

Initial REE Assays Identify Strongly Anomalous Zones Across Intrusions at Pingrup

Initial bottom of hole anomalism led to selected traverses being assayed for full REE suite with positive initial results

Key Points:

- Peak Total Rare Earth + Yttrium Oxide (TREYO) result of 3,148ppm;
- Nd+Pr% of TREYO between 20-29%;
- 6m 43m thick intersections of enriched REE's in clay-rich saprolite, primarily over ultramafic and intermediate intrusions including 43m @ 1,117ppm TREYO;
- Only 10 holes re-assayed across 2 traverses where End of Hole anomalous values were initially identified;
- Approximately 1,300 x 3m composite clay and saprolite samples remain to be reassayed across several areas with end of hole anomalism.

Todd River Resources Limited (**ASX: TRT**) (**Todd River** or the **Company**) is pleased to announce that following the identification of anomalous rare earth element (REE) values in end-of-hole sampling, re-assaying of the clay and saprolite zones has delivered thick intersections of strongly anomalous TREYO values from its 100% owned Pingrup Project in Western Australia (Figure 1).

Analytical results focusing on Ni-Cu-PGE mineralisation from aircore and reverse circulation (RC) drilling targeting previously identified magnetic targets (Greenfire and High Noon) within the Corrigin Tectonic Zone at the southwest Yilgarn Craton–Youanmi Terrane boundary were reported to ASX on May 25, 2023. Further analysis of the drilling data highlighted several areas that returned REE anomalism in the end of hole sample. A decision was taken to re-assay ten holes across two traverses as an initial investigation into the end of hole anomalism with the initial re-assaying highlighting thick continuous enrichment of REE's hosted in clay rich saprolite primarily over the ultramafic intrusion at Greenfire as well as thick slightly less enriched but still strongly anomalous zones over the High Noon intermediate intrusion (Figure 2).

At the Greenfire Prospect, re-assaying of 6 holes identified REE enriched clay-rich saprolite intervals up to 18m thick including **12m @ 1815ppm TREYO in hole PNAC0019** and **18m @ 1764ppm TREYO in hole PNAC0022** amongst other intersections. At the High Noon Prospect, the intrusive rocks were predominantly granitic to intermediate in composition with the magnetic nature of the intermediate rocks explaining the magnetic high that was targeted. A well-developed clay horizon is developed in the regolith and hole PNAC0119 intersected **43m @ 1117ppm TREYO**. Table 1 shows the intersections > 500 ppm TREYO in full,

from each of the re-assayed holes. In addition, Table 2 has the drillhole information and a full breakdown of analytical results can be found in Appendix 3.

Cross sections of the two traverses are shown in detail in Figures 3 and 4 where TREYO >500ppm is highlighted on each drill trace.

Further re-assaying will take place immediately with sections drilled to the north and south of the originally re-assayed lines a priority. The details of the holes targeted for the next round of re-assaying are also shown on Figure 2.

Iavi														
Hole ID	Prospect	From (m)	From (m) To (m) Width (m)		TREYO (ppm)	Nd+Pr (%)								
PNAC0018	Green Fire	27	36	9	1640	20%								
PNAC0019	Green Fire	18	30	12	1815	27%								
PNAC0021	Green Fire	15	21	6	826	26%								
PNAC0022	Green Fire	18	36	18	1764	27%								
PNAC0023	Green Fire	18	33	15	1305	25%								
PNAC0117	High Noon	45	54	9	817	23%								
PNAC0118	High Noon	24	27	3	561	23%								
PNAC0118	High Noon	33	36	3	971	22%								
PNAC0118	High Noon	48	51	3	592	21%								
PNAC0119	High Noon	21	64	43	1117	22%								
PNAC0120	High Noon	24	63	39	819	21%								

Table 1: Significant REE Results from Aircore Holes at Pingrup

Commenting on the results from the re-assaying program, Todd River Resources' Managing Director, Will Dix said:

"Following the recognition of strongly anomalous REE's in the fresh rock sample from the end of several aircore holes, the results from the re-assaying of the clay rick saprolite are extremely encouraging. It is very early days in terms of understanding the system and further information from the additional re-assaying of the remaining samples will go a long way to progressing this.

As with the identification of any new potential mineralised system, work will also need to be done to characterise the material and an assessment on this work in terms of scope and timing is currently being considered. As mentioned in the previous ASX release in late May, our exploration efforts turn to Mt Hardy in the Northern Territory where we have recently received the AAPA certificate clearing the way for drilling to commence at the end of next month. We are excited to be back drilling at Mt Hardy for the first time since before the COVID-19 Pandemic and with the targets we have generated there, I am confident we will have some excellent results to share with the market once they are received."

Figure 1 – Todd River Resources Projects highlighting the location of the Pingrup Ni-Cu-PGE Project

Background

Exploration Licence E70/5954 covers an area of approximately 240 square kilometres within the Corrigin Tectonic Zone some 300 kilometres southeast of Perth. The bedrock geology is obscured by thin (1-10 metres) sandy cover and a thick weathering profile.

Within the project area are twelve magnetic features with historical work confined to just three of them. This work was completed by Magnetic Resources who were exploring the magnetic highs for the presence of Banded Iron Formation (BIF) hosted iron ore deposits between 2008-2011. In all three cases drilling failed to identify any BIF, however it confirmed the magnetic features to be mafic-ultramafic intrusions.

Hole ID	Prospect	Easting	Northing	RL Type		Hole Length (m)	Dip (°)	Azimuth (°)	
PNAC0018	Green Fire	642969	6300119	304	Aircore	48	-60	45	
PNAC0019	Green Fire	642941	6300091	303	Aircore	31	-60	45	
PNAC0020	Green Fire	642913	6300062	302	Aircore	24	-60	45	
PNAC0021	Green Fire	642884	6300034	301	Aircore	22	-60	45	
PNAC0022	Green Fire	642856	6300006	300	Aircore	39	-60	45	
PNAC0023	Green Fire	642828	6299977	299	Aircore	35	-60	45	
PNAC0117	High Noon	643349	6302391	301	Aircore	55	-60	45	

Table 2: Drillhole details of holes re-assayed for REEs

PNAC0118	High Noon	643268	6302246	301	Aircore	64	-60	45
PNAC0119	High Noon	643211	6302189	300	Aircore	65	-60	45
PNAC0120	High Noon	643098	6302076	300	Aircore	65	-60	45

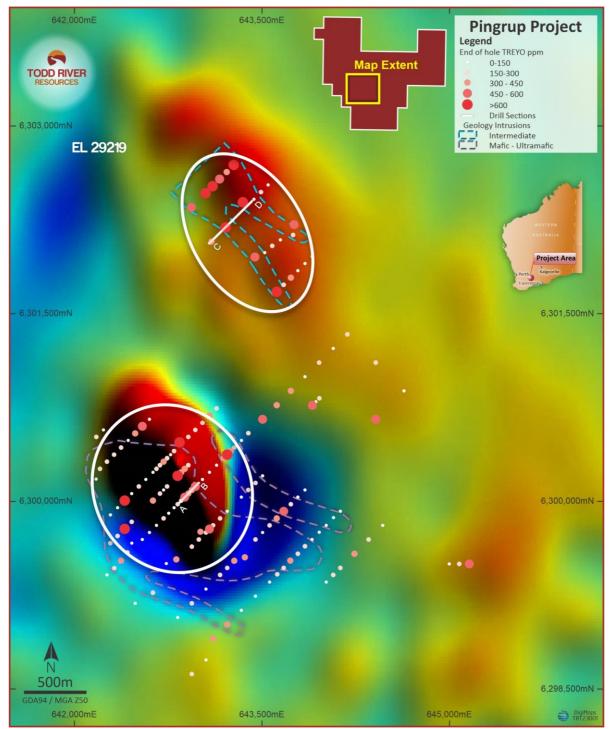


Figure 2 – TRYEO End of hole fresh rock assays from aircore holes at Pingrup also showing areas that will be the focus for additional re-assaying.

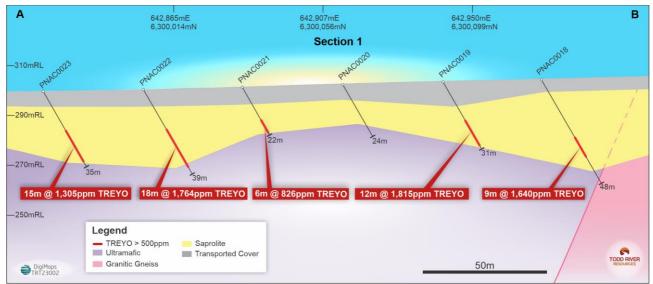


Figure 3 – Section A-B (refer Fig 2) at the Greenfire Prospect showing clay-rich saprolite intersections of TREYO >500ppm

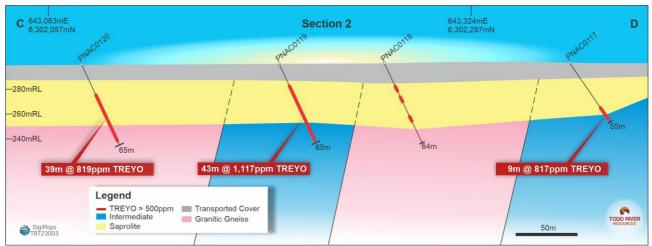


Figure 4 – Section C-D (refer Fig 2) at the High Noon Prospect showing clay-rich saprolite intersections of TREYO >500ppm

Mt Hardy Base Metal Project

Drilling is scheduled to commence at Mt Hardy towards the end of the month and Heavy Mineral Analysis (HMA) is also underway for samples recently collected as part of a broader program being carried out across all of the Company's projects.

Release authorised by the Board of Todd River Resources

Enquiries: Will Dix + 61 (0) 8 6166 0255

About Todd River Resources

Todd River Resources (ASX: TRT) is an Australian-based resources company that has base and precious metal projects in Western Australia and the Northern Territory. The Company has a base metal resource at its **Mt Hardy Project** and several exciting Ni-Cu-PGE and base metal projects in Western Australia including **Berkshire Valley** and **Pingrup Projects** in the southwest of Western Australia.

With a strong management team and balance sheet, Todd River is well placed to pursue additional base metal opportunities across its extensive exploration portfolio that also includes the large applications in the Bangemall Region of Western Australia.

Forward Looking Statements

This announcement includes forward-looking statements. These statements relate to the Company's expectations, beliefs, intentions, or strategies regarding the future. These statements can be identified by the use of words like "will", "progress", "anticipate", "intend", "expect", "may", "seek", "towards", "enable" and similar words or expressions containing same.

The forward-looking statements reflect the Company's views and assumptions with respect to future events as of the date of this announcement and are subject to a variety of unpredictable risks, uncertainties, and other unknowns. Actual and future results and trends could differ materially from those set forth in such statements due to various factors, many of which are beyond our ability to control or predict. Given these uncertainties, no one should place undue reliance on any forward-looking statements attributable to the Company, or any of its affiliates or persons acting on its behalf. The Company does not undertake any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise. Neither the Company nor any other person, gives any representation, warranty, assurance, nor will guarantee that the occurrence of the events expressed or implied in any forward-looking statement will actually occur. To the maximum extent permitted by law, the Company and each of its advisors, affiliates, related bodies corporate, directors, officers, partners, employees and agents disclaim any responsibility for the accuracy or completeness of any forward-looking statements whether as a result of new information, future events or otherwise.

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by William Dix, who is a full-time employee of Todd River Resources and holds shares and options in the Company. Mr. Dix is a Fellow of the Australian Institute of Mining and Metallurgy. Mr. Dix has sufficient experience of relevance to the style of mineralization and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Dix consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

Appendix 1 - JORC Table One – Sampling Techniques and data (Pingrup Project)

0		
Criteria Sampling techniques	JORC Code explanation Nature and quality of sampling (e.g. cut	Commentary For aircore drilling 3m composite
Samping techniques	channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report.	samples were collected with a bottom of hole 1m sample collected separately. Re-assays for REEs of composite samples were analysed by Li borate fusion ICP-MS for 25 elements. Bottom of hole samples were pulverised from which a 50 g charge for Au Pd Pt by fire assay was taken, with 48 elements (plus 12 REEs) by four acid ICP-OES/MS also completed.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Aircore drilling – 4.5" aircore bit on 6m rod lengths with 5" hammer bit used on occasion.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Recoveries were visually estimated from bulk sample volume. Not enough drilling has been completed to determine relationship between grade and recovery.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All holes were qualitatively logged in full for lithology by TRT geologists and recorded digitally.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Aircore samples were collected as 3m composites with sub-sampling from the bulk sample using a scoop. A bottom of hole sample was collected from the last drill metre using a scoop. Drill sample sizes are considered appropriate for the style of mineralisation sought and the exploratory nature of the drilling program. Sample preparation at the laboratory is industry standard, with oven drying and pulverisation to 85% passing 75 microns.

Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	All samples underwent preparation and analysis at Intertek Genalysis, Perth. All reported re-assay samples were analysed REEs by Li borate fusion with ICP-MS finish (LFP6/MS33). Aircore end of hole samples were analysed for Au Pd Pt by fire assay with ICP-MS finish (FA50/MS), and for 48 elements with 12 REEs addon by four acid with ICP- OES/MS finish (4A/MS48R). Certified standards and blanks were inserted every 25 samples to test for laboratory accuracy and precision.						
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Significant intersections were reviewed internally by 2 different geologists. TREYO = Total Rare Earth Oxides + Yttrium = CeO2 + Dy2O3 + Er2O3 + Eu2O3 + Gd2O3 + Ho2O3 + Er2O3 + Lu2O3 + Nd2O3 + Pr6O11 + Sm2O3 + Tb4O7 + Tm2O3 + Yb2O3 + Y2O3						
		Element Oxide Factor CeO2 1.2284 Dy2O3 1.1477 Er2O3 1.1435 Eu2O3 1.1579 Gd2O3 1.1526 Ho2O3 1.1475 Lu2O3 1.1571 Nd2O3 1.1664 Pr6O11 1.2082 Sm2O3 1.1596 Tb4O7 1.1762 Tm2O3 1.1421						
Locations of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Yb2O31.1387Y2O31.2699All drillholes have accompanying collar and survey recordings and were located with handheld GPS.No downhole surveys were completed on aircore holes.The coordinate system used is GDA94 MGA Zone 50.Drillhole elevation is from publicly available SRTM DEM data with no elevation data collected in the field.						

Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Aircore drillholes are spaced 40-80m along line and 160-320m between lines. Work completed is exploratory in nature; therefore spacing/distribution is not sufficient for estimation purposes.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	REE mineralisation is within flat-flying saprolite. Aircore drilling is at -60° dip, therefore at a slight angle to mineralisation and intersections are not true width.
Sample security	The measures taken to ensure sample security.	Samples were bagged on site and sent to the laboratory via a 3 rd party freight company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No sampling audits have been conducted.

Appendix 2 - Section 2 Reporting of Exploration

	Results	
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Pingrup Project is located on tenement E70/5954 (Moore River Metals Pty Ltd). The tenement is in good standing and is not subject to any joint ventures
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	All significant previous work is outlined in WAMEX open file reports. TRT has accessed and reviewed all of this work and compiled our own database on the project from the available open file data. The WAMEX reports used for the purpose of this work include: A094331 A090754 A100463 These reports are compiled by Magnetic Resources NL and Auzex Exploration Limited and contain comprehensive written descriptions of their work and associated .txt files of all drilling and sampling completed.

		The documents appear correct and the geo-spatial data recorded matches with images produced when verified independently
Geology	Deposit type, geological setting and style of mineralisation.	The underlying unweathered lithology is metamorphosed greenstones and gneissic terrane. The REE mineralisation is hosted in the weathered remnants (clay-rich saprolite) of mafic-ultramafic and intermediate intrusions.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill collar Elevation of RL (Reduced Level – elevation above sea level in metres) of the drill collar Dip and azimuth of the hole Down hole length and interception depth Hole length	See table 1 and 2 for drillhole information and appendix 1 for detailed assay results.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Significant intersections are calculated using weighted averages with a cut-off grade of greater than 500 ppm TREYO.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The REE mineralisation is interpreted to be flat-flying, with actual orientation not known due to early stage of work. Aircore drilling was completed at -60° dip to target sub- vertical basement geology. Aircore intersections are down hole length, with true width not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results considered significant are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No further data has been collected other than what is contained in this announcement or has been previously reported.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further re-assaying of samples from the clay rich saprolite zone will be completed from holes announced in previous announcements.

Appendix 3: Detailed REE results from Pingrup Drilling Program

Hole ID	From	То	Width	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb407	Tm2O3	Yb2O3	Y2O3	TREYO	Nd+Pr%
PNAC0018	27	30	3	592	5.9	1.8	7.6	12.1	0.8	249	0.1	196	61	28	1.4	0.2	1.0	16	1173	22%
PNAC0018	30	33	3	1373	30.2	11.8	22.9	53.6	4.9	513	0.9	427	118	72	6.6	1.4	7.1	119	2763	20%
PNAC0018	33	36	3	441	10.1	3.7	7.5	17.4	1.5	228	0.2	161	45	29	2.2	0.5	2.3	35	984	21%
PNAC0018	27	36	9	802	15.4	5.8	12.7	27.7	2.4	330	0.4	262	74	43	3.4	0.7	3.5	57	1640	20%
PNAC0019	18	21	3	977	38.8	11.9	27.9	76.5	5.4	494	0.9	626	159	120	8.9	1.4	7.9	122	2677	29%
PNAC0019	21	24	3	554	32.8	12.3	18.4	59.5	5.3	346	1.0	390	94	76	7.4	1.5	8.2	135	1742	28%
PNAC0019	24	27	3	654	47.3	18.4	24.3	81.5	7.4	385	1.6	449	103	92	9.9	2.2	12.5	230	2116	26%
PNAC0019	27	30	3	198	20.0	10.3	7.9	30.4	3.8	113	1.1	131	29	28	3.8	1.3	7.4	140	724	22%
PNAC0019	18	30	12	596	34.7	13.2	19.6	62.0	5.5	334	1.2	399	96	79	7.5	1.6	9.0	157	1815	27%
PNAC0021	15	18	3	356	6.4	1.7	5.6	13.6	0.8	188	0.1	159	49	28	1.6	0.2	1.1	20	831	25%
PNAC0021	18	21	3	296	11.0	3.7	7.4	20.5	1.5	177	0.3	179	47	32	2.5	0.5	2.4	40	821	28%
PNAC0021	15	21	6	326	8.7	2.7	6.5	17.1	1.1	183	0.2	169	48	30	2.1	0.3	1.8	30	826	26%
PNAC0022	18	21	3	434	13.9	4.7	8.7	23.4	1.9	164	0.5	184	47	37	3.1	0.6	3.4	42	968	24%
PNAC0022	21	24	3	1123	54.5	19.4	34.0	100.2	8.4	547	1.6	718	172	144	13.1	2.3	13.2	196	3148	28%
PNAC0022	24	27	3	893	34.0	12.5	21.5	61.4	5.3	329	1.1	450	109	90	7.6	1.5	8.5	117	2141	26%
PNAC0022	27	30	3	670	32.1	11.5	19.1	59.4	4.9	350	1.0	408	99	82	7.4	1.4	7.7	129	1882	27%
PNAC0022	30	33	3	575	24.3	9.1	14.5	45.8	4.0	327	0.8	343	86	63	5.4	1.0	5.9	109	1613	27%
PNAC0022	33	36	3	262	17.4	7.7	8.2	29.3	3.1	151	0.8	175	41	34	3.6	0.9	5.9	90	830	26%
PNAC0022	18	36	18	659	29.4	10.8	17.7	53.2	4.6	311	1.0	380	92	75	6.7	1.3	7.5	114	1764	27%
PNAC0023	18	21	3	237	9.5	3.4	5.8	17.2	1.5	121	0.3	124	32	24	2.0	0.3	2.8	34	614	25%
PNAC0023	21	24	3	555	22.6	9.6	14.2	40.5	3.8	246	0.9	279	67	57	4.9	1.1	6.9	98	1407	25%
PNAC0023	24	27	3	532	21.9	8.7	13.1	37.1	3.4	199	0.7	255	59	51	4.6	1.0	5.9	91	1284	25%
PNAC0023	27	30	3	308	12.3	4.8	8.0	21.4	1.9	149	0.5	163	40	30	2.6	0.6	3.3	53	798	25%
PNAC0023	30	33	3	764	48.4	20.5	26.3	82.2	8.2	464	1.7	512	117	103	10.2	2.4	14.2	251	2424	26%
PNAC0023	18	33	15	479	23.0	9.4	13.5	39.7	3.8	236	0.8	267	63	53	4.9	1.1	6.7	105	1305	25%
PNAC0117	45	48	3	316	5.6	2.4	3.8	9.3	0.9	154	0.2	121	36	17	1.2	0.3	2.0	29	700	23%
PNAC0117	48	51	3	347	11.2	5.0	5.3	18.7	1.9	172	0.6	161	42	25	2.4	0.7	4.4	62	859	24%
PNAC0117	51	54	3	374	10.9	5.5	5.4	17.6	1.9	169	0.6	167	44	27	2.4	0.8	4.6	61	892	24%
PNAC0117	45	54	9	346	9.3	4.3	4.9	15.2	1.6	165	0.5	150	41	23	2.0	0.6	3.7	51	817	23%
PNAC0118	24	27	3	224	5.0	1.9	2.9	9.5	0.8	148	0.2	101	29	15	1.2	0.2	1.6	22	561	23%
PNAC0118	33	36	3	360	17.3	8.2	7.8	23.4	3.1	213	0.8	169	44	28	3.4	1.1	6.3	86	971	22%
PNAC0118	48	51	3	257	5.2	2.7	3.2	9.7	1.0	141	0.3	96	28	14	1.1	0.3	2.5	31	592	21%
PNAC0119	21	24	3	387	4.7	2.2	3.2	9.1	0.8	228	0.2	122	38	16	0.9	0.3	2.0	26	841	19%
PNAC0119	24	27	3	413	5.0	2.2	4.4	9.6	0.8	230	0.2	131	41	19	1.2	0.3	1.9	26	885	19%
PNAC0119	27	30	3	971	9.6	3.3	8.6	20.3	1.5	493	0.5	286	91	38	2.4	0.5	2.7	37	1965	19%
PNAC0119	30	33	3	314	5.7	2.4	4.5	10.4	1.0	148	0.2	113	34	18	1.3	0.3	1.9	24	678	22%
PNAC0119	33	36	3	335	7.7	3.1	5.1	13.4	1.3	156	0.3	122	37	21	1.8	0.5	2.5	33	740	21%

Hole ID	From	То	Width	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb407	Tm2O3	Yb2O3	Y2O3	TREYO	Nd+Pr%
PNAC0119	36	39	3	622	15.0	5.9	9.0	26.7	2.5	271	0.6	253	71	42	3.2	0.8	4.2	65	1392	23%
PNAC0119	39	42	3	730	16.5	6.4	10.2	30.2	2.5	318	0.6	291	82	46	3.6	0.8	4.6	72	1615	23%
PNAC0119	42	45	3	513	14.8	6.1	8.9	26.5	2.5	227	0.6	222	59	39	3.1	0.8	4.6	62	1190	24%
PNAC0119	45	48	3	542	13.8	6.2	6.9	22.7	2.3	266	0.7	204	58	33	2.8	0.9	5.0	69	1232	21%
PNAC0119	48	51	3	521	14.3	6.9	8.7	25.6	2.5	232	0.8	229	62	37	3.1	0.8	5.7	79	1230	24%
PNAC0119	51	54	3	497	13.9	6.5	8.0	23.4	2.4	218	0.7	229	59	37	2.9	0.8	5.5	73	1178	24%
PNAC0119	54	57	3	457	14.6	6.4	8.3	25.8	2.6	203	0.8	222	56	36	3.1	0.9	5.7	85	1128	25%
PNAC0119	57	60	3	341	13.9	8.0	6.1	20.9	2.7	170	1.0	163	41	28	2.7	1.0	6.4	111	917	22%
PNAC0119	60	63	3	304	10.2	5.4	5.4	17.3	1.9	142	0.7	138	36	23	2.2	0.7	4.7	69	761	23%
PNAC0119	63	64	1	313	10.2	5.3	5.0	16.5	1.8	143	0.6	143	37	25	2.1	0.7	4.4	61	769	23%
PNAC0119	21	64	43	492	11.4	5.1	6.9	20.0	2.0	234	0.6	194	54	31	2.4	0.7	4.1	59	1117	22%
PNAC0120	24	27	3	210	5.5	2.4	3.2	9.5	0.9	139	0.2	92	27	14	1.2	0.3	1.7	25	533	22%
PNAC0120	27	30	3	299	6.1	2.9	4.3	10.4	1.1	147	0.3	106	31	16	1.3	0.5	2.6	36	665	21%
PNAC0120	30	33	3	401	6.4	3.0	4.4	10.9	1.0	188	0.3	134	40	20	1.3	0.3	2.2	29	843	21%
PNAC0120	33	36	3	263	5.2	2.2	3.4	9.1	0.9	130	0.3	92	26	14	1.1	0.3	1.9	27	577	20%
PNAC0120	36	39	3	302	7.0	3.3	4.5	12.2	1.1	138	0.5	114	32	19	1.5	0.5	2.8	34	672	22%
PNAC0120	39	42	3	277	6.3	2.9	4.1	10.7	1.0	131	0.5	99	29	16	1.3	0.3	2.3	33	613	21%
PNAC0120	42	45	3	668	17.2	6.6	9.8	28.5	2.7	308	0.7	265	73	43	3.6	0.8	4.9	72	1504	22%
PNAC0120	45	48	3	611	14.9	6.1	8.8	23.9	2.4	282	0.6	230	64	37	3.3	0.7	4.6	66	1355	22%
PNAC0120	48	51	3	631	15.0	5.7	9.7	24.9	2.4	255	0.6	235	66	39	3.3	0.7	4.3	65	1359	22%
PNAC0120	51	54	3	340	11.6	5.1	5.7	17.4	1.9	152	0.6	137	39	25	2.2	0.7	4.0	56	798	22%
PNAC0120	54	57	3	281	7.9	3.4	3.9	11.3	1.3	140	0.5	104	30	17	1.5	0.5	2.8	43	648	21%
PNAC0120	57	60	3	243	7.2	3.2	3.7	10.7	1.3	127	0.3	89	25	15	1.3	0.5	2.6	41	570	20%
PNAC0120	60	63	3	217	6.2	3.0	3.4	9.7	1.1	114	0.3	78	23	13	1.3	0.5	2.5	38	511	20%
PNAC0120	24	63	39	365	9.0	3.8	5.3	14.5	1.5	173	0.4	137	39	22	1.9	0.5	3.0	44	819	21%