

FINAL ASSAYS FROM MOUNT HARDY DRILLING CONFIRM SIGNIFICANT ZINC AND COPPER INTERSECTIONS

DHEM surveys of all holes underway to establish the extents and orientations of mineralised zones and assist with next phase of exploration

HIGHLIGHTS

- High-grade base metal values returned from final assays from recently-completed Mount Hardy drilling program, including:
 - 10.5m @ 4.15% Zn and 1.10% Cu;
 - 7.0m @ 1.77% Cu; and
 - o 1.0m @ 12.75% Zn, 3.43% Pb and 3.30% Cu (19.48% combined base metals).
- Maximum base metal grades of 12.75% Zn, 4.05% Cu and 3.97% Pb.
- DHEM surveying now underway for final project assessment.
- Drilling continuing at Walabanba Project, where four EM targets will be tested.

Todd River Resources Limited (ASX: TRT) is pleased to advise that all assay results from the maiden drilling program at its 100%-owned **Mount Hardy Copper-Zinc Project** in the Northern Territory have now been received, with numerous high-grade intercepts confirming the Project's strong prospectivity for base metals mineralisation.

Four high priority targets were drill tested as part of the program – the two strongest EM targets (EM #1 and #2), and the Induced Polarisation (IP) geophysical targets at Browns and Mount Hardy (see Figure 1 below).

Significant intersections from the latest assay results include:

Hole 17MHRC017 (Browns Prospect) 7.0m @ 1.77% Cu, 0.43% Zn and 17.7g/t Ag from 67-74m

Hole 17MHRCDDH029 (EM #2) 9.0m @ 2.67% Zn, 0.97% Pb and 0.61% Cu from 135.0 to 144.0m 10.5m @ 4.15% Zn, 1.10% Cu and 0.65% Pb from 178.0 to 188.5m

Previous assay results were reported in the Company's ASX Announcement dated 23 May 2017.

A total of 14 holes were drilled in the program, comprising ten Reverse Circulation (RC) holes and four diamond tails below RC pre-collars. In total 2,849 metres were drilled, including 2,195m of RC and 654m of diamond core.

Following the receipt of final assay results, the drilling program delivered 27 values above 1% copper, 25 values above 1% zinc, and 11 values above 1% lead. Maximum recorded grades were 12.75% zinc, 4.05% copper and 3.97% lead, within 192 anomalous values (>0.1% combined base metals).

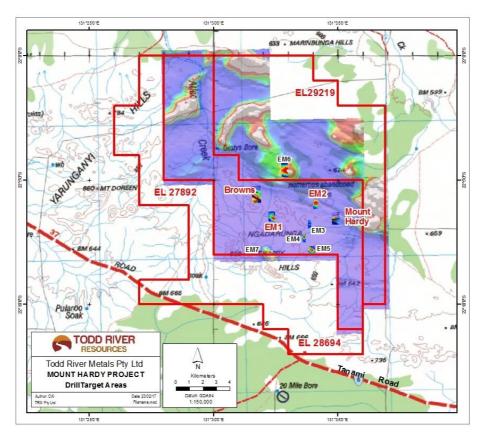


Figure 1. Location of the Mount Hardy Project in the Northern Territory, with the areas drilled in red

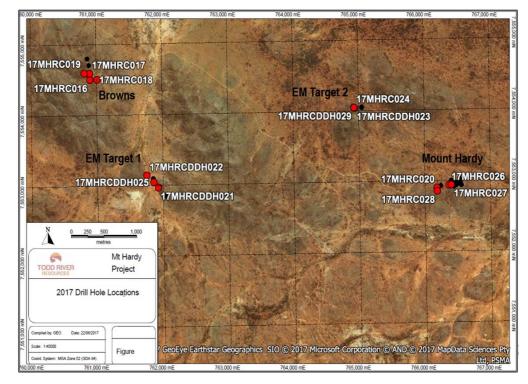


Figure 2. Drill hole location diagram for 2017 Mount Hardy drilling.

Browns Prospect

Four reverse circulation (RC) holes were completed for 490m at the Browns Prospect (17MHRC016, 017, 018, and 019) and all 230 laboratory sample analyses have now been returned. Results for holes 17MHRC016 and 17MHRC017 were reported in ASX Release – 23 May 2017.

Significant results at Browns included:

Hole 17MHRC016 2.0m @ 1.67% Zn, 0.28% Cu, 0.18% Pb from 88-90m

Hole 17MHRC017

7.0m @ 1.77% Cu and 0.43% Zn, 280ppm Pb, 17.7g/t Ag from 67-74m

At a 0.1% cut-off this intersection was:

11.0m @ 1.19% Cu, 0.30% Zn, 0.12% Pb, 13.1g/t Ag from 63-74m

These two holes are located south and north respectively of the single pre-existing drill hole on the IP anomaly at Browns. Hole 13MHDDH015 returned an intersection of:

13.0m @ 1.17% Cu, 1.82% Zn and 0.46% Pb from 74-87m

Hole 17MHRC018

3.0 m @ 1.49% Cu and 0.1% Zn from 127.0-130.0m

At a 0.1% cut-off this intersection was 6.0m @ 0.85% Cu from 126.0-132.0m.

Hole 17MHRC019 did not return base metal results in excess of 0.1%, effectively closing off the mineralised system to the west.

Table 2 outlines all significant assay results for the Browns drilling. Full assay results over these intervals are shown in Table 3, while details of the drilling and sampling are outlined in Appendix 1.

While not at economic grades, the anomalous intercepts (>1,000ppm) returned to date from the Browns Prospect (13 metres in 13MHDDH015, 25 metres in hole 17MHRC016, 9 metres in 17MHRC017 and 6 metres in 17MHRC018) do indicate broad zones of significant base metal bearing hydrothermally altered rocks. Together, these intersections define a shallow south-dipping mineralised structure (Figure 3) that persists for over 100m. It remains open both up-dip to the north and down-dip to the south and east.

All intervals are at less than 100 metre from surface and are contained within simple coarse sulphides (chalcopyrite, sphalerite and galena), hosted within siliceous schists of the Paleoproterozoic Lander Rock Formation.

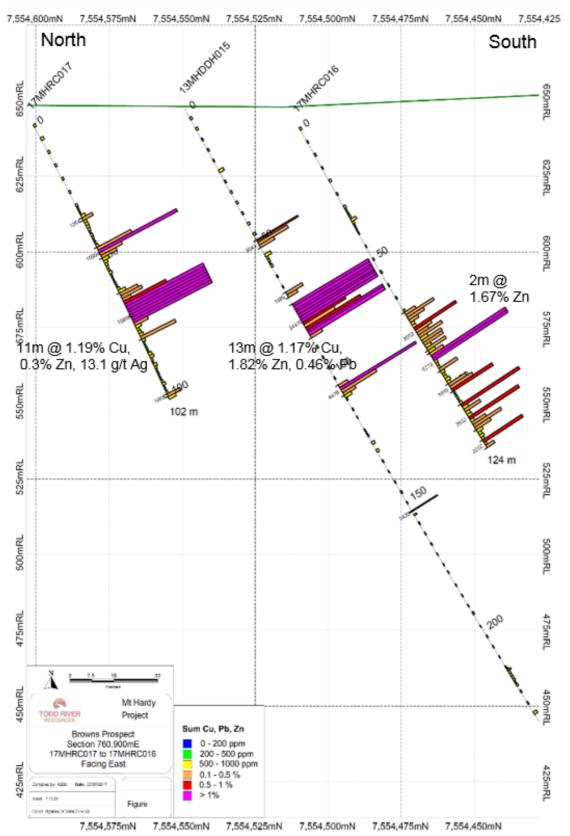


Figure 3. N-S Cross Section (looking east) with 17MHRC015 to 17MHRC017 at the Browns Prospect, and showing the shallow south dipping mineralised sheet.

EM Target 2

Three holes (17MHRCDDH023, 024, and 029) were completed at EM Target 2 for 794.5m (542.8m RC and 251.7m diamond). Initial design was for two holes with RC pre-collars and

diamond tails, but the steeper and deeper RC pre-collar encountered significant bend and lift. Despite designing for a degree of bend, the diamond tail could not achieve target and the pre-collar was abandoned. A redrill hole (17MHRCDDH029) was designed allowing for more deflection and achieved target.

Significant results are listed in Table 2, and include:

Hole 17MHRCDDH023

2.0m @ 0.13% Zn from 84.0 to 86.0m

3.0m @ 0.34% Pb and 0.27% Zn from 113.0 to 116.0m

5.2m @ 1.70% Zn, 0.81% Pb and 0.12% Cu from 209.6 to 214.8m

Individual assays include maximum values of: 6.93% Zn, 0.79% Cu and 2.24% Pb

Hole 17MHRC024

16.0m @ 0.31% Zn and 0.13% Pb from 109.0 to 125.0m 2.0m @ 0.19% Zn and 0.10% Pb from 127.0-129.0m

Hole 17MHRCDDH029

9.0m @ 2.67% Zn, 0.97% Pb and 0.61% Cu from 135.0 to 144.0m 10.5m @ 4.15% Zn, 1.10% Cu and 0.65% Pb from 178.0 to 188.5m

Individual assays include a maximum intersection value of: 1m @ 12.75% Zn, 3.30% Cu, and 3.43% Pb, from 180.0 to 181.0m (see Table 3), equating to 19.48% combined base metals.

The sulphide mineralisation intersected in holes 17MHRCDDH023 and 029 is dominated by sphalerite with lesser contributions from chalcopyrite and galena. The sulphide mineralisation occurs as semi-massive, vein infill and disseminated styles intimately associated with quartz veining and silica flooded zones. Chlorite and sericite alteration within the quartz veining and of the host rocks is commonly associated with the mineralisation as an alteration product. The host quartz-mica schists, psammitic schists and psammitic gneisses of the Lander Formation are commonly locally silicified proximal to the mineralisation.

EM Target 1

Three holes with RC pre-collars and diamond tails were drilled at EM Target 1 for a total of 956.9 metres (566.4m RC and 390.5m diamond core).

Holes 17MHRCDDH021, 022, and 025 returned anomalous results (outlined in Table 2 and Appendix 1).

Significant results (at a 0.1% cut-off) from these three holes include:

Hole 17MHRCDDH021

9.0m @ 0.14% Zn from 162.5 to 171.5m 14.1m @ 0.34% Zn, 0.29% Cu, and 0.17% Pb from 174.5 to 188.6m

Together, and including a 3m low grade interval, the above intercepts from 17MHRCDDH021 generated:

26.1m @ 0.57% combined base metals.

Hole 17MHRCDDH022

6.0m @ 0.09% Zn, 0.09% Pb from 153.0 to 159.0m

Hole 17MHRCDDH025

5.5m @ 0.46% Zn, 0.22% Pb and 0.14% Zn from 253.5 to 259.0m

Overall the mineralised zone is moderately to strongly silica-flooded and chlorite altered Lander Rock Formation schist, with much of the sulphide located within and marginal to thin (cm to dm) wide sheeted quartz veins. Veins were translucent grey quartz with sulphides often along the host-rock contacts. Fine to coarse grained chalcopyrite, galena and sphalerite were logged.

Figures 5 and 6 show the drill hole traces at EM Target 1 with significant assay intervals annotated.

The anomalous intervals in holes 17MHRCDDH021 and 17MHRCDDH025 correspond to the position of the modelled EM plate, and correlate with mineralisation outlined in previous drilling (see TNG ASX release 20 May 2013) - Hole 13MHDDH010 intersected **21.0m @ 0.5% Cu, 4.4% Zn, 1.9% Pb, and 36g/t Ag** from 213m down-hole. Both thickness and grade drops off down-dip below holes 17MHRCDDH021 and 13MHDDH010, and no significant mineralisation, at the corresponding EM plate depth, was noted in hole 17MHRCDDH022.

Figure 4. Diamond Drilling at EM Target #1, Mount Hardy.

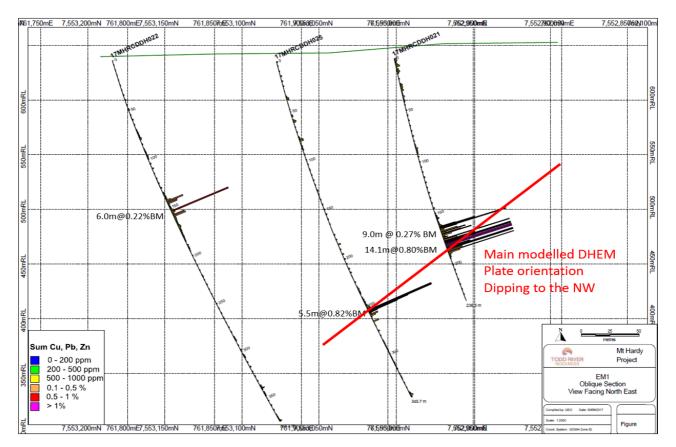


Figure 5. EM Target 1 cross section (looking NE). New 2017 holes plotted with assays.

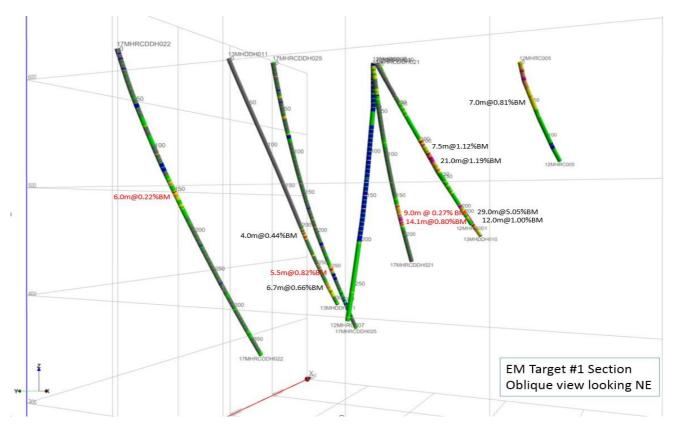


Figure 6. EM Target 1 oblique 3D view cross section (looking NE). All drilled holes, new 2017 holes plotted with assays (red).

Mount Hardy Prospect

Four RC holes were drilled at the Mount Hardy prospect (17MHRC020, 026, 027, and 028), for a total of 598 metres. Significant results are outlined in Table 2, and included:

Hole 17MHRC020

1.0 m @ 0.12% Cu from 66.0-67.0m 1.0 m @ 0.15% Cu from 84.0-85.0m 2.0 m @ 0.19% Cu from 99.0-100.0m, and 3.0m @ 0.35% Cu from 108.0-111.0m

Hole 17MHRC026

1.0m @ 0.16% Zn from 5.0-6.0m 1.0m @ 0.12% Cu from 23.0-24.0m 1.0m @ 0.14% Cu from 50.0-51.0m 1.0m @ 0.24% Cu from 55.0-56.0m 5.0m @ 0.66% Cu from 96.0-101.0m 5.0m @ 0.14% Cu from 103.0-108.0m 1.0m @ 0.14% Cu from 137.0-138.0m, and

Hole 17MHRC027

3.0m @ 1.98% Cu from 55.0-58.0m, and 8.0m @ 0.53% Cu from 91.0-98.0m

Hole 17MHRC028

13.0m @ 0.35% Cu from 37.0-50.0m

4.0m @ 0.1% Cu from 70.0-74.0m

Mineralisation at Mount Hardy is consistently dominated by copper, with <0.1% Pb and Zn values. Intersections at less than 40m depth are generally malachite, with coarse chalcopyrite seen in all fresh intersections. Chalcopyrite is intimately associated with quartz veining and sericite-chlorite alteration and silicification along structures, and is accompanied by minor pyrite.

All holes targeted the down dip and down plunge position of the mineralisation seen at surface and outlined by an Induced Polarisation (IP) geophysical survey.

Full assessment will be completed once the assay interpretation and interpretation of down-hole electromagnetic (DHEM) work have been finalised. This will be completed in August, for reporting in September.

Paul E Burton Technical Director

10 August 2017

Enquiries:	
Paul Burton,	
Technical Director	+ 61 (0) 8 9327 0950

Nicholas Read	
Read Corporate	+ 61 (0) 8 9388 1474

Competent Person Statement

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation compiled by Exploration Manager Mr Kim Grey B.Sc. and M. Econ. Geol. Mr Grey is a member of the Australian Institute of Geoscientists, and an employee of Todd River Resources Limited. Mr Grey has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Grey consents to the inclusion in the report of the matters based on his information in the form and context in which it appear.

Forward-Looking Statements

This announcement has been prepared by Todd River Resources Ltd. This announcement is in summary form and does not purport to be all inclusive or complete. Recipients should conduct their own investigations and perform their own analysis in order to satisfy themselves as to the accuracy and completeness of the information, statements and opinions contained.

This is for information purposes only. Neither this nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of Todd River Resources Ltd shares in any jurisdiction.

This does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this presentation are not intended to represent recommendations of particular investments to particular persons. Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments.

To the fullest extent permitted by law, Todd River Resources Ltd, its officers, employees, agents and advisers do not make any representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of any information, statements, opinions, estimates, forecasts or other representations contained in this announcement. No responsibility for any errors or omissions from this arising out of negligence or otherwise is accepted.

This may include forward looking statements. Forward looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of Todd River Resources Ltd. Actual values, results or events may be materially different to those expressed or implied. For more information please see the company's website at www.trrltd.com.au

	FACTING	NORTHING		DEDTU	DID	
HOLE_ID	EASTING	NORTHING	AHD_m	DEPTH	DIP	AZI_MAG
17MHRC016	760900	7554510	641	124	-60	180
17MHRC017	760897	7554601	642	102	-60	180
17MHRC018	761008	7554510	643	162	-60	360
17MHRC019	760815	7554602	648	102	-60	360
17MHRC020	766180	7552906	636	150	-60	150
17MHRCDDH021	761924	7552975	638	236.3	-73	87
17MHRCDDH022	761753	7553150	636	374.9	-66	84
17MHRCDDH023	764936	7554051	641	259.6	-44	125
17MHRC024	764928	7554057	641	204	-70	118
17MHRCDDH025	761857	7553052	635	345.7	-67	80
17MHRC026	766364	7552942	636	150	-50	150
17MHRC027	766400	7552945	636	150	-50	150
17MHRC028	766185	7552860	634	148	-50	150
17MHRC029	764930	7554056	641	330	-65	126

Table 1.Mount Hardy drilling - hole locations.

Table 2.Mount Hardy drilling – significant results.

Above a 0.1% combined base metal cut-off.

Hole_ID	FROM	то	Interval	Cu_ppm	Pb_ppm	Zn_ppm
17MHRC016	71.0	86.0	15.0	189	563	1300
17MHRC016	87.0	94.0	7.0	861	682	5230
17MHRC016	99.0	102.0	3.0	102	719	2738
17MHRC016	107.0	117.0	10.0	1339	209	1084
17MHRC016	121.0	124.0	3.0	315	564	1323
17MHRC017	35.0	36.0	1.0	493	603	168
17MHRC017	46.0	50.0	4.0	802	4078	6114
17MHRC017	63.0	80.0	17.0	7797	857	2234
17MHRC017	100.0	101.0	1.0	509	172	987
17MHRC018	126.0	132.0	6.0	8549	124	643
17MHRC019	25.0	26.0	1.0	254	20	778
	+					
17MHRC020	66.0	67.0	1.0	1160	111	289
17MHRC020	84.0	85.0	1.0	1535	6	75
17MHRC020	98.0	100.0	2.0	1933	8	124
17MHRC020	108.0	111.0	3.0	3522	33	524
17MHRC024	109.0	125.0	16.0	591	1340	3097
17MHRC024	127.0	129.0	2.0	1021	1860	6725
17MHRC026	5.0	6.0	1.0	944	109	1610
17MHRC026	23.0	24.0	1.0	1240	46	116
17MHRC026	45.0	46.0	1.0	333	817	1310
17MHRC026	50.0	51.0	1.0	1440	110	216
17MHRC026	55.0	56.0	1.0	2370	20	77
17MHRC026	96.0	101.0	5.0	6578	10	207
17MHRC026	103.0	108.0	5.0	1394	16	104
17MHRC026	137.0	138.0	1.0	1355	44	67
17MHRC027	35.0	36.0	1.0	874	13	133
17MHRC027	55.0	58.0	3.0	19750	7	205
17MHRC027	91.0	99.0	8.0	5330	28	238
17MHRC028	27.0	28.0	1.0	12500	82	241
17MHRC028	37.0	50.0	13.0	3450	15	133
17MHRC028	70.0	74.0	4.0	1007	60	559
17MHRCDDH021	162.5	171.5	9.0	530	744	1391
17MHRCDDH021	174.5	188.6	14.1	2904	1673	3421
17MHRC DDH022	143.0	146.0	3.0	143	698	966
17MHRC DDH022	153.0	159.0	6.0	479	852	904
17MHRC DDH023	67.0	68.0	1.0	8	70	1140
17MHRCDDH023	84.0	86.0	2.0	87	440	1260
17MHRCDDH023	113.0	116.0	3.0	16	3448	2733
17MHRCDDH023	134.0	135.0	1.0	40	294	683
17MHRCDDH023	177.1	178.1	1.0	853	66	627
17MHRCDDH023	209.6	214.8	5.2	1248	8101	17044
17MHRCDDH025	253.5	259.0	5.5	1399	2202	4629
17MHRCDDH029	0.0	1.0	1.0	612	19	2420
17MHRCDDH029	135.0	144.0	9.0	6138	9694	26651
17MHRCDDH029	151.0	152.0	1.0	1135	122	714
17MHRCDDH029	164.0	165.0	1.0	344	1890	475
17MHRCDDH029	178.0		10.5	10996		41539
		188.5			6524 181	
17MHRCDDH029	205.5	207.5	2.0	588	181	2300
17MHRCDDH029 17MHRCDDH029	219.0 280.0	219.7 285.0	0.7	1600 1400	1960 4100	11600 2700

Table 3Assay results from holes 17MHRC016 and 17 MHRC017. Significant intervals
and anomalous elements shown. Cu/Pb/Zn values above 0.1% highlighted.

Hole_ID	FROM	TO	SAM_T	Cu_ppm	Pb_ppm	Zn_ppm
17MHRC016	71.0	72.0	RC	103	346	950
17MHRC016	72.0	73.0	RC	198	536	2910
17MHRC016	73.0	74.0	RC	467	508	1165
17MHRC016	74.0	75.0	RC	89	325	741
17MHRC016	75.0	76.0	RC	17	206	207
17MHRC016	76.0	77.0	RC	25	238	145
17MHRC016	77.0	78.0	RC	457	921	4240
17MHRC016	78.0	79.0	RC	45	735	1305
17MHRC016	79.0	80.0	RC	43	638	783
17MHRC016	80.0	81.0	RC	656	1075	1355
17MHRC016	81.0	82.0	RC	71	522	324
17MHRC016	82.0	83.0	RC	93	231	2280
17MHRC016	83.0	84.0	RC	188	669	1690
17MHRC016	84.0	85.0	RC	58	336	359
17MHRC016	85.0	86.0	RC	331	1155	1040
17MHRC016	87.0	88.0	RC	228	173	1365
17MHRC016	88.0	89.0	RC	4240	1935	23600
17MHRC016	89.0	90.0	RC	1290	1725	9610
17MHRC016	90.0	91.0	RC	23	1725	163
17MHRC016	91.0	92.0	RC	28	96	165
17MHRC016	92.0	93.0	RC	11	123	100
17MHRC016	93.0	94.0	RC	206	554	1585
17MHRC016	99.0	100.0	RC	141	571	1570
17MHRC016	100.0	100.0	RC	100	1080	1775
17MHRC016	101.0	101.0	RC	64	507	4870
17MHRC016	101.0	102.0	RC	1270	1135	5390
17MHRC016	107.0	109.0	RC	88	89	523
17MHRC016	109.0	110.0	RC	151	354	1610
17MHRC016	110.0	111.0	RC	32	114	371
17MHRC016	111.0	112.0	RC	226	74	259
17MHRC016	112.0	113.0	RC	6050	56	566
17MHRC016	113.0	114.0	RC	172	41	225
17MHRC016	114.0	115.0	RC	459	139	1215
17MHRC016	115.0	116.0	RC	3150	51	453
17MHRC016	116.0	117.0	RC	1790	32	230
17MHRC016	121.0	122.0	RC	673	892	3740
17MHRC016	122.0	123.0	RC	30	117	94
17MHRC016	123.0	124.0	RC	242	683	136
17MHRC017	35.0	36.0	RC	493	603	168
17MHRC017	46.0	47.0	RC	313	1890	2130
17MHRC017	47.0	48.0	RC	2750	11600	20600
17MHRC017	48.0	49.0	RC	101	1825	840
17MHRC017	49.0	50.0	RC	45	996	887
17MHRC017	63.0	64.0	RC	1590	108	545
17MHRC017	64.0	65.0	RC	2020	43	556
17MHRC017	65.0	66.0	RC	463	154	461
17MHRC017	66.0	67.0	RC	3280	901	1200
17MHRC017	67.0	68.0	RC	10100	1765	3370
17MHRC017 17MHRC017	68.0		RC	34900	2530	6260
17MHRC017 17MHRC017	69.0	69.0 70.0	RC	16250	1275	4800

Hole_ID	FROM	TO	SAM_T	Cu_ppm	Pb_ppm	Zn_ppm
	70.0	71.0	RC	16850	1765	4810
17MHRC017	71.0	72.0	RC	12150	1425	2870
17MHRC017	72.0	73.0	RC	22800	1895	4630
17MHRC017	73.0	74.0	RC	10550	1565	3270
17MHRC017	74.0	75.0	RC	533	271	898
17MHRC017	75.0	76.0	RC	325	226	142
17MHRC017	76.0	77.0	RC	135	83	103
17MHRC017	77.0	78.0	RC	106	129	130
17MHRC017	78.0	79.0	RC	203	166	113
17MHRC017	79.0	80.0	RC	292	264	3820
17MHRC017	100.0	101.0	RC	509	172	987
17MHRC018	126.0	127.0	RC	1165	36	201
17MHRC018	127.0	128.0	RC	15100	78	654
17MHRC018	128.0	129.0	RC	16050	97	1140
17MHRC018	129.0	130.0	RC	13650	287	1230
17MHRC018	129.0	131.0	RC	3730	157	437
17MHRC018	130.0	131.0	RC	1600	89	198
17MHRC018	25.0	26.0	RC	254	20	778
17MHRC019	66.0	67.0	RC	1160	111	289
17MHRC020	84.0	85.0	RC	1535	6	75
17MHRC020	98.0	99.0	RC	926	6	89
17MHRC020	99.0	100.0	RC	2940	10	158
17MHRC020	108.0	100.0	RC	2140	27	268
17MHRC020	108.0	110.0	RC	6700	27	998
17MHRC020	1109.0	111.0	RC	1725	46	306
17MHRC020	109.0	111.0	RC	1125	1050	1540
17MHRC024	1109.0	111.0	RC	2250	2110	2860
17MHRC024	110.0	111.0	RC	841	1850	2490
17MHRC024	111.0	112.0	RC	1420	539	610
17MHRC024	112.0	113.0	RC	904	5030	6670
17MHRC024	113.0	114.0	RC	68	144	236
17MHRC024	114.0	115.0	RC	311	78	4940
		117.0				
17MHRC024 17MHRC024	116.0 117.0	117.0	RC RC	730 18	4950 110	6950 169
17MHRC024	117.0	118.0	RC	172	63	159
17MHRC024	118.0	120.0	RC	172	95	241
17MHRC024			RC	637	2230	
	120.0	121.0				1370
17MHRC024 17MHRC024	121.0	122.0	RC RC	510 123	2130 497	15600
	122.0	123.0				2160
17MHRC024 17MHRC024	123.0 124.0	124.0 125.0	RC RC	53 96	226 330	1380 2180
17MHRC024	127.0	128.0	RC	1880	3440	12200
17MHRC024	128.0	129.0 6.0	RC	162	279	1250
17MHRC026	5.0		RC	944	109	1610
17MHRC026	23.0	24.0	RC	1240	46	116
17MHRC026	45.0	46.0	RC	333	817	1310
17MHRC026	50.0	51.0	RC	1440	110	216
17MHRC026	55.0	56.0	RC	2370	20	77
17MHRC026	96.0	97.0	RC	11900	7	304
17MHRC026	97.0	98.0	RC	15800	8	383

Hole_ID	FROM	TO	SAM_T	Cu_ppm	Pb_ppm	Zn_ppm
17MHRC026	98.0	99.0	RC	2290	15	122
17MHRC026	99.0	100.0	RC	1470	10	115
17MHRC026	100.0	101.0	RC	1430	12	110
17MHRC026	103.0	104.0	RC	2010	11	119
17MHRC026	104.0	105.0	RC	2880	9	145
17MHRC026	105.0	106.0	RC	343	14	66
17MHRC026	106.0	107.0	RC	559	17	78
17MHRC026	107.0	108.0	RC	1180	28	110
17MHRC026	137.0	138.0	RC	1355	44	67
17MHRC027	35.0	36.0	RC	874	13	133
17MHRC027	55.0	56.0	RC	12400	10	212
17MHRC027	56.0	57.0	RC	40500	7	308
17MHRC027	57.0	58.0	RC	6350	4	95
17MHRC027	91.0	92.0	RC	2080	12	67
17MHRC027	92.0	93.0	RC	5160	28	153
17MHRC027	92.0	93.0	RC	8670	32	249
17MHRC027	93.0	94.0 95.0	RC	11150	35	546
17MHRC027	94.0 95.0	96.0	RC	5640	43	288
17MHRC027	95.0	96.0	RC	5720	43 26	311
	98.0				20	
17MHRC027		98.0	RC	2970		185
17MHRC027	98.0	99.0	RC	1250	16	105
17MHRC028	27.0	28.0	RC	12500	82	241
17MHRC028	37.0	38.0	RC	1230	12	134
17MHRC028	38.0	39.0	RC	12950	15	265
17MHRC028	39.0	40.0	RC	548	8	76
17MHRC028	40.0	41.0	RC	58	41	87
17MHRC028	41.0	42.0	RC	33	32	62
17MHRC028	42.0	43.0	RC	76	11	75
17MHRC028	43.0	44.0	RC	1290	12	89
17MHRC028	44.0	45.0	RC	3850	13	138
17MHRC028	45.0	46.0	RC	5040	16	207
17MHRC028	46.0	47.0	RC	9120	7	247
17MHRC028	47.0	48.0	RC	3190	9	118
17MHRC028	48.0	49.0	RC	4020	8	118
17MHRC028	49.0	50.0	RC	3450	7	110
17MHRC028	70.0	71.0	RC	866	51	261
17MHRC028	71.0	72.0	RC	1780	45	335
17MHRC028	72.0	73.0	RC	152	90	81
17MHRC028	73.0	74.0	RC	1230	54	1560
17MHRCDDH021	162.5	163.0	DDH	102	1630	667
17MHRCDDH021	163.0	163.5	DDH	650	2730	1940
17MHRCDDH021	163.5	163.9	DDH	26	367	132
17MHRCDDH021	163.9	164.6	DDH	1985	1060	8270
17MHRCDDH021	164.6	165.1	DDH	238	317	1960
17MHRCDDH021	165.1	166.0	DDH	194	108	249
17MHRCDDH021	166.0	167.0	DDH	61	67	224
17MHRCDDH021	167.0	168.0	DDH	254	108	2080
17MHRCDDH021	168.0	168.5	DDH	1450	150	2010
17MHRCDDH021	168.5	169.5	DDH	152	287	179
17MHRCDDH021	169.5	170.0	DDH	2580	67	260

Hole_ID	FROM	TO	SAM_T	Cu_ppm	Pb_ppm	Zn_ppm
17MHRCDDH021	170.0	170.5	DDH	142	3780	501
17MHRCDDH021	170.5	171.5	DDH	150	913	305
17MHRCDDH021	174.5	175.0	DDH	1905	1900	6440
17MHRCDDH021	175.0	175.5	DDH	773	107	534
17MHRCDDH021	175.5	176.5	DDH	449	497	980
17MHRCDDH021	176.5	177.0	DDH	2410	1370	845
17MHRCDDH021	177.0	177.7	DDH	566	1160	1170
17MHRCDDH021	177.7	178.4	DDH	4270	2200	6180
17MHRCDDH021	178.4	179.0	DDH	16600	1410	4020
17MHRCDDH021	179.0	179.8	DDH	1970	101	878
17MHRCDDH021	179.8	180.8	DDH	8300	924	8380
17MHRCDDH021	180.8	181.8	DDH	3750	914	13300
17MHRCDDH021	181.8	182.8	DDH	139	629	489
17MHRCDDH021	182.8	183.4	DDH	2660	243	639
17MHRCDDH021	183.4	184.0	DDH	848	47	365
17MHRCDDH021	184.0	184.6	DDH	3200	4890	2860
17MHRCDDH021	184.6	185.2	DDH	8840	760	3020
17MHRCDDH021	185.2	186.1	DDH	519	617	1030
17MHRCDDH021	186.1	187.1	DDH	139	1040	1010
17MHRCDDH021	187.1	187.6	DDH	1475	20100	13300
17MHRCDDH021	187.6	188.6	DDH	920	489	321
17MHRCDDH022	143.0	144.0	RC	249	458	1785
17MHRCDDH022	144.0	145.0	RC	115	676	740
17MHRCDDH022	145.0	146.0	RC	65	959	372
17MHRCDDH022	153.0	154.0	RC	1650	3940	3370
17MHRCDDH022	154.0	155.0	RC	20	271	180
17MHRCDDH022	155.0	156.0	RC	6	109	124
17MHRCDDH022	156.0	157.0	RC	6	94	127
17MHRCDDH022	157.0	158.0	RC	736	287	638
17MHRCDDH022	158.0	159.0	RC	455	411	984
17MHRCDDH023	67.0	68.0	RC	8	70	1140
17MHRCDDH023	84.0	85.0	RC	128	524	1780
17MHRCDDH023	85.0	86.0	RC	45	356	739
17MHRCDDH023	113.0	114.0	RC	7	622	1020
17MHRCDDH023	114.0	115.0	RC	34	9110	6230
17MHRCDDH023	115.0	116.0	RC	8	612	950
17MHRCDDH023	134.0	135.0	RC	40	294	683
17MHRCDDH023	177.1	178.1	DDH	853	66	627
17MHRCDDH023	209.6	210.1	DDH	7910	22400	57800
17MHRCDDH023	210.1	210.1	DDH	64	1070	471
17MHRCDDH023	210.1	210.0	DDH	960	993	20900
17MHRCDDH023	210.0	211.2	DDH	1115	39700	69300
17MHRCDDH023	211.2	211.0	DDH	343	457	432
17MHRCDDH023	211.0	212.0	DDH	747	26000	31000
17MHRCDDH023	212.0	213.8	DDH	527	2180	5590
17MHRCDDH023	213.8	213.8	DDH	134	489	662
17MHRCDDH025	253.5	254.0	DDH	5610	1950	19350
17MHRCDDH025	253.5	254.5	DDH	4630	1230	5990
17MHRCDDH025	254.5	254.5	DDH	2980	14150	19450
17MHRCDDH025	254.5	255.5	DDH	492	3730	2000
	255.0	200.0	חטט	492	5750	2000

Hole_ID	FROM	ТО	SAM_T	Cu_ppm	Pb_ppm	Zn_ppm
17MHRCDDH025	255.5	256.0	DDH	545	1410	2550
17MHRCDDH025	256.0	256.5	DDH	1015	184	90
17MHRCDDH025	256.5	257.0	DDH	21	150	66
17MHRCDDH025	257.0	258.0	DDH	13	172	120
17MHRCDDH025	258.0	259.0	DDH	36	537	594
17MHRCDDH029	0.0	1.0	RC	612	19	2420
17MHRCDDH029	135.0	136.0	RC	10950	29300	55500
17MHRCDDH029	136.0	137.0	RC	14200	21200	44100
17MHRCDDH029	137.0	138.0	RC	8510	11950	45400
17MHRCDDH029	138.0	139.0	RC	7200	5380	25300
17MHRCDDH029	139.0	140.0	RC	8280	15950	20500
17MHRCDDH029	140.0	141.0	RC	1255	1010	11050
17MHRCDDH029	141.0	142.0	RC	4450	1800	36200
17MHRCDDH029	142.0	143.0	RC	120	164	770
17MHRCDDH029	143.0	144.0	RC	279	495	1040
17MHRCDDH029	151.0	152.0	RC	1135	122	714
17MHRCDDH029	164.0	165.0	RC	344	1890	475
17MHRCDDH029	178.0	179.0	RC	5770	8590	79900
17MHRCDDH029	179.0	180.0	RC	10700	8570	73700
17MHRCDDH029	180.0	181.0	RC	33000	34300	127500
17MHRCDDH029	181.0	182.0	RC	13950	7390	35800
17MHRCDDH029	182.0	183.0	RC	10350	1990	24800
17MHRCDDH029	183.0	184.0	RC	4720	1540	15400
17MHRCDDH029	184.0	185.0	RC	21100	715	37200
17MHRCDDH029	185.0	186.0	RC	9850	2770	31100
17MHRCDDH029	186.0	187.0	RC	3020	1500	5580
17MHRCDDH029	187.0	188.0	RC	2380	956	3450
17MHRCDDH029	188.0	188.5	RC	1235	368	3460

Appendix One - JORC Table One - Sampling Techniques and Data

Mount Hardy Drilling – Reverse Circulation Drilling

Criteria	JORC Code explanation	Commentary
Sampling techniques Drilling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. Drill type (eg core, reverse circulation, open-hole hammer,	Reverse Circulation (RC) drill samples were taken from the rotary splitter mounted on the rig cyclone.All diamond core half cut and sampled. All samples from 2017 drilling have been submitted to ALS Laboratories for industry standard preparation (whole sample crushed to >85% <75um) and analysis by ME-ICP61 (multielement ICP) and Au-ICP22 (Fire Assay Gold). Reverse Circulation (RC) and Diamond Drilling
	rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Average of >90% recovery in all intervals. No issues of fines loss were observed. No issues relating to preferential loss/gain of grade material have been noted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	RC chips and diamond core was geologically logged for lithology, mineralogy, colour, weathering, alteration, structure and mineralisation. All holes were logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	All RC holes were sampled from the rotating splitter under the drill cyclone, taking a 2-4kg split from the bulk 15-25kg 1m interval. A half cut core sample was submitted from diamond drilling. The sample preparation for all samples follows industry best practice, with oven drying of samples prior to coarse crushing and pulverization (to >85% passing 75 microns) of the entire sample Field duplicates have been taken every 50 th sample. Further sampling (second half, lab umpire assay) will be conducted if it is considered necessary. The sample size (2-5 kg) is considered to be adequate for the material and grainsize being sampled and the style of mineralisation being drilled
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	All samples reported here were analysed at ALS in Perth by technique ME-ICP61 (considered a "total" digest result) and Au- ICP22 (Fire Assay for Gold). Base metal standards were inserted into the laboratory batch, results were acceptable.

Verification of sampling and assayingThe verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.Sampling was conducted by the and verified by the Exploration prior to cutting/dispatch. All data was entered into stand spreadsheets on field laptops into the company database. No adjustments have been ma primary assay data	on Manager on site
	·
Locations of data points Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. All drilling collars were located standard GPS unit with accurate the sta	racy of ca. 5m for ount Hardy project
Data spacing and distributionData spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity 	e and position. plied to the pry and pacings are
Orientation of data in relation to geological structureWhether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.Drilling intersections at Mount relationship to the mineralisati 	tion orientation. All the best possible tersection, cts only have a ion is not well ections are at to the plane of the
Sample security The measures taken to ensure sample security. All core and samples were un supervision at all times prior to ALS laboratories in Alice Spring	nder company to delivering to
	en conducted at

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Mount Hardy prospects are located on tenements EL 27892, EL 28694 an EL 29219 held by Todd River Metals Pty Ltd, which is wholly-owned by Todd River Resources Limited. All tenements are in good standing with no know impediments
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	All significant previous work at Mount Hardy (2012-2016) was conducted by TNG Limited, and has been reported to the ASX in several ASX Releases (Mentioned in the text). Work since April 2017 by Todd River (see TRT ASX releases).
Geology	Deposit type, geological setting and style of mineralisation.	Exploration at Mount Hardy conducted by TNG Ltd over the last few years has aimed to identify structurally controlled base metal mineralisation, similar to that already outlined at Mount Hardy and elsewhere in the Arunta at Jervois or Barrow Creek. Both areas are underlain by the Paleoproterozoic Lander Rock Beds schists and gneisses and have been intruded by Mesoproterozoic granites and are cut be major shear zones.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Drilling information in Table 1

Data aggregation methods	 Dip and azimuth of the hole Down hole length and interception depth Hole length In reporting Exploration Results, weighting averaging maximum and/or minimum grade truncations (eg cutt and cut-off grades are usually Material and should be	ing of high grades) No maximum or minimum cuts applied.
	Where aggregate intercepts incorporate short lengths and longer lengths of low grade results, the procedur aggregation should be stated and some typical exam aggregations should be shown in detail. The assumptions used for any reporting of metal equ be clearly stated.	s of high grade results e used for such ples of such
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Orientation not well defined. Expected true thickness ca. 60-80% or drill/intercept interval. For the intersections reported here interpretation of the orientation of the mineralisation and therefore the true thickness of intervals will await the down-hole geophysical interpretation work.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Coordinates indicated in Table 1, Plans and sections as Figure 2-6.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	See Table 3 for comprehensive interval assay values, as summarised in Table 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No substantial new information is available other than that reported above.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Downhole geophysics (DHEM) has now commenced, and a final assessment will be made following the geophysical interpretation.