

Thick Base Metal Intersections From New Drilling At Mt Hardy

Reconnaissance RC drilling at Hendrix South and Gilly Prospects returns thick base metal intercepts, further highlighting the prospectivity of the Mt Hardy Project

Key Points:

- Thick zones of shallow base metal mineralisation intersected in reconnaissance RC drilling at the Hendrix South and Gilly Prospects
- Down-hole EM surveys planned with crews to be mobilised to site this month for surveying all prospects
- Results provide a strong platform for deeper focussed exploration targeting massive sulphide mineralisation in the 2020 exploration program.

Todd River Resources Limited **(ASX: TRT)** is pleased to advise that further significant results have been received from the recently completed reconnaissance Reverse Circulation (RC) drilling program at its 100% owned **Mt Hardy Copper-Zinc Project** in the Northern Territory (Figure 1).

The drilling program targeted a number of new prospects identified through mapping and surface sampling, including the recently announced successful drilling at Gilly North, which is approximately 1.5km north of the **2.6Mt @ 10.5% Zn equivalent** maiden Resource Estimate at Hendrix¹ announced earlier this year. The ongoing success of the reconnaissance RC drilling program sets a solid platform for the deeper exploration targeting massive sulphide mineralisation planned for the first half of 2020.

RC drilling at the Hendrix South Prospect, located to the south of the Hendrix Resource, returned significant results in two of the first three holes, including a **broad 28m thick mineralised interval in MHRC0075**:

- 28m @ 0.2% Cu, 0.6% Pb, 2.4% Zn and 12g/t Ag (3.2% combined base metals) from 82m, including:
 5m @ 0.24% Cu, 1.8% Pb, 4.3% Zn and 28.4g/t Ag (6.3% combined BM) from 93m (MHRC0075) and:
- 5m @ 0.7% Cu, 0.8% Pb, 2.0% Zn and 24g/t Ag (3.5% combined base metals) from 28m (MHRC0073)

¹ Refer ASX announcement of 12 July 2019.

RC drilling at the Gilly Prospect, located 1.3km north of Hendrix, returned the following assay results in the first three holes completed:

- 11m @ 0.4% Cu, 0.5% Pb, 2.3% Zn and 41g/t Ag (3.2% combined base metals) from 28m, including:
 5m @ 0.6% Cu, 0.5% Pb, 3.2% Zn and 25.6g/t Ag (4.3% combined BM) from 29m (MHRC0076)
- 7m @ 0.4% Cu, 0.3% Pb, 4.1% Zn and 15.4g/t Ag (4.8% combined base metals) from 23m, including:
 - 4m @ 0.5% Cu, 0.6% Pb, 5.9% Zn and 7g/t Ag (7.0% combined base metals) from 23m, (MHRC0071); and
- 2m @ 0.5% Cu, 0.2% Pb, 4.4% Zn and 84.5g/t Ag (5.1% combined base metals) from 49m (MHRC0072).

Todd River's Managing Director, Will Dix, said the excellent results generated by the reconnaissance RC drilling program across the new prospects continued to build a compelling base metal exploration story at Mt Hardy.

"The assays received from our first foray into regional reconnaissance drilling at Mt Hardy are very impressive considering that this is the very first drilling into each of these prospects.

"Our recently announced excellent results from Gilly North and the additional mineralisation encountered in the first holes at Hendrix South and Gilly represent a strong platform from which to expand next year.

"We are still waiting on initial results from drilling completed at Hendrix North West, Laver and Linda Jane which we expect to receive this month. In addition, down-hole EM surveying of the deepest hole at each prospect should also be completed by the end of November and will help us to fine-tune our first drilling program in 2020.

"We are already well advanced in planning our 2020 exploration programs to further build on the exceptional work that the exploration team has carried out this year. We will be aggressively targeting extensions to mineralisation we have identified with the aim of adding to the current resource inventory of the Project at Hendrix."

Geological Setting and Drilling Outcomes

As previously reported, the Company has been focused on expanding the pipeline of potential targets within the Mt Hardy Project area. To that end, reconnaissance mapping and rock chip sampling was completed to follow up several historical Cu \pm Pb mineral occurrences mapped by the Bureau of Mineral Resources (BMR – now Geoscience Australia) in 1968.

Many of the recently identified drilling targets stemmed from this follow-up work, together with systematic mapping, prospecting and sampling.

<u>Gilly – Figure 3</u>

Holes were targeted on a number of high-grade base metal rock chip results and the mapping completed in August and September. Base metal sulphides (sphalerite, chalcopyrite and galena), together with pyrrhotite (iron sulphide), were intersected over varying widths in the holes drilled. The zones of sulphide breccia, and sulphide stringers are hosted within the sediments of the Lander Rock Formation.

Although marginally lower grade than the intersections announced (on October 25) from Gilly North, some 300m to the north of this drilling, the continuity down-dip and potential for the mineralisation to be linked is encouraging. Similarly to Gilly North, the weathering profile is very thin, limiting the amount of oxidised sulphides encountered in the RC drilling. Sulphides observed in the RC chips are generally coarse grained with both sphalerite and galena occurring in centimetre-sized aggregates.

Assay results from a number of holes drilled at Gilly remain outstanding.

Hendrix South – Figures 4 and 5

Drilling at Hendrix South concentrated on a fold closure identified approximately 100m south of the surface expression of the Resource. Sulphide breccia and stringers were identified in each hole with the best developed intersection being over a down-hole width of 28m in hole MHRC0075 associated with silica alteration similar to that seen in parts of the Hendrix Resource. All of the holes drilled at Hendrix South intersected sulphide mineralisation and all of the holes sit well outside the current Resource wireframe.

Laver, Linda Jane and Gilly North Prospects

RC drilling at the Hendrix North West (three holes), Linda Jane (six holes), and Laver (seven holes) Prospects have been completed, together with additional holes at both Gilly and Gilly North. Assay results are expected for all drilling by the end of November.

Next Steps at Mt Hardy

Todd River intends to complete a down-hole EM survey on the deepest holes drilled on each prospect. This work will be completed in November and is expected to enable more targeted drilling, focussing on accumulations of massive sulphides, during the 2020 drilling campaign.

The commencement of the 2020 field season will focus on the expansion of the current RC program in areas of known mineralisation and selected deeper drilling of the highest priority prospects.

Will Dix Managing Director – Todd River Resources

Enquiries: Will Dix	+ 61 (0) 8 6166 0255
Nicholas Read Read Corporate	+ 61 (0) 8 9388 1474

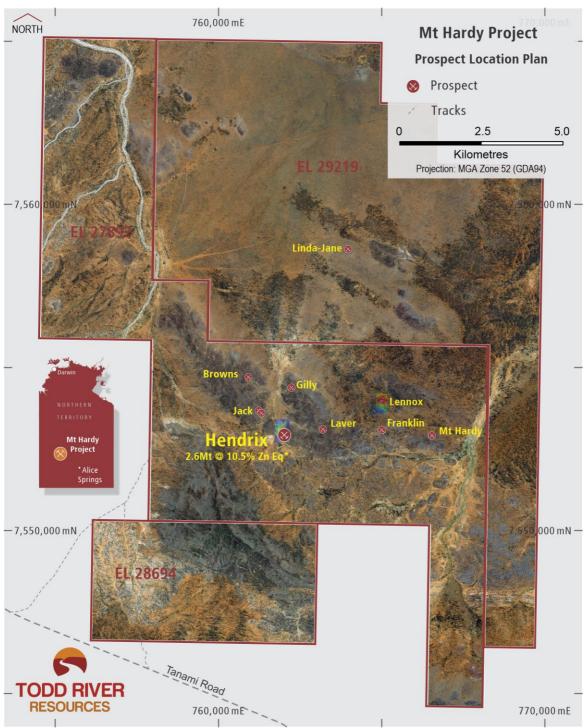


Figure 1 – Mt Hardy Project – Prospect Location plan

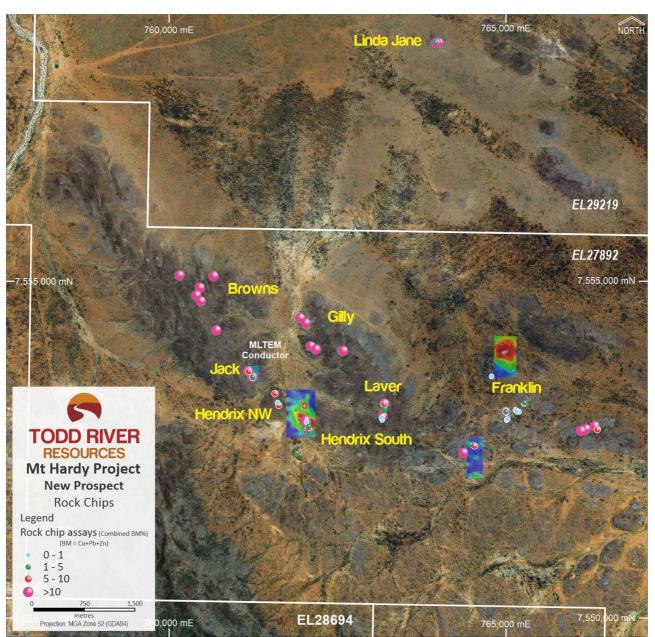


Figure 2 – Mt Hardy Project showing the location of the recently identified prospects and combined base metal rock chip sample results.

Figure 3 – Mt Hardy Project showing the location of Drill Collars for the holes completed to date at the Gilly North and Gilly Prospects.

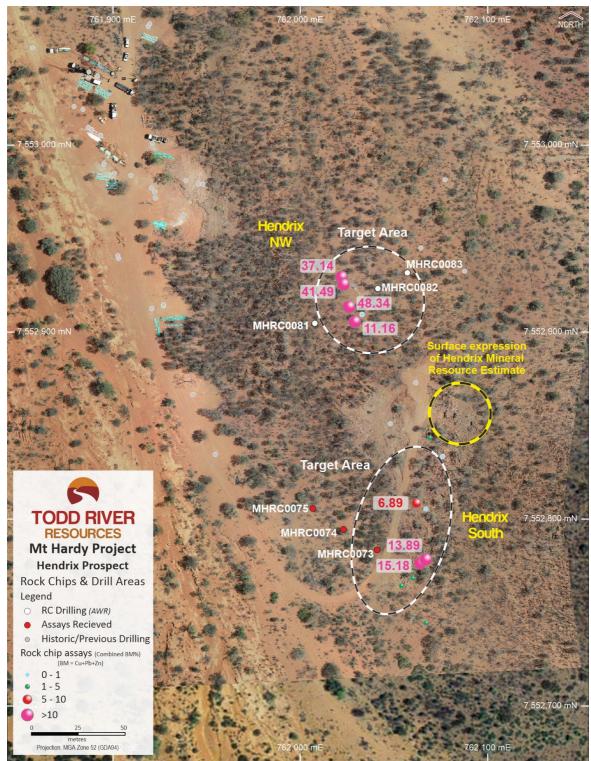


Figure 4 – Mt Hardy Project showing the location of Drill Collars for the holes completed to date at the Hendrix South and Hendrix North West Prospects.

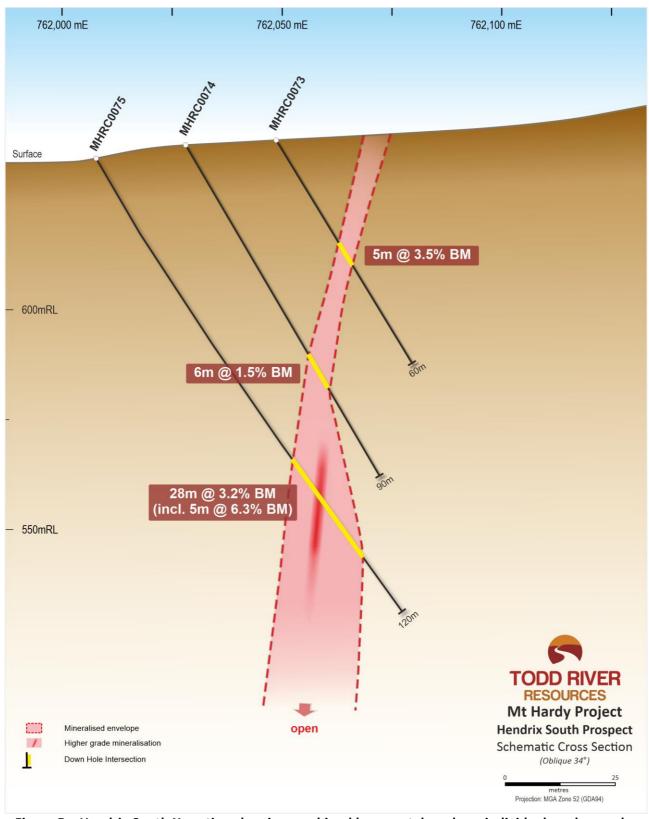


Figure 5 – Hendrix South X-section showing combined base metal grades – individual grades can be found on Page 1 of this announcement and in Appendix A.

					Depth		
hole_id	Prospect	GDA_EAST	GDA_North	GDA_RL	(m)	Dip	Azimuth
MHRC0067	Gilly Nth	762009	7554368	657.35	60	-60	48
MHRC0068	Gilly Nth	761991.9	7554352	655.31	90	-60	48
MHRC0069	Gilly Nth	761976.6	7554338	654.29	120	-60	48
MHRC0070	Gilly	762089.8	7554019	661.03	60	-60	46
MHRC0071	Gilly	762077.4	7554005	659.47	74	-60	47
MHRC0072	Gilly	762062.8	7553989	657.74	122	-60	51
MHRC0073	Hendrix Sth	762041	7552784	662.18	60	-60	122
MHRC0074	Hendrix Sth	762023.1	7552795	660.73	90	-60	122
MHRC0075	Hendrix Sth	762006.7	7552806	660.05	126	-60	124
MHRC0076	Gilly	762116.5	7553990	661.23	89	-60	47
MHRC0077*	Gilly	762103.6	7553976	660.09	121	-60	49
MHRC0078*	Gilly	762166.1	7553978	669.62	60	-60	50
MHRC0079*	Gilly	762135.2	7554006	665.28	83	-60	48
MHRC0080*	Gilly	762142	7553955	665.83	120	-60	48
MHRC0081*	Hendrix NW	762007.8	7552905	670.09	59	-60	64
MHRC0082*	Hendrix NW	762041.5	7552924	666.76	90	-60	238
MHRC0083*	Hendrix NW	762057.2	7552932	665.31	105	-60	240
MHRC0084*	Linda Jane	763977.8	7558528	641.54	59	-60	47
MHRC0085*	Linda Jane	763932.41	7558539.32	639.2	60	-60	47
MHRC0086*	Linda Jane	763917.63	7558525.51	638.46	84	-60	51
MHRC0087*	Linda Jane	763902.37	7558511.53	637.98	119	-61	47
MHRC0088*	Linda Jane	763957.5	7558505.71	640.65	77	-60	45
MHRC0089*	Linda Jane	763946.78	7558494.69	639.96	100	-61	45
MHRC0090*	Laver	763202.73	7553174.99	673.44	69	-60	272
MHRC0091*	Laver	763223.3	7553177.17	671.74	149	-60	280
MHRC0092*	Laver	763166.09	7553080.19	673.48	41	-59	99
MHRC0093*	Laver	763146.14	7553082.39	673.62	90	-60	99
MHRC0094*	Laver	763127	7553083.95	674.11	95	-60	97
MHRC0095*	Laver	763126.33	7553009.16	682.37	90	-60	99
MHRC0096*	Laver	763087.86	7553008.28	676.82	121	-60	98
MHRC0097*	Gilly North	761963.44	7554384.62	654.69	42	-57	50
MHRC0098*	Gilly North	761936.09	7554356.03	652.88	90	-60	49
MHRC0099*	Gilly North	761951.03	7554315.61	653.46	113	-61	48
MHRC0100*	Gilly North	762030.16	7554337.07	655.9	64	-61	45
MHRC0101*	Gilly North	762009.14	7554314.37	654.6	90	-61	47
	waiting results	,02003.14	, 33 1317.37	004.0	50	01	ד /

Table 1 – Collar information for the completed RC holes at Mt Hardy to date

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Andrew Thompson, who is an employee of S2 Resources and carrying out work for Todd River Resources under a Shared Services Agreement between the companies. Mr Thompson is a member of the Australian Institute of Mining and Metallurgy (MAusIMM) and has sufficient experience of relevance to the style of mineralization and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Thompson consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

About Todd River Resources

Todd River Resources (ASX: TRT) is an Australian-based resources company that has recently announced a maiden zinccopper Mineral Resource estimate at Hendrix and a new base metals discovery at Gilly North, within its 100%-owned Mt Hardy Project, located 300km north west of Alice Springs.

With a strong management team, solid capital structure and well-funded for ongoing exploration, Todd River is well placed to pursue additional base metal mineralisation at Mt Hardy and progress exploration activities across its exploration portfolio.

While Todd River's main focus is at Mt Hardy, the Company holds an extensive precious and base metal project portfolio which includes the Rover gold project, the McArthur Copper-Zinc Project and the large Manbarrum Zinc resource.

Appendix A –	Appendix A – Analytical Results MHRC0071 – MHRC0076									
hole_id	depth_from	depth_to	Ag_ppm	Au_ppm	Cu_pct	Pb_pct	Zn_pct	CBM %		
MHRC0071	0	1	-0.5	0.002	0.0183	0.0067	0.1071	0.1321		
MHRC0071	1	4	-0.5	0.002	0.014	0.0023	0.1472	0.1635		
MHRC0071	4	7	-0.5	0.002	0.0445	0.0014	0.2195	0.2654		
MHRC0071	7	10	-0.5	-0.001	0.0135	0.0011	0.0852	0.0998		
MHRC0071	10	13	-0.5	-0.001	0.011	0.0017	0.1937	0.2064		
MHRC0071	13	16	-0.5	0.003	0.0035	0.003	0.1144	0.1209		
MHRC0071	16	18	-0.5	-0.001	0.0085	0.0028	0.5164	0.5277		
MHRC0071	18	19	-0.5	-0.001	0.0017	0.0027	0.1048	0.1092		
MHRC0071	19	20	-0.5	-0.001	0.0084	0.0047	0.3977	0.4108		
MHRC0071	20	21	-0.5	-0.001	0.0264	0.0132	0.3926	0.4322		
MHRC0071	21	22	1.5	0.001	0.039	0.03	0.2073	0.2763		
MHRC0071	22	23	0.5	-0.001	0.0066	0.0159	0.1145	0.137		
MHRC0071	23	24	35.2	0.016	0.1957	1.0828	2.8435	4.122		
MHRC0071	24	25	21.1	0.518	0.2399	0.3999	2.6495	3.2893		
MHRC0071	25	26	34.5	0.362	0.9039	0.6412	10.5691	12.1142		
MHRC0071	26	27	9.3	0.035	0.7723	0.0793	7.6444	8.496		
MHRC0071	27	28	0.7	0.005	0.0469	0.0202	0.6103	0.6774		
MHRC0071	28	29	0.5	0.356	0.0215	0.0033	0.0425	0.0673		
MHRC0071	29	30	7.1	0.284	0.4016	0.0779	4.4842	4.9637		
MHRC0071	30	31	-0.5	0.009	0.0274	0.0083	0.4774	0.5131		
MHRC0071	31	34	0.6	0.002	0.1544	0.0018	0.9079	1.0641		
MHRC0071	34	37	-0.5	-0.001	0.0016	0.0026	0.1033	0.1075		
MHRC0071	37	40	-0.5	-0.001	0.0031	0.0024	0.1886	0.1941		
MHRC0071	40	43	-0.5	-0.001	0.0007	0.0026	0.1043	0.1076		
MHRC0071	43	47	-0.5	-0.001	0.0005	0.0031	0.0395	0.0431		
MHRC0071	47	48	-0.5	-0.001	0.0002	0.0041	0.056	0.0603		
MHRC0071	48	51	-0.5	-0.001	0.0022	0.0075	0.0597	0.0694		
MHRC0071	51	54	-0.5	-0.001	0.0029	0.0037	0.0434	0.05		
MHRC0071	54	57	-0.5	0.002	0.0021	0.0061	0.0346	0.0428		
MHRC0071	57	60	-0.5	-0.001	0.0005	0.0021	0.0137	0.0163		
MHRC0071	60	63	-0.5	-0.001	0.0001	0.0014	0.0275	0.029		
MHRC0071	63	66	-0.5	-0.001	0.0011	0.0032	0.034	0.0383		
MHRC0071	66	69	-0.5	-0.001	0.0008	0.0016	0.0483	0.0507		
MHRC0071	69	72	-0.5	-0.001	0.0212	0.0019	0.0432	0.0663		
MHRC0071	72	74	-0.5	-0.001	0.0007	0.001	0.0144	0.0161		
MHRC0072	0	1	-0.5	0.003	0.03	0.0139	0.141	0.1849		
MHRC0072	1	4	-0.5	0.003	0.0226	0.0077	0.2174	0.2477		
MHRC0072	4	7	-0.5	-0.001	0.0041	0.0018	0.1006	0.1065		

MHRC0072	7	10	-0.5	-0.001	0.0086	0.0015	0.0686	0.0787
MHRC0072	10	13	-0.5	-0.001	0.0012	0.0016	0.0327	0.0355
MHRC0072	13	16	-0.5	-0.001	0.0005	0.0013	0.0112	0.013
MHRC0072	16	20	-0.5	-0.001	0.0008	0.0015	0.0328	0.0351
MHRC0072	20	21	-0.5	-0.001	0.1164	0.0019	0.069	0.1873
MHRC0072	21	24	-0.5	-0.001	0.0277	0.0017	0.0355	0.0649
MHRC0072	24	27	-0.5	-0.001	0.0023	0.0025	0.0487	0.0535
MHRC0072	27	30	-0.5	-0.001	0.0004	0.0013	0.091	0.0927
MHRC0072	30	33	-0.5	-0.001	0.0006	0.0028	0.0413	0.0447
MHRC0072	33	36	-0.5	-0.001	0.0003	0.0012	0.0403	0.0418
MHRC0072	36	39	-0.5	0.002	0.0009	0.0009	0.0473	0.0491
MHRC0072	39	42	-0.5	0.01	0.0086	0.0017	0.0461	0.0564
MHRC0072	42	44	-0.5	-0.001	0.0033	0.0028	0.0498	0.0559
MHRC0072	44	45	0.5	0.02	0.038	0.0375	0.1586	0.2341
MHRC0072	45	46	-0.5	0.006	0.026	0.0214	0.1742	0.2216
MHRC0072	46	47	-0.5	-0.001	0.0017	0.0114	0.0803	0.0934
MHRC0072	47	48	-0.5	-0.001	0.0024	0.0121	0.0725	0.087
MHRC0072	48	49	-0.5	-0.001	0.014	0.0263	0.1518	0.1921
MHRC0072	49	50	9.3	0.047	0.7271	0.1327	7.6435	8.5033
MHRC0072	50	51	12.6	0.122	0.2552	0.2273	1.0783	1.5608
MHRC0072	51	52	5.2	0.016	0.0949	0.0983	0.4976	0.6908
MHRC0072	52	53	2.3	0.005	0.0587	0.0569	0.6639	0.7795
MHRC0072	53	54	0.7	0.002	0.0313	0.0206	0.5564	0.6083
MHRC0072	54	55	1.3	0.006	0.0297	0.0259	0.4023	0.4579
MHRC0072	55	56	-0.5	0.002	0.0229	0.0108	0.1928	0.2265
MHRC0072	56	59	-0.5	0.002	0.0082	0.0067	0.1812	0.1961
MHRC0072	59	62	-0.5	-0.001	0.0098	0.0041	0.0264	0.0403
MHRC0072	62	65	-0.5	-0.001	0.0074	0.0061	0.0279	0.0414
MHRC0072	65	67	-0.5	-0.001	0.0063	0.0119	0.0432	0.0614
MHRC0072	67	68	-0.5	-0.001	0.0013	0.0054	0.01	0.0167
MHRC0072	68	71	-0.5	-0.001	0.0007	0.0059	0.0125	0.0191
MHRC0072	71	74	0.7	0.001	0.0094	0.0204	0.0395	0.0693
MHRC0072	74	77	-0.5	-0.001	0.0021	0.0052	0.0201	0.0274
MHRC0072	77	80	-0.5	-0.001	0.0018	0.0014	0.0117	0.0149
MHRC0072	80	83	-0.5	-0.001	-0.0001	0.0039	0.0222	0.026
MHRC0072	83	86	-0.5	-0.001	-0.0001	0.0026	0.0084	0.0109
MHRC0072	86	89	-0.5	-0.001	0.001	0.0026	0.0127	0.0163
MHRC0072	89	92	0.7	-0.001	0.0002	0.0229	0.0344	0.0575
MHRC0072	92	95	-0.5	-0.001	0.0003	0.0048	0.0102	0.0153
MHRC0072	95	98	-0.5	-0.001	0.0008	0.0026	0.0092	0.0126

MHRC0072	98	101	-0.5	0.001	0.0017	0.0033	0.0085	0.0135
MHRC0072	101	104	-0.5	-0.001	0.0004	0.0025	0.0119	0.0148
MHRC0072	104	107	-0.5	-0.001	0.0003	0.0013	0.0073	0.0089
MHRC0072	107	110	-0.5	-0.001	0.0004	0.0014	0.0067	0.0085
MHRC0072	110	114	-0.5	-0.001	0.0001	0.001	0.0059	0.007
MHRC0072	114	115	-0.5	-0.001	0.0003	0.0013	0.0157	0.0173
MHRC0072	115	118	-0.5	0.001	0.0004	0.0012	0.0078	0.0094
MHRC0072	118	122	-0.5	-0.001	0.0012	0.0019	0.0121	0.0152
MHRC0073	0	3	-0.5	-0.001	0.0151	0.0153	0.0577	0.0881
MHRC0073	3	6	-0.5	-0.001	0.0032	0.0033	0.0101	0.0166
MHRC0073	6	9	-0.5	-0.001	0.0013	0.0046	0.0142	0.0201
MHRC0073	9	12	-0.5	-0.001	0.0072	0.0058	0.0165	0.0295
MHRC0073	12	15	-0.5	-0.001	0.0053	0.0049	0.0343	0.0445
MHRC0073	15	18	-0.5	-0.001	0.006	0.0067	0.1432	0.1559
MHRC0073	18	20	-0.5	-0.001	0.0025	0.0049	0.0953	0.1027
MHRC0073	20	23	-0.5	0.001	0.0132	0.0131	0.162	0.1883
MHRC0073	23	24	-0.5	-0.001	0.0076	0.0094	0.2267	0.2437
MHRC0073	24	25	-0.5	-0.001	0.0102	0.0331	0.2019	0.2452
MHRC0073	25	26	-0.5	0.057	0.0076	0.0191	0.0799	0.1066
MHRC0073	26	27	-0.5	-0.001	0.0322	0.0427	0.2519	0.3268
MHRC0073	27	28	5.3	0.004	0.1231	0.292	0.4647	0.8798
MHRC0073	28	29	14.9	0.02	0.3134	0.468	0.3764	1.1578
MHRC0073	29	30	17.1	0.026	0.7444	0.4577	3.3907	4.5928
MHRC0073	30	31	38.5	0.025	0.8149	1.5843	3.4669	5.8661
MHRC0073	31	32	25.1	0.019	0.6285	0.761	1.4513	2.8408
MHRC0073	32	33	23.6	0.024	1.0358	0.5295	1.4587	3.024
MHRC0073	33	34	1.8	0.002	0.1802	0.0557	0.4619	0.6978
MHRC0073	34	35	1.2	0.001	0.0608	0.069	0.1588	0.2886
MHRC0073	35	36	-0.5	0.002	0.0167	0.032	0.1055	0.1542
MHRC0073	36	37	-0.5	-0.001	0.0088	0.012	0.0615	0.0823
MHRC0073	37	38	-0.5	-0.001	0.0062	0.0069	0.0618	0.0749
MHRC0073	38	39	-0.5	-0.001	0.0018	0.0052	0.0458	0.0528
MHRC0073	39	40	-0.5	-0.001	0.0004	0.0042	0.0398	0.0444
MHRC0073	40	43	-0.5	-0.001	0.0084	0.0058	0.0287	0.0429
MHRC0073	43	46	-0.5	-0.001	0.002	0.0162	0.0397	0.0579
MHRC0073	46	49	-0.5	-0.001	0.0007	0.0079	0.0332	0.0418
MHRC0073	49	52	-0.5	-0.001	0.0025	0.0056	0.0718	0.0799
MHRC0073	52	55	-0.5	-0.001	0.0027	0.0028	0.0115	0.017
MHRC0073	55	58	-0.5	0.002	0.0035	0.0155	0.0742	0.0932
MHRC0073	58	60	-0.5	-0.001	0.0011	0.0105	0.0451	0.0567

MHRC0074	0	3	-0.5	-0.001	0.0074	0.0142	0.017	0.0386
MHRC0074	3	6	-0.5	-0.001	0.0109	0.0151	0.0261	0.0521
MHRC0074	6	7	5.1	0.188	1.3946	-0.5555	1.622	2.4611
MHRC0074	7	10	-0.5	-0.001	0.002	0.0016	0.0057	0.0093
MHRC0074	10	13	-0.5	-0.001	0.0015	0.0017	0.0052	0.0084
MHRC0074	13	16	-0.5	-0.001	0.0018	0.0017	0.0218	0.0253
MHRC0074	16	19	-0.5	-0.001	0.0009	0.0018	0.0122	0.0149
MHRC0074	19	22	-0.5	-0.001	0.0007	0.0014	0.022	0.0241
MHRC0074	22	26	-0.5	-0.001	0.0032	0.0049	0.0247	0.0328
MHRC0074	26	27	-0.5	-0.001	0.0017	0.0013	0.0641	0.0671
MHRC0074	27	30	-0.5	-0.001	0.0034	0.0031	0.066	0.0725
MHRC0074	30	33	-0.5	-0.001	0.0121	0.002	0.0107	0.0248
MHRC0074	33	36	-0.5	-0.001	0.0028	0.0024	0.0403	0.0455
MHRC0074	36	39	-0.5	-0.001	0.0028	0.0085	0.0438	0.0551
MHRC0074	39	42	-0.5	-0.001	0.001	0.0065	0.0208	0.0283
MHRC0074	42	45	-0.5	-0.001	0.0009	0.0063	0.0272	0.0344
MHRC0074	45	48	-0.5	-0.001	0.0022	0.0086	0.0292	0.04
MHRC0074	48	51	-0.5	-0.001	0.0006	0.0039	0.017	0.0215
MHRC0074	51	54	-0.5	-0.001	0.0051	0.0055	0.0394	0.05
MHRC0074	54	55	-0.5	-0.001	0.0042	0.0075	0.04	0.0517
MHRC0074	55	56	-0.5	-0.001	0.017	0.0074	0.0276	0.052
MHRC0074	56	57	-0.5	-0.001	0.0009	0.0083	0.0153	0.0245
MHRC0074	57	58	-0.5	-0.001	0.0051	0.0235	0.0819	0.1105
MHRC0074	58	59	3	-0.001	0.0148	0.2312	0.4085	0.6545
MHRC0074	59	60	14	0.003	0.0473	0.4779	1.0314	1.5566
MHRC0074	60	61	1	-0.001	0.0932	0.0367	0.2826	0.4125
MHRC0074	61	62	11.8	0.008	0.0944	0.665	2.2835	3.0429
MHRC0074	62	63	8.3	0.007	0.1294	0.3951	1.5375	2.062
MHRC0074	63	64	2.7	0.002	0.0609	0.0931	0.421	0.575
MHRC0074	64	65	3.1	0.003	0.0867	0.1303	1.192	1.409
MHRC0074	65	66	1.9	0.004	0.1655	0.0474	0.56	0.7729
MHRC0074	66	67	-0.5	-0.001	0.0135	0.0131	0.0765	0.1031
MHRC0074	67	68	-0.5	-0.001	0.0049	0.0124	0.0534	0.0707
MHRC0074	68	69	-0.5	-0.001	0.0033	0.0088	0.0199	0.032
MHRC0074	69	70	-0.5	-0.001	0.0017	0.0052	0.0097	0.0166
MHRC0074	70	73	-0.5	-0.001	0.0021	0.0058	0.0125	0.0204
MHRC0074	73	74	-0.5	-0.001	0.0047	0.0077	0.0324	0.0448
MHRC0074	74	77	-0.5	-0.001	0.0002	0.0052	0.0163	0.0217
MHRC0074	77	80	-0.5	-0.001	0.0004	0.0031	0.0068	0.0103
MHRC0074	80	83	-0.5	-0.001	0.0004	0.003	0.0078	0.0112

MHRC0074	83	86	-0.5	-0.001	-0.0001	0.0021	0.0064	0.0084
MHRC0074	86	90	-0.5	-0.001	0.0003	0.0021	0.0072	0.0096
MHRC0075	0	3	-0.5	-0.001	0.0101	0.0085	0.0474	0.066
MHRC0075	3	6	-0.5	-0.001	0.0058	0.0044	0.0711	0.0813
MHRC0075	6	9	-0.5	-0.001	0.0016	0.0018	0.0103	0.0137
MHRC0075	9	11	-0.5	-0.001	0.0014	0.0009	0.007	0.0093
MHRC0075	11	14	-0.5	-0.001	0.0005	0.0013	0.0099	0.0117
MHRC0075	14	17	-0.5	-0.001	0.0004	0.0013	0.0071	0.0088
MHRC0075	17	20	-0.5	-0.001	0.0024	0.0045	0.0563	0.0632
MHRC0075	20	23	-0.5	-0.001	0.0027	0.002	0.0943	0.099
MHRC0075	23	26	-0.5	-0.001	0.0014	0.0014	0.0108	0.0136
MHRC0075	26	30	-0.5	-0.001	0.0023	0.0056	0.0498	0.0577
MHRC0075	30	31	-0.5	-0.001	0.0024	0.0031	0.0508	0.0563
MHRC0075	31	34	-0.5	-0.001	0.0027	0.0026	0.0098	0.0151
MHRC0075	34	37	-0.5	0.001	0.0026	0.0036	0.0077	0.0139
MHRC0075	37	40	-0.5	-0.001	0.0022	0.003	0.0107	0.0159
MHRC0075	40	43	-0.5	-0.001	0.0017	0.0031	0.0078	0.0126
MHRC0075	43	46	-0.5	-0.001	0.0018	0.0031	0.0077	0.0126
MHRC0075	46	49	-0.5	0.001	0.006	0.0056	0.0098	0.0214
MHRC0075	49	52	-0.5	-0.001	0.0021	0.0028	0.0096	0.0145
MHRC0075	52	55	-0.5	-0.001	0.0048	0.0033	0.0128	0.0209
MHRC0075	55	58	-0.5	-0.001	0.0052	0.0024	0.0117	0.0193
MHRC0075	58	61	-0.5	0.001	0.0024	0.0058	0.0196	0.0278
MHRC0075	61	64	-0.5	-0.001	0.0015	0.0064	0.02	0.0279
MHRC0075	64	67	-0.5	0.002	0.0005	0.0053	0.0136	0.0194
MHRC0075	67	70	-0.5	-0.001	0.0057	0.0124	0.0156	0.0337
MHRC0075	70	73	-0.5	-0.001	0.0014	0.0036	0.0109	0.0159
MHRC0075	73	74	-0.5	-0.001	0.0017	0.0043	0.0115	0.0175
MHRC0075	74	75	-0.5	-0.001	0.0014	0.0041	0.0129	0.0184
MHRC0075	75	76	-0.5	-0.001	0.0009	0.0057	0.0134	0.02
MHRC0075	76	77	-0.5	-0.001	0.0005	0.0048	0.0156	0.0209
MHRC0075	77	78	-0.5	-0.001	0.0009	0.0033	0.018	0.0222
MHRC0075	78	79	1.1	0.001	0.0536	0.0304	0.6019	0.6859
MHRC0075	79	80	-0.5	-0.001	0.0238	0.015	0.0729	0.1117
MHRC0075	80	81	2.6	0.001	0.0489	0.0954	0.2055	0.3498
MHRC0075	81	82	4.2	0.003	0.0967	0.1412	0.4652	0.7031
MHRC0075	82	83	6.2	0.004	0.1618	0.2404	1.3262	1.7284
MHRC0075	83	84	10.4	0.006	0.184	0.3951	1.753	2.3321
MHRC0075	84	85	5.2	0.005	0.1699	0.195	0.9576	1.3225
MHRC0075	85	86	16.5	0.009	0.1777	0.8932	4.9654	6.0363

MHRC0075	86	87	10.9	0.006	0.1516	0.6262	3.2049	3.9827
MHRC0075	87	88	10.7	0.005	0.1626	0.6461	1.8375	2.6462
MHRC0075	88	89	15	0.032	0.3282	0.5641	3.1302	4.0225
MHRC0075	89	90	8	0.019	0.2602	0.213	1.2467	1.7199
MHRC0075	90	91	2.3	0.004	0.1849	0.0497	0.4379	0.6725
MHRC0075	91	92	7.2	0.007	0.3895	0.1761	1.7631	2.3287
MHRC0075	92	93	12	0.003	0.3142	0.3816	1.7817	2.4775
MHRC0075	93	94	57.3	0.01	0.4549	2.6074	5.4498	8.5121
MHRC0075	94	95	28.6	0.007	0.2233	1.7197	5.5002	7.4432
MHRC0075	95	96	28.2	0.007	0.2682	2.3006	4.4767	7.0455
MHRC0075	96	97	18.1	0.003	0.0755	1.7043	2.1335	3.9133
MHRC0075	97	98	9.9	0.004	0.2133	0.5164	3.8834	4.6131
MHRC0075	98	99	7.4	0.004	0.2026	0.3411	1.5816	2.1253
MHRC0075	99	100	2.3	-0.001	0.1201	0.0754	0.3334	0.5289
MHRC0075	100	101	16.6	0.009	0.3065	0.3724	4.6663	5.3452
MHRC0075	101	102	3.1	0.002	0.0899	0.1172	1.4477	1.6548
MHRC0075	102	103	2.5	0.001	0.1119	0.0939	1.2096	1.4154
MHRC0075	103	104	0.6	-0.001	0.0477	0.0334	0.548	0.6291
MHRC0075	104	105	1.9	0.001	0.1065	0.0991	2.6824	2.888
MHRC0075	105	106	4.7	0.002	0.1132	0.2628	2.3713	2.7473
MHRC0075	106	107	6.1	0.001	0.0554	0.2995	1.6428	1.9977
MHRC0075	107	108	14.6	0.003	0.2519	0.6726	2.5143	3.4388
MHRC0075	108	109	16.1	0.001	0.091	0.9259	2.6234	3.6403
MHRC0075	109	110	3.4	0.002	0.1096	0.1488	1.1495	1.4079
MHRC0075	110	113	4.4	0.002	0.0456	0.1255	0.3847	0.5558
MHRC0075	113	116	1.4	0.001	0.0228	0.0821	0.2276	0.3325
MHRC0075	116	119	-0.5	-0.001	0.0008	0.0092	0.0246	0.0346
MHRC0075	119	122	-0.5	-0.001	0.0017	0.0058	0.0217	0.0292
MHRC0075	122	124	-0.5	0.003	0.002	0.0066	0.0315	0.0401
MHRC0075	124	125	-0.5	-0.001	0.0006	0.0031	0.0257	0.0294
MHRC0075	125	126	-0.5	-0.001	0.0029	0.0076	0.0567	0.0672
MHRC0076	0	2	-0.5	-0.001	0.002	0.0029	0.0645	0.0694
MHRC0076	2	5	-0.5	-0.001	0.0009	0.0018	0.0443	0.047
MHRC0076	5	8	-0.5	-0.001	0.0008	0.0012	0.0352	0.0372
MHRC0076	8	11	-0.5	-0.001	0.0021	-0.0005	0.0474	0.049
MHRC0076	11	14	-0.5	-0.001	0.0017	0.0021	0.0698	0.0736
MHRC0076	14	18	-0.5	-0.001	0.0015	0.003	0.0811	0.0856
MHRC0076	18	19	-0.5	-0.001	0.0021	0.005	0.1175	0.1246
MHRC0076	19	20	-0.5	-0.001	0.002	0.0056	0.1193	0.1269
MHRC0076	20	21	-0.5	-0.001	0.0017	0.0048	0.1156	0.1221

MHRC0076	21	22	-0.5	-0.001	0.0071	0.0075	0.1412	0.1558
MHRC0076	22	23	-0.5	-0.001	0.0048	0.0067	0.1374	0.1489
MHRC0076	23	24	5.2	0.001	0.0638	0.3974	0.2861	0.7473
MHRC0076	24	25	1	-0.001	0.0111	0.0906	0.2291	0.3308
MHRC0076	25	26	-0.5	-0.001	0.0041	0.0154	0.1727	0.1922
MHRC0076	26	27	0.5	-0.001	0.0132	0.0115	0.2782	0.3029
MHRC0076	27	28	-0.5	-0.001	0.0014	0.0141	0.129	0.1445
MHRC0076	28	29	9.7	0.001	0.1859	0.1698	1.332	1.6877
MHRC0076	29	30	54.1	0.002	0.5145	1.1556	4.3515	6.0216
MHRC0076	30	31	3.1	-0.001	0.0629	0.0968	0.3211	0.4808
MHRC0076	31	32	22.7	0.007	0.3527	0.4371	1.2673	2.0571
MHRC0076	32	33	45.4	0.015	1.7778	0.6237	7.9953	10.3968
MHRC0076	33	34	3	-0.001	0.2524	0.0775	2.2442	2.5741
MHRC0076	34	35	0.9	-0.001	0.0266	0.0536	0.1949	0.2751
MHRC0076	35	36	16.8	0.004	0.6387	0.1513	5.8231	6.6131
MHRC0076	36	37	3.1	0.001	0.1532	0.0547	1.3932	1.6011
MHRC0076	37	38	75.9	0.012	0.2505	0.586	0.2074	1.0439
MHRC0076	38	39	211.8	0.021	0.3388	1.9943	0.605	2.9381
MHRC0076	39	40	1.5	0.001	0.0035	0.0194	0.0518	0.0747
MHRC0076	40	41	0.9	-0.001	0.0045	0.0133	0.0628	0.0806
MHRC0076	41	45	-0.5	-0.001	0.0008	0.0033	0.0495	0.0536
MHRC0076	45	46	-0.5	-0.001	-0.0001	0.003	0.0152	0.0181
MHRC0076	46	49	-0.5	-0.001	0.0001	0.0026	0.0127	0.0154
MHRC0076	49	52	-0.5	-0.001	0.0012	0.004	0.0175	0.0227
MHRC0076	52	55	-0.5	-0.001	0.0039	0.0026	0.0117	0.0182
MHRC0076	55	58	-0.5	-0.001	0.0014	0.0025	0.0397	0.0436
MHRC0076	58	61	-0.5	-0.001	0.0002	0.0021	0.0572	0.0595
MHRC0076	61	64	-0.5	-0.001	0.0003	0.0029	0.02	0.0232
MHRC0076	64	67	-0.5	-0.001	0.014	0.0024	0.0447	0.0611
MHRC0076	67	70	-0.5	-0.001	0.0156	0.0023	0.0441	0.062
MHRC0076	70	73	-0.5	-0.001	0.0086	0.0015	0.0611	0.0712
MHRC0076	73	74	-0.5	-0.001	0.0051	0.0031	0.0671	0.0753
MHRC0076	74	75	2.4	0.003	0.135	0.0047	0.3838	0.5235
MHRC0076	75	76	2.6	0.008	0.2153	0.0025	2.6354	2.8532
MHRC0076	76	77	1.6	0.001	0.1131	0.0016	0.5135	0.6282
MHRC0076	77	78	0.5	-0.001	0.0272	0.0037	0.0724	0.1033
MHRC0076	78	79	-0.5	-0.001	0.0152	0.0029	0.0388	0.0569
MHRC0076	79	80	1.7	0.021	0.1682	0.0032	1.8733	2.0447
MHRC0076	80	81	2.1	0.018	0.1645	0.0045	0.4394	0.6084
MHRC0076	81	82	-0.5	-0.001	0.0141	0.0069	0.0609	0.0819

MHRC0076	82	83	-0.5	-0.001	0.0023	0.0048	0.0173	0.0244
MHRC0076	83	84	-0.5	-0.001	0.0021	0.0027	0.0233	0.0281
MHRC0076	84	87	-0.5	0.002	0.0098	0.0033	0.0386	0.0517
MHRC0076	87	89	-0.5	-0.001	-0.0001	0.0017	0.0391	0.0407

Appendix B JORC Table One – Section One. Sampling Techniques and Data Mount Hardy Drilling – Reverse Circulation Drilling

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report.	Reverse Circulation (RC) drill samples were taken from the rotary splitter mounted on the rig cyclone. All samples from 2019 drilling have been submitted to Genalysis/Intertek Laboratories for industry standard preparation (whole sample crushed to >85% <75um) and analysis by both ICP for base metals and Fire Assay for precious metals.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Reverse Circulation (RC) drilling with samples collected at 1m intervals
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Average of >95% recovery in all intervals. No issues of fines loss were observed. No issues relating to preferential loss/gain of grade material have been noted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	RC chips were geologically logged for lithology, mineralogy, colour, weathering, alteration, and mineralisation. All holes were logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	All RC holes were sampled from the rotating splitter under the drill cyclone, taking a 2-4kg split from the bulk 15-25kg 1m interval. The sample preparation for all samples follows industry best practice, with oven drying of samples prior to coarse crushing and pulverization (to >85% passing 75 microns) of the entire sample Field duplicates have been taken every 50 th sample. Further sampling (second half, lab umpire assay) will be conducted if it is considered necessary. The sample size (2-5 kg) is considered to be adequate for the material and grainsize being sampled and the style of mineralisation being drilled
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether	Three certified base metal standards and a certified blank sample were analysed during at a rate of 1 in 25 samples. Standards were GBM399-7, GBM399-2, and GBM908-10 – low, medium and high grade for base metal respectively. Blank GLG312-2 was used. pXRF results for the standards and the blank were acceptable, and no calibration factors have been applied.

	acceptable levels of accuracy (ie lack of bias) and precision have been established.	All samples are to be analysed at Genalysis Intertek by ICP technique, lab codes 4A/OE33 and FA25/OE04. The four acid digest for the ICP data is considered a "total" result. Base metal standards and Blanks were inserted into the laboratory batch, results are awaited. Given the above QA/QC work the data is considered to be a total result for the base metals reported (Cu, Pb, Zn), and to have
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	acceptable levels of accuracy and precision. Sampling was conducted by the field geologist and verified by the Exploration Manager on site prior to dispatch. All data was entered into standardized spreadsheets on field laptops and uploaded into the company database. No adjustments have been made to the primary assay data
Locations of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All drilling collars were located up using a DGPS unit with accuracy of ca. 1m for Easting, Northing and RL All coordinate data for the Mount Hardy project are in MGA_GDA94 Zone 52.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	At this early stage of exploration hole spacings vary as dictated by target size and position. No compositing has been applied to the exploration results. Sampling was of an exploratory and reconnaissance nature and spacings are insufficient to establish continuity or define Resources.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling intersections at Mount Hardy vary in the relationship to the mineralisation orientation. All holes were designed to give the best possible (as close to perpendicular) intersection, however most drilled prospects only have a few holes and so the orientation is not well defined. In practise the intersections are at worst oriented at 45 degrees to the plane of the mineralisation (when it is known).
Sample security	The measures taken to ensure sample security.	All RC samples were under company supervision at all times prior to delivering to Genalysis/Intertek laboratories in Alice Springs
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No sampling audits have been conducted at Mount Hardy

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Mount Hardy prospects are located on tenements EL 27892, EL 28694 and EL 29219 held by Todd River Metals Pty Ltd, which is wholly-owned by Todd River Resources Limited. All tenements are in good standing with no know impediments
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Between 2012 and 2016 significant work was conducted by TNG Limited, and has been reported to the ASX in several ASX Releases (Mentioned in the text). In 2017 Todd River

		completed one drilling program and has reported results in several ASX releases (such as
Geology	Deposit type, geological setting and style of mineralisation.	Exploration at Mount Hardy conducted by Todd River Resources has aimed to identify structurally controlled base metal mineralisation, similar to that already outlined at Mount Hardy and elsewhere in the Arunta at Jervois or Barrow Creek. Both areas are underlain by the Paleoproterozoic Lander Rock Beds schists and gneisses and have been intruded by Mesoproterozoic granites and are cut be major shear zones.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Hole location details for the current program are shown in Table 1. Interval and grade values reported here have been determined from averages of multiple portable XRF results and so approach a representative result. Laboratory analyses will be reported as available.
	○ Hole length	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No grade results are reported here. No maximum or minimum cuts applied.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Orientation not well defined. Expected true thickness ca. 70-80% or drill/intercept interval.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Detailed diagrams and sectional views of the mineralisation are contained in the release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All received results are reported here. ALL data used is included in Appendix A.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No substantial new information is available other than that reported above.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Samples from the ongoing drilling have been submitted for analysis and will be reported when available. Drilling will continue at Mount Hardy over the coming few weeks, with sample submission and analytical results reported as available.