

DRILLING UNDERWAY AT WALABANBA PROJECT TO TEST FOUR STRONG EM CONDUCTORS

HIGHLIGHTS

- Drilling has now commenced at the Walabanba Project in the NT to test four EM targets.
- Mapping and sampling will also be conducted over the southern Anningie Tin Field concurrently during July/August, to evaluate the lithium potential of this area.
- Down-hole EM surveys are scheduled to commence later this month at the Mount Hardy Copper Project, where drilling was recently completed.
- Outstanding assays still awaited from drilling at the Mount Hardy, EM1 and EM2 targets at the Mount Hardy Copper Project.

Todd River Resources Limited (ASX: TRT) is pleased to advise that drilling has now commenced on four geophysical targets at the 100%-owned Walabanba Project in the Northern Territory, as the Company's maiden drilling campaign continues to advance.

Four geophysical targets at Walabanba Project will be tested by a program of RC and diamond drilling over the next several weeks. Each of the targets is a strong conductor plate modelled from fixed-loop ground electromagnetic (FLEM) surveys. With no geological indications at surface (due to shallow transported cover), these targets require drill testing to evaluate their base metal potential.

As part of this phase of exploration, the Company is also planning to undertake mapping and sampling over the southern parts of the nearby Anningie Tin Field concurrently with the drilling. The Anningie Tin Field has demonstrated lithium potential in the LCT-type pegmatites that outcrop in the Walabanba Hills, which have had historical tin and tantalum production.

Drilling was completed recently at Todd River's 100%-owned Mount Hardy Copper-Zinc Project (see ASX Release 26 June 2017). A large number of assay results are still outstanding for the Mount Hardy, EM 1 and EM 2 geophysical targets and will be reported once all results have been received and interpreted.

Down-hole geophysical surveying is also imminent and results will be reported once the geophysical assessment is complete.

Walabanba Drilling Commences

Drilling has now commenced on four geophysical targets within the Walabanba Project (Figure 1). All the four targets are strong conductor bodies modelled from fixed-loop ground EM surveys, but blind at surface (due to shallow transported cover). There has been no previous drilling in this area for EM conductor base metal targets.

Tenure at Walabanba was originally held by Toro Energy Limited, which was exploring for paleochannel uranium mineralisation. TNG joint ventured into the ground to explore for base metals and analogues of the V-Ti-Fe mineralisation outlined at Mount Peake, some 30km to the east. Base metal targeting has been undertaken using geophysics, with HELITEM and ground-based Fixed Loop EM surveys completed (see TNG ASX Release – 21 July 2014).

At **EM Target 1c**, four discrete anomalies were outlined by a previous ground Fixed Loop EM (FLEM) survey (Figure 2) that are centred on the original HELITEM conductor with a coincident aeromagnetic high. Anomalies A and B are located along the southern flank of a central ground polarisation (EM negative) zone, and have strong late-time responses. Anomaly C is a 500 Siemens south-dipping late-time plate, while Anomaly D is a circular mid-time feature. All anomalies will be tested by four holes.

FLEM interpretation covering the **two adjacent but discrete EM conductor targets (5b and 5c)** initially outlined from the HELITEM survey (Figure 3) suggests that two moderately conductive bodies are present, with three holes planned to test the potential for base metal mineralisation. A single RC hole will test the mid-time anomaly at **EM Target 1d**.

Anningie Tin Field – Lithium Exploration

Over the coming weeks, geological mapping and sampling will also be conducted on the southern parts of the Anningie Tin Field, which is considered to be highly prospective for pegmatite-hosted lithium (Sn-Ta) mineralisation. The entire Anningie Tin Field falls within Todd River's 100%-owned EL 26848 (Figure 1).

The Anningie Field was mined for alluvial tin and tantalum between 1935 and 1973 and produced around 35 tonnes of tin concentrate, making it the fifth largest producer in the Northern Territory. The tin field lies in the Walabanba Hills on Anningie Station, some 240km NNW of Alice Springs.

Historical mining was of both alluvial gully material and colluvial/elluvial (soil) material shedding off a number of pegmatite bodies. The main area of working and production was the Reward claim, with three other prospects named with some mining indicated. There are only minor diggings, to two metres depth, on the exposed pegmatite host rock, and likely negligible mining/production from the pegmatite.

The Anningie field has had no lithium-specific exploration conducted to date. Alluvial tin was discovered in 1935 by station workers and most production from the field was during

the period to 1939 (70% of the total). Exploration during the late 1970s to early 1980s was aimed at proving up an alluvial tin resource and involved shallow (<2m) auger drilling and systematic front end-loader "scapes".

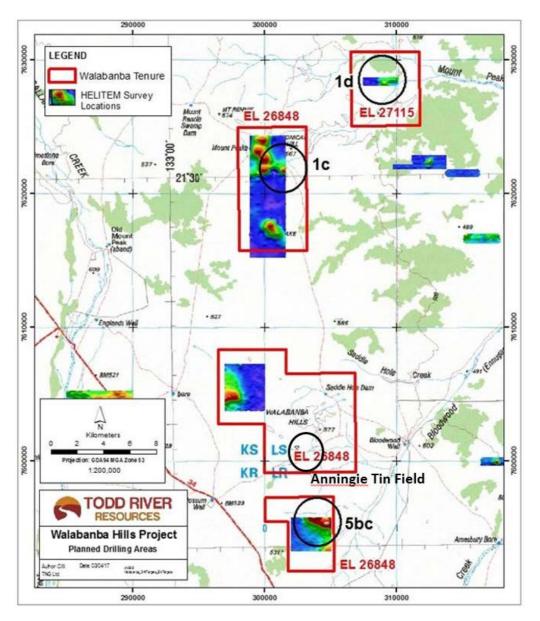


Figure 1. Location diagram for the Walabanba Project showing the HELITEM and FLEM data and the areas to be drilled through July 2017. The Anningie Tin Field location is also shown.

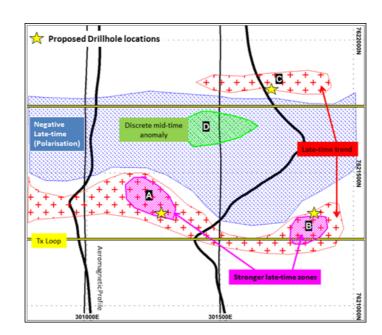


Figure 2. Walabanba Project EM Target 1c survey area and interpretation, showing four separate conductive anomalies (A, B, C, and D).

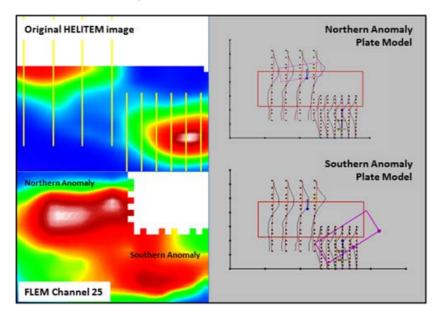


Figure 3. Composite of images from the Walabanba EM surveys at Target 5b/c.

Sampling (three rock samples from Reward) by the Northern Territory Geological Survey (NTGS) in the early 2000s highlighted the potential of the field (see NTGS Report 16, 2005, K. M Frater). Based on the major and trace element chemistry the **NTGS Reward samples clearly have the most favourable chemistry of all the northern Arunta region pegmatites**.

Samples were mineralised with average values of 747ppm Li, 1438ppm Sn and 3185ppm Ta, while also having highly elevated caesium 703ppm Cs, rubidium 8250ppm Rb, and gallium 229ppm Ga.

These samples indicated **the Reward pegmatite host**, **on EL 26848**, **is of the LCT (Li-Cs-Ta) Type**, which is the pegmatite classification type most prospective for economic Lithium (Sn-Ta) mineralisation.

The only drilling conducted on the field was by the NTGS in 1973 (see NTGS GS1974_0007) at the Bismark Prospect about 1.5km south of Reward and within EL 26848. Five shallow diamond holes (for 130.2m) were drilled (Appendix 1) to test the depth potential of the pegmatite, which had surface tin showings from rock and trench sampling.

Results were reported, in NTGS Technical Report 1974-007, including: **1.3m @ 0.525% Sn** in DDH2A from 1.37 to 2.67m depth, 0.77m @ 0.12% Sn in DDH3 from 5.63 to 6.40m, and 0.69m @ 0.15% Sn in DDH5 from 7.31 to 8.00m. Elements analysed were Sn and Ta, with some intervals also analysed for Cu, Ni, and Co. No analyses were made for lithium.

Todd River has re-logged and re-sampled this core (stored in the NTGS Core Library in Alice Springs). This work is outlined below and detailed in Appendix 2. Portable XRF analysis was used to characterise the pegmatite and screen samples for laboratory ICP analysis. pXRF analysis of this core indicated the pegmatite was enriched in tin and tantalum over the intervals indicated in Table 1 below.

Table 1. Significant portable XRF results from 1974 NTGS	Bismark drilling.
--	-------------------

	Interval with	>100ppm Ta and	d >50ppm Sn	Maximum	Nalues	Comment
Drill Hole	From (metres)	To (metres)	Interval	Sn	Та	
DDH1						No pegmatite logged
DDH2A	0.00	2.25	2.25	350	181	
DDH3	2.00	6.25	4.25	167	195	
DDH4						No significant mineralisation
DDH5	0.00	7.50	7.50	794	615	

Cautionary Statement: All chemical analyses results quoted in Table 1 are from a Nitron XRF portable analyser. As such they may not be representative of the whole sample, nor should they be seen as s suitable substitute for laboratory based chemical analysis.

Laboratory analysis of selected intervals of this core returned results shown on Table 2, while all results for the elements discussed below are reported in Appendix 1.

The highest lithium result was 470ppm Li (0.10% Li₂O). Tin results were anomalous with a maximum value of 122ppm Sn noted from Hole DDH5. In addition, significant caesium was noted, with Hole DDH3 having **11.0 m @ 459ppm Cs** from surface and Hole DDH5 having **4m @ 595ppm Cs** from 5m. Rubidium, another element enriched in some pegmatite had a maximum value of 2770ppm coincident with the highest tin, caesium (933ppm Cs) and lithium value.

Table 2.

Significant laboratory ICP results from Bismark drilling.

	Inter	val with >50pp	Average	Maximum	
Drill Hole	From (metres)	To (metres)	Interval	Та	Li (ppm)
DDH1					193
DDH2A	0.00	3.00	3.00	208	215
DDH3	5.00	7.00	2.00	64	297
DDH4					156
DDH5	0.00	5.00	5.00	89	470

These results, while not of economic grades, do indicate **the pegmatite at Bismark is also of the LCT type, and has potential to host lithium-related mineralisation**. The 1973 NTGS drilling only covers a strike length of 120 metres on a pegmatite that is mapped over 260 metres, and so there is further scope within the Bismark area for Li-Sn-Ta mineralisation. This will be explored over the coming weeks.

Mount Hardy Project Drilling Results

Drilling has now been completed at Mount Hardy (see ASX Release 26 June 2017), with all samples now submitted for laboratory analysis.

Preparations are underway to undertake down-hole EM surveys on all holes, with this geophysical program expected to commence before the end of July.

Final assays should be available by the end of July and will be reported once fully compiled and interpreted against the Company's geophysical and geological models.

Paul E Burton Technical Director

11 July 2017

Enquiries: Paul Burton, Technical Director + 61 (0) 8 9327 0950

Nicholas Read Read Corporate + 61 (0) 8 9388 1474

Competent Person Statement

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation compiled by Exploration Manager Mr Kim Grey B.Sc. and M. Econ. Geol. Mr Grey is a member of the Australian Institute of Geoscientists, and an employee of Todd River Resources Limited. Mr Grey has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Grey consents to the inclusion in the report of the matters based on his information in the form and context in which it appear.

Forward-Looking Statements

This announcement has been prepared by Todd River Resources Ltd. This announcement is in summary form and does not purport to be all inclusive or complete. Recipients should conduct their own investigations and perform their own analysis in order to satisfy themselves as to the accuracy and completeness of the information, statements and opinions contained.

This is for information purposes only. Neither this nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of Todd River Resources Ltd shares in any jurisdiction.

This does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this presentation are not intended to represent recommendations of particular investments to particular persons. Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments.

To the fullest extent permitted by law, Todd River Resources Ltd, its officers, employees, agents and advisers do not make any representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of any information, statements, opinions, estimates, forecasts or other representations contained in this announcement. No responsibility for any errors or omissions from this arising out of negligence or otherwise is accepted.

This may include forward looking statements. Forward looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of Todd River Resources Ltd. Actual values, results or events may be materially different to those expressed or implied. For more information please see the company's website at <u>www.trrltd.com.au</u>

Appendix One – Bismark Drilling Re-Assay Results Bismark 1973 NTGS Drilling – Collar Survey Data.

HOLE_ID	EASTING_GDA94Z53	NORTHING_GDA94Z53	AHD_m	DEPTH	DIP	AZIMUTH_MAG
DDH1	303,413	7,600,233	540	58.5	-45	55
DDH2A	303,417	7,600,256	543	13.4	-90	360
DDH3	303,440	7,600,229	539	31.4	-55	320
DDH4	303,405	7,600,263	535	9.5	-90	360
DDH5	303,360	7,600,320	540	17.4	-90	360

Note: Drill hole collars for holes DDH1, 2A, 3, and 4 were found on the ground and picked up with a hand-held GPS unit (with absolute accuracy +-5m). Hole DDH5 was not located and so coordinates are interpreted from the drill hole location plan in the 1974 report (NTGS TR 1974-007), absolute accuracy +-20m.

Bismark 1973 NTGS Drilling – TRT Resampling Assays Results.

HOLE ID	DEPTH FROM	DEPTH TO	SAMPLE NO	SAMPLETYPE	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS85	ME-MS85
					Element	Al	Cs	К	Li	Rb	Sn	Та	Cs	Та
					Units	%	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
					DL	0.01	0.05	0.01	0.2	0.1	0.2	0.05	0.01	0.1
DDH1	5.00	6.00	WB1001	1/4 CORE	WB1001	9.24	89.9	4.27	156.5	276	3.7	1.36		
DDH1	15.00	16.00	WB1002	1/4 CORE	WB1002	6.14	41.8	1.66	91.4	87.4	5.2	1.08		
DDH1	24.30	24.65	WB1003	1/4 CORE	WB1003	3	20.7	0.5	193	30.4	32.7	0.25		
DDH1	24.65	25.50	WB1004	1/4 CORE	WB1004	6.64	57.6	1.76	55.7	91.4	65.5	1.29		
DDH1	35.00	36.00	WB1005	1/4 CORE	WB1005	6.33	34.4	1.87	63.7	106.5	8.5	1.15		
DDH1	45.00	46.00	WB1006	1/4 CORE	WB1006	6.22	26.8	1.63	52.6	82.2	4.5	1.01		
DDH1	57.00	58.10	WB1007	1/4 CORE	WB1007	6.33	50.8	1.56	62.2	98.4	4.1	0.9		
			WB1008	STD	WB1008	7.39	0.58	0.34	7.4	11.1	1	0.47		
DDH2A	0.00	1.00	WB1009	1/4 CORE	WB1009	7.26	218	1.92	68.8	1080	15.5	>100		275
DDH2A	1.00	2.00	WB1010	1/4 CORE	WB1010	7.78	192.5	0.57	215	530	31.3	>100		251
DDH2A	2.00	3.00	WB1011	1/4 CORE	WB1011	6.89	48.4	0.47	50.6	98.6	17.7	97.1		
DDH2A	3.00	4.00	WB1012	1/4 CORE	WB1012	6.21	67.2	2.06	109	97.8	4.7	2		
DDH2A	4.00	5.00	WB1013	1/4 CORE	WB1013	6.04	56.8	1.74	84.7	89.1	6.5	4.06		
DDH2A	5.00	6.00	WB1014	1/4 CORE 1/4 CORE	WB1014	6.28 6.27	110.5	1.76 2.08	98.3	112.5	6.2	5.63 1.27		-
DDH2A DDH2A	6.00 7.00	7.00	WB1015 WB1016	1/4 CORE 1/4 CORE	WB1015 WB1016	6.27	72 82	2.08	123 106.5	120.5 108.5	6 13.3	1.27		
DDH2A DDH2A	10.00	11.00	WB1018 WB1017	1/4 CORE	WB1016 WB1017	6.67	35.9	2.08	73.5	79.9	5.1	1.5		
DDH2A DDH2A	12.00	13.00	WB1017 WB1018	1/4 CORE	WB1017 WB1018	7.32	78.9	2.02	89.3	125.5	6.3	1.48		
DUNZA	12.00	15.00	WB1010 WB1019	STD	WB1010	4.14	0.82	0.71	8.8	39.7	4.5	0.73		
DDH2A	8.00	9.00	WB1015 WB1020	1/4 CORE	WB1010	6.34	70.8	2.14	119.5	117.5	6.4	1.31		
DDH3	0.00	1.00	WB1021	1/4 CORE	WB1021	6.3	269	1.96	148	247	29.5	0.65		
DDH3	1.00	2.00	WB1021	1/4 CORE	WB1022	6.56	>500	3.61	297	680	46.6	0.59	710	
DDH3	2.00	3.00	WB1023	1/4 CORE	WB1023	6.72	>500	3.65	276	740	55.5	0.56	803	
DDH3	3.00	4.00	WB1024	1/4 CORE	WB1024	5.86	>500	2.09	175.5	450	40.9	0.94	516	
DDH3	4.00	5.00	WB1025	1/4 CORE	WB1025	6.32	>500	2.07	154.5	540	34.6	8.56	591	
DDH3	5.00	6.00	WB1026	1/4 CORE	WB1026	7.29	>500	3.4	85.7	990	69.8	78.8	640	
DDH3	6.00	7.00	WB1027	1/4 CORE	WB1027	6.29	258	1.76	58.6	338	21.7	49.1		
DDH3	8.00	9.00	WB1028	1/4 CORE	WB1028	6.2	92.7	1.4	55.4	108.5	9.2	1.47		
DDH3	10.00	11.00	WB1029	1/4 CORE	WB1029	4.75	251	1.3	70.1	162.5	13.8	0.95		
DDH3	11.00	12.00	WB1030	1/4 CORE	WB1030	3.2	129.5	0.84	51.7	84.4	6.5	0.61		
DDH3	12.00	13.00	WB1031	1/4 CORE	WB1031	3.74	118.5	0.89	45.3	90.8	8	0.82		
DDH3	13.00	14.00	WB1032	1/4 CORE	WB1032	0.2	11.5	0.06	8.4	8.5	1	0.24		
DDH3	14.00	15.00	WB1033	1/4 CORE	WB1033	0.62	47.7	0.28	17.7	32.1	5.3	0.12		
DDH3	15.00	16.00	WB1034	1/4 CORE	WB1034	4.51	306	2.4	153	266	36.8	2.51		
DDH3	17.00	18.00	WB1035	1/4 CORE	WB1035	7.95	320	3.62	251	355	36	2.55		
DDH3	19.00	20.00	WB1036	1/4 CORE	WB1036	6.19	235	2.27	143	224	25.1	1.08		
DDH3	22.00	23.00	WB1037	1/4 CORE	WB1037	6.32	96.3	1.68	103.5	162	14.5	1		
DDH3 DDH3	26.00	27.00 31.00	WB1038 WB1039	1/4 CORE	WB1038 WB1039	5.91 6.12	81.5 56.6	1.6 1.55	78.4 68.7	105.5 98.6	11.9 9.5	0.92		
DDH3	30.00	0.00	WB1039 WB1040	1/4 CORE STD	WB1039 WB1040	7.04	0.5		7.4	98.6		0.47		
DDH4	2.00	3.00	WB1040 WB1041	1/4 CORE	WB1040 WB1041	6.22	259	0.33	155.5	11	1 6.6	1.03		
DDH4 DDH4	5.00	6.00	WB1041 WB1042	1/4 CORE 1/4 CORE	WB1041 WB1042	6.47	67.3	1.65	155.5	147.5	6.8	1.03		
DDH4 DDH4	8.00	9.00	WB1042 WB1043	1/4 CORE	WB1042 WB1043	6.47	42.9	1.95	134.5	109	4.5	1.08		
DDII4	8.00	4.00	WB1043	STD	WB1043	4.41	0.94	0.75	9.6	42.3	4.6	0.73		
DDH5	0.00	1.00	WB1044 WB1045	1/4 CORE	WB1044 WB1045	4.41	54.6	0.73	39.5	107	9	57.5		
DDH5	1.00	2.00	WB1045 WB1046	1/4 CORE	WB1045 WB1046	7.4	42.5	0.35	18.8	264	16.3	95.5		
DDH5	2.00	3.00	WB1040 WB1047	1/4 CORE	WB1040 WB1047	7.07	62.5	0.55	17.9	500	38.2	94.6		
DDH5	3.00	4.00	WB1047 WB1048	1/4 CORE	WB1047 WB1048	8.05	75.7	0.30	22.9	610	52	95.5		
DDH5	4.00	5.00	WB1049	1/4 CORE	WB1049	10.25	134	1.25	36.1	1150	96.8	100	139.5	
DDH5	5.00	6.00	WB1050	1/4 CORE	WB1050	7.79	>500	2.24	470	2770	122	19.7	933	
DDH5	6.00	7.00	WB1051	1/4 CORE	WB1051	6.54	473	1.25	168	1190	90.7	35.5		
DDH5	7.00	8.00	WB1052	1/4 CORE	WB1052	6.96	400	1.56	102	1130	103	27.7		
DDH5	8.00	9.00	WB1053	1/4 CORE	WB1053	5.73	>500	1.37	206	590	25.5	2.68	575	
DDH5	11.00	12.00	WB1054	1/4 CORE	WB1054	6.24	157.5	1.96	192	182.5	2.1	1.22		
DDH5	14.00	15.00	WB1055	1/4 CORE	WB1055	9.05	210	4.13	288	314	3.3	1.59		
DDH5	16.00	17.30	WB1056	1/4 CORE	WB1056	6.76	104	2.17	173	167.5	2	1.37		
			WB1057	STD	WB1057	7.67	1.15	0.34	8.8	12.5	1.1	0.52		

Appendix Two - JORC Table One - Sampling Techniques and Data

Walabanba – Bismark Tin Historic NTGS Diamond Drilling All data from NTGS Report GS1974_0007

Criteria	JORC Code explanation	All diamond drilling
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report.	NTGS Diamond drilling was sampled with split core analysed for tin and tantalum, with detection limits of 50ppm and 4ppm by Mines Branch. Some intervals were also assayed for copper cobalt and nickel.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond Core drilling (core size not indicated, likely to be smaller than NQ size core).
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No recovery information was recorded in the NTGS report. Core was logged by TRT geologists to have from 80-100% recovery (average >90%).
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Core was geologically logged for lithology, mineralogy, colour, weathering, alteration, structure and mineralisation. All holes were logged in full. All intervals were analysed by pXRF at 1m intervals (Table 1) with selected intervals submitted for laboratory analysis (Appendix One).
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Drill core has been cut with half samples submitted for assay originally by NTGS. TRT sampling was ¼ core. TRT sample preparation for all samples follows industry best practice, with oven drying of samples prior to coarse crushing and pulverization (to >85% passing 75 microns) of the entire sample The sample size (1-2 kg) is considered to be adequate for the material and grainsize being sampled and the style of mineralisation being drilled
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	All samples reported here were analysed at ALS in Perth by technique ME-MS61 (considered a "total" digest result) and by technique ME-MS85 Base metal standards were inserted into the laboratory batch (see Table in Appendix 1), results were acceptable.

Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Sampling was conducted by the field geologist and verified by the Exploration Manager on site prior to cutting/dispatch. All data was entered into standardized spreadsheets on field laptops and uploaded into the company Access database. No adjustments have been made to the primary assay data
Locations of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All drilling collars were located up using a standard GPS unit and multiple point averaging to an accuracy of ca. 5m for Easting, Northing and RL zsee notes Appendix 1. All coordinate data for the Walabanba project are in MGA_GDA94 Zone 53.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Data presented is at an early stage of exploration with hole spacings varying as dictated by target size and position. All values in Appendix 1 are individual assay values (not composited). Sampling was of an exploratory and reconnaissance nature and spacings are insufficient to establish continuity or define Resources.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The orientation of the target pegmatites are not well defined and so no true thicknesses can be determined/reported.
Sample security	The measures taken to ensure sample security.	All core and samples were under company supervision at all times prior to delivering to ALS laboratories in Alice Springs
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No sampling audits have been conducted at Walabanba

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in	The Walabanba prospects are located on tenements EL 27892, EL 26848 a 27115 held by Todd River Metals Pty Ltd, which is wholly-owned by Todd Ri Resources Limited. All tenements are in good standing with no know impediments
Exploration done by other parties	the area. Acknowledgment and appraisal of exploration by other parties.	All significant geophysical previous work was conducted by TNG and is referenced in the text. Pegmatite exploration is outlined in NTGS report GS1974_0007 and NTGS Report 16 (2005), referenced in the text.
Geology	Deposit type, geological setting and style of mineralisation.	Geophysical targets on the Walabanba project may be of a similar style to those found elsewhere in the Arunta; at Jervois, Mount Hardy or Barrow Creek, but are yet to be defined. At Bismark tin and potentially lithium is related to differentiated granite and LCT-type pegmatite intrusives.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o Easting and northing of the drill collar	See Appendix 1.

	 Elevation of RL (Reduced Level – elevation above sea level in metres) of the drill collar Dip and azimuth of the hole Down hole length and interception depth Hole length 				
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.				
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Orientation not well defined. Expected true thickness ca. 60-80% or drill/intercept interval. For the intersections reported here interpretation of the orientation of the mineralisation and therefore the true thickness of intervals will await the down-hole geophysical interpretation work scheduled for June 2017.			
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	No plans included, as results are historic.			
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are reported in Appendix 1.			
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No substantial new information is available other than that reported above.			
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Mapping around the Bismark area is planned. Drill testing of the Walabanba geophysical targets has commenced.			