

# THICK ZONE OF BASE METAL SULPHIDES IN KEY STEP-OUT HOLE EXPANDS MT HARDY DISCOVERY

12m massive brecciated sulphide interval 120m down-plunge from recent high-grade base metal intercept significantly increases potential of emerging discovery

### Highlights:

- <u>Thick zone of high-grade base metal mineralisation in a key step-out hole at the EM1</u> <u>geophysical target confirms the continuity of mineralisation below the discovery hole</u> 18MHRCDDH0031A, which returned:
  - 25.15m @ 2.4% Cu, 4.0% Zn, 3.1% Pb from 184.0m down-hole, including 9.15m @ 4.5% Cu, 7.6% Pb and 8.8% Zn from 200.0m down-hole
- The hole, 13MHRCDDH0021A, which was extended from a previous 2013 drilling campaign, intersected several sulphide zones of varying thicknesses from 333m to 371m down-hole, including 12.8m of brecciated massive sulphide from 358-371.3 down-hole.
- The sulphides observed in the hole are chalcopyrite, sphalerite and galena with pXRF readings presented below.
- The lower intersection in hole 13MHRCDDH0021A is the deepest mineralised interval drilled at Mt Hardy to date, some 120m below hole 18MHRCDDH0031A.
- Drilling is continuing to determine the geometry and extent of the mineralised zone.
- Down-hole geophysical surveying and interpretation of completed holes is continuing, with results to be immediately utilised in targeting drilling down-dip of this outstanding intercept.

Todd River Resources Limited (ASX: TRT; "Todd River" or "the Company") is pleased to advise that ongoing diamond drilling at its 100%-owned **Mt Hardy Copper-Zinc Project** in the Northern Territory (Figure 1) has intersected additional massive brecciated sulphides **120m down-plunge** (Figure 2) from the discovery intercept, significantly expanding the size and potential of the emerging discovery.

Hole 13MHDDH0021A, which was collared 30m north of the discovery hole 18MHRCDDH031A, was completed recently as part of the ongoing diamond drilling program at Mt Hardy. The hole intersected several intervals of stringer and brecciated massive sulphide **approximately 120m down-plunge** of the intercept in 18MHRCDDH031A (25.15m @ 2.4% Cu, 4.0% Zn, 3.1% Pb from 184.0m down-hole, *including* 9.15m @ 4.5% Cu, 7.6% Pb and 8.8% Zn from 200.0m down-hole – see ASX Announcement, 20 June, 2108).

The main brecciated massive sulphide intersection, from **359m to 371m**, comprises sphalerite, galena and chalcopyrite with only very minor pyrrhotite and silica.



Portable XRF scanning of the core indicates the presence of significant base metal mineralisation in the intersection (see below), and samples have now been submitted for laboratory analysis. Drilling is continuing at Mount Hardy and, as analytical results are received, the Company will update the market accordingly.

Importantly, the deeper mineralisation encountered in 18MHDDH0021A is located well below the conductor plate targeted by the hole (Figure 3). The modelled conductor plate coincides with a 3m zone of stringer base metal sulphides from 278.5-281.5m some 60m above the deeper mineralisation.

This is a significant development in terms of the geological context within which the down-hole geophysics has been modelled. It appears that the current modelled plates have picked out the strong conductors generated by thinner stringer zones of sulphide, rather than the thicker deeper brecciated massive sulphide mineralisation. It is possible that this is caused by the dominance of the zinc sulphide – sphalerite – in the deeper sulphides or, less likely, the brecciation breaking up the connectivity of the sulphides.

Figure 4a below shows the narrow stringer sulphide and Figure 4b shows the sphalerite-dominant brecciated massive sulphides from hole 13MHRCDD0021A to illustrate this.

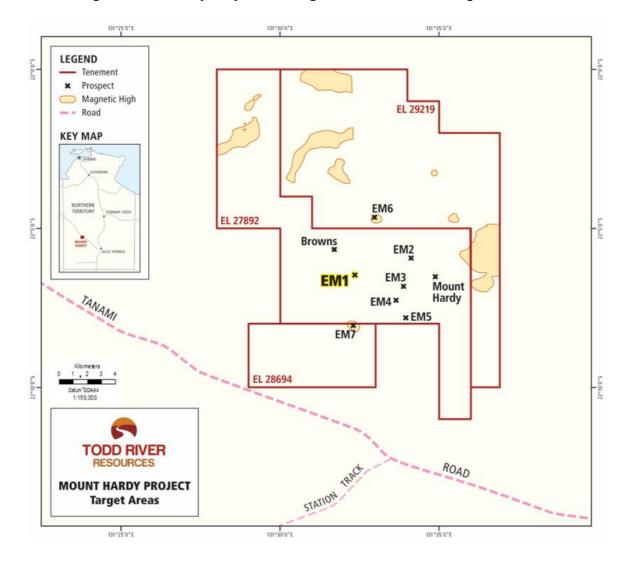



Figure 1 – Mt Hardy Project showing the location of drill target area EM1.

#### Portable XRF readings for 13MHRCDDH021A

The following intervals are reported based on averaging several (minimum of five readings) pXRF readings taken systematically at 0.5m intervals through the mineralised zones. Analyses were taken on an Olympus Delta Pro unit on GEOCHEM mode with a 60 second read time.

Standards and Blank samples were used to calibrate the results. Details of the sampling are provided in Appendix A and all pXRF results used in the composite intervals below are included in Appendix B.

| FROM   | то     | INTERVAL                                     | Cu%                     | Pb%                 | Zn%                            | Combined BM%                     |
|--------|--------|----------------------------------------------|-------------------------|---------------------|--------------------------------|----------------------------------|
| 278.90 | 281.75 | <b>2.85m</b><br>Average of six               | <b>1.7%</b><br>k readir | <b>0.6%</b><br>ngs  | 6.9%                           | 9.2% BM                          |
| 341.25 | 343.40 | <b>2.15m</b><br>Average of fiv               |                         | <b>2.6%</b><br>ings | 14%                            | 18% BM                           |
| 358.55 | 371.20 | <b>12.65m</b><br>Average of 30<br>Including: | ,.                      | •                   | <b>10%</b><br>dings for zinc g | <b>13% BM</b><br>greater than 5% |

All intervals are straight-length averages of systematic readings above a 1% combined base metal cut-off grade. All the three intervals listed above average from 9-18 percent combined base metals content and, if a cut-off grade of 5% was used, the interval and grades would be the same.

All three zones are dominated by zinc (hosted in the mineral sphalerite) with values (see Appendix B) of up to 33% Zn.

All analyses by Olympus portable XRF, Delta Professional. 60 second read time (30/30 sec). Values are point data and not representative of the full intervals quoted in the report text. Representative values for base metals will await the half core sampled laboratory results.

The interval is illustrated in long section in Figure 2. The two intersections (280m and 360m) are plotted on this Figure, and extend from 80m to 100m vertically below the intersections in holes 010/031A. This equates to a down-plunge extent of 120m, significantly extending the known high-grade mineralisation at EM1.



| HOLE_ID       | PROSPECT | EASTING<br>(GDA94Z52) | NORTHING<br>(GDA94Z52) | AHD<br>(m ASL) | DEPTH<br>(m) | DIP | AZIMUTH<br>(TRUE) |
|---------------|----------|-----------------------|------------------------|----------------|--------------|-----|-------------------|
| 18MHRCDDH030  | EM1      | 761940                | 7552963                | 649            | 245.9        | -47 | 105               |
| 18MHRCDDH031A | EM1      | 761930                | 7552912                | 645            | 261.4        | -47 | 98                |
| 18MHRCDDH032  | EM1      | 761925                | 7552998                | 638            | 315.2        | -62 | 90                |
| 18MHRCDDH033  | EM2      | 764996                | 7554079                | 632            | 420.1        | -65 | 115               |
| 18MHRCDDH034  | EM1      | 761922                | 7552913                | 645            | 252.6        | -58 | 90                |
| 18MHDDH035    | EM1      | 761944                | 7552867                | 640            | 228.3        | -48 | 80                |
| 18MHDDH037    | EM1      | 761956                | 7552837                | 640            | 188.8        | -45 | 78                |
| 18MHDDH038    | EM1      | 761922                | 7552977                | 638            | 210.0        | -74 | 64                |
| 13MHRCDDH021A | EM1      | 761924                | 7552975                | 638            | 405.2        | -73 | 91                |

| Table 1 – Collar information of the completed holes at Mt Hardy |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

Figure 2 – Oblique Long Projection of part of the EM1 area, covering the mineralisation in holes 010 and 031A and the new down plunge intersections in 021A.

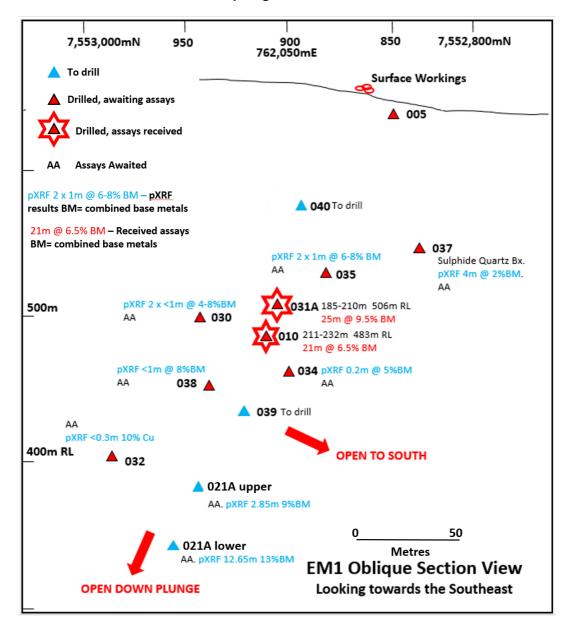





Figure 3 – 3D screen shot showing part of the EM1 area, highlighting the location of the targeted EM plate and mineralisation well below the plate location. EM plates are shown in blue. Grid blocks are 50m laterally x 100m vertically.

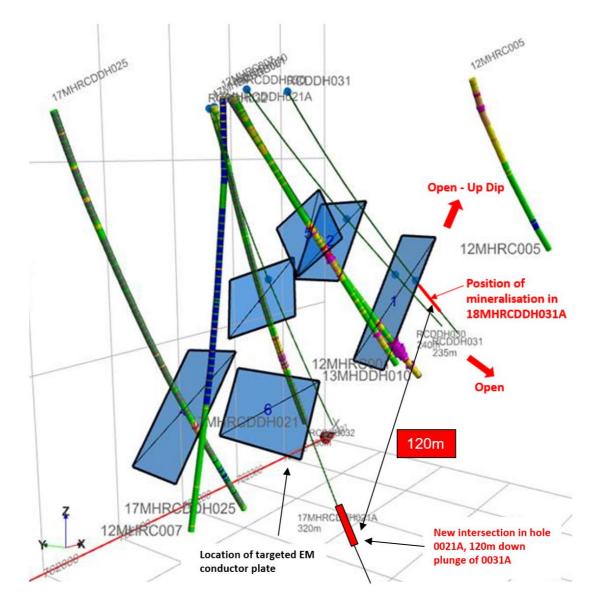





Figure 4a – Stringer sulphides from the upper (more conductive) mineralised zone in 13MHRCDD0021A.

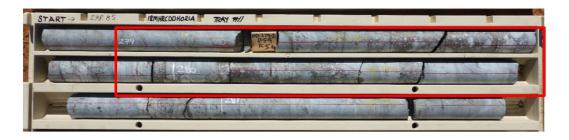



Figure 4b – Sphalerite-dominated massive breccia sulphides, which form the lower mineralised zone in 13MHRCDD0021A. Core photography from 358.5 to 372.4m.





#### **Down-hole EM Progress**

Surveying of the holes drilled so far this year has now been completed. Interpretation of these new results is in progress and will be reported when complete.

Down-hole EM surveying of the new holes, aided by the Company's enhanced understanding of this geological context, will enable the strong conductors generated by the thinner stringer sulphide zones to be filtered out of the dataset and the remaining data to be reviewed to determine other potential zones of low-conductance but thick zones of base metal mineralisation.

Preliminary DHEM data from hole 13MHRCDDH021A is shown in Figure 5. Strong conductors can be seen in the three component channel data from the upper (ca. 280m) and lower (ca. 360m) mineralisation zones.

#### **Management Comment**

Commenting on the latest exploration progress at Mt Hardy, Todd River CEO Will Dix said:

"This is probably the most exciting hole we have completed to date, with multiple zones of strong base metal mineralisation now encountered some 120m down-plunge of the discovery intercept. This proves the continuity of mineralisation at depth and demonstrates that we have a significant emerging discovery on our hands at Mt Hardy.

"We also believe we have made a considerable breakthrough in terms of our understanding of the geological context of this discovery. For some time now we have been trying to reconcile the base metals we are seeing in the holes with existing down-hole and airborne geophysics, but this has proven to be extremely challenging.

"It now appears that we may be modelling the upper, thinner zones of mineralisation rather than the thicker base metal-rich sulphides. This opens up the possibility that some of the holes we drilled earlier in this field season may not have been drilled deep enough to properly test the target zones. We are currently reviewing all of these holes in consultation with our geophysicists and will look at a number of extensions to previous holes.

"With data from recently completed down-hole EM surveys expected over the coming days, we expect to be able to site further follow-up holes to maximum effect to further evaluate the full scale and potential of this exciting high-grade base metal discovery."

#### Will Dix, CEO – Todd River Resources

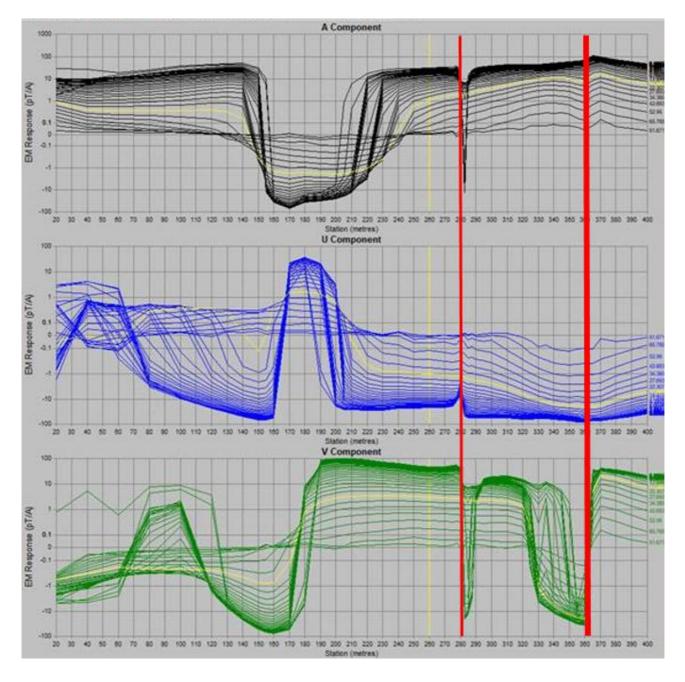
| Enquiries:<br>Will Dix, CEO     | + 61 (0) 8 9327 0950 |
|---------------------------------|----------------------|
| Nicholas Read<br>Read Corporate | + 61 (0) 8 9388 1474 |



## **Competent Person Statements**

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation compiled by Exploration Manager Mr Kim Grey B.Sc. and M. Econ. Geol. Mr Grey is a member of the Australian Institute of Geoscientists, and an employee of Todd River Resources Limited. Mr Grey has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Grey consents to the inclusion in the report of the matters based on his information in the form and context in which it appear.

## **About Todd River Resources**


Todd River Resources (ASX: TRT) is an Australian-based resources company that holds a large, highly prospective zinc and base metals exploration portfolio in the Northern Territory. The Company, which was formerly a subsidiary of ASX-listed strategic metals company TNG Ltd (ASX: TNG), was spun-out of TNG in 2016 to advance and develop TNG's significant portfolio of non-core base metal assets.

With a successful recent capital raise, strong management team and tight capital structure, Todd River is well placed to pursue exploration activities across its exploration portfolio, which are aimed at establishing the Company as a leading force in Australian zinc exploration and development.

Todd River's extensive base metal portfolio includes the large Manbarrum Zinc Project, the Mount Hardy Copper-Zinc Project, the Rover Copper-Gold Project and the McArthur Copper-Zinc Project, as well as a number of other exploration projects covering base metals and other commodities.



Figure 5 – Hole 13MHRCDDH021A DHEM data. Three component readings from surface (LHS) to EOH. The depth of the upper (stronger signal) and lower (weaker, more subtle signal) mineralised zones are marked in red.





# Appendix A JORC Table One – Section One. Sampling Techniques and Data Mount Hardy Drilling – Reverse Circulation and Diamond Drilling – pXRF Results

| Criteria                                          | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques                               | Nature and quality of sampling (eg cut channels, random<br>chips, or specific specialised industry standard<br>measurement tools appropriate to the minerals under<br>investigation, such as down hole gamma sondes, or<br>handheld XRF instruments, etc). These examples should<br>not be taken as limiting the broad meaning of sampling.<br>Include reference to measures taken to ensure sample<br>representivity and the appropriate calibration of any<br>measurement tools or systems used.<br>Aspects of the determination of mineralisation that are<br>Material to the Public Report.                                                                                     | Reverse Circulation (RC) drill samples were<br>taken from the rotary splitter mounted on the<br>rig cyclone.<br>Diamond drill samples were half core cut and<br>sampled on 1m intervals.<br>All samples from 2018 drilling have been<br>submitted to Genalysis/Intertek Laboratories<br>for industry standard preparation (whole<br>sample crushed to >85% <75um) and analysis<br>by both ICP for base metals and Fire Assay for<br>precious metals.<br>Portable XRF results eported here are taken<br>from whole core analyses at 0.5m intervals.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Drilling techniques                               | Drill type (eg core, reverse circulation, open-hole hammer,<br>rotary air blast, auger, Bangka, sonic, etc) and details (eg<br>core diameter, triple or standard tube, depth of diamond<br>tails, face-sampling bit or other type, whether core is<br>oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                     | Reverse Circulation (RC) drilling of pre-collars<br>with NQ sized diamond drill tails.<br>Most intervals has been oriented, except where<br>broken ground in encountered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Drill sample recovery                             | Method of recording and assessing core and chip sample<br>recoveries and results assessed.<br>Measures taken to maximise sample recovery and ensure<br>representative nature of the samples.<br>Whether a relationship exists between sample recovery and<br>grade and whether sample bias may have occurred due to<br>preferential loss/gain of fine/coarse material.                                                                                                                                                                                                                                                                                                              | Average of >90% recovery in all intervals.<br>No issues of fines loss were observed. No<br>issues relating to preferential loss/gain of grade<br>material have been noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Logging                                           | Whether core and chip samples have been geologically and<br>geotechnically logged to a level of detail to support<br>appropriate Mineral Resource estimation, mining studies<br>and metallurgical studies.<br>Whether logging is qualitative or quantitative in nature. Core<br>(or costean, channel, etc) photography.<br>The total length and percentage of the relevant<br>intersections logged.                                                                                                                                                                                                                                                                                 | RC chips and core was geologically logged for<br>lithology, mineralogy, colour, weathering,<br>alteration, structure and mineralisation.<br>All holes were logged in full.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sub-sampling techniques<br>and sample preparation | If core, whether cut or sawn and whether quarter, half or all<br>core taken.<br>If non-core, whether riffled, tube sampled, rotary split, etc<br>and whether sampled wet or dry.<br>For all sample types, the nature, quality and<br>appropriateness of the sample preparation technique.<br>Quality control procedures adopted for all sub-sampling<br>stages to maximise representivity of samples.<br>Measures taken to ensure that the sampling is<br>representative of the in situ material collected, including for<br>instance results for field duplicate/second-half sampling.<br>Whether sample sizes are appropriate to the grain size of<br>the material being sampled. | Portable XRF analyses reported here are taken<br>with CRM Standard samples and Blanks<br>samples inserted into the sequence at 1 in 25<br>and 1 in 50 samples respectively.<br>Results reported here are averages of multiple<br>pXRF analyses to give a reasonable<br>representative result.<br>All RC holes were sampled from the rotating<br>splitter under the drill cyclone, taking a 2-4kg<br>split from the bulk 15-25kg 1m interval.<br>All sampled core was sawn and half core<br>submitted.<br>The sample preparation for all samples follows<br>industry best practice, with oven drying of<br>samples prior to coarse crushing and<br>pulverization (to >85% passing 75 microns) of<br>the entire sample<br>Field duplicates have been taken every 50 <sup>th</sup><br>sample. Further sampling (second half, lab<br>umpire assay) will be conducted if it is<br>considered necessary.<br>The sample size (2-5 kg) is considered to be<br>adequate for the material and grainsize being |



|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sampled and the style of mineralisation being drilled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of assay data and laboratory tests                    | The nature, quality and appropriateness of the assaying<br>and laboratory procedures used and whether the technique<br>is considered partial or total.<br>For geophysical tools, spectrometers, handheld XRF<br>instruments, etc, the parameters used in determining the<br>analysis including instrument make and model, reading<br>times, calibrations factors applied and their derivation, etc.<br>Nature of quality control procedures adopted (eg standards,<br>blanks, duplicates, external laboratory checks) and whether<br>acceptable levels of accuracy (ie lack of bias) and precision<br>have been established. | Portable XRF results reported here are taken<br>with an Olympus Delta Pro unit (2014) with a<br>60 second read time (30 seconds beam 1 and<br>30 seconds beam 2) in GEOCHEM mode.<br>Three certified base metal standards and a<br>certified blank sample were analysed during<br>pXRF sampling, at a rate of 1 in 25 samples.<br>Standards were GBM399-7, GBM399-2, and<br>GBM908-10 – low, medium and high grade for<br>base metal respectively. Blank GLG312-2 was<br>used. pXRF results for the standards and the<br>blank were acceptable, and no calibration<br>factors have been applied.<br>All samples are to be analysed at Genalysis<br>Intertek by ICP technique, lab codes 4A/OE33<br>and FA25/OE04. The four acid digest for the<br>ICP data is considered a "total" result.<br>Base metal standards and Blanks were<br>inserted into the laboratory batch, results are<br>awaited.<br>Given the above QA/QC work the pXRF soil<br>data is considered to be a total result for the |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | base metals reported (Cu, Pb, Zn), and to have acceptable levels of accuracy and precision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Verification of sampling and assaying                         | The verification of significant intersections by either<br>independent or alternative company personnel.<br>The use of twinned holes.<br>Documentation of primary data, data entry procedures, data<br>verification, data storage (physical and electronic) protocols.<br>Discuss any adjustment to assay data.                                                                                                                                                                                                                                                                                                              | Sampling was conducted by the field geologist<br>and verified by the Exploration Manager on site<br>prior to cutting/dispatch.<br>All data was entered into standardized<br>spreadsheets on field laptops and uploaded<br>into the company database.<br>No adjustments have been made to the<br>primary assay data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Locations of data points                                      | Accuracy and quality of surveys used to locate drill holes<br>(collar and down-hole surveys), trenches, mine workings<br>and other locations used in Mineral Resource estimation.<br>Specification of the grid system used.<br>Quality and adequacy of topographic control.                                                                                                                                                                                                                                                                                                                                                  | All drilling collars were located up using a<br>standard GPS unit with accuracy of ca. 5m for<br>Easting, Northing and RL<br>All coordinate data for the Mount Hardy project<br>are in MGA_GDA94 Zone 52.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Data spacing and distribution                                 | Data spacing for reporting of Exploration Results.<br>Whether the data spacing and distribution is sufficient to<br>establish the degree of geological and grade continuity<br>appropriate for the Mineral Resource and Ore Reserve<br>estimation procedure(s) and classifications applied.<br>Whether sample compositing has been applied.                                                                                                                                                                                                                                                                                  | At this early stage of exploration hole spacings<br>vary as dictated by target size and position.<br>No compositing has been applied to the<br>exploration results.<br>Sampling was of an exploratory and<br>reconnaissance nature and spacings are<br>insufficient to establish continuity or define<br>Resources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Orientation of data in<br>relation to geological<br>structure | Whether the orientation of sampling achieves unbiased<br>sampling of possible structures and the extent to which this<br>is known, considering the deposit type.<br>If the relationship between the drilling orientation and the<br>orientation of key mineralised structures is considered to<br>have introduced a sampling bias, this should be assessed<br>and reported if material.                                                                                                                                                                                                                                      | Drilling intersections at Mount Hardy vary in the<br>relationship to the mineralisation orientation. All<br>holes were designed to give the best possible<br>(as close to perpendicular) intersection,<br>however most drilled prospects only have a<br>few holes and so the orientation is not well<br>defined. In practise the intersections are at<br>worst oriented at 45 degrees to the plane of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample security                                               | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mineralisation (when it is known).<br>All core and samples were under company<br>supervision at all times prior to delivering to<br>Genalysis/Intertek laboratories in Alice Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



| Audits or reviews | The results of any audits or reviews of sampling techniques | No sampling audits have been conducted at |
|-------------------|-------------------------------------------------------------|-------------------------------------------|
|                   | and data.                                                   | Mount Hardy                               |

# Section 2 Reporting of Exploration Results

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and                                                         | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures,                                                                                                                                                                                                                                                                                                                                                                                                                                          | The Mount Hardy prospects are located on tenements EL 2789<br>EL 29219 held by Todd River Metals Pty Ltd, which is wholly-ov                                                                                                                                                                                                                                                                                                                      |
| land tenure<br>status                                                           | partnerships, overriding royalties, native title interests, historical sites,<br>wilderness or national park and environmental settings.<br>The security of the tenure held at the time of reporting along with any<br>known impediments to obtaining a licence to operate in the area.                                                                                                                                                                                                                                                                                         | River Resources Limited.<br>All tenements are in good standing with no know impediments                                                                                                                                                                                                                                                                                                                                                           |
| Exploration<br>done by other<br>parties                                         | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Between 2012 and 2016 significant work was<br>conducted by TNG Limited, and has been<br>reported to the ASX in several ASX Releases<br>(Mentioned in the text). In 2017 Todd River<br>completed one drilling program and has reported<br>results in several ASX releases (such as                                                                                                                                                                 |
| Geology                                                                         | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exploration at Mount Hardy conducted by Todd<br>River Resources has aimed to identify structurally<br>controlled base metal mineralisation, similar to that<br>already outlined at Mount Hardy and elsewhere in<br>the Arunta at Jervois or Barrow Creek. Both areas<br>are underlain by the Paleoproterozoic Lander<br>Rock Beds schists and gneisses and have been<br>intruded by Mesoproterozoic granites and are cut<br>be major shear zones. |
| Drill hole<br>Information                                                       | A summary of all information material to the understanding of the<br>exploration results including a tabulation of the following information for<br>all Material drill holes:                                                                                                                                                                                                                                                                                                                                                                                                   | Three holes have been completed to date in 2018<br>at Mount Hardy.<br>Hole location details are shown in Table 1.<br>Interval and grade values reported here have<br>been determined from averages of multiple<br>portable XRF results and so approach a<br>representative result.<br>Laboratory analyses will be reported as available.                                                                                                          |
| Data<br>aggregation<br>methods                                                  | In reporting Exploration Results, weighting averaging techniques,<br>maximum and/or minimum grade truncations (eg cutting of high grades)<br>and cut-off grades are usually Material and should be stated.<br>Where aggregate intercepts incorporate short lengths of high grade<br>results and longer lengths of low grade results, the procedure used for<br>such aggregation should be stated and some typical examples of such<br>aggregations should be shown in detail.<br>The assumptions used for any reporting of metal equivalent values<br>should be clearly stated. | No grade results are reported here.<br>No maximum or minimum cuts applied.                                                                                                                                                                                                                                                                                                                                                                        |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | These relationships are particularly important in the reporting of Exploration Results.<br>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.<br>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').                                                                                                                                                                                               | Orientation not well defined. Expected true thickness ca. 60-80% or drill/intercept interval.                                                                                                                                                                                                                                                                                                                                                     |
| Diagrams                                                                        | Appropriate maps and sections (with scales) and tabulations of<br>intercepts should be included for any significant discovery being<br>reported These should include, but not be limited to a plan view of drill<br>hole collar locations and appropriate sectional views.                                                                                                                                                                                                                                                                                                      | Detailed diagrams and sectional views of the mineralisation will await final laboratory results ASX release in late June - July 2018.                                                                                                                                                                                                                                                                                                             |
| Balanced<br>reporting                                                           | Where comprehensive reporting of all Exploration Results is not<br>practicable, representative reporting of both low and high grades and/or<br>widths should be practiced to avoid misleading reporting of Exploration<br>Results.                                                                                                                                                                                                                                                                                                                                              | Portable XRF results are reported here. ALL data used is included in Appendix B.                                                                                                                                                                                                                                                                                                                                                                  |



| Other<br>substantive<br>exploration<br>data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | No substantial new information is available other than that reported above.                                                                                                                                                                                     |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Further work                                | The nature and scale of planned further work (eg tests for lateral<br>extensions or depth extensions or large-scale step-out drilling).<br>Diagrams clearly highlighting the areas of possible extensions, including<br>the main geological interpretations and future drilling areas, provided<br>this information is not commercially sensitive.                                    | Samples from the EM2 drilling have been<br>submitted for analysis and will be reported when<br>available.<br>Drilling will continue at EM1 at Mount Hardy over<br>the coming few weeks, with sample submission<br>and analytical results reported as available. |



| Hole ID     | DEPTH  | C mmm  | Cu nnm | 70 000 | Dh nnm | Sum BM% |
|-------------|--------|--------|--------|--------|--------|---------|
|             |        | S_ppm  | Cu_ppm | Zn_ppm | Pb_ppm | —       |
| 18MHDDH021A | 267.5  | 0      | 87     | 41     | 21     | 0.01%   |
| 18MHDDH021A | 268.5  | 0      | 0      | 73     | 33     | 0.01%   |
| 18MHDDH021A | 269.5  | 0      | 0      | 30     | 19     | 0.00%   |
| 18MHDDH021A | 270.5  | 10033  | 23281  | 1071   | 266    | 2.46%   |
| 18MHDDH021A | 271.5  | 0      | 0      | 30     | 50     | 0.01%   |
| 18MHDDH021A | 272.5  | 0      | 0      | 33     | 61     | 0.01%   |
| 18MHDDH021A | 273.5  | 0      | 0      | 72     | 45     | 0.01%   |
| 18MHDDH021A | 274.5  | 0      | 0      | 53     | 33     | 0.01%   |
| 18MHDDH021A | 275.5  | 0      | 0      | 304    | 50     | 0.04%   |
| 18MHDDH021A | 276.5  | 0      | 0      | 40     | 24     | 0.01%   |
| 18MHDDH021A | 277.5  | 0      | 0      | 43     | 50     | 0.01%   |
| 18MHDDH021A | 277.95 | 0      | 0      | 98     | 90     | 0.02%   |
| 18MHDDH021A | 278.5  | 490    | 499    | 112    | 63     | 0.07%   |
| 18MHDDH021A | 278.95 | 15459  | 22268  | 1346   | 160    | 2.38%   |
| 18MHDDH021A | 279.5  | 154167 | 49940  | 236587 | 26602  | 31.31%  |
| 18MHDDH021A | 279.95 | 47220  | 11322  | 33824  | 5182   | 5.03%   |
| 18MHDDH021A | 280.5  | 72433  | 14828  | 106806 | 1039   | 12.27%  |
| 18MHDDH021A | 280.95 | 12452  | 3030   | 1494   | 4303   | 0.88%   |
| 18MHDDH021A | 281.5  | 11535  | 0      | 33873  | 46     | 3.39%   |
| 18MHDDH021A | 281.95 | 0      | 0      | 138    | 256    | 0.04%   |
| 18MHDDH021A | 282.5  | 0      | 0      | 103    | 429    | 0.05%   |
| 18MHDDH021A | 282.95 | 0      | 0      | 68     | 60     | 0.01%   |
| 18MHDDH021A | 283.5  | 0      | 0      | 53     | 50     | 0.01%   |
| 18MHDDH021A | 284.5  | 0      | 0      | 63     | 251    | 0.03%   |
| 18MHDDH021A | 285.5  | 0      | 0      | 98     | 29     | 0.01%   |
| 18MHDDH021A | 286.5  | 0      | 0      | 108    | 111    | 0.02%   |
| 18MHDDH021A | 287.5  | 0      | 0      | 83     | 127    | 0.02%   |
| 18MHDDH021A | 288.5  | 0      | 0      | 80     | 45     | 0.01%   |
| 18MHDDH021A | 289.5  | 0      | 0      | 56     | 15     | 0.01%   |
| 18MHDDH021A | 330.5  | 0      | 0      | 43     | 41     | 0.01%   |
| 18MHDDH021A | 331.5  | 0      | 0      | 39     | 71     | 0.01%   |
| 18MHDDH021A | 332.5  | 0      | 0      | 51     | 34     | 0.01%   |
| 18MHDDH021A | 333.5  | 0      | 0      | 0      | 15     | 0.00%   |
| 18MHDDH021A | 333.95 | 0      | 0      | 23     | 143    | 0.02%   |
| 18MHDDH021A | 334.5  | 0      | 0      | 59     | 322    | 0.04%   |
| 18MHDDH021A | 334.95 | 124859 | 15796  | 116371 | 82197  | 21.44%  |
| 18MHDDH021A | 335.5  | 1514   | 360    | 140    | 607    | 0.11%   |
| 18MHDDH021A | 335.95 | 0      | 65     | 264    | 1952   | 0.23%   |
| 18MHDDH021A | 336.2  | 22538  | 12228  | 1108   | 2047   | 1.54%   |
| 18MHDDH021A | 336.5  | 645    | 137    | 183    | 1110   | 0.14%   |
| 18MHDDH021A | 337.5  | 0      | 0      | 83     | 291    | 0.04%   |
| 18MHDDH021A | 338.5  | 0      | 0      | 48     | 102    | 0.01%   |
| 18MHDDH021A | 339.5  | 0      | 0      | 41     | 33     | 0.01%   |
| 18MHDDH021A | 339.95 | 0      | 0      | 46     | 22     | 0.01%   |
| 18MHDDH021A | 340.5  | 0      | 0      | 22     | 54     | 0.01%   |
| 18MHDDH021A | 340.95 | 759    | 0      | 138    | 179    | 0.03%   |
| 18MHDDH021A | 341.5  | 219220 | 39068  | 382000 | 1269   | 42.23%  |
| 18MHDDH021A | 341.95 | 219220 | 0      | 79     | 1203   | 0.02%   |
| 18MHDDH021A | 342.5  | 131416 | 30957  | 104288 | 30032  | 16.53%  |
| 18MHDDH021A | 342.95 | 2670   | 114    | 964    | 1918   | 0.30%   |
| 18MHDDH021A | 343.3  | 196910 | 1038   | 229696 | 96776  | 32.75%  |
| 18MHDDH021A |        |        | 0      | 90     |        |         |
|             | 343.5  | 331    | 0      | 90     | 313    | 0.04%   |

## Appendix B Portable XRF Sample Results

| Hole ID     | DEPTH  | S_ppm  | Cu_ppm | Zn_ppm | Pb_ppm | Sum_BM% |
|-------------|--------|--------|--------|--------|--------|---------|
| 18MHDDH021A | 344.5  | 0      | 0      | 49     | 177    | 0.02%   |
| 18MHDDH021A | 345.5  | 0      | 0      | 43     | 48     | 0.01%   |
| 18MHDDH021A | 346.5  | 0      | 0      | 59     | 26     | 0.01%   |
| 18MHDDH021A | 347.5  | 0      | 0      | 59     | 16     | 0.01%   |
| 18MHDDH021A | 348.5  | 0      | 0      | 35     | 19     | 0.01%   |
| 18MHDDH021A | 349.5  | 0      | 0      | 44     | 26     | 0.01%   |
| 18MHDDH021A | 350.5  | 0      | 0      | 56     | 21     | 0.01%   |
| 18MHDDH021A | 351.5  | 0      | 0      | 60     | 30     | 0.01%   |
| 18MHDDH021A | 352.5  | 0      | 0      | 171    | 419    | 0.06%   |
| 18MHDDH021A | 353.5  | 0      | 0      | 82     | 253    | 0.03%   |
| 18MHDDH021A | 354.5  | 0      | 0      | 92     | 41     | 0.01%   |
| 18MHDDH021A | 355.2  | 4753   | 5805   | 180    | 116    | 0.61%   |
| 18MHDDH021A | 355.5  | 0      | 0      | 91     | 57     | 0.01%   |
| 18MHDDH021A | 356.5  | 0      | 0      | 72     | 7      | 0.01%   |
| 18MHDDH021A | 356.95 | 0      | 214    | 231    | 280    | 0.07%   |
| 18MHDDH021A | 357.5  | 0      | 0      | 231    | 40     | 0.03%   |
| 18MHDDH021A | 357.95 | 0      | 0      | 172    | 130    | 0.03%   |
| 18MHDDH021A | 358.5  | 404    | 605    | 272    | 1197   | 0.21%   |
| 18MHDDH021A | 358.6  | 44049  | 005    | 51752  | 6769   | 5.85%   |
| 18MHDDH021A | 358.95 | 148778 | 63378  | 120025 | 8369   | 19.18%  |
| 18MHDDH021A | 359.5  | 8522   | 5011   | 7397   | 1142   | 1.36%   |
| 18MHDDH021A | 359.5  | 2628   | 974    | 2713   | 1142   | 0.48%   |
|             | 360.5  | 9986   | 6355   | 14164  |        |         |
| 18MHDDH021A |        |        |        |        | 3809   | 2.43%   |
| 18MHDDH021A | 360.95 | 122135 | 20903  | 113364 | 11063  | 14.53%  |
| 18MHDDH021A | 361.5  | 184256 | 1648   | 188714 | 45027  | 23.54%  |
| 18MHDDH021A | 361.95 | 20601  | 1002   | 27171  | 3213   | 3.14%   |
| 18MHDDH021A | 362.5  | 11709  | 4342   | 9132   | 2034   | 1.55%   |
| 18MHDDH021A | 362.95 | 228640 | 8673   | 256886 | 67290  | 33.28%  |
| 18MHDDH021A | 363.5  | 190731 | 10270  | 218388 | 23265  | 25.19%  |
| 18MHDDH021A | 363.95 | 158700 | 1328   | 148411 | 30661  | 18.04%  |
| 18MHDDH021A | 364.5  | 74092  | 6344   | 60847  | 1586   | 6.88%   |
| 18MHDDH021A | 364.95 | 59401  | 0      | 82647  | 8410   | 9.11%   |
| 18MHDDH021A | 365.5  | 184710 | 0      | 250863 | 19969  | 27.08%  |
| 18MHDDH021A | 365.95 | 5956   | 875    | 2417   | 804    | 0.41%   |
| 18MHDDH021A | 366.5  | 4054   | 3513   | 1273   | 216    | 0.50%   |
| 18MHDDH021A | 366.95 | 234124 | 4309   | 338453 | 39481  | 38.22%  |
| 18MHDDH021A | 367.5  | 192528 | 1015   | 248954 | 44683  | 29.47%  |
| 18MHDDH021A | 367.95 | 5064   | 78     | 741    | 1156   | 0.20%   |
| 18MHDDH021A | 368.5  | 12341  | 924    | 8275   | 2131   | 1.13%   |
| 18MHDDH021A | 368.55 | 155925 | 0      | 198081 | 22836  | 22.09%  |
| 18MHDDH021A | 368.95 | 114993 | 15375  | 108557 | 29960  | 15.39%  |
| 18MHDDH021A | 369.5  | 115541 | 6270   | 103959 | 17323  | 12.76%  |
| 18MHDDH021A | 369.95 | 100779 | 4046   | 44472  | 31114  | 7.96%   |
| 18MHDDH021A | 370.05 | 8227   | 0      | 4340   | 123    | 0.45%   |
| 18MHDDH021A | 370.5  | 2614   | 0      | 274    | 128    | 0.04%   |
| 18MHDDH021A | 370.65 | 141302 | 2923   | 163029 | 18347  | 18.43%  |
| 18MHDDH021A | 370.95 | 172015 | 3735   | 208824 | 19893  | 23.25%  |
| 18MHDDH021A | 371.15 | 154878 | 2276   | 193978 | 18269  | 21.45%  |
| 18MHDDH021A | 371.2  | 3507   | 0      | 104    | 100    | 0.02%   |



| Hole ID     | DEPTH  | S_ppm  | Cu_ppm | Zn_ppm | Pb_ppm | Sum_BM% |
|-------------|--------|--------|--------|--------|--------|---------|
| 18MHDDH021A | 371.95 | 2668   | 0      | 305    | 712    | 0.10%   |
| 18MHDDH021A | 372.5  | 3763   | 1890   | 1484   | 2014   | 0.54%   |
| 18MHDDH021A | 372.95 | 811    | 0      | 131    | 76     | 0.02%   |
| 18MHDDH021A | 373.5  | 1092   | 0      | 109    | 699    | 0.08%   |
| 18MHDDH021A | 373.95 | 14587  | 4223   | 5731   | 5183   | 1.51%   |
| 18MHDDH021A | 374.5  | 268    | 0      | 62     | 236    | 0.03%   |
| 18MHDDH021A | 374.95 | 331    | 0      | 388    | 507    | 0.09%   |
| 18MHDDH021A | 375.5  | 0      | 0      | 69     | 169    | 0.02%   |
| 18MHDDH021A | 375.8  | 228558 | 7591   | 292413 | 46154  | 34.62%  |
| 18MHDDH021A | 376.5  | 0      | 0      | 39     | 28     | 0.01%   |
| 18MHDDH021A | 377.5  | 0      | 0      | 34     | 20     | 0.01%   |
| 18MHDDH021A | 378.5  | 0      | 0      | 174    | 554    | 0.07%   |
| 18MHDDH021A | 379.5  | 0      | 0      | 38     | 29     | 0.01%   |
| 18MHDDH021A | 380.5  | 0      | 0      | 28     | 9      | 0.00%   |
| 18MHDDH021A | 381.5  | 0      | 0      | 43     | 6      | 0.00%   |
| 18MHDDH021A | 382.5  | 0      | 0      | 38     | 30     | 0.01%   |
| 18MHDDH021A | 382.95 | 28512  | 0      | 25     | 15933  | 1.60%   |
| 18MHDDH021A | 383.5  | 0      | 0      | 32     | 27     | 0.01%   |
| 18MHDDH021A | 384.5  | 0      | 0      | 32     | 29     | 0.01%   |
| 18MHDDH021A | 385.5  | 0      | 0      | 36     | 21     | 0.01%   |
| 18MHDDH021A | 386.5  | 0      | 0      | 68     | 44     | 0.01%   |
| 18MHDDH021A | 387.5  | 0      | 0      | 230    | 360    | 0.06%   |
| 18MHDDH021A | 388.5  | 0      | 0      | 138    | 179    | 0.03%   |
| 18MHDDH021A | 389.5  | 0      | 0      | 71     | 129    | 0.02%   |
| 18MHDDH021A | 390.5  | 0      | 53     | 271    | 126    | 0.05%   |
| 18MHDDH021A | 391.5  | 0      | 0      | 67     | 40     | 0.01%   |
| 18MHDDH021A | 392.5  | 0      | 0      | 67     | 76     | 0.01%   |
| 18MHDDH021A | 393.5  | 0      | 0      | 43     | 83     | 0.01%   |
| 18MHDDH021A | 394.5  | 0      | 0      | 58     | 65     | 0.01%   |
| 18MHDDH021A | 395.5  | 0      | 0      | 88     | 81     | 0.02%   |
| 18MHDDH021A | 396.5  | 0      | 0      | 50     | 32     | 0.01%   |
| 18MHDDH021A | 398.5  | 0      | 0      | 92     | 140    | 0.02%   |
| 18MHDDH021A | 398.8  | 3155   | 0      | 4977   | 1286   | 0.63%   |
| 18MHDDH021A | 399.5  | 0      | 0      | 48     | 64     | 0.01%   |
| 18MHDDH021A | 400.3  | 12711  | 0      | 25516  | 7763   | 3.33%   |
| 18MHDDH021A | 400.5  | 0      | 0      | 36     | 57     | 0.01%   |
| 18MHDDH021A | 401.5  | 0      | 0      | 44     | 88     | 0.01%   |
| 18MHDDH021A | 402.5  | 0      | 0      | 71     | 59     | 0.01%   |
| 18MHDDH021A | 403.5  | 0      | 0      | 66     | 50     | 0.01%   |
| 18MHDDH021A | 404.5  | 0      | 0      | 63     | 161    | 0.02%   |

Note:

All analyses by Olympus portable XRF, Delta Professional. 60 second read time (30/30 sec). Values are point data and not representative of the full intervals quoted in the report text. Representative values for base metals will await the half core sampled laboratory results.