

25 February 2022

Tietto hits 503.85 g/t Au within 10m @ 51.75 g/t Au at AG Core Grades up to 46.2 g/t Au at AGM Prospect as exploration drilling ramps up

Highlights:

- ➤ Tietto adds more **bonanza-grade gold intercepts** at **AG Core** from infill drilling on the main Abujar Shear at its **3.35Moz** Abujar Gold Project; results include:
 - > 10m @ 51.75 g/t Au from 83m incl. 3m @ 171 g/t Au which includes 1m @ 503.85 g/t Au (ZDD866 Section 29A)
- ➤ **High-grade gold intercepts** from exploration diamond drilling at multiple prospects on the main Abujar Shear at its **3.35Moz** Abujar Gold Project; include:
 - > 1m @ 46.2 g/t Au from 141m (ZDD918 AGM)
 - → 4m @ 6.8 g/t Au from 10m incl. 1m @ 26.34 g/t Au (ZDD818 PGL)
 - > 1m @ 24.26 g/t Au from 77m (ZDD834 PGL)
 - > 1.31m @ 15.65 g/t Au from 37m (ZDD908 GGL)
 - > 2m @ 8.8 g/t Au from 151m (ZDD791 PGL)
 - 2m @ 7.06 g/t Au from 17m (ZDD908 GGL)
- Tietto has achieved 13 intervals greater than 200 gold gram metres at AG Core
- ➤ Exploration results are for 33 DD holes (6,421m) targeting resource growth from prospects along strike from **AG** our six diamond rigs are actively drilling, with 100,000m planned in 2022
- Tietto awaits assays for 36 drill holes (7,983m); with next resource update due end of Q1 CY2022
- Abujar DFS demonstrated robust financial results and estimated **first-year gold production of 260,000oz** and 1.2Moz over the first six years of Abujar's 11-year mine life for an NPV_{5%} A\$1.3B (pretax) and A\$0.97B (post-tax) using US\$1,700/oz Au and A\$/US\$=0.74¹
- ➤ Tietto is funded to production² with construction on schedule targeting first gold at Abujar Q4 CY2022.

West African gold explorer and developer Tietto Minerals Limited (ASX: TIE) (**Tietto** or the **Company**) is pleased to report further **bonanza-grade gold** results from infill drilling and **high-grade gold** results from exploration drilling completed at its **3.35Moz** Abujar Gold Project in Côte d'Ivoire, West Africa.

¹ Refer ASX Announcement dated 5th October 2021

² Refer ASX Announcement dated 22nd November 2021

Tietto Managing Director, Dr Caigen Wang, said: "We have added to our tally of **bonanza-grade gold** intercepts from infill drilling at **AG Core**. Intercepts from our infill drill program now account for six of the top 10 assays at Abujar, including the project-best result of 1.1m at **2,853g/t gold**³.

"All infill drilling results are with our resource modelling consultants to complete a Resource Model Update, due at the end of this Quarter. This model update is focused on conversion from Indicated to Measured Resources covering the first two years of production.

"Our drill rigs have moved to prospects located to north (**GGL**) and south (**AGM**, **PGL**) of **AG Core** with the goal of defining new gold resources in an update late this year. The high-grade gold intercepts seen in the latest results highlight the prospectivity and still largely untested potential of the main Abujar Shear.

"We are fully funded to production at **Abujar, which has potential to be one of the largest gold producing mines in Côte d'Ivoire**, expected to produce **more than 260,000 ounces of gold** in the first year and **1.2M ounces of gold** in the first six years.

"We are well positioned to execute our dual strategy in 2022; our Exploration Team is targeting drilling 100,000m of diamond core this year to drive resource growth, and our Build Team is advancing construction work on schedule as we develop the Abujar Gold Project into West Africa's next gold mine with first gold by the end of Q4 CY22."

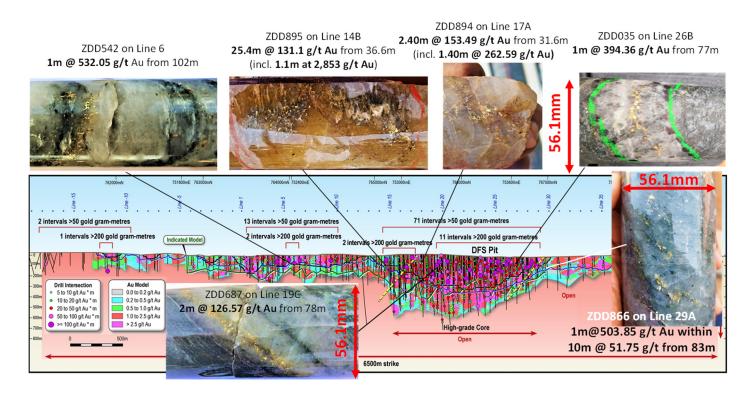


Figure 1: Oblique long section showing latest drill results and visible gold in core at AG

³ Refer ASX Announcement dated 24th January 2022

Infill Drilling - AG Core

Tietto previously reported results from hole ZDD866 on 14th February 2022 and at that time assay results from five samples were pending. These have now been finalised. The presence of coarse gold meant that the analysis of the sample that reported 503.85 g/t Au required the use of screen fire assay with a gravimetric finish. More significant intersections from ZDD866 including the latest batch of five gold assays received for 1m diamond drill samples are summarised in **Table 1**.

Table 1: Significant Intersections from AG Core infill drilling⁴

Hole id	Depth from	Depth to	Length	g/t Au	includes ⁵
ZDD866 (14 th Feb 2022)	63	69	6	1.88	1m @ 4.99 g/t Au
ZDD866 (new results)	83	93	10	51.75	3m @ 171 g/t Au

Drill collar details and assay results are in **Table 5** and **Table 6** respectively. Location of the reported drill collars and associated assay results is presented in **Figure 4**. An oblique cross-section highlighting selected assay results is presented in **Figure 5** and an oblique long section presents the results in **Figure 6**.

Infill drilling was completed at **AG Core** on 25m line spacings between Section Lines 14 to 30 across the **AG Core** to a depth covering the first two years of gold production at Abujar (~120m vertical depth).

Gold mineralisation at **AG Core** remains open at depths well below open pit limits. Tietto will plan further drilling to assess the potential for underground mining at Abujar below the planned DFS open pit.

Significant intersections (>=20 gold gram metres) from the infill program including those from this release are presented in **Table 2.**

 $\textit{Table 2: AG Core - significant intersections from infill program greater than 20 gold gram \ metres^6$

Hole id	From	То	Length	g/t Au	gold gram metres	ASX Reporting
ZDD895	38	46	8	393.59	3,149	24 Jan 2022
ZDD866	83	93	10	51.75	518	25 Feb 2022
ZDD894	31.6	34	2.4	153.49	368	14 Feb 2022
ZDD685	54	56	2	143.77	288	13 Oct 2021
ZDD687	69	85	16	17.60	282	22 Sep 2021
ZDD696	125	132	7	30.67	215	21 Oct 2021
ZDD895	50	62	12	14.61	175	24 Jan 2022
ZDD870	38	43	5	33.86	169	7 Feb 2022
ZDD859	37	47	10	16.53	165	20 Jan 2022
ZDD899	64	76	12	11.99	144	14 Feb 2022
ZDD665	97	119	22	5.62	124	13 Oct 2021
ZDD596	85	88	3	35.65	107	10 Sep 2021
ZDD685	61	67	6	17.01	102	13 Oct 2021
ZDD703	187	195	8	12.43	99	12 Nov 2021
ZDD617	66	73	7	12.48	87	10 Sep 2021

⁴ 0.4 g/t Au cut off used with max 3m internal dilution and no top cut applied

⁵ 2.0 g/t Au cut off used with max 3m internal dilution and no top cut applied

⁶ 0.4 g/t Au cut off used with max 3m internal dilution and no top cut applied

Hole id	From	То	Length	g/t Au	gold gram metres	ASX Reporting
ZDD734	83	90	7	11.87	83	30 Nov 2021
ZDD704	214	232	18	4.36	78	12 Nov 2021
ZDD703	208	220	12	6.10	73	12 Nov 2021
ZDD730	91	96	5	14.44	72	22 Dec 2021
ZDD814	254	261	7	9.38	66	30 Nov 2021
ZDD806	11	29	18	3.67	66	20 Jan 2022
ZDD702	227	236	9	6.97	63	12 Nov 2021
ZDD633	60	78	18	3.30	59	22 Sep 2021
ZDD701	120	128	8	7.17	57	30 Nov 2021
ZDD705	0	1	1	55.13	55	12 Nov 2021
ZDD724	82	91	9	6.03	54	22 Dec 2021
ZDD884	118	120	2	26.07	52	7 Feb 2022
ZDD770	74	79	5	10.16	51	22 Dec 2021
ZDD760	234	243	9	5.47	49	22 Dec 2021
ZDD853	35	43	8	6.07	49	14 Feb 2022
ZDD691	79	87	8	5.95	48	21 Oct 2021
ZDD699	162	176	14	3.27	46	12 Nov 2021
ZDD606	143	162	19	2.33	44	10 Sep 2021
ZDD750	196	200	4	10.75	43	30 Nov 2021
ZDD854	137	146	9	4.61	42	7 Feb 2022
ZDD671A	136	150	14	2.87	40	13 Oct 2021
ZDD871	105	121	16	2.51	40	7 Feb 2022
ZDD698	178	189	11	3.58	39	12 Nov 2021
ZDD892	64	79	15	2.57	38	7 Feb 2022
ZDD670	138	139	1	36.82	37	22 Dec 2021
ZDD727	61	72	11	3.34	37	30 Nov 2021
ZDD869	30	34	4	8.83	35	7 Feb 2022
ZDD799	18	29	11	3.09	34	22 Dec 2021
ZDD774	248	252	4	8.30	33	22 Dec 2021
ZDD882	52	54	2	16.40	33	7 Feb 2022
ZDD707	201	228	27	1.19	32	12 Nov 2021
ZDD890	19	39	20	1.60	32	7 Feb 2022
ZDD889	71	76	5	6.13	31	7 Feb 2022
ZDD805	105	115	10	3.04	30	20 Jan 2022
ZDD796	144	154	10	3.01	30	20 Jan 2022
ZDD790	117	131	14	2.14	30	20 Jan 2022
ZDD817	112	126	14	2.14	30	20 Jan 2022
ZDD607	93	110	17	1.68	29	10 Sep 2021
ZDD891	63	67	4	7.29	29	7 Feb 2022
ZDD707	237	238	1	28.39	28	12 Nov 2021
ZDD658	71	77	6	4.69	28	13 Oct 2021
ZDD691	112	115	3	9.32	28	21 Oct 2021

Hole id	From	То	Length	g/t Au	gold gram metres	ASX Reporting
ZDD881	79	82	3	9.38	28	7 Feb 2022
ZDD865	71	79	8	3.43	27	14 Feb 2022
ZDD894	65	76	11	2.48	27	14 Feb 2022
ZDD899	33.13	34	0.87	31.20	27	14 Feb 2022
ZDD629	34	41	7	3.66	26	10 Sep 2021
ZDD703	149	151	2	12.64	25	12 Nov 2021
ZDD618	91	98	7	3.56	25	10 Sep 2021
ZDD679	18	30	12	2.07	25	22 Sep 2021
ZDD636	101	105	4	6.11	24	22 Sep 2021
ZDD636	70	74	4	6.02	24	22 Sep 2021
ZDD608	104	113	9	2.64	24	10 Sep 2021
ZDD668	108	109	1	23.70	24	13 Oct 2021
ZDD668	168	169	1	23.52	24	13 Oct 2021
ZDD608	167	173	6	3.88	23	10 Sep 2021
ZDD589	56	68	12	1.91	23	10 Sep 2021
ZDD747	40	46	6	3.82	23	22 Dec 2021
ZDD682	97	105	8	2.80	22	22 Dec 2021
ZDD688	157	159	2	11.14	22	22 Dec 2021
ZDD637	79	90	11	1.98	22	22 Sep 2021
ZDD859	113	114	1	21.87	22	20 Jan 2022
ZDD706A	113	129	16	1.34	21	12 Nov 2021
ZDD705	148	151	3	7.01	21	12 Nov 2021
ZDD704	146	157	11	1.90	21	12 Nov 2021
ZDD682	181	191	10	2.06	21	22 Dec 2021
ZDD750	225	231	6	3.33	20	30 Nov 2021
ZDD615	11	19	8	2.45	20	10 Sep 2021
ZDD662A	66	67	1	19.52	20	13 Oct 2021
ZDD854	53	62	9	2.24	20	7 Feb 2022
ZDD890	11	12	1	20.23	20	7 Feb 2022

Drilling has intersected good widths and grades in assays received to date with these new results, increasing the tally to 71 intervals greater than 50 gold gram metres, including 13 intervals greater than 200 gold gram metres at **AG Core** (**Table 3**).

Table 3: AG Core - significant intersections greater than 50 gold gram metres $^{\!7}$

Hole id	From	То	Length	g/t Au	gold gram metres	Section
ZDD895	38	46	8	393.59	3,149	14B
ZDD866	83	93	10	51.75	518	29A
ZDD035	76	83	7	57.79	405	26B
ZDD894	31.6	34	2.4	153.49	368	17A
ZDD084	55	62	7	41.76	292	24B

 $^{^{7}}$ 0.4 g/t Au cut off used with max 3m internal dilution and no top cut applied

Hole id	From	То	Length	g/t Au	gold gram metres	Section
ZDD685	54	56	2	143.77	288	25A
ZDD687	69	85	16	17.60	282	19C
ZDD095	215	236	21	13.02	273	23B
ZDD043	111	127	16	16.31	261	27C
ZDD082	83	85	2	113.30	227	26
ZDD696	125	132	7	30.67	215	25A
ZDD028	39	57	18	11.72	211	28B
ZRC171	238	244	6	34.17	205	20
ZDD333	173	194	21	8.73	183	25B
ZDD895	50	62	12	14.61	175	14B
ZDD870	38	43	5	33.86	169	26A
ZDD859	37	47	10	16.53	165	28C
ZDD027	70	88	18	8.37	151	29
ZDD437	203	208	5	28.91	145	19
ZDD899	64	76	12	11.99	144	14C
ZRC172	108	128	20	6.56	131	19B
ZDD445	120	149	29	4.46	129	16B
ZDD445 ZDD665	97	119	22	5.62	124	24A
ZDD180	286	296	10	12.09	121	20B
ZDD180 ZDD058	179	186	7	15.50	109	25
ZDD596	85	88	3	35.65	107	28A
ZDD350 ZDD061	254	255	1	103.90	104	22
ZRC188	70	72	2	51.14	102	20B
ZDD685	61	67	6	17.01	102	25A
ZDD083 ZDD074	174	176	2	50.65	101	23A 22B
	187		8		99	23C
ZDD703		195	12	12.43	90	
ZDD232	370	382		7.54	88	24B 19
ZRC164A	268	286	18 7	4.90		
ZDD617	66	73	5	12.48	87	25C
ZDD096	173	178	7	17.27	86	23B
ZDD734	83	90		11.87	83	22C
ZDD704	214	232	18	4.36	78	18C
ZDD081	78	94	16	4.75	76	25
ARC17	48	58	10	7.46	75	17B
ZDD703	208	220	12	6.10	73	23C
ZDD730	91	96	5	14.44	72	18C
ZRC047A	208	218	10	7.16	72	23
ZDD029	91	97	6	12.07	72	27C
ZDD212	401	406	5	14.23	71	20B
ZDD043	177	178	1	70.35	70	27C
ZDD092	147	153	6	11.49	69	23B
ZRC187	100	106	6	11.37	68	19B
ZDD096	122	124	2	33.53	67	23B
ZDD806	11	29	18	3.67	66	23A
ZDD187	259	267	8	8.26	66	24B
ZDD702	227	236	9	6.97	63	19A
ZRC169B	186	192	6	10.52	63	21C
ZRC037	66	68	2	31.10	62	25
ZDD104	364	370	6	9.91	59	16
ZDD633	60	78	18	3.30	59	21A
ZRC044	74	76	2	29.50	59	24
ZRD104	245	251	6	9.60	58	19

Web: www.tietto.com

Hole id	From	То	Length	g/t Au	gold gram metres	Section
ZDD337A	257	267	10	5.75	58	24B
ZDD511	536	540	4	14.37	57	23
ZDD235	440	447	7	8.16	57	24B
ZDD701	120	128	8	7.17	57	25A
ZDD180	317	323	6	9.35	56	20B
ZDD705	0	1	1	55.13	55	19C
ZRC188	252	254	2	27.70	55	20B
ZDD058	194	198	4	13.63	55	25
ZDD724	82	91	9	6.03	54	22C
ZDD093	0	2	2	26.33	53	23B
ZDD080	54	56	2	26.05	52	26B
ZDD884	118	120	2	26.07	52	28C
ZDD770	74	79	5	10.16	51	14C
ZRC174	240	250	10	5.00	50	16B

Exploration Drilling - AGM, GGL and PGL

Results are presented for 33 diamond drill holes (6,241.5m) completed as part of Tietto's exploration drilling program. This program is designed to grow the Abujar mineral resource, with plans for 100,000m of diamond core drilling in 2022 (50 holes for 9,940m completed so far) using six of Tietto's own diamond drill rigs.

Drilling results are reported from three prospects, one located to the north (GGL) and two located to the south (AGM, PGL) of AG Core:

AGM: 6 holes for 1,331m GGL: 4 holes for 936.5m PGL: 23 holes for 3974m.

More significant intersections from the latest batch of gold assays received for 1m diamond drill samples are summarised below in Table 4.

Table 4: Significant Intersections from exploration drilling⁸

Hole id	Depth from	Depth to	Length	g/t Au	Includes ⁹	Target
ZDD911	148	155	7	1.63	4m @ 2.45 g/t Au	AGM
ZDD918	141	142	1	46.20		AGM
ZDD908	17	19	2	7.06		GGL
ZDD908	37	38.31	1.31	15.65		GGL
ZDD791	151	153	2	8.80		PGL
ZDD797	41	42	1	11.04		PGL
ZDD818	10	14	4	6.80	1m @ 26.34 g/t Au	PGL
ZDD834	77	78	1	24.26		PGL
ZDD846	90	95	5	2.26	4m @ 2.72 g/t Au	PGL
ZDD846A	163	169	6	2.06	2m @ 5.6 g/t Au	PGL

^{8 0.4} g/t Au cut off used with max 3m internal dilution and no top cut applied

⁹ 1.0 g/t Au cut off used with max 3m internal dilution and no top cut applied

Web: www.tietto.com

Drill collar details and assay results are in **Table 5** and **Table 6** respectively. Location of the reported drill collars and associated assay results are presented in **Figure 7**. Gold mineralisation is open at depth and along strike and further drilling is planned to follow up on these results.

Next Steps

Tietto completed a A\$85 million Placement¹⁰ in January 2022 to complement its debt strategy, where the Company mandated Taurus Mining Finance Fund No.2 L.P. (Taurus) to deliver an underwritten Project Development Facility of up to US\$140 million of debt funding for the US\$200 million project.

Tietto remains very well positioned to advance its dual strategy into 2022:

- 1. Continue to drive rapid resource growth at the 3.35Moz Abujar Gold Project; and
- 2. Fast-track development of Abujar Gold Project to achieve first gold in Q4 CY22.

Tietto continued to deliver milestones during 2021 with its 5th October 2021 Definitive Feasibility Study (DFS) demonstrating robust financial results and estimated gold production of 260,000oz in the first year and 200,000oz per year over the first six years of Abujar's 11-year mine life (refer ASX announcement 5 October 2021).

The Company is negotiating the final regulatory step, the Abujar Mining Convention, with the Ivorian Government, having already secured all mining and environmental approvals.

Tietto's owner's team is advancing construction of the process plant and associated infrastructure which remains on schedule as the Abujar Gold Project progresses towards first gold by the end of Q4 CY22 and on track to become West Africa's next gold mine.

ENDS

This update has been authorised on behalf of Tietto Minerals Limited by:

Dr Caigen WangManaging Director
Tel: +61 8 9420 8270

Mark Strizek
Executive Director
Mob: +61 431 084 305

¹⁰ ASX 22 November 2021

Web: www.tietto.com

Competent Persons' Statements

The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Mr Mark Strizek, a Competent Person who is a Member or The Australasian Institute of Mining and Metallurgy. Mr Strizek is a non-executive director of the Company. Mr Strizek has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Strizek consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears. Additionally, Mr Strizek confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

The information in this presentation that relates to Mineral Resources was prepared by RPM Global and released on the ASX platform on 12 July 2021. The Company confirms that it is not aware of any new information or data that materially affects the Minerals Resources in this publication. The Company confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the RPM Global's findings are presented have not been materially modified.

The information in this report that relates to Mineral Resources is based on information evaluated by Mr Jeremy Clark who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM) and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Clark is an associate of RPM and he consents to the inclusion of the estimates in the report of the Mineral Resource in the form and context in which they appear.

The information in this report that relates to Ore Reserves was prepared by RPM and released on the ASX platform on 5 October 2021. The Company confirms that it is not aware of any new information or data that materially affects the Ore Reserves in this publication. The Company confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the RPM findings are presented have not been materially modified

The information in the report that relates to Ore Reserves for the Abujar Gold Project is based on information compiled and reviewed by Mr. Igor Bojanic, who is a Fellow of the Australasian Institute of Mining and Metallurgy, and is an employee of RPM. Mr. Igor Bojanic has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he has undertaken to qualify as a Competent Person, as defined in the 2012 Edition of the Australasian Code for the Reporting of Mineral Resources and Ore Reserves. Mr. Igor Bojanic is not aware of any potential for a conflict of interest in relation to this work for the Client. The estimates of Ore Reserves presented in this Statement have been carried out in accordance with the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (30 September, 2021).

Compliance Statement

This report contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("2012 JORC Code") and available for viewing at www.tietto.com. Includes results reported previously and published on ASX platform, 16 January 2018, 27 March 2018, 23 April 2018, 8 May 2018, 7 June 2018, 4 October 2018, 1 November 2018, 28 November 2018, 31 January 2019, 26 February 2019, 12 March 2019, 19 March 2019, 9 April 2019, 9 May 2019, 30 May 2019, 9 July 2019, 26 July 2019, 2 October 2019, 24 October 2019, 12 December 2019, 23 January 2020, 20 February 2020, 10 March 2020, 24 March 2020, 2 April 2020, 9 April 2020, 2 July 2020, 21 July 2020 20 July 2020, 29 July 2020, 19 August 2020, 9 September 2020, 24 September 2020, 26 October 2020, 11 December 2020, 18 January 2021, 12 February 2021, 23 February 2021, 23 March 2021, 6 April 2021, 8 April 2021, 20 April 2021, 3 May 2021, 6 May 2021, 11 May 2021, 21 May 2021, 27 May 2021, 11 June 2021, 16 June 2021, 12 July 2021, 10 September 2021, 22 September 2021, 5 October 2021, 13 October 2021, 12 October 2021, 8 November 2021, 12 November 2021, 12 November 2021, 22 November 2021, 30 November 2021, 10 December 2021, 12 December 2021, 18 January 2022, 20 January 2022, 24 January 2022, 7 February 2022, 14 February 2022 and 18 February 2022. The Company confirms that all material assumptions and technical parameters underpinning the Mineral Resources and Ore Reserves continue to apply and have not materially changed. The Company confirms that it is not aware of any new information or data that materially affects the information included in the previous announcements.

Table 5: Drill Collar Information

Hole ID	Easting	Northing	Elevation	Depth (m)	dip	Azi	Target	Drill Type
ZDD866 ¹¹	753,899	766,923	210	178.5	-45	350	AG Core	DD
ZDD910	751,396	763,464	253	246	-55	130	AGM	DD
ZDD911	751,686	763,769	240	213	-50	130	AGM	DD
ZDD912	751,687	763,907	234	161	-50	130	AGM	DD
ZDD914	751,725	763,838	236	228	-60	125	AGM	DD
ZDD916	751,827	764,003	238	300	-60	125	AGM	DD
ZDD918	751,492	763,392	251	183	-60	125	AGM	DD
ZDD907	755,769	769,031	215	301.5	-55	305	GGL	DD
ZDD908	755,717	769,213	217	192	-55	305	GGL	DD
ZDD913	755,814	769,269	217	211.5	-55	305	GGL	DD
ZDD917	755,880	769,347	223	231.5	-55	305	GGL	DD
ZDD769	751,575	763,316	250	192.5	-55	307	PGL	DD
ZDD783	751,518	763,372	250	111	-55	307	PGL	DD
ZDD786	751,399	763,173	250	156	-55	307	PGL	DD
ZDD791	751,434	762,964	245	231	-55	305	PGL	DD
ZDD797	751,789	763,174	248	210	-55	307	PGL	DD
ZDD803	751,735	763,224	248	126	-55	307	PGL	DD
ZDD804	751,385	763,023	247	193.5	-55	307	PGL	DD
ZDD808	751,363	763,025	247	52.5	-55	307	PGL	DD
ZDD818	751,243	762,844	239	177	-55	307	PGL	DD
ZDD822	751,098	762,558	223	220.5	-55	307	PGL	DD
ZDD825	751,052	762,591	224	154.5	-55	307	PGL	DD
ZDD827	751,324	762,804	235	69	-55	309	PGL	DD
ZDD830	751,119	763,005	246	261	-55	330	PGL	DD
ZDD834	751,654	763,607	244	181	-50	130	PGL	DD
ZDD838	751,299	763,132	249	141	-55	330	PGL	DD
ZDD838A	751,301	763,129	249	140.5	-55	150	PGL	DD
ZDD840	751,618	763,700	244	275	-55	130	PGL	DD
ZDD841	751,258	763,135	249	231.5	-55	330	PGL	DD
ZDD841A	751,258	763,135	249	230	-55	150	PGL	DD
ZDD846	751,197	763,089	248	191	-55	307	PGL	DD
ZDD846A	751,205	763,083	249	192.5	-55	150	PGL	DD
ZDD847	751,541	763,620	247	40.5	-50	130	PGL	DD
ZDD849	751,354	763,167	250	196.5	-55	150	PGL	DD
34 Holes				6,420.0m				

 $^{^{11}}$ Hole reported on 14th February 2022 – new results included this release

Table 6: Assay results being reported for holes completed

Hole id	Depth from	Depth to	Length	g/t Au	Includes ¹²	Target
ZDD866	63	69	6	1.88	6m @ 1.88 g/t Au	AG Core
ZDD866	83	93	10	51.75	3m @ 171 g/t Au	AG Core
ZDD866	110	111	1	0.96		AG Core
ZDD866	116	123	7	0.68	1m @ 1.85 g/t Au	AG Core
ZDD866	130	131	1	0.45		AG Core
ZDD866	136	138	2	0.67		AG Core
ZDD910	49	50	1	0.58		AGM
ZDD910	133	134	1	0.62		AGM
ZDD910	147	148	1	0.55		AGM
ZDD910	155	156	1	0.49		AGM
ZDD910	180	183	3	0.73		AGM
ZDD910	196	197	1	0.63		AGM
ZDD911	25	26	1	0.41		AGM
ZDD911	34	35	1	2.20	1m @ 2.2 g/t Au	AGM
ZDD911	47	48	1	4.20	1m @ 4.2 g/t Au	AGM
ZDD911	83	84	1	0.57		AGM
ZDD911	148	155	7	1.63	4m @ 2.45 g/t Au	AGM
ZDD911	171	172	1	0.55		AGM
ZDD911	175	176	1	0.50		AGM
ZDD911	200	201	1	1.65	1m @ 1.65 g/t Au	AGM
ZDD912	41	42	1	0.67		AGM
ZDD912	68	69	1	1.13	1m @ 1.13 g/t Au	AGM
ZDD912	84	85	1	1.46	1m @ 1.46 g/t Au	AGM
ZDD912	95	96	1	1.20	1m @ 1.2 g/t Au	AGM
ZDD912	117	118	1	0.68		AGM
ZDD912	138	139	1	1.06	1m @ 1.06 g/t Au	AGM
ZDD912	154	155	1	0.46		AGM
ZDD914	32.25	33	0.75	0.43		AGM
ZDD914	40.46	41.5	1.04	0.88		AGM
ZDD914	143.18	144.1	0.92	1.07	0.92m @ 1.07 g/t Au	AGM
ZDD914	194.1	201.21	7.11	0.76	1.71m @ 1.4 g/t Au	AGM
ZDD914	211.6	212.51	0.91	0.44		AGM
ZDD916	6	6.88	0.88	0.40		AGM
ZDD916	47	49	2	0.57		AGM
ZDD916	82	83	1	0.49		AGM
ZDD916	158	160	2	0.63		AGM
ZDD916	214	215	1	1.05	1m @ 1.05 g/t Au	AGM
ZDD916	236	241	5	0.64	1m @ 1.57 g/t Au	AGM

 $^{^{\}rm 12}$ 1.0 g/t Au cut off used with max 3m internal dilution and no top cut applied

Hole id	Depth from	Depth to	Length	g/t Au	Includes ¹²	Target
ZDD916	247	248	1	0.68		AGM
ZDD916	257	258	1	0.41		AGM
ZDD916	273	274	1	0.69		AGM
ZDD918	85	86	1	0.43		AGM
ZDD918	141	142	1	46.20	1m @ 46.2 g/t Au	AGM
ZDD918	171	172	1	0.41		AGM
ZDD907	137	138	1	7.94	1m @ 7.94 g/t Au	GGL
ZDD907	187	194	7	0.56	1m @ 1.15 g/t Au	GGL
ZDD907	215	216	1	0.57		GGL
ZDD907	221	222	1	0.50		GGL
ZDD907	225	235	10	0.54	1m @ 1.47 g/t Au	GGL
ZDD908	17	19	2	7.06	2m @ 7.06 g/t Au	GGL
ZDD908	32	33	1	0.53		GGL
ZDD908	37	38.31	1.31	15.65	1.31m @ 15.65 g/t Au	GGL
ZDD908	66	70	4	0.78	1m @ 1.39 g/t Au	GGL
ZDD908	90	91	1	0.48		GGL
ZDD908	129	130	1	8.67	1m @ 8.67 g/t Au	GGL
ZDD913	60.5	61.5	1	0.92		GGL
ZDD913	123	124	1	1.09	1m @ 1.09 g/t Au	GGL
ZDD913	203	204	1	0.89		GGL
ZDD917	94	96	2	0.42		GGL
ZDD917	116	118	2	2.33	1m @ 3.88 g/t Au	GGL
ZDD917	168	169	1	1.01	1m @ 1.01 g/t Au	GGL
ZDD769	13	14	1	0.47		PGL
ZDD769	47	50	3	0.49		PGL
ZDD769	112	114	2	1.19	2m @ 1.19 g/t Au	PGL
ZDD769	118	119	1	0.42		PGL
ZDD769	145	146	1	0.55		PGL
ZDD769	161	162	1	0.51		PGL
ZDD783	28	29	1	0.44		PGL
ZDD783	57	58	1	2.87	1m @ 2.87 g/t Au	PGL
ZDD783	62	63	1	0.43		PGL
ZDD783	67	68	1	0.69		PGL
ZDD783	89	90	1	0.61		PGL
ZDD786	1	2	1	0.63		PGL
ZDD786	41	42	1	0.68		PGL
ZDD786	81	86	5	1.79	4m @ 2.11 g/t Au	PGL
ZDD786	135	136	1	0.57		PGL
ZDD786	139	140	1	0.73		PGL
ZDD791	2	3	1	0.44		PGL
ZDD791	121	122	1	0.42		PGL
ZDD791	131	133	2	0.65		PGL

Hole id	Depth from	Depth to	Length	g/t Au	Includes ¹²	Target
ZDD791	151	153	2	8.80	2m @ 8.8 g/t Au	PGL
ZDD791	182	183	1	0.52		PGL
ZDD791	202	204	2	1.01	1m @ 1.32 g/t Au	PGL
ZDD797	33	34	1	0.90		PGL
ZDD797	41	42	1	11.04	1m @ 11.04 g/t Au	PGL
ZDD797	73	74	1	1.44	1m @ 1.44 g/t Au	PGL
ZDD803				NSI		PGL
ZDD804	21	22	1	0.68		PGL
ZDD804	35	36	1	4.45	1m @ 4.45 g/t Au	PGL
ZDD804	58	59	1	1.30	1m @ 1.3 g/t Au	PGL
ZDD804	75	78	3	1.06	1m @ 2.56 g/t Au	PGL
ZDD804	92	93	1	1.17	1m @ 1.17 g/t Au	PGL
ZDD804	114	115	1	0.55		PGL
ZDD804	144	147	3	0.95	1m @ 1.44 g/t Au	PGL
ZDD804	172	173	1	0.62		PGL
ZDD804	190	192	2	0.82	1m @ 1.06 g/t Au	PGL
ZDD808	37	38	1	0.55		PGL
ZDD818	10	14	4	6.80	1m @ 26.34 g/t Au	PGL
ZDD818	100	101	1	0.46		PGL
ZDD818	111	112	1	4.71	1m @ 4.71 g/t Au	PGL
ZDD822	31	36	5	0.90	1m @ 1.32 g/t Au	PGL
ZDD822	46	47	1	0.66		PGL
ZDD822	207	208	1	0.59		PGL
ZDD825				NSI		PGL
ZDD827				NSI		PGL
ZDD830	21	22	1	0.98		PGL
ZDD830	37	38	1	0.64		PGL
ZDD834	6	7	1	3.07	1m @ 3.07 g/t Au	PGL
ZDD834	50	51	1	0.56		PGL
ZDD834	77	78	1	24.26	1m @ 24.26 g/t Au	PGL
ZDD834	108	109	1	1.61	1m @ 1.61 g/t Au	PGL
ZDD834	117	118	1	1.69	1m @ 1.69 g/t Au	PGL
ZDD838				NSI		PGL
ZDD838A	16	17	1	3.54	1m @ 3.54 g/t Au	PGL
ZDD838A	22	23	1	0.65		PGL
ZDD838A	44	49	5	0.59		PGL
ZDD838A	75	77	2	0.60		PGL
ZDD838A	93	94	1	0.40		PGL
ZDD840	17	18	1	1.08	1m @ 1.08 g/t Au	PGL
ZDD840	27	28	1	1.63	1m @ 1.63 g/t Au	PGL
ZDD840	61	62	1	0.42		PGL
ZDD840	94	95	1	0.42		PGL

Hole id	Depth from	Depth to	Length	g/t Au	Includes ¹²	Target
ZDD840	209	210	1	0.73		PGL
ZDD840	216	217	1	1.06	1m @ 1.06 g/t Au	PGL
ZDD840	255	256	1	0.48		PGL
ZDD841	29	30	1	0.86		PGL
ZDD841A	92	93	1	0.40		PGL
ZDD841A	106	107	1	0.82		PGL
ZDD841A	136	137	1	0.40		PGL
ZDD841A	169	171	2	1.96	1m @ 3.46 g/t Au	PGL
ZDD841A	179	180	1	0.42		PGL
ZDD841A	209	210	1	0.59		PGL
ZDD841A	214	216	2	0.61		PGL
ZDD846	90	95	5	2.26	4m @ 2.72 g/t Au	PGL
ZDD846A	69	70	1	0.52		PGL
ZDD846A	163	169	6	2.06	2m @ 5.6 g/t Au	PGL
ZDD847				NSI		PGL
ZDD849	19	20	1	1.13	1m @ 1.13 g/t Au	PGL
ZDD849	79	80	1	0.45		PGL
ZDD849	93	94	1	1.36	1m @ 1.36 g/t Au	PGL
ZDD849	100	102	2	0.79	1m @ 1.05 g/t Au	PGL
ZDD849	118	119	1	0.64		PGL
ZDD849	158	159	1	0.40		PGL
ZDD849	170	172	2	0.55		PGL
ZDD849	189	190	1	1.16	1m @ 1.16 g/t Au	PGL

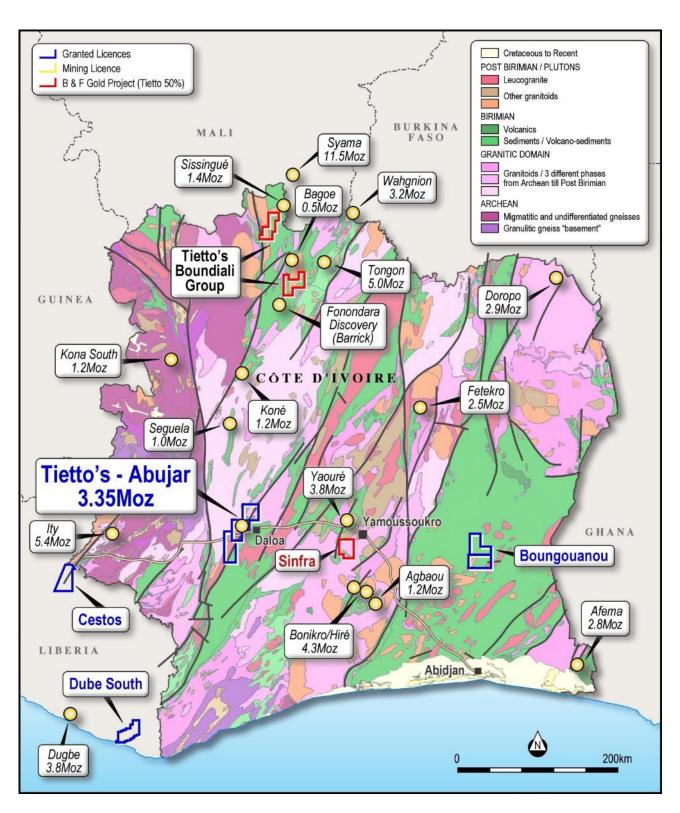


Figure 2: Plan view showing location of Tietto's Projects

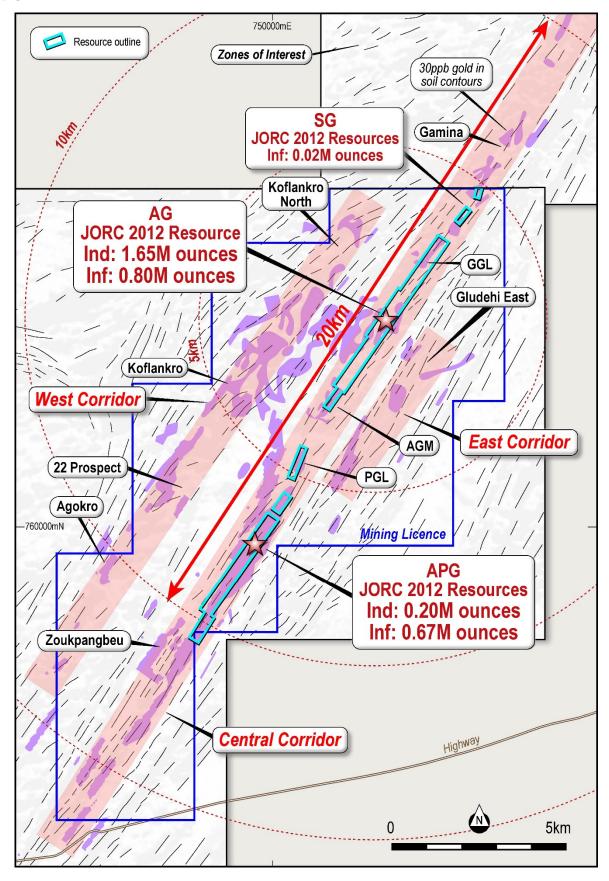


Figure 3: Plan view showing Abujar Project

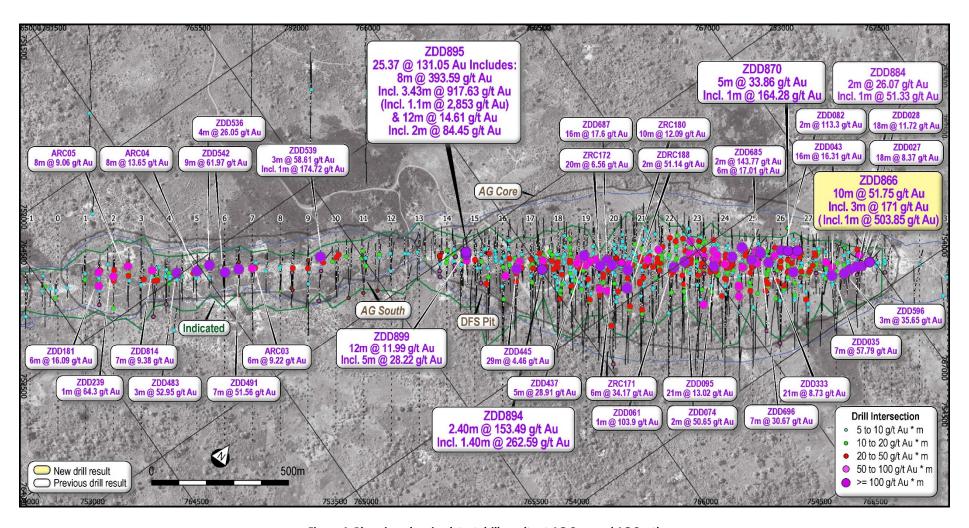


Figure 4: Plan view showing latest drill results at AG Core and AG South

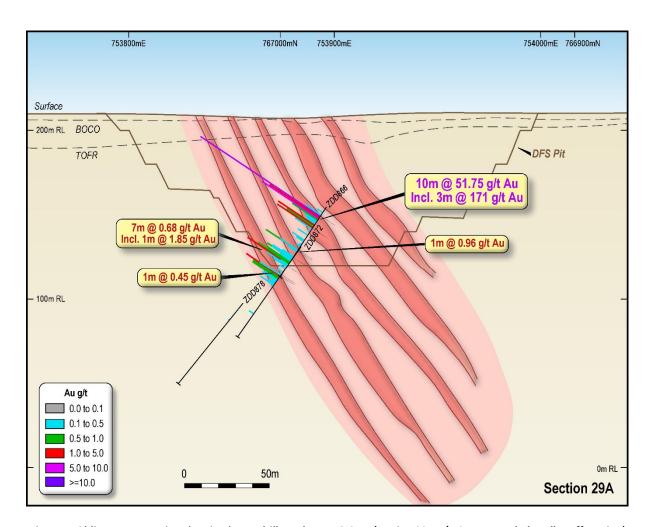


Figure 5: Oblique cross section showing latest drill results at AG Core (section 29A +/-12.5m note: hole collar off-section)

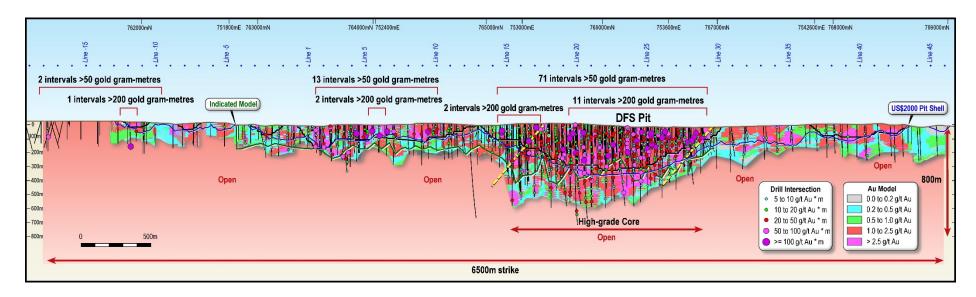


Figure 6: Oblique long section showing latest drill results at AG

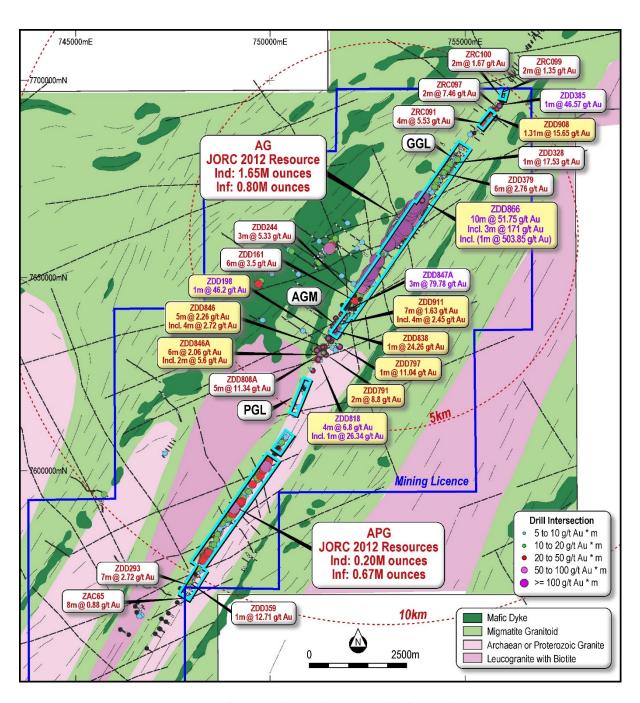


Figure 7: Plan view showing latest regional drilling results

Web: www.tietto.com

Abujar Gold Project, Côte d'Ivoire

The Abujar Gold Project is located approximately 30km from the major regional city of Daloa in central western Côte D'Ivoire. It is close to good regional and local infrastructure to facilitate exploration and development being only 15km from nearest tarred road and grid power.

The Abujar Gold Project is comprised of three contiguous exploration tenements, Middle, South and North tenement, with a total land area of 1,114km², of which less than 10% has been explored. It features an NNE-orientated gold corridor over 70km striking across three tenements.

In December 2020, a gold exploitation (mining) licence within the Abujar Middle exploration tenement was granted. The mining tenement covers an area of 120.36km².

Tietto is well placed to grow its resource inventory. It has substantially advanced the project since starting exploration in mid-2015 with the identification of 3.35 million ounces Indicated and Inferred JORC 2012 Mineral Resources and has completed metallurgical test work with the delivery of a 4Mtpa DFS on 5 October 2021. Tietto is fully funded and is targeting first gold at Abujar in Q4 CY2022.

Abujar Mineral Resources

Results of the independent Mineral Resources estimate for the Project are tabulated in the Statement of Mineral Resources below, which are reported in line with the requirements of the 2012 JORC Code; as such the Statement of Mineral Resources is suitable for public reporting. The Statement of Mineral Resources shown in Table 7.

Within AG, the Mineral Resource is reported at a cut of grade of 0.25 g/t Au within a pit shell that used a gold price of 2,000 USD per troy ounce, and 1.0 g/t Au below the pit shell. The cut off grades were based on estimated mining and processing costs and recovery factors and are detailed in JORC Table 1. It is highlighted that while a 2,000 USD per ounce pit shell was utilised the cut-off grades were estimated based on the gold price of 1,800 USD per troy ounce which is 1.25 times the consensus forecast as of June, 2021.

Within APG, the Mineral Resource is reported at a cut of grade of 0.30 g/t Au within a pit shell that used a gold price of 2,000 USD per troy ounce, and 1.0 g/t Au below the pit shell. The cut off grades were based on estimated mining and processing costs and recovery factors and are detailed in JORC Table 1. It is highlighted that while a 2,000 USD per ounces pit shell was utilised the cut-off grades were estimated based on the gold price of 1,800 USD per troy ounce which is 1.25 times the consensus forecast as of June, 2021.

Web: www.tietto.com

There is no change to the South Gamina Resource (October 21, 2020) which is reported to a depth of 120m and not reported at depths below 120m.

Table 7: Statement of Mineral Resources by Deposit as at 12 July, 2021. Reported at 0.25 g/t Au cut off within pit shells; and 1.0 g/t Au cut off below the pit shells for AG, and reported at 0.3 g/t Au cut off within pit shells; and 1.0 g/t Au cut off below the pit shells for APG, and 0.3 g/t Au to a depth of 120m for SG.

	, , , , , , , , , , , , , , , , , , ,		Oxide	-		Transition			Fresh	_		Total	
Area	Class	Quantity (Mt)	Au (g/t)	Au (Moz)	Quantity (Mt)	Au (g/t)	Au (Moz)	Quantity (Mt)	Au (g/t)	Au (Moz)	Quantity (Mt)	Au (g/t)	Au (Moz)
	Indicated	0.5	1.2	0.02	2.1	1.3	0.09	32.4	1.5	1.54	35.0	1.5	1.65
AG	Inferred	0.4	1.0	0.01	1.7	0.9	0.05	13.3	1.7	0.74	15.3	1.6	0.80
	Total	0.9	1.1	0.03	3.8	1.1	0.14	45.6	1.5	2.28	50.3	1.5	2.45
	Indicated	0.5	0.7	0.01	1.9	0.7	0.05	6.0	0.7	0.14	8.4	0.7	0.20
APG	Inferred	1.2	0.7	0.03	5.2	0.7	0.11	22.0	0.7	0.52	28.4	0.7	0.67
	Total	1.7	8.0	0.04	7.1	0.7	0.16	28.0	0.7	0.67	36.7	0.7	0.87
SG	Inferred	0.0	0.7	0.001	0.10	0.8	0.001	0.4	1.6	0.02	0.5	1.4	0.02
Gra	and Total	2.6	0.9	0.07	11.0	0.9	0.30	74.0	1.2	2.97	87.5	1.2	3.35

Note:

- 1. The Mineral Resources has been compiled under the supervision of Mr. Jeremy Clark who is a subconsultant to RPM and a Registered Member of the Australian Institute of Mining and Metallurgy. Mr. Clark has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he has undertaken to qualify as a Competent Person as defined in the JORC Code.
- 2. All Mineral Resources figures reported in the table above represent estimates at 12 July, 2021. Mineral Resource estimates are not precise calculations, being dependent on the interpretation of limited information on the location, shape and continuity of the occurrence and on the available sampling results. The totals contained in the above table have been rounded to reflect the relative uncertainty of the estimate. Rounding may cause some computational discrepancies.
- 3. Mineral Resources are reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The Joint Ore Reserves Committee Code JORC 2012 Edition).
- 4. The Mineral Resources have been reported at a 100% equity stake and not factored for ownership proportions.

Web: www.tietto.com

The total resource at AG and APG is reported at varying cut-off grades are provided in Table 8 below. However, RPM recommends that the Mineral Resource be reported using the criteria shown in Table 7.

It is highlighted that Table 8 is not a Statement of Mineral Resources and does not include the use of pit shells to report the quantities rather the application of various cut off grades. As such variations with Table 7 will occur and a direct comparison is not able to be completed.

Table 8: AG and APG Mineral Resources at varying cut off grades

	AG	Indicated		AG In	ferrec	I	APG	Indicate	ed	APG I	nferre	d	To	otal	
cog	Quantity (Mt)	Au (g/t)	Au (Moz)	Quantity (Mt)	Au (g/t)	Au (Moz)									
0.1	46.1	1.2	1.8	44.5	0.8	1.2	11.9	0.6	0.2	66.3	0.5	1.1	168.7	0.8	4.4
0.2	44.1	1.2	1.8	41.4	0.9	1.2	11.7	0.6	0.2	62.1	0.6	1.1	159.3	0.8	4.3
0.3	39.2	1.4	1.7	35.3	1.0	1.1	10.4	0.7	0.2	52.3	0.6	1.0	137.2	0.9	4.1
0.4	32.8	1.6	1.7	27.7	1.2	1.1	7.8	0.8	0.2	38.9	0.7	0.9	107.2	1.1	3.8
0.5	27.4	1.8	1.6	22.0	1.4	1.0	5.7	0.9	0.2	26.0	0.8	0.7	81.2	1.3	3.4
0.6	23.1	2.0	1.5	17.2	1.6	0.9	4.2	1.0	0.1	16.6	1.0	0.5	61.0	1.6	3.1
0.7	19.4	2.3	1.4	13.7	1.8	0.8	3.1	1.2	0.1	11.8	1.2	0.4	48.1	1.8	2.8
0.8	16.7	2.5	1.4	11.6	2.0	0.8	2.4	1.3	0.1	8.5	1.3	0.4	39.1	2.1	2.6
0.9	14.7	2.8	1.3	9.9	2.3	0.7	1.9	1.4	0.1	6.9	1.4	0.3	33.4	2.3	2.4
1	13.1	3.0	1.3	8.6	2.4	0.7	1.5	1.5	0.1	5.5	1.6	0.3	28.7	2.5	2.3
1.1	11.9	3.2	1.2	7.6	2.6	0.6	1.2	1.7	0.1	3.8	1.8	0.2	24.5	2.7	2.1
1.2	10.8	3.4	1.2	6.8	2.8	0.6	0.9	1.8	0.1	3.0	1.9	0.2	21.5	2.9	2.0
1.3	9.9	3.6	1.1	6.2	3.0	0.6	0.8	1.9	0.0	2.6	2.0	0.2	19.5	3.1	2.0
1.4	9.2	3.8	1.1	5.6	3.1	0.6	0.7	2.0	0.0	2.4	2.1	0.2	17.8	3.3	1.9
1.5	8.5	4.0	1.1	5.2	3.3	0.5	0.6	2.1	0.0	1.9	2.3	0.1	16.2	3.5	1.8
1.6	7.9	4.1	1.0	4.8	3.4	0.5	0.5	2.2	0.0	1.5	2.5	0.1	14.7	3.7	1.7
1.8	7.0	4.4	1.0	4.1	3.7	0.5	0.4	2.4	0.0	1.2	2.7	0.1	12.7	4.0	1.6
1.9	6.6	4.6	1.0	3.8	3.9	0.5	0.3	2.4	0.0	1.1	2.8	0.1	11.8	4.1	1.6
2	6.2	4.8	1.0	3.5	4.0	0.5	0.3	2.5	0.0	1.0	2.9	0.1	11.0	4.3	1.5
2.5	4.8	5.5	0.8	2.5	4.7	0.4	0.1	3.2	0.0	0.6	3.2	0.1	7.9	5.1	1.3
3	3.8	6.3	0.8	2.0	5.3	0.3	0.1	3.5	0.0	0.3	3.9	0.0	6.1	5.8	1.1

Web: www.tietto.com

Abujar Ore Reserves

A total of 34.4 Mt of Open Cut Ore Reserves at 1.3 g/t Au grade for 1.45Moz were estimated as at 30 September 2021 by RPM, refer Table 9 (refer ASX release 5 October 2021). As no mining has taken place at the site, the reporting date reflects the completion of the technical work supporting the estimate.

Table 9: Open Cut Ore Reserve Estimate as at 30 September 2021

	Proved			Probable			Total		
Deposit	Quantity	Au	Au	Quantity	Au	Au	Quantity	Au	Au
	Mt	g/t	Moz	Mt	g/t	Moz	Mt	g/t	Moz
AG	0	0	0	31.3	1.4	1.38	31.3	1.4	1.38
APG	0	0	0	3.2	0.7	0.07	3.2	0.7	0.07
Total	0	0	0	34.4	1.3	1.45	34.4	1.3	1.45

Notes:

- 1. The Ore Reserves has been compiled under the supervision of Mr. Igor Bojanic who is a full time employee of RPM and a Fellow of the Australian Institute of Mining and Metallurgy. Mr. Bojanic has sufficient experience that is relevant to the style of mineralisation, type of deposit and mining method under consideration and to the activity, which he has undertaken, to qualify as a Competent Person as defined in the JORC Code.
- 2. The following marginal cut-off grades determined based on a US\$ 1,407 per troy ounce gold price, and costs and mining and metallurgical modifying factors estimated as part of the DFS.
- 3. Marginal cut-off grades for AG: Oxide 0.29 g/t Au, Transition 0.29 g/t Au and Fresh 0.30 g/t Au.
- 4. Marginal cut-off grades for APG: Oxide 0.32 g/t Au, Transition 0.32 g/t Au and Fresh 0.33 g/t Au (as greater haulage distance to AG ROM pad)
- 5. Ore Reserve estimates are not precise calculations, being dependent on the interpretation of limited information on the location, shape and continuity of the occurrence and on the available sampling results. The quantities contained in the above table have been rounded to three significant figures to reflect the relative uncertainty of the estimate. Rounding may cause values in the table to appear to have computational errors.
- 6. All Ore Reserve estimates are on a dry basis.
- 7. The Ore Reserves have been reported at a 100% equity stake and not factored for ownership proportions.

Web: www.tietto.com

for analysis via 30g fire assay in 2016-2017

Section 1 of the JORC Code, 2012 Edition – Table 1

Sampling Techniques and Data

Criteria	IOPC Code explanation	Commontant
	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples at AG and APG project areas were collected using drilling techniques including Air Core Drilling (AC), Reverse Circulation (RC), and Diamond Drilling (DD). Holes were generally angled at 60° to 90° towards northwest at AG to optimally intersect the mineralised zones however within APG the recent holes were drilled to the North East due to the reinterpreted westerly dip of the mineralisation. AC samples were collected every 1m from cyclone, and 2m composite samples which is combined with two 1/3 of each one meter sample were sent for assaying. No Aircore samples were used in the estimates reported in the Report. RC samples were collected as 1m samples from the cyclone, which were subsequently spear sampled to form 2 m samples which were subsequently sent to the laboratory. All one meter samples were split using a riffle splitter with 1/4 of the same retained in the plastic bags, the remainder was re-split with 1/4 retained in calico bag and the remainder discarded. Diamond core was logged both for geological and mineralised structures as noted above. The core was then cut in half using a diamond brick cutting saw on 1m intervals. Typically the core was sampled to geological intervals as defined by the geologist within the even two metre sample intervals utilised. The right hand side of the core was always submitted for analysis with the left side being stored in trays on site. No QAQC was completed during the 2015 drilling program, however the vast majority of the data is sourced from the 2016-2020 drilling which implemented definitive QAQC program, to provide verification of the sample preparation and the analytical precision and accuracy of the primary laboratory. Sampling and QAQC procedures were carried out to industry standards upon the advice of RPM. Sample preparation was completed by independent international accredited laboratories ALS Ghana in 2016 and Intertek Minerals Ltd in 2018 to 2020. Following cutt

Criteria	JORC Code explanation	Commentary
		(ALS Ghana) and 150g fire assay in 2018- 2020 (Intertek Ghana).
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	AC drilling size is 89 mm, RC drilling comprising 105mm diameter face sampling bit. Diamond drilling carried out with mostly NTW and some HQ sized equipment. PQ-size rods and casing were used at the top the holes to stabilise the collars although no samples were taken from the PQ size core.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Within the Diamond drilling typically core recoveries ranged between 85% and 100% for all holes with no significant issues noted. All 2019 and 2020 holes have recoveries above 95% in the majority of the mineralised areas. Some low recovery are associated with intensely fractured or faulted intervals and the more intensely weathered upper zone however These low recoveries are not considered material to the total Mineral Resource currently estimated. AC, RC samples were visually checked for recovery, moisture and contamination. RPM notes that it has relied on information for the majority of holes for sample recovery based on drilling plods however considers sample recovery suitable and notes that the majority of the Mineral Resources reported are underpinned by diamond holes. No relationship exists between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All holes were field logged by company geologists. Lithological, alteration and mineralogical nomenclature of the deposit as well as sulphide content were recorded. No geotechnical and structural data measured has been recorded until the last 10 holes of the 2019 program and the 2020 holes. Photography and recovery measurements were carried out by assistants under a geologist's supervision. The logging for all RC holes is also recorded on a logging "chipboard", where the chips for each metre are glued to a board to form a visual log of the entire hole All drill holes were logged in full. Logging was qualitative and quantitative in nature.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 HQ and NTW core was cut in half using a core saw. Typically the core was sampled to major geological intervals as defined by the geologist within the even two metre sample intervals utilised. All samples were collected from the same side of the core. AC, RC samples were collected as 1m samples from the cyclone, which were subsequently composited using as spear samples to form 2
	Quality control procedures adopted for all sub-	m samples. • Sampling of diamond core and AC, RC chips

Criteria	JORC Code explanation	Commentary
Criteria	sampling stages to maximise representivity of samples. • Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.	used industry standard techniques. Sample preparation for the 2020 drilling is detailed below; previous releases detail the 2016 and 2018 drilling results. After drying the sample is subject to a primary crush to 2mm. Sample is split through a riffle splitter until 250gm is left (this involves 4-5 splits through the riffle splitter). The 250gm sample is milled through an LM5 using a single puck to 90% <75 micron Milled sample is homogenised through a matt roll with a 150gm routine sample collected using a spoon around the quadrants and sent to Ghana for analysis and the remaining 100gm kept at Intertek for checks. Field QC procedures involved the use of 2 types certified reference materials (1 in 20) which is certified by Geostats Ltd, Primary RC duplicates: Generated from the first splitter off the rig and inserted 5% (1 in 20 samples). This sample is collected from a spear sample from the reject material of the primary split. Primary DD duplicate: Generated by cutting the remaining half core into a ¼ and sampled. Coarse blank samples: Inserted 1 in every 20 samples Laboratory Internal Duplicates and Standards Sample sizes are considered appropriate to correctly represent the moderately nuggetty gold mineralisation based on: the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for Au.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometres, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The analytical techniques used Fire Assay on 150g pulp samples. No geophysical tools were used to determine any element concentrations used in this Mineral Resource estimate. Sample preparation checks for fineness were carried out by the laboratory as part of internal procedures to ensure the grind size of 2mm was being attained. Laboratory QAQC includes the use of internal standards using certified reference material, and pulp replicates. No anomalous assays were noted in information provided to RPM or from discussions with the Client. The QAQC results confirm that acceptable levels of accuracy and precision have been established for the Classifications applied.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 The Company has developed logging and sampling procedures that is based on the African experience of the local teams and subsequently reviewed by RPM during the site visits that confirmed the processes and protocols implemented giving the results a high level of confidence. The Company

Criteria	JORC Code explanation	Commentary
Criteria	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	geologists log the core and RC samples according to the existing lithological, alteration and mineralogical nomenclature of the deposit as well as sulphide content. Photography and recovery measurements were carried out by assistants under a geologist's supervision. The logging for all RC holes is also recorded on a logging "chipboard", where the chips for each metre are glued to a board to form a visual log of the entire hole Twinned holes have not been drilled as not considered appropriate as the Company has been responsible for all holes. Logging records were mostly registered in physical format and were input into a digital format. The core photographs, collar coordinates and down the hole surveys were received in digital format. Assay values that were below detection limit were adjusted to equal half of the detection limit value. Un-sampled intervals were assumed to have no mineralisation and they were therefore set to blank in the database, however these are minimal. The selective original data review and site visit observations carried out by RPM did not identify any material issues with the data entry or digital data. In addition RPM considers that the onsite data management system meets industry standard which minimizes potential 'human' data-entry
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 errors and no systematic fundamental data entry errors or data transfer errors. All drill hole and trench collar locations were surveyed utilising the differential GPS methods by third party surveyors. RPM notes that the DGPS system utilised is typically within a 10 cm accuracy range which is suitable for the classification applied. The Client's drilling teams utilised the Reflex EZ-shot instrument to measure deviations in azimuth and inclination angles for all holes; however, vertical holes were not surveyed. The first measurement is taken at 5 m depth, and then at approximately every 30 to 50m depth interval and at the end of the hole. Small scale artisanal mining has been undertaken on several areas within the project. This mining is restricted typically to the upper 10m of the oxide material however is variable in depth and extent with recent underground mining occurring in the fresh rock. For AG area, the latest provided topographic survey models based on satellite imagery. In addition two key areas with known underground mining were depleted a further 20m. For AGP area, no

Web: www.tietto.com

Criteria	JORC Code explanation	Commentary
		as such the latest topography was utilised as the depletion.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole collars were generally spaced on an approximate 100 m by 50 m grid in both deposits with recent drilling including infill drilling on 50m by 50m spacing within AG with some closer spacing in the central core of AG. The drill hole spacing and distribution is considered sufficient to establish the degree of continuity appropriate for the Inferred and Indicated Mineral Resource estimation procedures. A combined composited file of the 5 largest lodes with the AG area was created for constructing variogram. Object 40 was also investigated which returned very similar variograms. The most prevalent sample lengths inside the mineralised wireframes was 1m and 2 m, and as a result, 2m was chosen as the composite length. The samples inside the mineralised wireframes were then composited to 2 m lengths
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No bias was interpreted to be introduced as most drill holes are angled to northwest in AG, which is approximately perpendicular to the orientation of the mineralised trends are interpreted being comprised of southeast-dipping lodes striking 30° dipping at varying angles of inclination typically between 60° and 80°. APG has recently been reinterpreted to have a westerly dipping orientation, as such recent holes have been drilled to the southeast. All previous holes were drilled to the northwest, however given the large drill spacing this is not consider to be a bias in the sampling and was considered during interpretation.
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by the Client's senior site geologists and geotechnicians. Samples are stored in a core shed at site and samples were delivered to the laboratory by client geologists. Client employees have no further involvement in the preparation or analysis of the samples.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A review of sampling techniques was carried out on each site visit by RPM in July 2016 and July 2018 and again in October 2019.

Section 2 of the JORC Code, 2012 Edition – Table 1

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and	The Project is contained within three
tenement and	ownership including agreements or material	adjacent exploration licenses (Zoukougbeu,
land tenure	issues with third parties such as joint ventures,	Zahibo and Issia licenses) which are
status	partnerships, overriding royalties, native title	currently held by third party companies, of
	interests, historical sites, wilderness or	which Tietto or its wholly owned

Criteria	JORC Code explanation	Commentary
	national park and environmental settings.	subsidiaries are part owners. All resource
	The security of the tenure held at the time of	are contained within the Zahibo tenement.
	reporting along with any known impediments	The tenements are in good standing.
	to obtaining a license to operate in the area.	
Exploration	Acknowledgment and appraisal of exploration	No exploration programs have been
done by other	by other parties.	conducted by other parties on the Project.
parties	2, 3	The license area was not historically known
		as a prospective region for gold, but recent
		artisanal workings revealed the presence of
		primary gold mineralisation in artisanal pits
		and small scale underground mining.
Geology	Deposit type, geological setting and style of	The AG-APG Deposits are located within the
	mineralisation.	Proterozoic Birimian rocks of the Man shield.
		It is situated on the Daloa 1:200,000 geologic
		sheet, 30km west of Daloa. It is located in the
		Hana-Lobo belt, east of the Sassandra fault
		that marks the boundary between the Man
		shield (Archean) and Eburnean domain. The
		regional trend is NNE to NE.
		The AG-APG deposits resemble typical shear
		zone deposits of the West African granite-
		greenstone terrane. The deposits
		themselves are associated with a major
		regional shear zone and are developed in a
		granodiorite host. Mineralisation may be
		spatially related to the emplacement of
		intrusives. The gold mineralisation is
		mesothermal in origin and occurs as free
		gold in quartz vein stockworks and zones of
		silicification, associated with pyrite and
		chalcopyrite. The gold mineralisation is
		found in linear zones with the contacts
		showing evidence of shearing. Free gold is
		frequently observed. Alteration is weak to
		strong depending on the development of the
		system.
		Two types of deformation are present in the
		drill cores: ductile deformation and brittle
		deformation. The gold mineralisation is
		related to deformed granodiorite, in shear
		zones, with sulphides (mainly pyrite and
		minor chalcopyrite) associated with visible
		gold. Alteration is characterized by chlorite,
		sericite, calcite, secondary quartz and
		disseminated pyrite. This assemblage is well
		developed in schistose, foliated rocks with
D::!!!!		presence of quartz veins or veinlets.
Drill hole	A summary of all information material to the	Drill hole locations are shown on the map within the hody of this Mineral Resource.
information	under-standing of the exploration results	within the body of this Mineral Resource
	including a tabulation of the following	report and the ASX release. • All information has been included in the
	information for all Material drill holes:	appendices. No RC or DD drill hole
	easting and northing of the drill hole collar	information has been excluded however no
	elevation or RL (Reduced Level – elevation	AC drilling is utilised.
	above sea level in metres) of the drill hole	Ac arming is aumseu.
	collar	
	 dip and azimuth of the hole 	
	 dip and azimuth of the hole 	

Criteria	JORC Code explanation	Commentary
	the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intervals are shown in detail. Drilling intervals are predominantly 1m and 2m. AC, RC samples were collected as 1m samples from the cyclone, which were subsequently spear samples to form 2 m samples which were subsequently sent to the laboratory Metal equivalent values are not being reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Most drill holes are angled to northwest at AG, which is approximately perpendicular to the orientation of the mineralised trends as all deposits have similar styles of mineralisation which was interpreted as being comprised of southeast-dipping lodes striking 30° dipping at varying angles of inclination typically between 60° and 80°. APG has recently been reinterpreted to the westerly dip with changes to drilling orientation completed at such. Sections are provided in the main body of the report and the press release however exploration results are not being reported
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Relevant diagrams have been included within the Mineral Resource report main body of report and ASX release However exploration results are not being reported
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drill hole and trench collar locations were surveyed utilising the differential GPS methods by third party surveyors. DGPS system utilised it typically within 10 cm accuracy range. Drilling teams utilised the Reflex EZ-shot instrument to measure deviations in azimuth and inclination angles for all holes; however, vertical holes were not surveyed. The first measurement is taken at 6 m depth, and then at approximately every 30m depth interval and at the end of the hole.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or	 All interpretations for each deposit are consistent with observations made and information gained during drilling at the project. Feasibility studies are underway with a PFS completed in Q1 2021 and a DFS expected at the end of Q3 2021. Work completed to date has not identified

Criteria	JORC Code explanation	Commentary
	contaminating substances.	any potential deleterious or contaminating substances.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	planned and is in the process of being executed