

Corporate Details

Zenith Minerals Limited (ASX:ZNC)

ABN: 96 119 397 938

 Issued Shares
 294.4M

 Unlisted options
 16.55M

 Mkt. Cap. (\$0.275)
 A\$81M

 Cash (31-Mar-21)
 A\$3.1M

 Debt
 Nil

Directors

Peter Bird Exec Chair
Michael Clifford Director-CEO
Stan Macdonald Non-Exec Director
Julian Goldsworthy Non-Exec Director
Graham Riley Non-Exec Director
Nicholas Ong CFO & Co Sec

Major Shareholders

Directors	~7%
HSBC Custody. Nom.	10.4%
BNP Paribas. Nom.	5.0%
Granich	4.6%
Citicorp Nom	4.3%

Our Vision

Zenith has a vision to build a gold and base metals business with a team of proven project finders.

Focus is on 100% owned Zenith projects, whilst partners progress multiple additional opportunities using partner funds.

Contact Us

Level 2, 33 Ord Street
WEST PERTH WA 6005
PO Box 1426
WEST PERTH WA 6872
Telephone: (08) 9226 1110
Email:info@zenithminerals.com.au
Web:www.zenithminerals.com.au

HIGH-GRADE GOLD ZONE CONTINUES TO EXTEND AT RED MOUNTAIN

- New assay results define plunging high-grade gold shoot at the Red Mountain gold project in Queensland.
- The north-east plunging shoot remains open and will be the subject of follow-up drill testing. New assay results include:
 - 21m @ 1.9 g/t Au incl. 2.0m @ 10.8 g/t Au, 1.3m @ 5.0 g/t Au (a zone of 9m @ 3.2 g/t Au) and 3m @ 2.4 g/t Au and with further gold mineralised intervals incl. 1m @ 12.5 g/t Au and 11m @ 0.5 g/t Au (ZRMDD042)
 - The gold mineralisation has been intersected 80m below the previous intersection of 5m @ 10.4 g/t Au, defining a shoot some 250m long and open.
- Diamond drilling at Red Mountain has clear objective of resource definition. The drill rig currently working at the Company's Develin Creek copper-zinc project is planned to return to Red Mountain at the end of this month to commence follow-up testing extensions to the high-grade gold zone.
- Mineralisation at Red Mountain is considered by Zenith to be analogous to known gold deposits in Queensland. Evidence includes a zoned system with geochemistry like that documented at third party owned deposits such as Mt Wright which is located 65km east of Charters Towers and the nearby Mount Rawdon Gold Mine (see Figure 1).

Commenting on the results announced Chairman Peter Bird said: "Another solid high-grade drill intersection at Red Mountain on the north western flank in hole 042 firms up the location of the high-grade gold shoot which is now shown to be plunging to the northeast. The Company has to date only tested the northeast quadrant representing a fraction of the prospective "ring structure" (refer to figure 2). Resource definition will add significant value to the business. Red Mountain is only one of three exciting core projects being advanced by the Company, whilst a fourth – the Earaheedy zinc-lead joint venture provides exciting additional value potential."

Significance of these new assay results

Ongoing exploration activity at the 100% owned Red Mountain gold project located in Queensland (Figure 1) is continuing to provide highly encouraging high-grade gold drill assay results. Drilling to date has outlined a sub-vertical, shallow north east plunging, high-grade gold zone to a vertical depth of 200m, with the zone remaining open down plunge and the subject of ongoing drill testing (see Figures 2 - 6).

New gold assay results from 2 diamond core holes have now been received for drill holes ZRMRD042 and 044. The new intersection in hole ZRMRD042 of 21m @ 1.9 g/t Au, including an interval of 9m @ 3.2 g/t Au extends high-grade gold mineralisation 80m below a previous intersection in hole ZRMRC023 of 5m @ 10.4 g/t Au (Refer to Table 1 for a complete listing of both new and previous

Zenith gold results). The high-grade gold zone remains open down plunge to the north east and will be the subject of follow-up drill testing (Figures 4 & 6).

Broad interval of gold with associated strong silver mineralisation intersected in drill hole ZRMDD044, including 23m @ 0.4 g/t Au and 30.6 g/t Ag with individual silver assays peaking at 76.5 g/t Ag (Figure 5).

In addition, new very high-grade silver results were received for hole ZRMDD041 with 0.3m @ 4.0 g/t Au and 270 g/t Ag. Gold results were previously reported in ASX Release 13-May-21 including 7.7m @ 4.4 g/t Au with new silver results over that interval returning 11.8 g/t Ag.

These new results are in addition to previously announced near surface high-grade drilling intersections (ASX Releases 3-Aug-20 & 13-Oct-20, 9-Nov-20, 21-Jan-21), including:

- 13m @ 8.0 g/t Au from surface, incl. 6m @ 16.7 g/t Au
- 15m @ 3.5 g/t Au, incl. 2m @ 22.4 g/t Au
- 12m @ 4.9 g/t Au, incl. 6m @ 9.4 g/t Au
- 5m @ 10.4 g/t Au, incl 1m @ 49.9 g/t Au
- 5m @ 3.5 g/t Au & 54.3 g/t Ag, incl. 2m @ 8.0 g/t Au & 109.4 g/t Ag
- 10m @ 2.7 g/t Au from surface, incl. 4m @ 4.9 g/t Au

Strong silver (Ag) grades associated with gold mineralisation, include: 15m @ 0.4 g/t Au with 20.4 g/t Ag and 4m @

0.5 g/t Au with 82.0 g/t Ag, 5m @ 3.5 g/t Au with 54.3 g/t Ag and a new result of 5m @ 0.3 g/t Au with 30.6 g/t Ag.

High-grade gold mineralisation is associated with a stockwork of base metal (sphalerite-galena) stringer veins in altered diorite, granodiorite and granite on the margin of a rhyolite breccia (Figure 4).

Associated exploration activities aimed at finessing more drill targets are taking shape with results recently received from a detailed drone based aeromagnetic survey and a 3D IP electrical geophysical survey. Detailed interpretation of these large datasets is in progress.

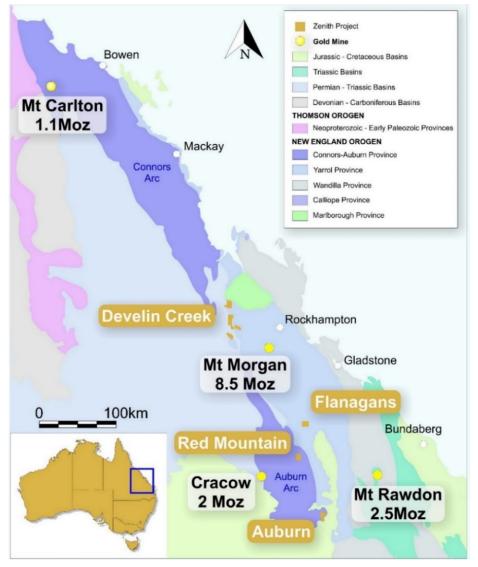


Figure 1: Red Mountain Gold Project Location Map

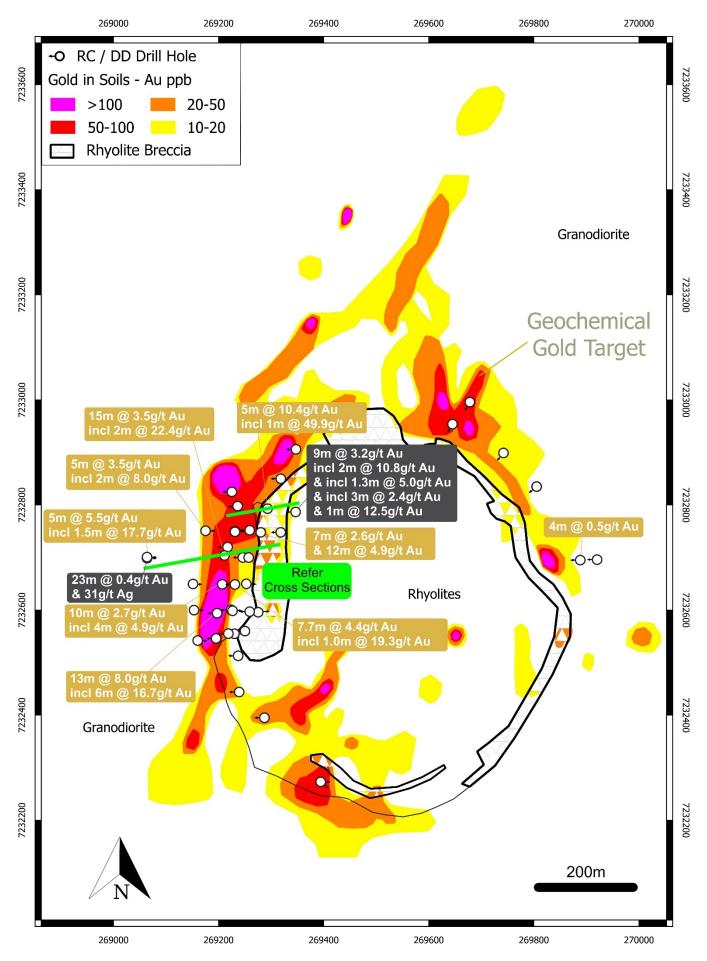


Figure 2: Red Mountain Breccia Pipe Target Showing Gold Soil Anomalies and Drill Collar Locations with Planned DD Holes (new results in black text box, previous results in gold text box)

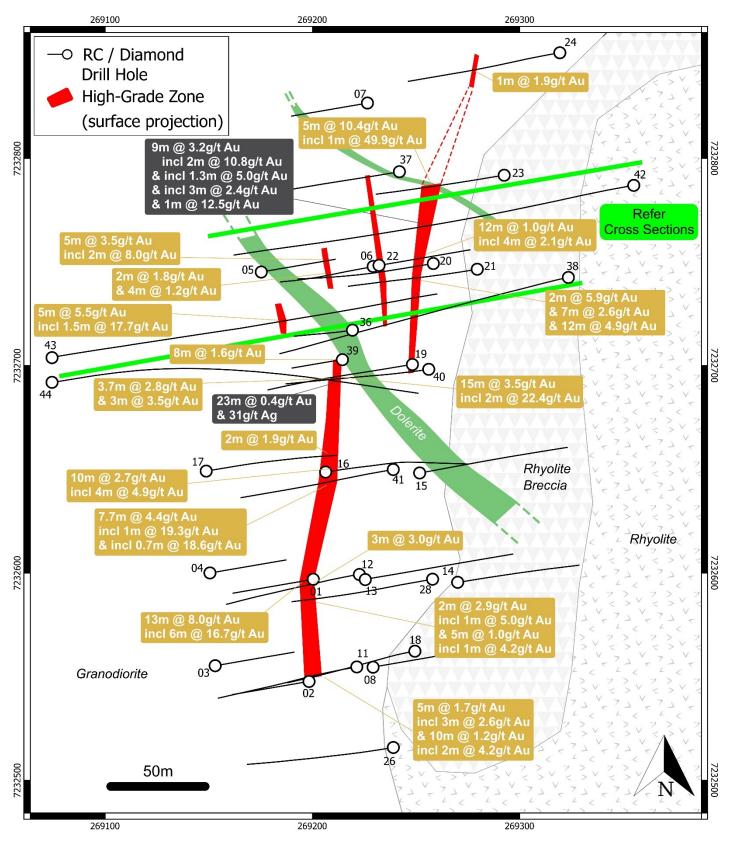


Figure 3: Red Mountain Plan Showing High-Grade Gold Zone (new results in black text box, previous results in gold text box), note hole azimuths adjusted from previous maps to reflect new adjustments to surveys

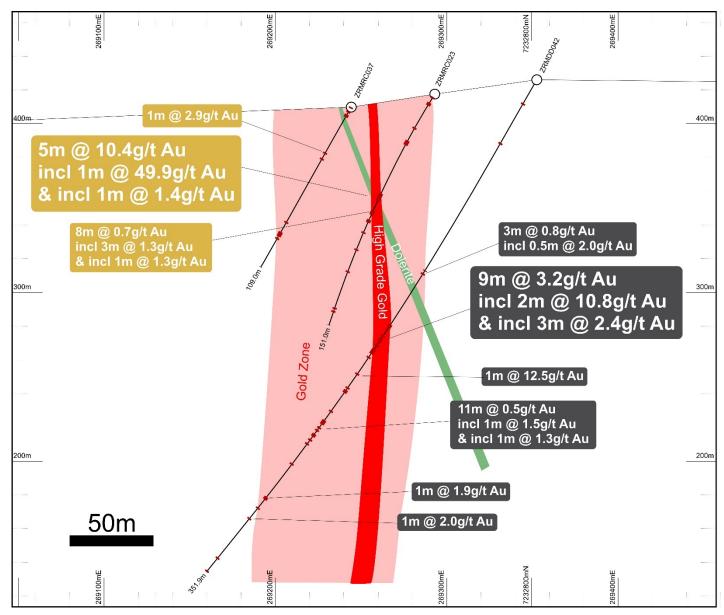


Figure 4: Cross Section - Red Mountain Western Zone High-Grade Gold Zone with Diamond Hole ZRMDD042

Red Mountain - Drill Program Rationale

Results from drilling to date at the Red Mountain gold project outline a zone of high-grade near surface gold mineralisation in a steep dipping zone hosted by altered granitoid rocks, on the western margin of a sub-vertical felsic volcanic breccia pipe. The project is in south east Queensland, lying about halfway between two gold mines Cracow (ASX:AUR) and Mount Rawdon (ASX:EVN) (Figure 1).

The current drill program has focused on the western part of the prospect area (Figures 2 - 5). This area is part of a larger total target zone extending some 2.2 km around the rim of the breccia pipe (Figure 3).

Mineralisation at Red Mountain is considered by Zenith to be analogous to known gold deposits in Queensland. Evidence includes a zoned system with geochemistry like that documented at third party owned Queensland gold deposits such as Mt Wright which is located 65km east of Charters Towers and the nearby Mount Rawdon Gold Mine (Figure 1).

Gold mineralisation at Mount Wright occurs within both brecciated rhyolite and granite close to the margin of a rhyolite breccia pipe in a geological setting very similar to that at Zenith's Red Mountain gold project. The form and shape of the Mt Wright ore body is that of a sub-vertical pencil like body with mineralisation having a strike length of only 200m but vertical extent of over 1.2km (Figure 6). The Mt Wright gold deposit was exploited by Resolute Mining Limited as an underground operation with combined production and reserves exceeding 0.9Moz Au within total resources of ~1.1Moz Au (Resolute Mining 2014 Annual Report & Information Poster June 2014).

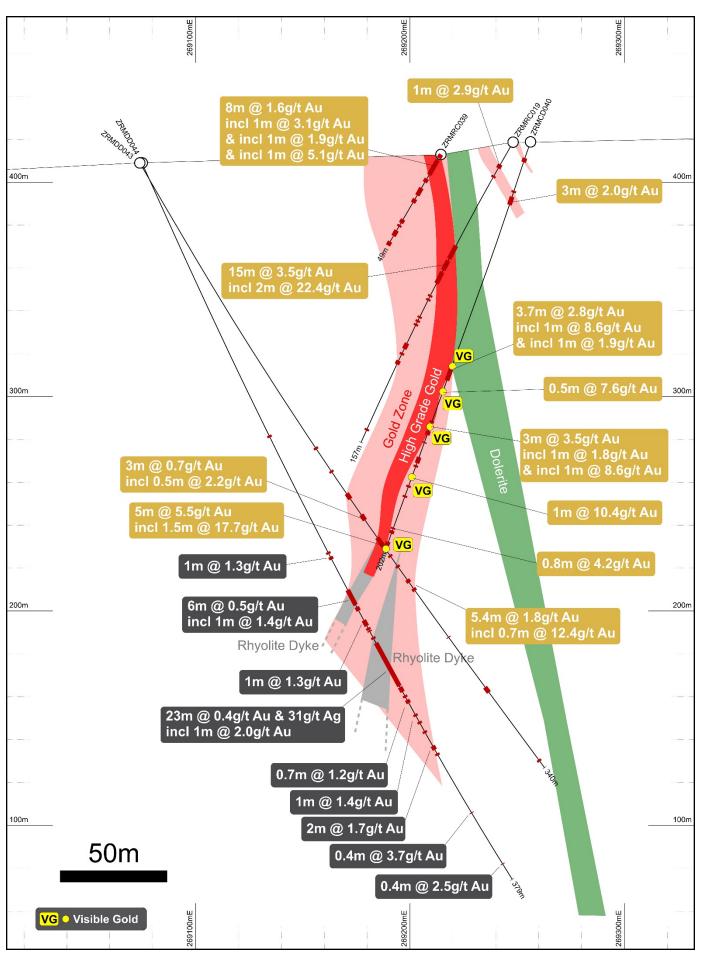


Figure 5: Cross Section - Red Mountain Western Zone High-Grade Gold Zone with Diamond Holes ZRMDD043 & 44

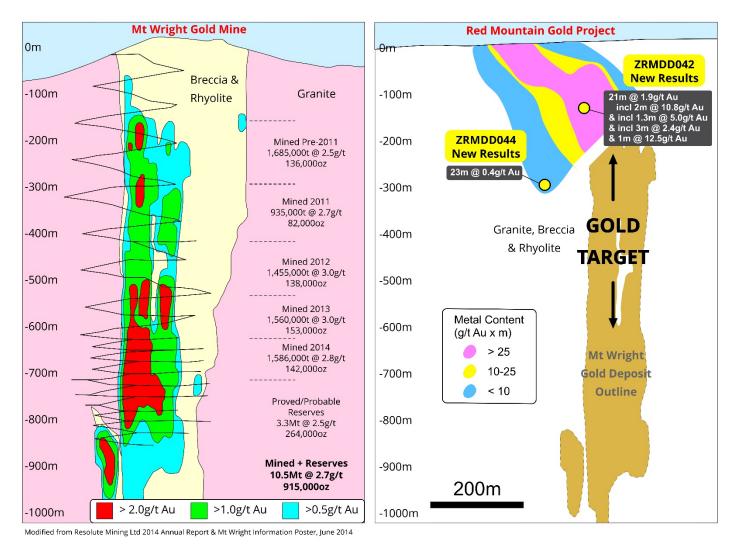


Figure 6: Comparative Cross Sections – Mt Wright Gold Mine (not an asset of the Company) and Red Mountain Gold Project Main Zone Composite Long Section with Location of ZRMDD042 Diamond Drill Results

Table 1: Significant Gold Intersections from Red Mountain

	on Oign		1m Sam	oles		Comments
Hole	From		Interval	Au Grade	Ag Grade	Comments
	(m)	To (m)	(m)	(g/t)	(g/t)	
ZRMRC001	0	13	13	8.0	3.5	
incl	0	6	6	16.7	5.3	
ZRMRC002	0	2	2	0.8	0.5	
incl	1	2	1	1.2	0.5	
				NSR		
ZRMRC003	67	68	1	0.8	10.2	
ZRMRC004				NSR		
ZRMRC005	64	69	5	3.5	54.3	
incl	64	66	2	8.0	109.4	
ZRMRC006	8	14	6	1.0	4.6	
	12	14	2	2.6	7.8	
	26	27	1	3.1	13.6	
	42	54	12	1.0	9.8	
incl	42	44	2	1.2	17.7	
and incl	47	48	1	0.6	13.5	
and incl	50	54	4	2.1	14.2	
incl	50	51	1	6.0	20.2	
and incl	53	54	1	2.0	26.5	
ZRMRC007	36	37	1	0.8	45.0	
ZRMRC008	64	65	1	0.4	65.1	
ZRMRC009	40			NSR		Previous Results
ZRMRC010	43	44	1	0.0	51.6	
ZRMRC011	25	30	5	1.7	3.5	
incl	25	28	3	2.6	5.5	
to all	37	47	10	1.2	1.7	
incl	37	41	4	2.4	3.4	
incl	37	39	2	4.2	5.4	
ZRMRC012	15	16	1	0.4	0.5	
I	29	33	4	0.8	4.8	
incl	32	33	1	1.5	4.3	
ind	38	44	6 3	1.7	13.2	
incl	40 77	43 80	3	3.0 0.5	15.1 1.0	
ZRMRC013	//	٥٥	3	NSR	1.0	
ZRMRC014				NSR		
ZRMRC015				NSR		
ZRMRC016	0	10	10	2.7	3.4	
incl	0	4	4	4.9	3.4	
incl	5	6	1	1.4	3.3	
incl	7	9	2	2.4	5.2	
ZRMRC017	77	78	1	1.0	21.8	
ZAWINCOT/	86	87	1	0.7	5.3	
	100	109	9	0.7	7.9	Previous Results
	100	100		0.5	,.,	

		1m Samples						
Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Ag Grade (g/t)			
incl	100	101	1	1.0	0.6			
	116	118	2	1.9	11.0			
ZRMRC018	9	12	3	0.5	6.1			
	60	61	1	0.7	0.9			
	76	77	1	0.5	33.8			
	85	86	1	0.8	0.5			
ZRMRC019	12	13	1	2.9	3.9			
	18	19	1	0.5	7.1			
	57	72	15	3.5	8.8			
incl	70	72	2	22.4	14.2			
	96	97	1	0.6	0.8			
					9.2			
ZRMRC020	2	3	1	0.5	3.3			
	39	40	1	1.3	1.5			
	46	47	1	3.2	1.7			
	56	71	15	0.4	20.4			
incl	62	63	1	2.7	3.4			
	86	89	3	0.8				
incl	86	87	1	1.2	2.4			
	99	100	1	2.0	1.0			
	114	122	8	0.6				
incl	114	115	1	1.0	6.3			
and incl	117	118	1	3.1				
and incl	121	122	1	0.5				
ZRMRC021	40	41	1	0.4	4.6			
	49	51	2	5.9	16.5			
	61	69	8	2.3				
incl	61	68	7	2.6	11.0			
	74	80	6	0.5	1.1			
incl	78	79	1	1.2	1.1			
	87	89	2	0.9	3.4			
incl	88	89	1	1.2	8.7			
	102	114	12	4.9				
incl	103	109	6	9.4	4.4			
	140	141	1	1.6	3.5			
	146	148	2	0.8	2.4			
incl	147	148	1	1.2	2.4			
ZRMRC022	1	2	1	0.6	5.0			
	7	9	2	0.8	3.4			
incl	8	9	1	1.1	3.4			
	20	26	6	0.9	7.3			
incl	20	22	2	1.8	7.2			
	31	32	1	1.6	1.4			

		1m Samples					
Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Ag Grade (g/t)		
incl	42	43	1	1.2	3.7		
	48	52	4	1.2	14.6		
incl	48	49	1	1.0	26.1		
and incl	50	52	2	1.5	9.4		
	61	62	1	1.9	7.4		
	69	70	1	0.5	1.8		
ZRMRC023	23	24	1	0.7	2.5		
	32	33	1	0.6	2.4		
	67	72	5	10.4	3.5		
	67	68	1	49.9	3.5		
	71	72	1	1.4	0.5		
	78	86	8	0.7	1.2		
incl	78	81	3	1.3	1.2		
incl	85	86	1	1.3	0.6		
IIICI	103	104	1	0.7	1.2		
ZRMRC024	14	15	1	0.6	1.7		
ZITIVITICOZ4	84	85	1	1.9	13.2		
ZRMRC025	04	85	1	NSR	13.2		
ZRMRC026	2	3	1	0.5			
ZRIVIRCUZU	23	28	5	0.3			
	53	54	1	0.2	0.4		
7DMDC027	33	34	1		0.4		
ZRMRC027				NSR	1.8		
ZRMRC028	84	86	2	2.9	1.6		
incl	84	85	1	5.0	3.1		
	99	100	1	0.5	0.7		
	105	110	5	1.0	3.0		
incl	109	110	1	4.2	12.1		
	122	123	1	0.8	1.4		
ZRMRC029	5	7	2	0.6	0.4		
ZRMRC030	24	25	1	0.7	5.0		
ZRMRC031	8	9	1	0.9	0.6		
ZRMRC032				NSR			
ZRMRC033				NSR			
ZRMRC034	77	78	1	0.8			
	95	96	1	1.3			
ZRMRC035	96	100	4	0.1	10.6		
ZRMRC036	57	58	1	0.9	6.7		
	86	87	1	0.8	9.7		
ZRMRC037	5	6	1	0.4	2.7		
	31	32	1	2.9	53.7		
	86	87	1	0.9	1.0		
ZRMCD038	95.7	96	0.3	0.6	0.6		
	139.4	139.7	0.3	1.9	3.2		

		1m Samples					
Hole	From	To (m)	Interval	Au Grade	Ag Grade		
	(m) 158	159	(m) 1	(g/t) 0.7	(g/t) 4.4		
	172.5	173	0.5	34.2	28.4		
	222	223	1	0.9	26.1		
	239	240	1	0.5	5.1		
ZRMRC039	3	11	8	1.6	9.6		
incl	3	4	1	3.1	8.4		
and incl	5	6	1	1.9	8.6		
and incl	7	8	1	5.1	19.2		
ZRMCD040	8	9					
ZRIVICDU4U			1	0.8	1.4		
	27	30	3	2.0	6.8		
	111.3	115	3.7	2.8	7.1		
incl	111.3	112.3	1	8.6*	11.8		
and incl	114	115	1	1.9	7.1		
	123.2	123.7	0.5	7.6*	13.3		
	138	141	3	3.5	7.1		
incl	138	139	1	1.8	13.2		
and incl	140	141	1	8.6*	7.8		
	156	161	5	0.3	30.6		
	165.9	166.9	1	10.4*	13.7		
	191	191.8	0.8	4.2	9.4		
	198	201.7 (eoh)	3.7	0.3*	3.7		
ZRMCD041	23	24	1	7.7	8.0		
	52	57	5	1.8	8.7		
incl	52	53	1	2.3	24.9		
and incl	56	56.6	0.6	10.7	9.4		
	63	70.7		4.4	44.0		
			7.7	4.4	11.8		
incl	63	64	7.7	19.3	25.6		
incl and incl	63 70						
		64	1	19.3	25.6		
	70	64 70.7	1 0.7	19.3 18.6	25.6 19.9		
and incl	70 81	64 70.7 89.5	1 0.7 8.5	19.3 18.6 0.4	25.6 19.9 4.2		
and incl	70 81 81	64 70.7 89.5 81.3	1 0.7 8.5 0.3	19.3 18.6 0.4 2.1	25.6 19.9 4.2 3.2	New Ag Results	
incl and incl and incl	70 81 81 84.7 89	64 70.7 89.5 81.3 85 89.5	1 0.7 8.5 0.3 0.3	19.3 18.6 0.4 2.1 4.0	25.6 19.9 4.2 3.2 270.0 4.6	New Ag Results	
and incl incl and incl	70 81 81 84.7 89	64 70.7 89.5 81.3 85 89.5	1 0.7 8.5 0.3 0.3 0.5	19.3 18.6 0.4 2.1 4.0 1.1 0.6	25.6 19.9 4.2 3.2 270.0 4.6 2.1	New Ag Results	
incl and incl and incl	70 81 81 84.7 89 169 183	64 70.7 89.5 81.3 85 89.5 170	1 0.7 8.5 0.3 0.3 0.5 1	19.3 18.6 0.4 2.1 4.0 1.1 0.6	25.6 19.9 4.2 3.2 270.0 4.6 2.1 1.5	New Ag Results	
incl and incl and incl and incl ZRMDD043	70 81 81 84.7 89 169 183	64 70.7 89.5 81.3 85 89.5 170 184	1 0.7 8.5 0.3 0.3 0.5 1 1	19.3 18.6 0.4 2.1 4.0 1.1 0.6 1.2	25.6 19.9 4.2 3.2 270.0 4.6 2.1 1.5	New Ag Results	
incl and incl and incl	70 81 81 84.7 89 169 183 194	64 70.7 89.5 81.3 85 89.5 170 184 197 195	1 0.7 8.5 0.3 0.3 0.5 1 1 3	19.3 18.6 0.4 2.1 4.0 1.1 0.6 1.2 0.7	25.6 19.9 4.2 3.2 270.0 4.6 2.1 1.5 8.0 7.9	New Ag Results	
incl and incl and incl and incl ZRMDD043	70 81 81 84.7 89 169 183 194 194.5	64 70.7 89.5 81.3 85 89.5 170 184 197 195 214	1 0.7 8.5 0.3 0.5 1 1 3 0.5 5	19.3 18.6 0.4 2.1 4.0 1.1 0.6 1.2 0.7 2.2 5.5	25.6 19.9 4.2 3.2 270.0 4.6 2.1 1.5 8.0 7.9 18.2	New Ag Results	
incl and incl and incl and incl ZRMDD043	70 81 81 84.7 89 169 183 194 194.5 209	64 70.7 89.5 81.3 85 89.5 170 184 197 195 214 210.5	1 0.7 8.5 0.3 0.3 0.5 1 1 3 0.5 5 1.5	19.3 18.6 0.4 2.1 4.0 1.1 0.6 1.2 0.7 2.2 5.5 17.7	25.6 19.9 4.2 3.2 270.0 4.6 2.1 1.5 8.0 7.9 18.2 45.1	New Ag Results	
incl and incl and incl and incl ZRMDD043 incl incl	70 81 81 84.7 89 169 183 194 194.5 209 209	64 70.7 89.5 81.3 85 89.5 170 184 197 195 214 210.5 237.4	1 0.7 8.5 0.3 0.5 1 1 3 0.5 5 1.5	19.3 18.6 0.4 2.1 4.0 1.1 0.6 1.2 0.7 2.2 5.5 17.7 1.8	25.6 19.9 4.2 3.2 270.0 4.6 2.1 1.5 8.0 7.9 18.2 45.1 3.1	New Ag Results	
incl and incl and incl and incl ZRMDD043	70 81 81 84.7 89 169 183 194 194.5 209 209 232	64 70.7 89.5 81.3 85 89.5 170 184 197 195 214 210.5 237.4 232.7	1 0.7 8.5 0.3 0.3 0.5 1 1 3 0.5 5 1.5 5.4	19.3 18.6 0.4 2.1 4.0 1.1 0.6 1.2 0.7 2.2 5.5 17.7 1.8 12.4	25.6 19.9 4.2 3.2 270.0 4.6 2.1 1.5 8.0 7.9 18.2 45.1 3.1 8.8	New Ag Results	
incl and incl and incl and incl ZRMDD043 incl incl	70 81 81 84.7 89 169 183 194 194.5 209 209	64 70.7 89.5 81.3 85 89.5 170 184 197 195 214 210.5 237.4	1 0.7 8.5 0.3 0.5 1 1 3 0.5 5 1.5	19.3 18.6 0.4 2.1 4.0 1.1 0.6 1.2 0.7 2.2 5.5 17.7 1.8	25.6 19.9 4.2 3.2 270.0 4.6 2.1 1.5 8.0 7.9 18.2 45.1 3.1	New Ag Results	

			Comments			
Hole	From (m)	To (m)	Interval (m)	Au Grade (g/t)	Ag Grade (g/t)	
incl	227	228	1	1.4	51.2	
	239	240	1	1.0	8.7	
	248	271	23	0.4	30.6	
incl	269	270	1	2.0	76.5	
	281.3	282	0.7	1.2	7.3	
	289	290	1	1.4	7.1	
	306	308	2	1.7	3.2	
	342	342.4	0.4	3.7	5.3	
	370	370.4	0.4	2.5	1.4	
ZRMDD042	131	134	3	0.5		
incl	131	131.5	0.5	2.0		
	169	190	21	1.9		
incl	169	171	2	10.8		
incl	169	169.6	0.6	33.0		
and incl	170	171	1	1.5		
and incl	172.6	173	0.4	2.3		
and incl	176.7	178	1.3	5.0		169 to 178m
and incl	180	181	1	1.0	Ag Results	9m @ 3.2g/t Au, incl
and incl	187	190	3	2.4	Awaited	up to 3m dilution
	204	205	1	12.5		New Au Results
	239	250	11	0.5		New Au Nesuits
incl	239	240	1	1.5		
and incl	249	250	1	1.3		
	295	296	1	1.9		
	303	304	1	0.6		
	310	311	1	2.0		
	351	351.9 (eoh)	0.9	0.4		

*Visible gold noted in diamond drill core

High-grade intersections are length weighted average grades with minimum cut -off grade of 1.0g/t Au and no internal dilution (hole ZRMDD042 9m @ 3.2 g/t Au intercept also reported at 1 g/t Au cut-off with up to 3m of consecutive dilution), whilst lower grade intersections are length weighted average grades with minimum cut-off grade of 0.4g/t Au and maximum internal dilution of 4m. High-grade silver with low gold reported above 30 g/t Ag cut-off grade.

Table 2: Red Mountain Drill Collars

Hole_ID	Hole_Type	Easting	Northing	RL	Depth (m)	Azimuth	Dip
ZRMRC001	RC	269200	7232597	412	79	270	-60
ZRMRC002	RC	269198	7232548	407	75	270	-60
ZRMRC003	RC	269153	7232555	408	75	90	-60
ZRMRC004	RC	269151	7232600	411	75	90	-60
ZRMRC005	RC	269175	7232745	407	73	90	-60
ZRMRC006	RC	269229	7232748	413	97	90	-60
ZRMRC007	RC	269227	7232827	406	73	270	-60

ZRMRC008	RC	269229	7232555	408	79	90	-60
ZRMRC009	RC	269395	7232270	408	64	130	-60
ZRMRC010	RC	269394	7232267	408	90	90	-60
ZRMRC011	RC	269221	7232555	407	151	270	-60
ZRMRC012	RC	269223	7232599	411	145	270	-60
ZRMRC013	RC	269226	7232597	411	151	90	-60
ZRMRC014	RC	269270	7232595	415	127	90	-60
ZRMRC015	RC	269252	7232648	417	151	90	-60
ZRMRC016	RC	269207	7232649	414	145	90	-60
ZRMRC017	RC	269149	7232649	412	127	90	-60
ZRMRC018	RC	269249	7232562	411	140	270	-60
ZRMRC019	RC	269248	7232701	419	157	270	-60
ZRMRC020	RC	269258	7232749	417	151	270	-60
ZRMRC021	RC	269279	7232747	420	151	270	-60
ZRMRC022	RC	269232	7232748	413	103	270	-58
ZRMRC023	RC	269293	7232792	418	151	270	-58
ZRMRC024	RC	269319	7232851	409	157	270	-58
ZRMRC025	RC	269349	7232906	400	151	270	-58
ZRMRC026	RC	269239	7232516	404	157	270	-58
ZRMRC027	RC	269238	7232447	402	157	270	-58
ZRMRC028	RC	269258	7232597	415	151	270	-58
ZRMRC029	RC	269286	7232402	403	109	270	-58
ZRMRC030	RC	269644	7232953	410	151	210	-63
ZRMRC031	RC	269679	7232996	405	157	210	-63
ZRMRC032	RC	269741	7232897	413	157	220	-60
ZRMRC033	RC	269802	7232833	408	151	230	-60
ZRMRC034	RC	269888	7232694	418	151	270	-60
ZRMRC035	RC	269918	7232696	414	151	270	-60
ZRMRC036	RC	269219	7232717	412	103	270	-75
ZRMRC037	RC	269242	7232794	410	109	270	-60
ZRMCD038	RC/DD	269323	7232743	426	272.2	270	-60
ZRMRC039	RC	269214	7232703	413	49	270	-60
ZRMCD040	RC/DD	269256	7232698	419	201.7	270	-70
ZRMRC041	DD	269239	7232650	416	144.7	270	-60
ZRMCD042	DD	269355	7232787	426	351.9	270	-60
ZRMRC043	DD	269074	7232704	409	339.6	90	-65
ZRMCD044	DD	269075	7232692	409	378.7	90	-66

For further information please refer to the Company's website or contact the Company directly.

Authorised for release by the Zenith Minerals Limited Board of Directors - 19 May 2021

For further information contact Zenith Minerals Limited:

Directors Michael Clifford or Peter Bird

E: mick@zenithminerals.com.au / peter@zenithminerals.com.au

Phone +61 8 9226 1110

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Michael Clifford, who is a Member of the Australian Institute of Geoscientists and an employee of Zenith Minerals Limited. Mr Clifford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Clifford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Material ASX Releases Previously Released

The Company has released all material information that relates to Exploration Results, Mineral Resources and Reserves, Economic Studies and Production for the Company's Projects on a continuous basis to the ASX and in compliance with JORC 2012. The Company confirms that it is not aware of any new information that materially affects the content of this ASX release and that the material assumptions and technical parameters remain unchanged.

About Zenith

Zenith has a vision to build a gold and base metals business with a team of proven project finders. Focus is on 100% owned Zenith projects, whilst partners progress multiple additional opportunities using third party funds.

Zenith is continuing to focus on its core Australian gold and copper projects including:

- Red Mountain Gold Project in Queensland (100% owned) where ongoing drilling is following-up the high-grade near surface gold and silver intersected in the maiden & subsequent drill programs (ASX Releases 3-Aug-20 & 13-Oct-20, 9-Nov-20, 21-Jan-21), including:
 - o 13m @ 8.0 g/t Au & 3.2 g/t Ag from surface
 - o 15m @ 3.5 g/t Au, incl. 2m @ 22.4 g/t Au
 - o 5m @ 10.4 g/t Au, and
 - o 12m @ 4.9 g/t Au
- **Split Rocks Gold Project** in Western Australia (100% owned), where recent drilling returned, high-grade near surface gold mineralisation at multiple targets (ASX Release 5-Aug-20, 2-Sep-20, 19-Oct-20, 28-Oct-20), including:
 - o Dulcie North: 32m @ 9.4 g/t Au, incl 9m @ 31.4 g/t Au.
 - o Dulcie Laterite Pit:
 - 2m @ 14.5 g/t Au, incl. 1m @ 20.8 g/t Au,
 - 18m @ 2.0 g/t Au (EOH) incl. 1m @ 23.7 g/t Au &
 - 14m @ 3.5 g/t Au
 - Estrela Prospect: 2m @ 9.8 g/t Au (open to north & south)
 - o Dulcie Far North: 5m @ 5.6 g/t Au incl. 4m @ 6.8 g/t Au
 - o Water Bore: 3m @ 6.6 g/t Au
- Develin Creek Copper-Zinc Project in Queensland (100% owned) maiden drill test of the new Snook copper target located 30km south of Zenith's JORC resources discovers massive copper-zinc sulphides (ASX Release 17-Dec-20).
- Jackadgery Gold Project in New South Wales (option to earn initial 90%), historic trenching returned 160m @ 1.2 g/t Au. No drilling to date. Zenith planning maiden drill test (ASX Release 10-Sep-20).
- Earaheedy Zinc Project in Western Australia (25% free carry to end BFS). New major zinc discovery to be fast tracked with extensive accelerated exploration program underpinned by a recent \$40M capital raising by partner Rumble Resources Limited (ASX:RTR) (ASX Release 28-Apr-21).

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Assays received for 40 reverse circulation drill holes, 2 diamond core tails and 4 diamond drill holes.
Sampling techniques	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	1m drill samples collected via a cyclone were split through riffle splitter. Routine sampling on 4m composites via spear sampling of the 1m riffle split samples. Selected 1m intervals were assayed as 1m samples based on visual logging of alteration and sulphide content. Diamond core was routinely sampled on 1m intervals with selected intervals sampled based on geological observations at intervals no less than 0.3m.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Reverse circulation drilling was used to obtain 1 m to 4m samples from which 2 to 3 kg was pulverised to produce a 30 g charge for fire assay. Diamond core drilling was used to obtain samples ranging from 0.3m to 1.7m. After cutting with a diamond saw, ½ core samples produced 3 to 5 kg which was pulverised to produce a 30 g charge for fire assay
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Reverse circulation and HQ diamond tails on holes ZRMCD038 and ZRMCD040. ZRMCD038 pre-collar to 90m and DD tail to 272.2m ZRMCD040 pre-collar to 70m and DD tail to 201.7m Dimond drilling from surface for holes ZRMDD041-044
	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond core was orientated whilst RC drill chips were sieved and logged by a qualified geologist on site, data recorded in field on paper logs and transferred to digital database
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC drilling produced generally dry samples with excellent recoveries, all 1m samples were riffle split on site and selected interval were 4m composite sampled using a spear from the 1m riffle splits to ensure a representative sample was collected for assay.
		Diamond core was cut on site and ½ core was submitted for analysis.

	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No indications of sample bias based on results to date. Screen fire assays of intervals with visible gold are pending.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill core and drill chips were sieved and logged by a qualified geologist on site. No reporting of resources.
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Drill chips logging is qualitative. Representative chip samples collected and stored in 20 compartment plastic chip trays and photographed. Drill core logging is qualitative, all core has bene
	The total length and percentage of the	photographed. All intervals logged and sampled
	If core, whether cut or sawn and whether	Core is ½ core, core is cut by diamond saw
Cook a constitue	quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Samples riffle split
Sub-sampling techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples were analysed at ALS Laboratories in Brisbane, the samples were crushed, pulverised and assayed by gold using fire assay and silver by ICP-AES.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	~2 to 3kg of drill sample was crushed and pulverised and a sub-sample was taken in the laboratory and analysed.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	RC drilling results incorporates 1m resamples of 4m composite intervals. No field duplicates yet taken for diamond core
Sub-sampling techniques and		Each sample was 2kg to 5kg in weight which is appropriate to test for the grain size of material.
sample preparation - continued	Whether sample sizes are appropriate to the grain size of the material being sampled.	Visible gold was logged to 1mm in size was logged in drill core. On receipt and reconciliation of assay results these observations were confirmed to be true. The presence of visible gold indicates that coarse gold is present within the Red Mountain mineralised system.
		Screen fire assays have been submitted for analysis of intervals that were logged as obtaining visible gold – assay results are pending.
Quality of assess	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The samples were crushed and assayed for gold using fire assay, which is considered a near total technique
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools used this sampling program

	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified reference material and blanks was included in each sample batch and appropriate levels of precision and accuracy.
	The verification of significant intersections by either independent or alternative company personnel.	Company personnel have observed the assayed samples
Verification of	The use of twinned holes.	No twinning
sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Field data were all recorded in field laptops and sample record books and then entered into a database
	Discuss any adjustment to assay data.	No adjustments were made.
Location of data points Accuracy and quality of surveys locate drill holes (collar and down surveys), trenches, mine working other locations used in Mineral Research		Collar locations up to hole 040 are based on Trimble R10-2 GNSS Rover DGPS coordinates +/-25mm accuracy. Holes 040 onwards GPS +/-5m accuracy. DGSP surveying planned.
	Specification of the grid system used.	The grid system used to compile data was MGA94 Zone 56
Location of data points - continued	Quality and adequacy of topographic control.	Topography control is +/- 25mm.
	Data spacing for reporting of Exploration Results.	Drill holes shown in Figures 2 to 6 and Tables 1 & 2.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data alone will not be used to estimate mineral resource or ore reserve
	Whether sample compositing has been applied.	Results are reported as length weighted average composites at a minimum cut-off grade of 0.4 g/t Au or if silver only 30g/t Ag (refer to Table 1). Over range >100g/t Ag re-assayed using a 4-acid digest ICP-AES.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Orientation of mineralisation based on 2 x orientated drill holes, indicates two main mineralised veins sets: moderate to steep southwest and shallow south dipping. The shallow dipping veins were less frequently measured in orientated drill core (~7 veins) versus >30 steep veins, this may be due to an orientation bias. Further drilling is required to confirm that drilling achieves unbiased sampling. Drill hole ZRMDD043 indicates gold mineralisation dip is rolling from step east to steep west.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	As above
Sample security	The measures taken to ensure sample security.	Samples were kept in numbered and secured bags until delivered to the laboratory

Audits or reviews

The results of any audits or reviews of sampling techniques and data.

Sampling techniques are consistent with industry standards

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments	
Exploration done by other parties	to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties.	good standing with no known impediment to future granting of a mining lease. South Pine Mines Pty Ltd undertook regional scale reconnaissance rock chip sampling and a systematic stream sediment sampling program focused around the Rossmore silver occurrence from 1981 to 1982. Several companies held the ground in the following decades focusing on the porphyry copper / epithermal potential of the area with Archer Resources Limited the only company to have reported on ground exploration activity on the area of interest being reported herewith by Zenith. Anomalous silver and gold in soils was reported by Archer Resources Limited which has subsequently been confirmed by Zenith.
Geology	Deposit type, geological setting and style of mineralisation.	Based on the initial site visit and preliminary evidence the geological setting and geochemical association at Red Mountain is indicative of an epizonal intrusion related gold deposit like the Mt Rawdon gold mine.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length.	Refer to Tables 1 & 2
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No high-grade cutting
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	High-grade intersections are length weighted average grades with minimum cut -off grade of 1.0g/t Au and no internal dilution, whilst lower grade intersections are length weighted average grades with minimum cut-off grade of 0.4g/t Au and maximum internal dilution of 4m.

Data aggregation methods - continued	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	Refer below
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Orientation of mineralisation based on 4 x orientated drill holes, indicates two main mineralised veins sets: moderate to steep southwest and shallow south dipping. The shallow dipping veins were less frequently measured in orientated drill core (~7 veins) versus >30 steep veins, this may be due to an orientation bias. Further drilling is required to confirm that drilling achieves unbiased sampling.
		Overall gold mineralised envelops are interpreted as north-south with steep east dips near surface rolling to steep west with depth.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	As above
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to descriptions and diagrams in body of text of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Refer to descriptions and diagrams in body of text
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other meaningful or material exploration data to be reported at this stage
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Follow-up drill planning in progress. Detailed drone mag (40m line spacing) survey results awaited. 3DIP electrical geophysical survey planned to commence this month. Soil geochemical coverage currently being extended.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to figures in body of report.