is underway to better define the target horizon and key structures for possible follow-up in 2013.

Southern Volcanic Trend

The **Southern Volcanics** are interpreted to comprise a wide sequence of prospective Narracoota basalts, volcanic sediments and dolerites in close proximity to the Goodin Fault Zone – a major basin boundary structure and possible focus for VMS and other copper (+/- gold) rich mineralising fluids (see *Figure 2*).

This area has received minimal historic exploration activity, although surface sampling work by Talisman and local prospectors has shown that the volcanic sequence is anomalous in copper and gold.

Initial reconnaissance drilling was completed at the **Abraham Prospect** during the latter half of 2012 to test several copper-gold in-soil geochemical anomalies identified from earlier detailed soil sampling. Drilling intersected strongly-altered dolerites, basalts and, importantly, coarse volcaniclastic sediments that may have the potential to host VMS-style mineralisation.

Assay results for first-pass RC drilling at the Abraham Prospect were received during the Quarter (see **Appendix 2**) with two zones of copper anomalism identified on two traverses. Best results include **4m @ 0.10% Cu** from 50m (SPRC264), associated with **visible chalcopyrite** at a basalt-volcaniclastic sediment contact.

In addition to the Abraham RC drilling, an extensive reconnaissance geochemical aircore and RAB drilling program was completed over the **eastern extension of the Southern Volcanics** designed to test for base metal and gold anomalism under extensive alluvial cover (see *Figure 2*).

289 vertical holes were drilled for a total of 15,022m on a 400m and 800m by 160m grid pattern. Specifically, the aeochemical drillina was designed to test a major cross-cutting NW transfer fault zone that is interpreted to Springfield traverse the Project.

This reconnaissance geochemical drilling programme has returned highly encouraging results, defining a significant coherent zone of elevated copper and gold anomalism within a major NW-trending fault zone.

Recently received 1m split assays from initial 3m composite samples have returned maximum values of 1,700ppm Cu and 1.00g/t Au (re-split intercepts presented in Appendix 3) hosted by volcanic sediments, basalts and dolerites confirming the extension of highly prospective Southern mafic volcanics along the Goodin Fault Zone (see Figure 2).

Figure 2 – Eastern extension of the Southern Volcanics showing geochemical drilling results with anomalous Cu contours and max Cu values

A Versatile Time Domain Electromagnetic (VTEM) Survey covering the Southern Volcanic sequence is scheduled to commence in the first Quarter of 2013 to test for near-surface conductors and to help define possible drill targets along geochemical target horizons as well as provide data for geological interpretation.

These initial encouraging results at both the Abraham Prospect and the eastern extension of the Southern Volcanics have elevated the southern portion of the Springfield Project as a priority exploration focus in 2013. A full assessment and interpretation of the data over the Southern Volcanics is currently underway and the area will be a focus and priority for follow up exploration activities.

Halloween Copper-Gold Project (TLM 100%)

The **Halloween Project** is located 11.5km south-west of the DeGrussa VMS Copper-Gold Mine and 16.5km west of Talisman's Springfield VMS Copper-Gold Project (see **Figure 1**).

During the December Quarter, drill targeting was assisted by new 3D geological and geochemical modelling of the Halloween drilling data which clearly shows a thickened volcano-sedimentary host unit with copper values increasing towards a cross-cutting fault zone that may have acted as a primary conduit for mineralising fluids.

Four deep diamond holes (HWD005, HWD006, HWD007 and HWD008) and two deep RC holes (HRC039 and HRC040) were drilled during the Quarter to test the down-plunge and western extents of the defined coppergold mineralised zone along a prospective 800m long basaltic volcanic sedimentary horizon (see *Figure 3*).

Figure 3 – Simplified geological plan showing significant mineralised intercepts with December results highlighted in white

All holes intersected the target sediment horizon including narrow intervals of strongly chlorite and silica-altered shale which has been identified to be the primary host for gold and copper mineralisation (see *Appendix 4*).

The best copper and gold results were returned from hole HWD005, which was drilled beneath HWD002 (0.15m @ 2.62 % Cu, 5.52 g/t Ag, 0.31 g/t Au). The results HWD005 included:

• 7.1m @ 0.57 g/t Au from 227.2m (Including 2m @ 1.60 g/t Au from 231m)

This drilling has confirmed the accuracy of the 3D model in predicting the depth and extent of the interpreted target horizon, although the deeper drilling indicates that the target horizon steepens and thins with depth with noticeably less sulphide and vein development. Sulphide and gold mineralisation appears to be preferentially developed within the shallower and thicker portions of the Halloween target horizon.

Further structural analysis is underway to determine the controls on gold mineralisation and to delineate possible high-grade gold shoots.

Halloween West JV

The **Halloween West** Project is located immediately along strike and to the west of the 100%-owned Halloween Project and is interpreted to host the western extension of the Halloween VMS trend (see **Figure 4**). Talisman has the right to earn a 60% joint venture interest in the Halloween West Project under a Farm-in Agreement with Chrysalis Resources Limited (ASX: CYS) by spending \$500,000 on exploration within three years from commencement of the agreement.

As at 31 December 2012, Talisman had fulfilled its minimum expenditure commitment and has consequently earned the right to be transferred a 60% interest in the Halloween West Project. As a result, a Joint Venture between Talisman and Chrysalis Resources will now be established.

Figure 4 – Halloween West JV Project completed drill traverses along the prospective Halloween VMS Horizon

A 1,750m, 13-hole reverse circulation (RC) drilling program was completed at Halloween West during the Quarter to test newly-defined geophysical and copper-gold soil geochemical anomalies on four wide-spaced lines across the Halloween target horizon (see *Figure 4*). This drilling programme represented the first phase of drilling to be conducted by Talisman at the Halloween West JV project.

Drilling intersected the Halloween target host sediment horizon on each drill fence with intercalated chlorite-talc schist, magnetite-altered shales and clastic sediments logged on at least three drill sections, although minimal sulphide mineralisation was observed.

Initial assay results have been received and have returned elevated copper and gold values associated with the target sediment horizon and adjacent fractured basalt. Better results include: (see *Appendix 5*).

- HWRC11: 4m @ 0.18g/t Au from 142m
- HWRC11: 6m @ 0.06% Cu from 4m
- HWRC12: 6m @ 0.10% Cu from 30m

Further work is ongoing at Halloween West to determine the significance of the first-pass results and to assess the prospectivity of the broader project area.

Milgun Project (TLM 100%)

The **Milgun Project** is located approximately 20km north west of the Shelby Project and covers what Talisman has identified as a northern outlier of the Bryah Basin (see **Appendix 1**). The 766km² Milgun Project was originally targeted for gold, however a recent technical review has identified the presence of a sequence of volcanic rocks that are likely to be the equivalent of the Narracoota Volcanic Formation and therefore prospective for VMS-style deposits.

Figure 5 – Milgun Project geology showing copper/gold occurrences and distribution of prospective Narracoota Formation

An internal technical review completed during the Quarter has highlighted the prospectivity of the Milgun Project area, which is interpreted to be located within a tectonically uplifted block of Bryah basement rocks containing highly prospective Narracoota volcanic and sedimentary rocks (see **Figure 5**). It is interpreted that basement uplift is an effective mechanism for focused fluid flow and possible copper-gold mineralisation.

In 2011, Talisman conducted detailed airborne magnetic and ground gravity surveys together with detailed geological mapping and soil sampling across the main outcropping portion of the Milgun Project. Secondary copper enrichment (malachite) and gold workings were noted during this work. These data are currently being compiled and assessed for follow-up in 2013.

A Versatile Time Domain Electromagnetic Survey (VTEM) covering the greater Milgun Project area is scheduled to commence in the first Quarter of 2013 to identify near-surface conductors possibly associated with sulphide mineralisation for follow up exploration activities in the first half of 2013.

Murchison Gold Projects

Livingstone Gold Project (TLM 80%)

The Livingstone Gold Project is located approximately 130km to the north-west of Meekatharra (**Appendix 1**) and consists of three Exploration Licences covering an area of 208 km². The Project straddles the western extension of the highly prospective Bryah Basin at the northern margin of the Yilgarn Craton and a major shear zone traverses the entire project with widespread gold intercepts returned by historic percussion drilling programs over a strike length of more than 31km.

A systematic review of historical data for the Livingstone Project is underway with a view to evaluating potential exploration activities in 2013.

Muddawerrie Gold Project (TLM 80%)

The Muddawerrie Project is located approximately 100km north-west of Meekatharra in the Murchison Region of Western Australia (**Appendix 1**). The granted Exploration Licence covers an area of approximately 52 km² and comprises over 16km of prospective Archaean greenstone belt with significant potential to host high-grade, banded iron formation (BIF) and mafic-hosted shear zone gold deposits, similar to those at Mt Magnet and Meekatharra.

The Muddawerrie Project comprises two mineralised trends, Mt Maitland and Muddawerrie, which extend for 6km along the western and eastern sides of the project area respectively. Both trends are characterised by highly anomalous gold geochemistry associated with highly sheared mafic/ultramafic volcanic rocks and BIF coincident with a number of old gold workings along each trend.

No ground-based exploration activities were undertaken during the Quarter; however a systematic review of existing data is underway with the view to evaluating exploration activities in 2013.

Shelby Project (TLM 100%)

The 1,816 km² Shelby Project is located along the northern margin of the Bryah Basin approximately 30km north of the Horseshoe Lights Copper-Gold Mine (**Appendix 1**). On the basis of its geological setting, Talisman has identified the Shelby Project as having the potential to host large Iron Oxide-Copper-Gold (IOCG) deposits (e.g. Olympic Dam, Prominent Hill) and/or a Voisey's Bay-style mafic-ultramafic intrusive hosted nickel-copper-PGE sulphide deposit.

Previous drilling at the Shelby Project by Talisman has identified strong IOCG-style magnetite alteration (and minor chalcopyrite) associated with ultra-mafic intrusions beneath younger cover. Detailed magnetic data collected by Talisman was reviewed during the Quarter and several magnetic anomalies have been identified along a major regional structure that may be associated with similar intrusive bodies.

These anomalies were subsequently modelled to determine their attitude, depth and significance with respect to hosting possible IOCG-style mineralisation. Assessment of these anomalies is ongoing and may potentially be followed up with detailed gravity surveys to identify denser hematite-copper sulphide mineralisation worthy of drill testing.

CORPORATE

At the end of the December quarter, Talisman maintained a strong cash position of **\$21.85M**, which provides an excellent platform to continue the existing systematic exploration programs across its portfolio of exploration assets, as well as to identify and pursue new growth opportunities and acquisitions.

Competent Persons' Statement

Information in this ASX release that relates to Exploration Results and Mineral Resources is based on information compiled by Mr Graeme Cameron, who is a member of the Australasian Institute of Mining and Metallurgy. Mr Graeme Cameron is a full time employee of Talisman Mining Ltd and has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2004 Edition of the "Australian Code for Reporting of Mineral Resources and Ore Reserves". Mr Graeme Cameron consents to the inclusion in this report of the matters based on information in the form and context in which it appear. TALISMAN MINING LIMITED

December 2012 Quarterly Activities Report

Appendix 1 – Talisman Mining Ltd Project locations

TALISMAN MINING LIMITED

December 2012 Quarterly Activities Report

Appendix 2 – Talisman Mining – Springfield (Homer, Monty, Central Corridor and Abraham) RC/ DD Drillhole Locations and significant intercepts, Sept-Dec 2012

HOLE	HOLE TYPE	EAST MGA94	NORTH MGA94	DIP/ AZ	FROM (M)	ТО (М)	WIDTH (M)	INTERCEPT
SPD042	DDH	741702	7177472	-85/180	378	380	2	2m @ 0.06% Cu
SPRC253	RC	735300	7165539	-60/180	52	54	2	2m @ 0.2g/t Au
SPRC254	RC	735297	7165579	-60/180	38	42	4	4m @ 0.05% Cu
					46	48	2	2m @ 0.05% Cu
					58	68	10	10m @ 0.06% Cu
SPRC256	RC	735504	7165729	-60/180	66	68	2	2m @ 0.11% Cu
SPRC258	RC	735497	7165766	-60/180	8	10	2	2m @ 0.05% Cu
					18	28	10	10m @ 0.08% Cu
				(Incl.)	24	26	2	2m @ 0.14% Cu
					44	64	20	20m @ 0.08% Cu
				(Incl.)	54	64	10	10m @ 0.11% Cu
SPRC259	RC	735500	7165811	-60/180	44	50	6	6m @ 0.05% Cu
SPRC264	RC	735795	7166188	-60/180	50	54	4	4m @ 0.10% Cu
SPRC268	RC	736302	7165802	-60/360	62	64	2	2m @ 0.08% Cu
SPRC270	RC	736614	7165943	-60/360	19	20	1	1m @ 0.05% Cu
					23	24	1	1m @ 0.13% Cu
					84	85	1	1m @ 0.06% Cu
					104	105	1	1m @ 0.10% Cu
SPRC271	RC	743595	7171338	-60/135	36	40	4	4m @ 0.06% Cu
					66	70	4	4m @ 0.06% Cu
					250	256	6	6m @ 0.20% Cu
				(Incl.)	252	254	2	2m @ 0.49% Cu
SPRC272	RC	743749	7171439	-60/180	105	106	1	1m @ 0.05% Cu
					189	190	1	1m @ 0.07% Cu
SPRC273	RC	743453	7171258	-60/180	57	58	1	1m @ 0.10% Cu
					81	82	1	1m @ 0.08% Cu
					116	117	1	1m @ 0.05% Cu
					139	141	2	2m @ 0.06% Cu
SPRC274	RC	743443	7171301	-60/180	8	10	2	2m @ 0.05% Cu
SPRC275	RC	744399	7171833	-60/180	236	238	2	2m @ 0.06% Cu
SPRC277	RC	743106	7175494	-60/360	12	16	4	4m @ 0.05% Cu
SPRC279	RC	741300	7175147	-60/360	172	174	2	2m @ 0.09% Cu
SPRC280	RC	741305	7175100	-60/360	42	52	10	10m @ 0.06% Cu
					136	138	2	2m @ 0.06% Cu
SPRC281	RC	741304	7175050	-60/360	108	110	2	2m @ 0.05% Cu
					116	120	4	4m @ 0.09% Cu
SPRC282	RC	741302	7175000	-60/360	190	196	6	6m @ 0.06% Cu
SPRC283	RC	741616	7175199	-60/360	152	156	4	4m @ 0.06% Cu
					256	260	4	4m @ 0.05% Cu

HOLE	HOLE TYPE	EAST MGA94	NORTH MGA94	DIP/ AZ	FROM (M)	то (М)	WIDTH (M)	INTERCEPT
SPRC285	RC	741617	7175093	-60/360	18	20	2	2m @ 0.05% Cu
SPRC286	RC	741608	7175057	-60/360	62	66	4	4m @ 0.065% Cu
SPRC288	RC	740602	7175053	-55/360	12	14	2	2m @ 0.06% Cu
SPRC290	RC	740602	7174951	-55/360	52	68	16	16m @ 0.06% Cu
					84	86	2	2m @ 0.05% Cu
SPRC291	RC	740614	7174865	-55/360	144	146	2	2m @ 0.05% Cu
					174	178	4	4m @ 0.06% Cu
SPRC300	RC	739608	7171106	-60/360	274	276	2	2m @ 0.10% Cu
SPRC306	RC	738511	7171021	-60/360	18	20	2	2m @ 0.05% Cu

Cu results calculated using a minimum cut off of 0.05% with a maximum internal waste of 2m. Au results calculated using a minimum cut off of 0.1g/t with a maximum internal waste of 2m. All results have been rounded to 2 decimal points

Appendix 3 – Talisman Mining- Springfield Southern Volcanics Aircore and RAB Drillhole Locations and significant intercepts, Sept-Dec 2											
HOLE	HOLE TYPE	EAST MGA94	NORTH MGA94	DIP/ AZ	FROM (M)	то (М)	WIDTH (M)	INTERCEPT			
SPRB602	AC	739610	7166123	-90/360	25	29	4	4m @ 0.05% Cu			
SPRB607	AC	739588	7166995	-90/360	35	36	1	1m @ 0.23g/t Au			
SPRB613	AC	739997	7166261	-90/360	43	44	1	1m @ 0.05% Cu			
SPRB613					45	48	3	3m @ 0.48g/t Au			
SPRB629	AC	740770	7166395	-90/360	10	16	6	6m @ 0.06% Cu			
SPRB629					26	30	4	4m @ 0.05% Cu			
SPRB629					35	36	1	1m @ 0.05% Cu			
SPRB631	AC	740786	7166613	-90/360	13	29	16	16m @ 0.05% Cu			
SPRB643	AC	741221	7166161	-90/360	19	21	2	2m @ 0.06% Cu			
SPRB643					39	42	3	3m @ 0.07% Cu			
SPRB644	AC	741195	7166303	-90/360	15	17	2	2m @ 0.06% Cu			
SPRB656	AC	741203	7167727	-90/360	22	23	1	1m @ 0.06% Cu			
SPRB700	AC	742001	7166600	-90/360	22	23	1	1m @ 0.06% Cu			
SPRB700					33	35	2	2m @ 0.06% Cu			
SPRB700					40	44	4	4m @ 0.06% Cu			
SPRB713	AC	741983	7168170	-90/360	76	77	1	1m @ 0.14g/t Au			
SPRB726	AC	742414	7166413	-90/360	28	29	1	1m @ 0.05% Cu			
SPRB726					32	33	1	1m @ 0.05% Cu			
SPRB738	AC	742811	7166006	-90/360	30	32	2	2m @ 0.07% Cu			
SPRB741	AC	742799	7166374	-90/360	29	51	22	22m @ 0.05% Cu			
SPRB750	RAB	742794	7167445	-90/360	39	41	2	2m @ 0.07% Cu			

TALISMAN MINING LIMITED

December 2012 Quarterly Activities Report

HOLE	HOLE TYPE	EAST MGA94	NORTH MGA94	DIP/ AZ	FROM (M)	то (М)	WIDTH (M)	INTERCEPT
SPRB752	RAB	742808	7167802	-90/360	50	51	1	1m @ 1g/t Au
SPRB766	AC	744545	7166890	-90/360	32	43	11	11m @ 0.07% Cu
SPRB766				(incl.)	32	33	1	1m @ 0.11% Cu
SPRB766				(also incl.)	39	40	1	1m @ 0.11% Cu
SPRB767	AC	744413	7166889	-90/360	39	42	3	3m @ 0.08% Cu
SPRB772	AC	744173	7166905	-90/360	14	18	4	4m @ 0.06% Cu
SPRB772					25	30	5	5m @ 0.07% Cu
SPRB772				(incl.)	26	27	1	1m @ 0.10% Cu
SPRB781	AC	743841	7167504	-90/360	35	37	2	2m @ 0.07% Cu
SPRB788	AC	743293	7167489	-90/360	45	47	2	2m @ 0.06% Cu
SPRB791	AC	740681	7170156	-90/360	56	58	2	2m @ 0.08% Cu
SPRB796	RAB	741577	7170158	-90/360	3	16	13	13m @ 0.08% Cu
SPRB796				(incl.)	13	15	2	2m @ 0.12% Cu
SPRB802	RAB	742490	7170135	-90/90	17	18	1	1m @ 0.06% Cu
SPRB803	RAB	743082	7170151	-90/90	36	38	2	2m @ 0.06% Cu
SPRB856	AC	742740	7170152	-90/90	33	37	4	4m @ 0.05% Cu
SPRB871	AC	743556	7167701	-90/90	34	42	8	8m @ 0.10% Cu
SPRB871				(incl.)	39	40	3	1m @ 0.17% Cu
SPRB872	AC	743680	7167707	-90/90	39	47	8	8m @ 0.08% Cu
SPRB872				(incl.)	43	47	4	4m @ 0.11% Cu
SPRB872					50	62	12	12m @ 0.05% Cu
SPRB872				(incl.)	58	59	1	1m @ 0.11% Cu
SPRB873	AC	743796	7167697	-90/90	28	32	4	4m @ 0.06% Cu
SPRB873					37	63	26	26m @ 0.09% Cu
SPRB873				(incl.)	44	45	1	1m @ 0.13% Cu
SPRB873				(also incl.)	57	58	1	1m @ 0.11% Cu
SPRB873				(also incl.)	61	63	2	2m @ 0.14% Cu
SPRB876	AC	744158	7167699	-90/90	6	9	3	3m @ 0.07% Cu
SPRB876					24	25	1	1m @ 0.07% Cu
SPRB877	AC	744261	7167714	-90/90	9	12	3	3m @ 0.07% Cu

Cu results calculated using a minimum cut off of 0.05% with a maximum internal waste of 2m. Au results calculated using a minimum cut off of 0.1g/t with a maximum internal waste of 2m. All results have been rounded to 2 decimal points

HOLE	HOLE TYPE	EAST MGA94	NORTH MGA94	DIP/ Azimuth	FROM (Metres)	TO (Metres)	DOWNHOLE WIDTH (M)	INTERCEPT
HRC032	RC	716232	7167949	-60/360	238	240	2	2.00m @ 0.22g/t Au
HRC032	RC				286	288	2	2.00m @ 0.05% Cu
HWD005	DDH	716971	7167942	-60/340	227.2	234.3	7.1	7.10m @ 0.57g/t Au
HWD005	DDH				231	233	2	2.00m @ 1.60g/t Au
HWD005	DDH				343	345	2	2.00m @ 0.18g/t Au
HWD006	DDH	717214	7167930	-60/360	475.9	478.5	2.6	2.60m @ 0.15g/t Au
HWD006	DDH			(incl.)	475.9	476.42	0.52	0.52m @ 0.09% Cu
HWD008	DDH	716619	7167916	-60/355	189	191	2	2.00m @ 0.05% Cu

Appendix 4 – Talisman Mining - Halloween Drillhole Locations and significant intercepts, Sept-Dec 2012

Cu results calculated using a minimum cut off of 0.05% with a maximum internal waste of 2m. Au results calculated using a minimum cut off of 0.1g/t with a maximum internal waste of 2m. All results have been rounded to 2 decimal points

Appendix 5 – Talisman Mining - Halloween West Drillhole Locations and significant intercepts, Sept-Dec 2012

HOLE	HOLE TYPE	EAST MGA94	NORTH MGA94	DIP/ AZ	FROM (M)	то (М)	WIDTH (M)	INTERCEPT
HWRC011	RC	715685	7168045	-60/010	4.00	10.00	6.00	6m @ 0.06% Cu
HWRC011	RC				142.00	146.00	4.00	4m @ 0.18g/t Au
HWRC012	RC	715669	7167967	-60/355	30.00	36.00	6.00	0.10% Cu

Cu results calculated using a minimum cut off of 0.05% with a maximum internal waste of 2m. Au results calculated using a minimum cut off of 0.1g/t with a maximum internal waste of 2m. All results have been rounded to 2 decimal points