

MTRC011 128M AT 0.39% Ni INC. 36M AT 0.50% Ni

HIGHLIGHTS

- Geochemical assay results received for diamond tail of hole MTRC011 at Mulga Tank Project
- Combined with previous RC samples the assay results show cumulative nickel sulphide mineralisation of:
Cumulative 466m at 0.32% Ni, 130ppm Co, 49ppm Cu, 23ppb Pt+Pd with S:Ni 0.8
- Zones of higher grade sulphide mineralisation at depth including:
MTRC011 128m at 0.39% Ni, 138ppm Co, 50ppm Cu, 25ppb Pt+Pd from 490m
inc. 36m at 0.50% Ni, 139ppm Co, 55ppm Cu, 49ppb Pt+Pd from 494m
- Extensive magmatic nickel sulphide mineral system throughout hole - elevated Ni and S coincident with highly anomalous Cu, PGE and disseminated sulphides observed:
MTRC011 80m at 0.22% Ni, 126ppm Co, 73ppm Cu, 26ppb Pt+Pd from 163m
9m at 0.34% Ni, 148ppm Co, 117ppm Cu, 33ppb Pt+Pd from 276m
87m at 0.32% Ni, 135ppm Co, 67ppm Cu, 31ppb Pt+Pd from 291m
128m at 0.39% Ni, 138ppm Co, 50ppm Cu, 25ppb Pt+Pd from 490m
162m at 0.32% Ni, 123ppm Co, 22ppm Cu, 16ppb Pt+Pd from 694m
- MTRC011 stepped out from diamond hole MTD028 targeting active basal zone along western margin of the main body Mulga Tank Complex beneath possible nickel depletion zone
- Architecture of the Complex being revealed in similarities in assay results between holes
- Two high-grade basal target zones emerging each prospective for richer massive sulphide accumulations

Western Mines Group Ltd (WMG or Company) (**ASX:WMG**) is pleased to update shareholders on the geochemical assay results recently received for the diamond core tail to previous reverse circulation (RC) hole MTRC011 at the Mulga Tank Ni-Co-Cu-PGE Project, on the Minigwal Greenstone Belt, in Western Australia's Eastern Goldfields.

Hole MTRC011 is located on the western side of the Mulga Tank Complex, along the westernmost fence of Phase 1 RC drill holes (drilled in October-November 2023) and ~400m SW of diamond hole MTD028. Hole MTD028 intersected 140m at 0.49% Ni from 874m, including 82m at 0.55% Ni from 886m, in a zone of possible "cloud sulphide" containing multiple high-grade semi-massive sulphide segregations (ASX, *MTD028 Disseminated Nickel Sulphide 140m at 0.49% Ni, 31 October 2023*).

Western Mines Group Ltd

Unit 10, 448 Roberts Road
Subiaco WA 6008

ASX:WMG

Telephone: +61 475 116 798
Email: contact@westernmines.com.au
www.westernmines.com.au

Shares on Issue: 113.75m
Share Price: \$0.245
Market Cap: \$27.87m
Cash: \$3.14m (31/12/25)

The diamond tail extension to hole MTRC011 was designed to step out from hole MTD028 and test the basal contact of the Complex at a shallower depth.

MTRC011 tail intersected a ~550m thickness of high MgO adcumulate dunite ultramafic containing disseminated magmatic sulphides (trace to 2%) that in a number of places coalesced into interstitial blebs (3 to 8% sulphide). Numerous intersections of large high-tenor semi-massive sulphide segregations, similar to MTD028, were observed above the target basal contact (ASX, *High-Grade Sulphide Segregations at Depth in MTRC011*, 30 October 2025).

Combined with previous RC sample assays (ASX, *MTRC009 Assays Confirm 367m of Nickel Mineralisation*, 30 November 2023) the geochemical results for the hole show broad intersections of disseminated nickel mineralisation with elevated Ni and S, in combination with anomalous Cu and PGE, which cumulatively total:

466m at 0.32% Ni, 130ppm Co, 49ppm Cu, 23ppb Pt+Pd with S:Ni 0.8

The results show strong evidence for an extensive magmatic nickel sulphide mineral system with significant mineralised intersections down the hole including:

MTRC011

- 80m at 0.22% Ni, 126ppm Co, 73ppm Cu, 26ppb Pt+Pd from 163m
- inc. 1m at 1.08% Ni, 321ppm Co, 397ppm Cu, 0.11g/t Pt+Pd from 223m
- 9m at 0.34% Ni, 148ppm Co, 117ppm Cu, 33ppb Pt+Pd from 276m
- 87m at 0.32% Ni, 135ppm Co, 67ppm Cu, 31ppb Pt+Pd from 291m
- 128m at 0.39% Ni, 138ppm Co, 50ppm Cu, 25ppb Pt+Pd from 490m
- inc. 36m at 0.50% Ni, 139ppm Co, 55ppm Cu, 49ppb Pt+Pd from 494m
- and inc. 8m at 0.41% Ni, 164ppm Co, 108ppm Cu, 34ppb Pt+Pd from 568m
- 162m at 0.32% Ni, 123ppm Co, 22ppm Cu, 16ppb Pt+Pd from 694m

Commenting on the MTRC011 assay results, WMG Managing Director Caedmon Marriott said:

"Our review of all the occurrences of high-grade massive sulphide within drill core ahead of the Phase 4 program highlighted a very 'active' and prospective mineralised zone within the bottom ~200m of the Complex, above the basal contact. This was particularly evident in the assay results and sulphide occurrences in hole MTD028. MTRC011 is the closest RC hole to MTD028 and this diamond tail aimed to step out from MTD028 and further test this mineralised basal zone."

The assay results from MTRC011 show similarities with MTD028 and in fact highlight two mineralised layers - an active basal zone and a second upper mineralised zone - interpreted as separate sulphur saturated magma pulses. This observation has been seen in previous holes and both horizons are compelling targets for massive sulphide deposits. These independent horizons or magma flows would likely not form high grade deposits in the same locations, and this is seen in results to date with MTD028 basal zone being best mineralised whereas in other holes the upper zone shows better mineralisation. Having these two horizons essentially doubles the prospectivity of the Complex. Further existing RC holes along this western margin will be used to systematically test this exciting area."

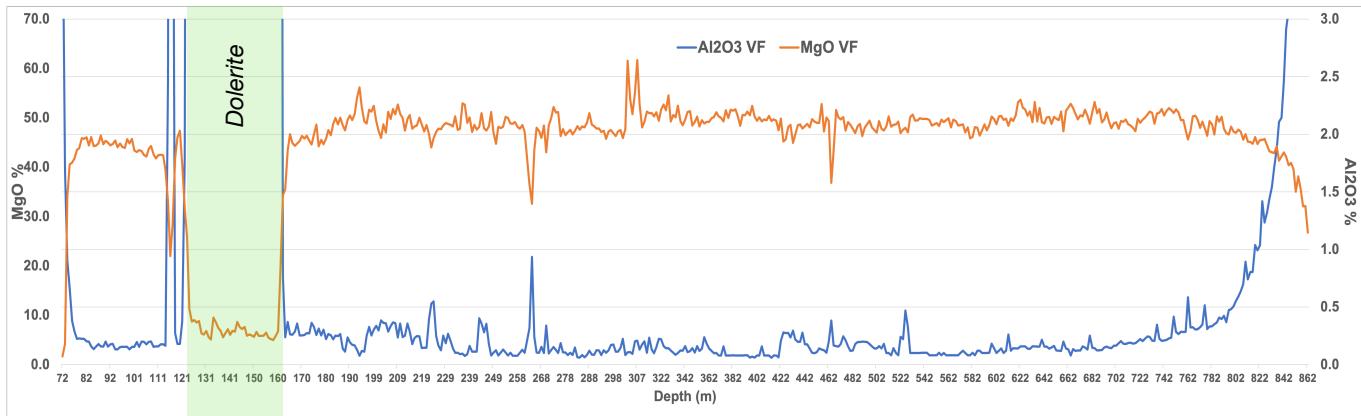
MULGA TANK DRILLING PROGRAMS

Exploration results from the Company's various drilling programs at the Mulga Tank Project over the last three years have demonstrated significant nickel sulphide mineralisation and an extensive nickel sulphide mineral system within the Mulga Tank Ultramafic Complex.

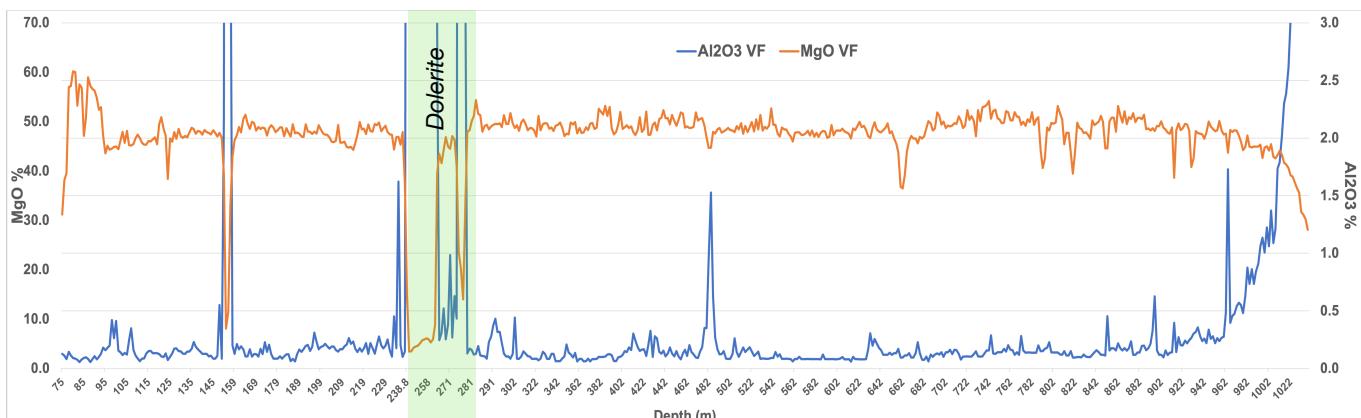
WMG has undertaken a combination of both diamond and reverse circulation (RC) drilling. With this two pronged approach, RC is used to infill and prove up the extent of shallow disseminated nickel sulphide mineralisation, defined by the Company's Mineral Resource Estimate (ASX, *Mulga Tank Mineral Resource Over 5Mt Contained Nickel, 10 April 2025*), whilst the diamond drilling program continues to test deeper targets for basal massive sulphide.

HOLE MTRC011

Hole MTRC011 was drilled in October 2023 as part of the westernmost fence of the Company's Phase 1 RC program (along with holes MTRC001, MTRC010 and MTRC012). The hole is located ~400m SW of diamond hole MTD028, which was drilled to test the *W Conductor* EM anomaly at depth beneath diamond hole MTD022. Hole MTD028 returned an intersection of 140m at 0.49% Ni from 874m, including 82m at 0.55% Ni from 886m, in a zone of possible Perseverance-like "cloud sulphide", containing multiple high-grade sulphide segregations, above the basal contact (ASX, *MTD028 Disseminated Nickel Sulphide 140m at 0.49% Ni, 31 October 2023*). The MTRC011 diamond tail aimed to step out from hole MTD028 and further test the basal contact of the Complex in this area.


The diamond tail extension was drilled from 312m to a total depth of 934.1m and intersected ~550m of variably serpentinised and talc-carbonate altered high MgO adcumulate dunite ultramafic (312-864.2m), before encountering a footwall of basalt and silicified shales at 864.2m depth (864.2-934.1m).

Disseminated magmatic sulphides (trace to 2%) were observed at numerous intervals down the hole, cumulatively over more than 250m. In a number of places the disseminated sulphides coalesce into interstitial blebs (3 to 8% sulphide) between former olivine crystals.


A number of intersections of high-tenor nickel sulphide immiscible globules and semi-massive sulphide segregations were observed towards the base of the hole similar to those seen in MTD028. These sulphide globules and segregations clearly demonstrate all the conditions and processes are present to form basal massive sulphide accumulations within the Mulga Tank Complex.

HIGH MGO ADCUMULATE DUNITE

Assay results for MTRC011 averaged 48.0% MgO and 0.39% Al₂O₃ (volatile free) over the logged ultramafic portion of the hole (a cumulative 752m) (Figure 1). Using Al₂O₃ as a proxy for interstitial material and MgO as a proxy for temperature, geochemical characterisation shows the host rock to be nearly entirely high-temperature, adcumulate to extremely adcumulate dunite with Al₂O₃ generally less than 0.5% and MgO greater than 40%.

Figure 1: MTRC011 MgO and Al_2O_3 (volatile free)

MTRC011 showed similarities with hole MTD028 (Figure 2), encountering a dolerite horizon at 124m to 161m downhole (MTD028 dolerite 239m to 265m) with a 703m package of adcumulate dunite above the footwall contact (MTD028 762m package of adcumulate dunite).

Figure 2: MTD028 MgO and Al_2O_3 (volatile free)

EVIDENCE FOR SULPHIDES AS NICKEL HOST

Broad intersections of visible disseminated nickel sulphide mineralisation were observed down the hole. The geochemical assay results validate the geological logging and confirm extensive zones of mineralisation with significant evidence for “live” magmatic sulphide chemical processes.

In the absence of magmatic sulphide processes nickel is incorporated into olivine during crystallisation and essentially trapped within the dunite host rock. Whereas, in “live” sulphur saturated mineral systems the nickel will partition into potentially “recoverable” nickel sulphide form. A number of elements, such as Cu and in particular PGE’s (Pt and Pd), have high affinity for sulphide, and in combination with S (and the S:Ni ratio) are used as geochemical indicators to confirm the presence of active magmatic sulphide mineral processes.

The assay results for MTRC011 demonstrate extensive zones of highly anomalous Cu and PGE’s in combination with elevated S, and a S:Ni ratio greater than 0.5 (Figure 3). These zones correlate well with the visible sulphides observed in the geological logging and together provide strong evidence for nickel in sulphide.

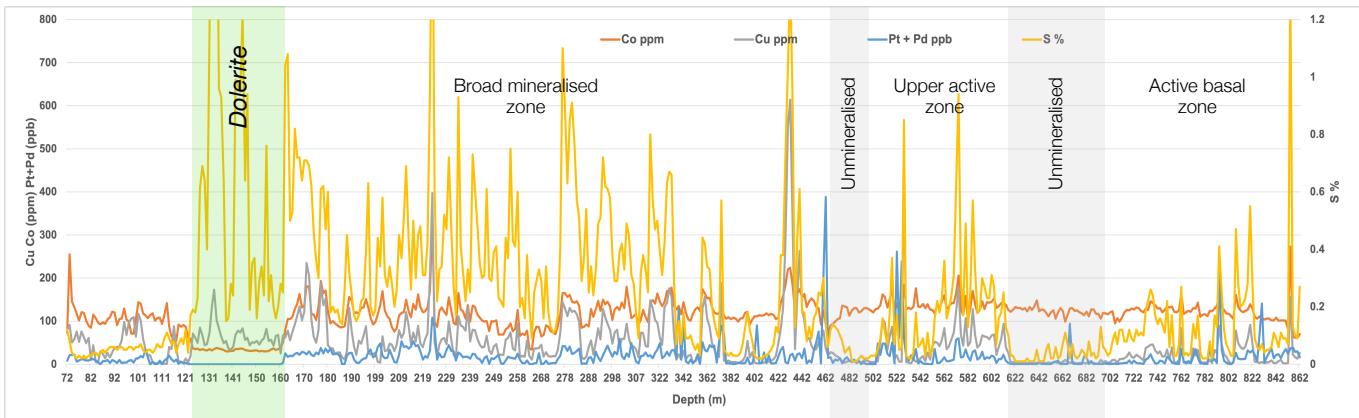


Figure 3: MTRC011 Co, Cu, S and Pt+Pd

A number of significant broad mineralised intersections were observed down the hole. These were generally defined by a combination of the various geochemical indicators and cut-off grades (Ni >0.16%, Cu >20ppm, Pt+Pd >20ppb, S:Ni >0.5), with only minimal inclusion of unmineralised material below mineable width. The broad mineralised intersections defined were:

MTRC011 **80m at 0.22% Ni, 126ppm Co, 73ppm Cu, 26ppb Pt+Pd from 163m**
 inc. **1m at 1.08% Ni, 321ppm Co, 397ppm Cu, 0.11g/t Pt+Pd from 223m**
9m at 0.34% Ni, 148ppm Co, 117ppm Cu, 33ppb Pt+Pd from 276m
87m at 0.32% Ni, 135ppm Co, 67ppm Cu, 31ppb Pt+Pd from 291m
128m at 0.39% Ni, 138ppm Co, 50ppm Cu, 25ppb Pt+Pd from 490m
 inc. **36m at 0.50% Ni, 139ppm Co, 55ppm Cu, 49ppb Pt+Pd from 494m**
 and inc. **8m at 0.41% Ni, 164ppm Co, 108ppm Cu, 34ppb Pt+Pd from 568m**
162m at 0.32% Ni, 123ppm Co, 22ppm Cu, 16ppb Pt+Pd from 694m

Which cumulatively total:

466m at 0.32% Ni, 130ppm Co, 49ppm Cu, 23ppb Pt+Pd with S:Ni 0.8

Again, MTRC011 shows similarities to MTD028 in the trends in mineralisation, with a broad mineralised zone beneath the dolerite horizon, along with an active basal zone and a second upper active zone, divided by two unmineralised intervals.

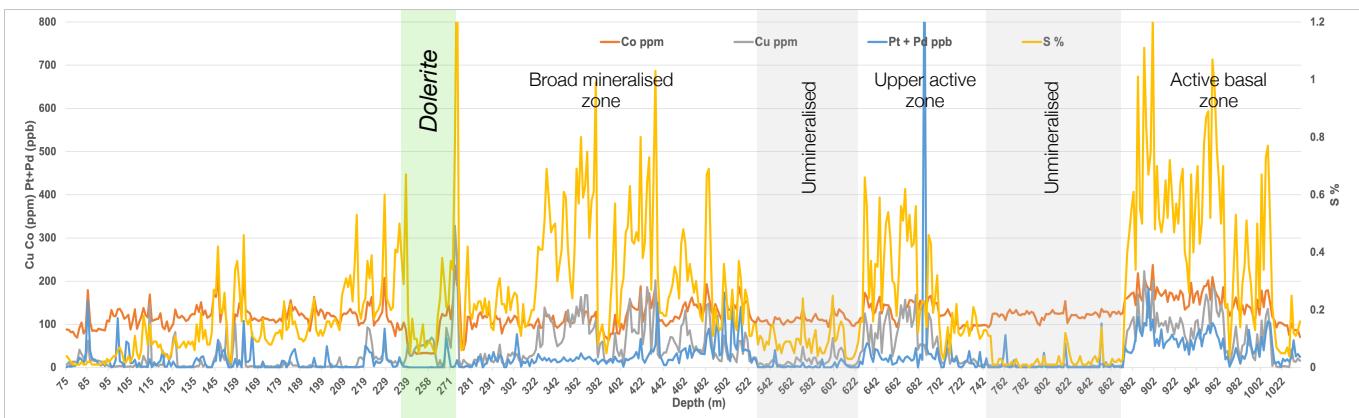


Figure 4: MTD028 Co, Cu, S and Pt+Pd

MTRC011 Upper Zone 128m at 0.39% Ni, 138ppm Co, 50ppm Cu, 25ppb Pt+Pd from 490m
 inc. 36m at 0.50% Ni, 139ppm Co, 55ppm Cu, 49ppb Pt+Pd from 494m

Basal Zone 162m at 0.32% Ni, 123ppm Co, 22ppm Cu, 16ppb Pt+Pd from 694m

MTD028 Upper Zone 116m at 0.27% Ni, 127ppm Co, 59ppm Cu, 39ppb Pt+Pd from 630m
 Basal Zone 140m at 0.49% Ni, 161ppm Co, 92ppm Cu, 61ppb Pt+Pd from 874m
 inc. 82m at 0.55% Ni, 173ppm Co, 114ppm Cu, 74ppb Pt+Pd from 886m

DISCUSSION

Phase 1 RC hole MTRC011 was successfully extended with a diamond tail to further test the basal contact on the western margin of the Mulga Tank Complex. This process can be replicated in the future with several other existing RC holes, saving some ~300m of diamond drilling. The hole looked to step out from diamond hole MTD028 to extend the enriched sulphide zone at the base of that hole, which intersected 140m at 0.49% Ni from 874m, including 82m at 0.55% Ni from 886m.

The assay results from MTRC011 show remarkable similarities to MTD028 in the trends in mineralisation and highlight that there appears to be two mineralised zones in the bottom portion of the holes - an active basal contact zone and second upper active zone. In MTD028 the basal interval shows the best mineralisation whereas in MTRC011 the upper zone is better mineralised. Similar trends are seen in the Company's other deep diamond holes, such as MTD029 and MTD027, where the upper active zone of both these holes also appear to be better mineralised.

MTD029 Upper Zone 266m at 0.34% Ni, 146ppm Co, 86ppm Cu, 37ppb Pt+Pd from 1,192m
 inc. 126m at 0.42% Ni, 153ppm Co, 72ppm Cu, 45ppb Pt+Pd from 1,326m
 that inc. 12m at 0.57% Ni, 181ppm Co, 96ppm Cu, 0.1g/t Pt+Pd from 1,326m
 which inc. 2m at 1.09% Ni, 242ppm Co, 189ppm Cu, 0.3g/t Pt+Pd from 1,334m
 and inc. 34m at 0.50% Ni, 160ppm Co, 68ppm Cu, 54ppb Pt+Pd from 1,416m
 Basal Zone 124m at 0.32% Ni, 126ppm Co, 50ppm Cu, 27ppb Pt+Pd from 1,534m
 inc. 20m at 0.46% Ni, 163ppm Co, 109ppm Cu, 32ppb Pt+Pd from 1,550m
 and inc. 13m at 0.41% Ni, 126ppm Co, 29ppm Cu, 54ppb Pt+Pd from 1,639m

The Company currently interprets these two mineralised horizons as being separate sulphur saturated magma pulses or flows, divided by unsaturated or less mineralised injections. The two zones can be traced laterally over several hundreds of metres to kilometres (MTRC011 to MTD027 is 2.4km) revealing the architecture of the Complex with the horizons moderately dipping to the east and slightly plunging to the north.

Both of these lower horizons with the Complex are compelling targets, often with frequent instances of visual mineralisation, including remobilised massive sulphide veining and large sulphide globules and segregations, highlighting all the processes are working to form massive sulphide deposits within both of these zones. Potential zones of richer mineralisation may not occur in the same location in both layers which greatly increases the prospectivity of the Complex, effectively doubling the prospective area. Channels or lateral zones with higher flux in either of these independent magma layers could host richer massive sulphide deposits.

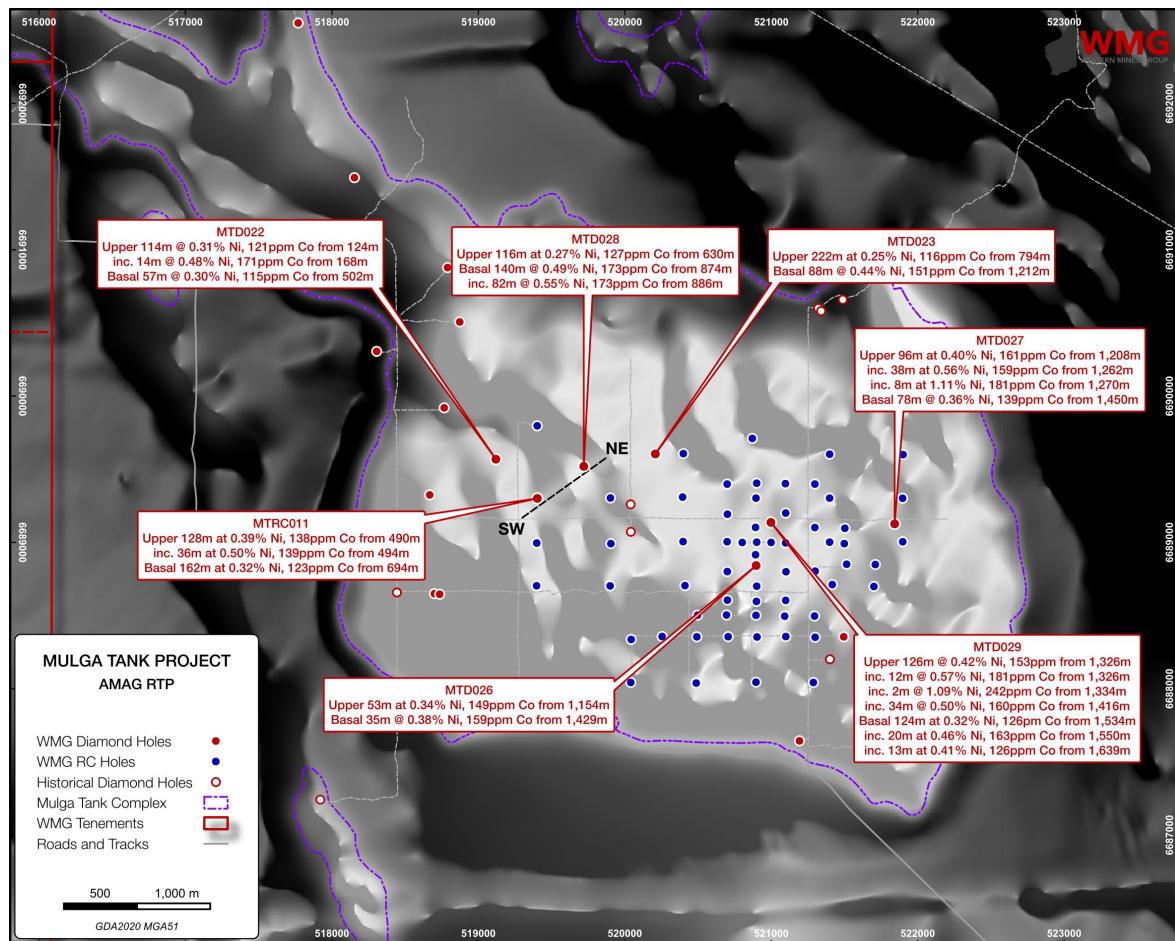


Figure 5: WMG deep diamond holes intersecting basal contact of the Mulga Tank Complex

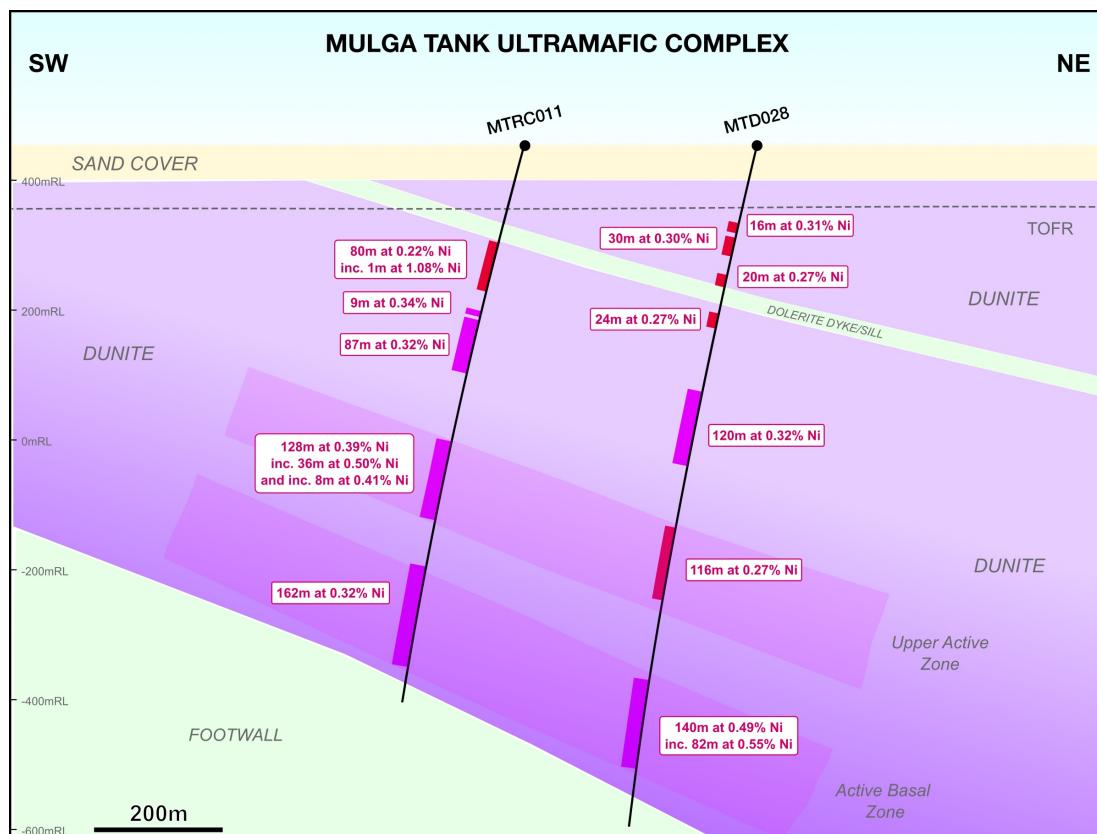


Figure 6: Schematic cross section SW-NE through the western margin of the Mulga Tank Complex

CURRENT DRILLING

Having completed hole MTRC009 (EIS9) and confirmed footwall the drill rig has now converted to RC and will drill the remaining RC holes of the Phase 4 program followed by further drilling over the next several months. The Company looks forward to updating shareholders on the continuing progress at the Mulga Tank Project as these drilling programs progress.

For further information please contact:

Dr Caedmon Marriott
Managing Director
Tel: +61 475 116 798
Email: contact@westernmines.com.au

This announcement has been authorised for release to the ASX by Dr Caedmon Marriott, Managing Director

APPENDIX

HoleID	From (m)	To (m)	Interval (m)	Ni (%)	Co (ppm)	Cu (ppm)	Pt + Pd (ppb)
MTRC011	163 inc. 223	243 224	80 1	0.22 1.08	126 321	73 397	26 108
MTRC011	276	285	9	0.34	148	117	33
MTRC011	291 inc. 328 and inc. 358	378 346 378	87 18 20	0.32 0.38 0.38	135 144 139	67 70 80	30 41 46
MTRC011	490 inc. 494 and inc. 568	618 530 576	128 36 8	0.39 0.50 0.41	138 139 164	50 55 108	25 49 34
MTRC011	694 inc. 724 and inc. 790 and inc. 808	856 756 800 824	162 32 10 16	0.32 0.35 0.36 0.35	123 131 137 132	22 28 44 55	16 8 54 21

Table 1: Hole MTRC011 significant intersections

HoleID	Easting (MGA51)	Northing (MGA51)	Depth (m)	Azimuth	Dip
MTRC011	519403	6689301	934.1	272	-71

Table 2: Collar details for hole MTRC011

ABOUT WMG

Western Mines Group Ltd

ACN 640 738 834
 Unit 10, 448 Roberts Road
 Subiaco
 WA 6008

Board

Rex Turkington
Non-Executive Chairman

Dr Caedmon Marriott
Managing Director

Francesco Cannavo
Non-Executive Director

Dr Benjamin Grguric
Technical Director

Capital Structure

Shares: 113.75m
 Options: 16.65m
 Share Price: \$0.245
 Market Cap: \$27.87m
 Cash (31/12/25): \$3.14m

Follow us

 [@westernmines](#)
 [Western Mines Group](#)

Western Mines Group Ltd (ASX:WMG) is a mineral exploration company driven by the goal to create significant investment returns for our shareholders through exploration and discovery of high-value gold and nickel sulphide deposits across a portfolio of highly-prospective projects located on major mineral belts of Western Australia.

Our flagship project is the Mulga Tank Ni-Co-Cu-PGE Project, a major ultramafic complex found on the under-explored Minigwal Greenstone Belt (100% WMG). WMG's exploration work has discovered a significant nickel sulphide mineral system and is considered highly prospective for globally significant Ni-Co-Cu-PGE deposits. An Mineral Resource Estimate of 1,968Mt at 0.27% Ni, over 5.3Mt of contained nickel, was announced in April 2025, making Mulga Tank the largest nickel sulphide deposit in Australia.

The Company's primary gold project is Jasper Hill, where WMG has strategically consolidated a 3km mineralised gold trend with walk-up drill targets. WMG has a diversified portfolio of other projects including Melita (Au, Cu-Pb-Zn), midway between Kookynie and Leonora in the heart of the WA Goldfields; Youanmi (Au) and Pinyalling (Au, Cu, Li).

COMPETENT PERSONS STATEMENT

The information in this announcement that relates to Exploration Results and other technical information complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and has been compiled and assessed under the supervision of Dr Caedmon Marriott, Managing Director of Western Mines Group Ltd. Caedmon is a Member of the Australian Institute of Geoscientists and a Member of the Society of Economic Geologists. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Caedmon consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

DISCLAIMER

Some of the statements appearing in this announcement may be in the nature of forward looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which WMG operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward looking statement. No forward looking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by a number of factors and subject to various uncertainties and contingencies, many of which will be outside WMG's control.

WMG does not undertake any obligation to update publicly or release any revisions to these forward looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of WMG, its Directors, employees, advisors or agents, nor any other person, accepts any liability for any loss arising from the use of the information contained in this announcement. You are cautioned not to place undue reliance on any forward looking statement. The forward looking statements in this announcement reflect views held only as at the date of this announcement.

MULGA TANK PROJECT

JORC CODE, 2012 EDITION - TABLE 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> Diamond core drilling was completed using standard industry best practice NQ2 diamond core was cut in quarters and sampled on 2 metre intervals. Samples were crushed and pulverised to produce a sub-sample for analysis by multi-element ICP-AES (ME-ICP61), precious metals fire assay (PGM-ICP23) and loss on ignition at 1,000°C (ME-GRA05)
Drilling techniques	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<ul style="list-style-type: none"> Diamond drilling comprised NQ2 core The core was orientated using a downhole orientation tool at the end of every run
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> Diamond core recoveries were logged and recorded in the database. Overall recoveries were reported at >95% with no core loss issues or significant sample recovery problems Diamond core was reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths were checked against the depth given on the core blocks and rod counts were routinely carried out by the drillers

Criteria	JORC Code explanation	Commentary
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> Information on structure type, dip, dip direction, alpha angle, beta angle, texture, shape and fill material were collected and stored in the database Logging of diamond core recorded lithology, mineralogy, mineralisation, structural, weathering, colour, and other features of the samples. Core was photographed in both dry and wet form Drillhole was logged in full, apart from rock rolled diamond hole pre-collar intervals
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> Core was cut in quarters and sampled on 2 metre lengths for geochemical assay Samples were crushed and pulverised to produce a sub-sample for analysis by multi-element ICP-AES (ME-ICP61), precious metals fire assay (PGM-ICP23) and loss on ignition at 1,000°C (ME-GRA05) Industry standard sample preparation techniques were undertaken and considered appropriate for the sample type and material sampled
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	<ul style="list-style-type: none"> Samples analysed by four-acid digest multi-element ICP-AES (ME-ICP61) or precious metals fire assay (PGM-ICP23) are considered total or near total techniques Standards, blanks and duplicate samples were introduced through-out the sample collection on a 1:20 ratio to ensure quality control ALS also undertake duplicate analysis and run internal standards as part of their assay regime
Verification of sampling and assaying	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	<ul style="list-style-type: none"> Primary logging data was collected using Ocris logging system on a laptop computer, Significant reported assay results were verified by multiple alternative company personnel All logging and assay data was compiled into a SQL database server

Criteria	JORC Code explanation	Commentary
Location of data points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> Drill holes located using a handheld GPS with accuracy of +/-3m, downhole surveys used continuous gyro readings at 5m intervals Coordinates are in GDA2020 UTM Zone 51
Data spacing and distribution	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	<ul style="list-style-type: none"> The drilling completed was reconnaissance in nature designed to test specific geological and geophysical targets for first pass exploration purposes only
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> The drilling was planned to be approximately perpendicular to the interpreted stratigraphy and footwall contact
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Samples core were delivered to the laboratory by company personnel
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> No audits or reviews of drilling sampling techniques or data by external parties at this stage of exploration Significant drilling intersections reviewed by company personnel An internal review of sampling techniques and data will be completed

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> Tenements E39/2132, E39/2134 and E39/2223, tenement application E39/2299 Held 100% by Western Mines Group Ltd 1% NSR over E39/2134, tenements E39/2132 and E39/2223 are royalty free Native Title held by Upurli Upurli Nguratja and Nyalpa Pirniku No known registered sites or historical areas within the tenements Goldfields Priority Ecological Community PEC54 borders eastern edge of project area Tenement is in good standing

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	<ul style="list-style-type: none"> Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> Previous exploration over the Mulga Tank project area by various companies dates back to the 1980s Of these, more detailed exploration was completed by BHP Minerals Pty Ltd (1982–1984), MPI Gold Pty Ltd (1995–1999), North Limited (1999–2000), King Eagle Resources Pty Ltd (2004–2012), and Impact (2013–2018)
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> The geology of the project area is dominated by the irregular shaped Mulga Tank serpentised metadunite intrusive body measuring ~5km x 5km, hosted within metasediments, mafic to felsic schists and foliated metagranite of the northwest trending Archean Minigwal Greenstone Belt Previous drilling intersected disseminated and narrow zones of massive nickel-copper sulphide mineralisation within the dunite intrusion The intrusion is concealed under variable thicknesses of cover (reported up to 70 m in places) with the interpretation of the bedrock geology based largely on aeromagnetic data and limited drilling
Drill hole information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> A listing of the drill hole information material to the understanding of the exploration results provided in the body of this announcement The use of any data is recommended for indicative purposes only in terms of potential Ni-Cu-PGE mineralisation and for developing exploration targets
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> No metal equivalent values have been quoted Results where stated have been normalised to a volatile free sample based on the LOI at 1,000°C results using the formula $M(VF) = M / (100\% - LOI\%)$

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<ul style="list-style-type: none"> The drillhole was oriented to intersect perpendicular to the base or stratigraphy The relationship of the downhole length to the true width is not known
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Appropriate maps, photos and tabulations are presented in the body of the announcement
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> Reporting of significant intersections in Table 1 Reporting of majority of all sample results on charts within the document
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> Not applicable
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Future exploration planned includes further drill testing of targets identified Exploration is at an early stage and future drilling areas will depend on interpretation of results